
Gil, J., Howse, J. and Kent, S. (1999) Formalizing Spider Diagrams. In:
Proceedings of IEEE Symposium on Visual Languages. IEEE, pp. 130-137.
ISBN 0-7695-0216-4.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21724/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1109/VL.1999.795884

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21724/
https://doi.org/10.1109/VL.1999.795884
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Formalizing Spider Diagrams

Joseph (Yossi) Gil�
Department of Computer Science

Technion—IIT, Haifa 32000, Israel
yogi@cs.technion.ac.il

John Howsey
School of Computing & Mathematics
University of Brighton, Brighton, UK

John.Howse@brighton.ac.uk

Stuart Kenty
Computing Laboratory

University of Kent, Canterbury, UK
S.J.H.Kent@ukc.ac.uk

Abstract

Geared to complement UML and to the specification of
large software systems by non-mathematicians,spider di-
agramsare a visual language that generalizes the popu-
lar and intuitive Venn diagrams and Euler circles. The
language design emphasized scalability and expressiveness
while retaining intuitiveness. In this extended abstract we
describe spider diagrams from a mathematical standpoint
and show how their formal semantics in terms of logical
expressions can be made. We also claim that all spider dia-
grams are self-consistent.
Keywords Visual formalisms, software specification, for-
mal methods.

1. Introduction

Circles or closed curves, which we will call contours, have
been in use for the representation of classical syllogisms
since at least the Middle Ages [11]. The Swiss mathemati-
cian Leonhard Euler (1707-1783) introduced the notation
we now callEuler circles(or Euler diagrams) [1] to illus-
trate relations between sets. This notation uses the topo-
logical properties of enclosure, exclusion and intersection
to represent the set-theoretic notions of subset, disjointness,
and intersection, respectively.

The 19th century logician John Venn used contours to
represent logical propositions [16]. In Venn diagrams all
contours must intersect. Moreover, for each non-empty sub-
set of the contours, there must be a connected region of the
diagram, such that the contours in this subset intersect at
exactly that region. Shading is then used to show that a par-

�Work done in part while the author was at the IBM T. J. Watson Re-
search Center

yPartially funded by the UK EPSRC, grant numbers GR/K67304 and
GR/M02606

ticular region of the resulting map is empty.

In 1896, the logician Charles Peirce augmented Venn di-
agrams by adding X-sequences as a means for denoting ele-
ments [14]. An X-Sequences connecting a number of “min-
imal regions” of a Venn-diagram, indicates that their union
is not empty. Peirce also gave a mechanism for writing dis-
junctive information, which we will not discuss here.

As an indication of the popularity and intuitiveness of
Venn-Peirce diagrams is the fact that they are used in el-
ementary schools for teaching set theory as an introduc-
tion to mathematics. Still, only recently, full semantics and
inference rules have been developed for Venn-Peirce dia-
grams [15] and Euler circles [4].

As a means for writing constraints on sets and their re-
lationships with other sets, Venn-Peirce diagrams are ex-
pressive, but complicated to draw because all possible in-
tersections have to be drawn and then some regions shaded.
Drawing the Venn diagram of four or more sets is quite chal-
lenging. As shown by More [12] in the late fifties, there is
an algorithm for adding a new contour to a Venn diagram.
Although it is possible to do so indefinitely, the contours
quickly assume weird shapes, with exponential increase in
their curvature. The resulting diagram is very complicated
and difficult to follow. Indeed, it is rare to see Venn dia-
grams of four or more contours. On the other hand, Euler
circles are intuitive and easier to draw, but are not as ex-
pressive as Venn diagrams because they lack provisions for
shading and for “X-Sequences”.

In view of their relative merits, it seems natural to com-
bine the two notations, by relaxing the demand that all
curves in Venn-diagrams must intersect. Doing this and
more arespider diagrams. They are named after the “spider
shape” which generalizes X-sequences in that a “minimal
region” may have more than one spider in it, e.g., to denote
that a set has two or more elements.

1

A
B

C
a

Fig. 1: An example spider diagram.

Fig. 1 is a simple spider diagram consisting of three spi-
ders and three contours. The figure uses various visualiza-
tion techniques to specify that

jA�Bj = 2

C \ A = C \ B = ;

a 2 ((B � C)�A) [((C �A)�B)

Spiders may be connected by strands or ties in a region,
to indicate that elements denoted by the spiders may or must
be the same in that region. Further, a region containing spi-
ders may also be shaded to denote that there are no elements
in that region other than those shown by the spiders. Thus,
spider diagrams allow placing both an upper bound and a
lower bound on the size of a set. Among other extensions
to traditional notation we find in spider diagrams the notion
of “projections” which are used to show the intersection of
more than three curves in a clear and uncluttered manner.

Spider diagrams have emerged from a succession of at-
tempts to provide the software designer with precise, yet
intuitive tools to specify a system prior to actually coding
it. Work along this line of research can be traced all the way
back to Harel’s seminal state-charts. It was only the sound
mathematical foundation which they stand upon that en-
abled the development of “executing” CASE tools [6]. With
the advent of the object-oriented paradigm, and the mod-
ernization of software design, came a series of notations,
for example BON [17], OML [2], and the celebrated UML
standard [13]. Most of these visual languages are quite re-
stricted in their expressive power in lacking provisions for
denoting first order predicate logic formulae, which are so
essential for describing system invariants. Such formulae
are written using either in-borrowed mathematical notations
(as in BON), in an auxiliary specialized textual language de-
signed for that purpose, e.g., OCL [18], or worse, as natural
language annotations (as was the case with OML).

Spider diagrams have emerged from work onconstraint
diagrams[8], which were introduced as an attempt to rem-
edy this situation. The constraint diagram in Fig. 2 ex-
presses (amongst other constraints) an invariant on a model
of a library system: for any library object, and any copy of
that library which is on hold, that copy’s publication must
be the same as that associated with the reservation for which
it is on hold

8x 2 Libraries � 8y 2 x:collection \ OnHold �

y:OnHold:reserved = y:publication:

This reading is obtained by interpreting the *s as wild-
cards, universal quantifiers ranging over the regions which

Libraries Copies

OnHoldcollection

Publications

Reservations onHoldFor

reserved

publication

Fig. 2: A constraint diagram.

contain them, and arrows as showing the range of relations
when their domain is restricted to the set or element at their
source. Spider diagrams are used to show relationships be-
tween all the sets and elements involved. In fact, spider
diagrams can be thought of as constraint diagrams without
the arrows.

Constraint diagrams proved to be an intuitive and useful
tool for design, and several extensions of these were pro-
posed, including a variant designed for expressing pre- and
post-conditions pairs [9], a three dimensional version for
behavioral specification [3], and a version used for meta-
specification, i.e., the specification of design patterns [10].
At the same time, constraint diagrams were employed in
the software industry to produce informal descriptions of
systems.

Spider diagrams, the most fundamental layer of con-
straint diagrams, are the subject of this treatise. Our ef-
forts towards upgrading the language into a true “visual for-
malism” [5], include the discussion of the essential syntax,
semantics and properties of spider diagrams, treating them
both as topological and notational creatures. Following the
work of Shin [15] and Hammer [4] we show how formal se-
mantics in the form of logical formulae for spider diagrams
can be given.

Beyond visual software modeling, spider diagrams have
an impact on the field of diagrammatic reasoning, a rela-
tively new field which looks at logic and logical reasoning
from a wholly new perspective. Such extensions are dis-
cussed in [7].

Outline. The remainder of this paper is organized as fol-
lows. Sec. 2 defines the syntax, and provides an informal
semantics which helps to motivate and explain the vari-
ous syntactic elements. This section treats spider diagrams
as topological creatures. A formal definition of spider di-
agrams as a notational device devoid of geometrical and
topological undertones is given in Sec. 3. This definition
is then used in Sec. 4 to provide formal semantics of the
notation. Sec. 4 also quotes the main result in the study

(a) (b) (c)

Fig. 3. The three possible relationships between two contours: in-
tersection (a), disjointness (b), and containment (c).

of spider diagrams, namely that all legal diagrams are con-
sistent. Finally, Sec. 5 concludes the paper and describes
future research. Due to space limitations proofs are omitted
from this paper. Similarly, some definitions, which were
overly technical, were abridged.

2. Syntax and Informal Semantics
2.1. Contours

Contours are shapes used in a spider diagram to denote sets.
Formally, acontour is a closed non-self-intersecting plane
curve.

Although it is convenient to draw contours as ovals, this
is not mandatory. Other topologies may be used for mak-
ing a visual distinction between different kinds of contour.
For example, in object-oriented modeling, rectangle con-
tours are used to indicate that a set corresponds to a class
of objects. Since convex contours tend to be more visually
pleasing we usually try to draw them as such.

Different iconic representations, or line styles, may be
used to distinguish between different kinds of contours. In
state-chart diagrams for example, thick lines may be used
to denote initial states. We will also use dashed lines to
denote projections, which are a special kind of contour. All
concepts described in this section are independent of the
chosen shape or the iconic representation of a contour.

A diagram contains at least one contour, called the
boundary contour. The boundary is a contour which is not
contained in, nor does it intersect with, any other contour.
We do not usually bother to draw the boundary contour: it
is assumed to be the bounding box for the diagram, be it the
edges of the drawing surface, the edges of a figure, etc.

Excepting the boundary, all contours in a Venn diagram
must intersect. We do not require this property in spider
diagrams. In spider diagrams, just as in Euler circles, two
contours can stand in one of three relations (Fig. 3). An
intersectionbetween the contours will mean that the sets
they denotemay intersect. Thus, with the absence of any
other information, no statement is being made of the rela-
tionship between these two sets. If the contours do not inter-
sect, then they are eitherdisjoint, with the implication that
their denoted sets are disjoint, or one of of them iscontained
in the other, with a corresponding implication on the rela-
tionship between the sets they denote.

There is a much greater variety of relationships among
more than two contours. Consider for example Fig. 4, in
which one contour is contained in the “union” of two oth-
ers. The intended semantics is of course thatA � B [C.

B
A

C

Fig. 4: One possible relationship between three contours..

(a) (b)

Fig. 5: Contours (a) and zones (b) in a clover.

Part of the challenge in giving precise semantics to spider
diagrams is in systematically dealing with the general case
of relationships among any number of contours.

A contour can be labeled. By convention, contour labels
are initially capitalized.

2.2. Districts, Regions and Zones

The meaning of a diagram is obtained from the topology of
the contours in it. The terms district, region, and zone will
become pertinent in the study of this topology.

A district (sometimes called abasic region) is the set of
points in the plane enclosed by, or lying on, a contour. The
district of the boundary contour is called thedomainsince it
consists of all points of the diagram. By definition, a district
is a connected set. Also, since a district includes the points
on the contour itself, topologically it is a closed set. Fig. 5a
shows the districts of aclover—three mutually intersecting
non-boundary contours.

The regions of a diagram are the non-empty sets which
can be formed from its districts by means of set union, inter-
section and difference operations. More formally, aregion
has the following recursive definition: Any district is a re-
gion, and in addition, for any two regionsr1 and r2, the
setr1 [r2 is a region, as are the setsr1 \ r2 andr1 � r2
provided they are not empty.

Regions are not necessarily closed, nor do they have
to be connected. For example, the region corresponding
to (A � C) [(A�B) in Fig. 4 is not connected, neither it
is a closed set, nor an open one.

We insist that the number of contours in a diagram is
finite. It follows that there are regions which are minimal
with respect to set containment. This special kind of region

E
DB A

C

Fig. 6: An example of using zone labels.

is a called zone. Formally, azone(or aminimal region) is
a region having no other region as a proper subset. Notice
that a zone does not have to be connected. For example,
in Fig. 4, the zone corresponding to(B \ C) � A is not
connected.

Fig. 5 shows all but one of the zones of the clover. The
zone not shown is that which is formed by subtracting the
districts of all non boundary contours from the domain.

It is not difficult to see that contours partition the do-
main into disjoint zones. Accordingly, we have that all
the regions can be generated by taking the union of any
non-empty collection of zones. The clover, for example,
has28 � 1 = 255 regions in total, which is the number of
non-empty ways its eight zones can be combined.

A zone can also be a district, as it the case for two out
of the three zones of Fig. 3b. However, it follows from the
definition that a zone is either completely contained in a
district, or it disjoint from it. This dichotomy suggests a
canonical method for denoting zones.

Definition 1 Let C be a set of contours, and letb 2 C be a
special boundary contour. Then, the pairhC1; C2i is called
a contour divisionif b 2 C1,C1\C2 = ; andC1[C2 = C.

For a zonez, let C+(z) be the set of contours that con-
tain it, and letC�(z) be the set of contours that don’t.
Then,hC+(z); C�(z)i is a contour division of the contours
of the diagram which uniquely identifiesz. The converse,
namely that all contours divisions correspond to zones is
true in Venn diagrams, but may not hold in spider diagrams.

Topologically, a zonez is the intersection of the districts
ofC+(z), minus the union of districts ofC�(z). For exam-
ple, the zone highlighted in Fig. 5b is calculated by taking
the intersection of the sets denoted by the contours high-
lighted with solid border in Fig. 5a and subtracting the set
denoted by the contour highlighted with a dashed border.

Zones can be optionally labeled. By convention a zone
label is underlined, initially uppercase and placed inside its
zone. Using this convention we can read now read Fig. 6
and determine that its semantics is (among other things)

A� (D [C) = A \ B = E:

The spider diagram Fig. 7 summarizes (in a reflective
fashion) some of the terms introduced above: regions are
sets of points, districts and zones are regions, and there
might be zones which are also districts.

2.3. Spiders

So far, our expressive power was limited to sets and their re-
lationships. In order to be able to make statements about set

Districts

Regions

Zones

Sets of points

Fig. 7. The set-theoretical relationship between zones, districts and
regions.

Districts Zones��domain

Fig. 8: The spider of the domain.

members, we need a new shape: the spider, which is used
to denote elements. Spiders are similar to X-sequences, or
chains, in Peirce diagrams, except that unlike X-sequences,
spiders must be distinct (unless they are joined by atie or
by astrand, see below).

The visual representation of a spider is as a tree with
nodes, calledfeet. A foot is a drawn as a little black circle
or square, and the connecting edges, thelegsof the spider,
are drawn as straight lines. We chose the tree representation
instead of the linear structure of X-sequence used in tradi-
tional Venn-Peirce diagrams since we found that the greater
flexibility enables more visually pleasing diagrams.

We say that a spidertouchesa zone if it has a foot in
that zone. No spider may touch the same zone twice. A
spider inhabits the region formed by the union of all the
zones that the spider touches. This region, called thehabitat
of the spider, is intuitively where the element denoted by the
spider might reside.

Spiders can be labeled. By convention, spider labels are
all lower case. As a simple reflective example, Fig. 8 shows
that the domain is a district, but it may be in addition a zone
(this happens if a diagram has no contours other than the
boundary).

There is a slight semantical difference between spiders
with circles as feet and spiders with squares as feet. A spi-
der whose feet are circles corresponds to existential quan-
tification. Thus, in Fig. 1, the semantics of the two left most
spiders is that there are two distinct anonymous elements
in A � B. A spider whose feet are squares represents a
given element. The semantics of Fig. 8 is that thespecific
element called “domain” is a member of the set “Districts”.

A more elaborate example is given in Fig. 9. The seman-
tics is that there existsa, b, c such that

b 2 (B � C) [(C �A)

a 2 (A�B)� C

c 2 (U �A)�B

where U is the universal set denoted by the boundary con-
tour. In addition, the semantics includes the condition that

A B

C

ba

c

Fig. 9: Three spiders in a clover example.

A B

C

b

a

(a)

A B

C

b

a =

(b)

D D

Fig. 10: Strands (a) and ties (b) in a spider diagram.

all elements are distinct, i.e.,a 6= b, b 6= c, anda 6= c.

2.4. Strands and Ties

We introduce the notion ofstrandsand ties to provide a
means for denoting that spiders may (or must) be the same
should they occur in a certain zone.

The increased expressivity does not come at the cost of
visual clarity. There is an intuitive and concise iconic rep-
resentation for both strands and ties. Suppose that nodes
of two spiders placed in the same zone, are connected by a
“strand”, drawn as a wavy line, as shown in Fig. 10a. Then,
this means that the elements that these spiders denote may
be the same if they occur in this zone. In Fig. 10a elementsa

andb are required to be distinct only if they are not members
of the zoneD.

Dually, if the same two nodes are connected by a “tie”,
drawn as a double straight line resembling an equal sign
(see Fig. 10b for an example), then the two elementsmustbe
the same if they occur in the same zone. Thus, the semantics
of Fig. 10b is also that

(a 2 D ^ b 2 D)) a = b:

Thenestof spiderss andt is the union of those zonesz
having the property that there is a sequence of spiders

s = s0; s1; s2; : : : ; sn = t

such that, fori = 0; : : : ; n � 1, si andsi+1 are connected
by a tie inz. Two spiders which have a non-empty nest are
referred to asmates. If both the elements denoted by spiders
s andt are in the set denoted by the same zone in the nest
of s andt, thens andt denote the same element.

A strandis a wavy line connecting two feet, from differ-
ent spiders, placed in the same zone. Thewebof spiderss

Shaded Unshaded

Zones

Fig. 11: Shaded and unshaded zones.

A B C

Fig. 12: Specifying cardinality with spiders.

andt is the union of zonesz having the property that there
is a sequence of spiders

s = s0; s1; s2; : : : ; sn = t

such that, fori = 0; : : : ; n � 1, si andsi+1 are connected
by a tie or by a strand inz. So thenestof spiderssandt is a
subregion of thewebof spiderss andt. Two spiderss and
t may (but not necessarily must) denote the same element
if that element is in the set denoted by the web ofs andt.
Clearly, if there is a tie between feet, then a strand between
those feet is redundant. Similarly, multiple strands or ties
between the same pairs of feet are redundant.

2.5. Shading and Schr̈odinger Spiders

Venn-Peirce diagrams use shading to specify that a zone is
empty. Hence, a shaded zone in Venn-Peirce diagrams may
not contain an X-sequence. This condition is relaxed in spi-
der diagrams, and a shaded zone may contain spiders. The
semantics of ashaded zoneis that the set it denotes may not
contain elements other than those indicated by the spiders
which touch that zone. A shaded zone which has no spiders
is thus empty, in agreement with Venn-Peirce notation. As
shown in Fig. 11, zones are eithershadedor unshaded.

Just like labels, shading is not technically part of the ge-
ometry of a diagram. They are rather a property of a set of
its points. It is still useful to render shaded zones by actually
shading them as in Fig. 11. Although visually appealing,
rendering a zone shaded is difficult to draw freehand. An-
other alternative for a visual indication of shading is placing
a� symbol in the zone.

Spiders can be used to place a lower bound on the num-
ber of elements in a set. In Fig. 12, we have that

jA�Bj � 2

j(B �A)� C) [(C �B)j � 1:

Shading a zone which includes spiders has the effect of
placing an upper bound on the cardinality of elements in
the set denoted by that zone. In Fig. 13a, the setA contains
exactly 2 elements; the two spiders in the zone mean lower-
bound of 2 on its size, the shading of the zone ensures that
this is also an upper-bound. Also,B contains at most 3
elements; it may contain less as the elements denoted by

c

a b

c

a

====

(a) (b)

b
B C A

B C
A

DD

Fig. 13. Specifying cardinality with shading and spiders (a) and
the effect of ties (b).

a

b

c
B

C A

D

Fig. 14: Using Schr¨odinger spiders.

spidersa, b andc may be selected from other zones. In the
same fashion we have that1 � jCj � 3.

In Fig. 13a,jBj andjCj are related: the more elements
in B the less inC, and vice-versa. To avoid this depen-
dency, an exclusive element could be introduced into the
universal set, i.e., an element which is not a member of any
of the sets represented by the other contours. In Fig. 13b,
the same restrictions onjBj and jCj are in force, but this
time if a, b andc denote elements inB this has no impact
on onjCj, as the habitats of these spiders do not includeC.
The price is the introduction of the constraint thatjDj � 1
whenjBj = jCj = 0.

Besides being awkward to draw, and being less than im-
mediately intuitive, the exclusive element of the universal
set is undesirable since it forces an unnatural constraint on a
diagram. We fix the situation by introducing a new symbol,
the Schr̈odinger spider, which denotes a set whose size is
either zero or one. Just like Schr¨odinger’s cat one is not sure
whether the element exists or not. Formally, aSchr̈odinger
spideris nothing but a kind of a spider, whose semantics is
specialized.

The feet of a Schr¨odinger spider are rendered differently
from normal non-Schr¨odinger spiders. An example is given
in Fig. 14, in which zoneB contains three Schr¨odinger spi-
ders, labeleda, b, andc, while regionC contains two un-
labeled Schr¨odinger spiders. In comparison with Fig. 13b,
Fig. 14 is less cluttered, and does not force an element into
zoneD.

There is a limit to the amount we can express in this no-
tation about the cardinality of sets. For example, we are
unable to say thatjAj = jBj for a disjoint setsA andB.
In order to retain the intuitiveness of spider diagrams, con-
straints such as this should be placed in an auxiliary textual
annotation, not burdening the visual notation.

B C

D

A

X1

B C

D

X2

(A)

(a) (b)

X

Fig. 15: A projected set (a) and its semantics (b).

2.6. Projections

Sometimes it is necessary to show a set in a certain context.
Intersection can be used for just this purpose: an intersec-
tion of A andB shows the setA in the context ofB and
vice-versa. However, intersections also introduce regions
which may not be of interest. Projections are equivalent
to taking the intersection of sets, except that they introduce
fewer regions, with the effect that regions which are not the
focus of attention are not shown resulting in less cluttered
diagrams.

A projection is a contour which is used to denote an
intersection of a set with a “context”. By convention, we
use dashed iconic representation to make the distinction be-
tween projections and other contours.

A determining labelmust be associated with any pro-
jectionp. This label is used to denote the set which is be-
ing projected. The convention is that determining labels are
rendered within parenthesis when drawn in a diagram. A
projection can also have a contour label.

Consider Fig. 15(a) for example. The dashed contour, la-
beledX , denotes the set obtained by “projecting” the setA

onto the context(D [C)�B, i.e.,

X = A \ ((D [C)�B)

The same semantics could have been obtained by using
More’s algorithm [12] to draw the Venn diagram of four
contours, as in Fig. 15(b)

X = X1 [X2:

The simplicity of Fig. 15(a) when compared to Fig. 15(b) is
self evident.

As noted above, the semantics of a projection is deter-
mined by its context, defined by:

Definition 2 Thecontextof a contourc, denoted�(c) is the
smallest region that strictly contains the district ofc.

Strictness ensures that the district itself is not the region
containing the contour. A projectionp denotes the set ob-
tained by intersecting the set denoted by its determining la-
bel with the set denoted by�(p). It must be possible to
calculate the set denoted by�(p) from the sets denoted by
contours other thanp itself.

There are fascinating mathematical intricacies involving
the intersection of several projections. Due to space con-
straints, we will not be able to discuss these here, nor shall

we be able to give the full semantics or even the exact defi-
nition of projections.

3. Formal Syntax of Spider Diagrams

In this section we give spider diagrams a formal definition
which is independent of any topological and visual repre-
sentations thereof. For space reasons, the definition of pro-
jections is omitted from this paper.

A spider diagramis a tuple

hC; �;Z ;Z�;R;S;S�; �; �; �; i

whose components are defined as follows:
(i) C is a finite set whose members are calledcontours.

The element�, which is not a member ofC, is called
theboundary contour.

(ii) The setZ � 2C is the set ofzones, whileZ� � Z is
the set ofshaded zones. A zonez 2 Z is incidenton
a contourc 2 C if c 2 z.

(iii) R is the set ofregions, and letR0 = R [;.
(iv) S is a set ofspiders, while S� � S is a set of

Schr̈odinger spiders.
(v) The function� : S ! R returns the habitat of a

spider. The function� : S � S ! R0 returns the
nest of any two spiders, while� : S � S ! R0 is a
function that returns the web of any two spiders.

In addition, we use the value?, which is not a member
of any of the sets we mention, to denote undefined values.

We use the dot notation to extract components of a tuple.
Thus,d:Z denotes the zones of a diagramd.

A spider multi-diagramis a collectionD of spider dia-
grams.

4. Formal Semantics

A modelfor a spider diagram

d = hC; �;Z ;Z�;R;S;S�; �; �; �; i

is a triple

m = hU; ;	i

such thatU is a set and and	 are functions:

� : S ! U [f?g maps given spiders to elements of
U or to the special symbol?, and

� 	 : C ! 2U maps contours to subsets ofU.

Given a diagram, we will define a predicatePd(�), called
its semantics predicate. A modelcomplieswith a diagramd
if it satisfies its semantics predicate, i.e.,Pd(U) is true. A
diagram isconsistentif it has a compliant model. As shall
become easy to see, the empty set is compliant with any
legal diagramd which has no spiders, i.e.,d:S = ;. Our
main result is

Theorem 1 All spider diagrams are self-consistent.

The proof is based on the construction of the topological
model of a spider diagrams. The details are omitted.

The definition of a model and compliance have a
straightforward extension to a spider multi-diagramD. The
semantics predicatePD(U) is simply the conjunction of the
semantics predicate of the individual diagrams:

PD(U) =
^

d2D

Pd(U):

Thm. 1 does not extend to multi-diagrams. The reason is
that it is possible to simultaneously denote that a certain set
is empty in one diagram and non-empty in another diagram.

Since non-given spiders are existentially quantified, we
must map them into formal variables. A non-given spider is
mapped into a formal variable which will existentially range
overU.

Let s1; : : : ; sk denote the non-given non-Schr¨odinger
spiders, and letsk+1; : : : ; sk+l denote the non-given
Schrödinger spiders. LetU0 = U [f?g, then, predicate
Pd(U) is

9xs1 2 U � � � � � 9xsk 2 U �

9xsk+1 2 U
0 � � � � � 9xsk+l

2 U0 �Q

whereQ is a predicate involving no quantifiers defined by

Q = Q1 ^Q2 ^Q3 ^Q4 ^Q5 ^Q6

and the predicatesQi, i = 1; : : : ; 6 are expanded below.
The function	 maps the contours ofd to subsets ofU.

Let us extend its definition to include the interpretation of
other elements ofd which are to denote sets in the model:

(i) Boundary.The boundary denotes the universal set.

	(�) = U

(ii) Zones.The semantics of a zonez 2 Z is determined
by which contours enclose it and which don’t

	(z) =
\

c2z_c=�

	(c)�
[

c2C�z

	(c)

By letting the set intersection operation range over the
boundary contour, we make sure that even the zone
that is external to all contours has a well-defined se-
mantics.

(iii) Regions.The value of	 of a region, or more gen-
erally any other collection of zones is simply the
union of the semantics of the zones in the collection:
For r 2 2Z � f;g, let

	(r) =
[

z2Z(r)

	(z)

where, for any regionr, Z(r) is the set of zones con-
tained inr.

PredicateQ1 (theplane tiling condition) ensures that all
elements fall within sets denoted by zones:

[

z2Z

	(z) = U

This predicate, means that that an intersection of contours
that doesn’t appear as a zone must be empty. From it fol-
lows our intuitive interpretation of disjoint contours and
containing contours: Letc1 and c2 be two distinct con-
tours in a topological diagram. Then, it follows from the
plane tiling condition that ifc1 is disjoint from c2, then
	(c1) \ 	(c2) = ;. Similarly, if c1 is contained inc2 then
it follows from that condition that	(c1) � 	(c2).

PredicatesQ2 (the spider condition) and Q3 (the
Schr̈odinger spider condition) ensure that an element de-
noted by a spider is in the set denoted by the habitat of the
spider:

Q2 =
^

s2S�S�

 (s) 2 	(�(s))

Q3 =
^

s2S�

 (s) 2 	(�(s)) [f?g

PredicateQ4 (thestrangers condition) ensures that ele-
ments denoted by two distinct spiders are equal then they
must fall within the set denoted by their web:

^

s;t2S;s 6=t

 (s) = (t)) (s) = ?_

 (s) 2 	(�(s; t))

PredicateQ5 (the mating condition) ensures that if the el-
ements denoted by two distinct spiders fall within the set
denoted by their nest, then these elements must be equal:

^

s;t2S

^

z2Z(�(s;t))

 (s); (t) 2 	(z)) (s) = (t)

Finally, predicateQ6 (theshading condition) maintains
that the set denoted by a shaded zone contains no elements
other than those denoted by spiders

^

z2Z�

	(z) �
[

s2S

f (s)g

Here we adopt the standard convention that a union over
an empty range results in the empty set. Together with the
spider condition,Q6 ensures that the only elements in a set
denoted by a shaded zone are the elements represented by
any spiders impinging on that zone. Specifically, the set
denoted by a shaded zone not containing feet of any spiders
is empty.

5. Conclusions and Further Work

This is the first of a two part semantics for constraint di-
agrams. The second part will deal with the semantics of
arrows. We have begun to explore rules for reasoning di-
rectly with the diagrams, building on recent work in reason-
ing with Venn diagrams and Euler circles. Early results look
promising, see [7] for details. It is our eventual aim to de-
velop tools to support conceptual modeling, including the
modeling of software, based on these formal results. The
formal work goes hand in hand with attempts to popularize
and obtain feedback on the utility of the notation.

References
[1] L. Euler. Lettres a Une Princesse d’Allemagne, volume 2.

1761. Letters No. 102–108.
[2] D. Firesmith and B. Henderson-Sellers. Open Modeling

Language (OML) notation specification. By the OPEN Con-
sortium, 1996.

[3] J. Gil and S. Kent. Three dimensional software modelling.
In Proceedings of International Conference in Software En-
gineering, Kyoto, Japan, May 1998. IEEE Press.

[4] E. Hammer. Logic and Visual Information. CSLI Publica-
tions, 1995.

[5] D. Harel. On visual formalisms. In J. Glasgow, N. H.
Narayanan, and B. Chandrasekaran, editors,Diagrammatic
Reasoning, pages 235–271. MIT Press, 1998.

[6] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R.
Sherman, A. Shtull-Trauring and M. Trakhtenbrot. Statem-
ate: A working environment for the development of complex
reactive systems.IEEE Transactions on Software Engineer-
ing, 16(4), 403-414, 1990.

[7] J. Howse, F. Molina, J. Taylor, S. Kent. Reasoning with
Spider Diagrams. InProceedings of IEEE Symposium on
Visual Languages(VL99), IEEE Press, 1999.

[8] S. Kent. Constraint diagrams: Visualising invariants in ob-
ject oriented models. InIn Proceedings of OOPSLA97,
ACM SIGPLAN Notices 32, 1997.

[9] S. Kent and Y. Gil. Visualising action contracts in oo mod-
elling. IEE Proceedings Software, 1998. 145.

[10] A. Lauder and S. Kent. Precise visual specification of de-
sign patterns. InProceedings of ECOOP98, Springer Ver-
lag, 1998.

[11] R. Lull. Ars Magma. Lyons, 1517.
[12] T. More. On the construction of Venn diagrams.Journal of

Symbolic Logic, 24, 1959.
[13] OMG. UML 1.1. specification. OMG Documents

ad970802-ad970809, 1997.
[14] C. Peirce.Collected Papers. Harvard Univ. Press, 1933.
[15] S.-J. Shin.The Logical Status of Diagrams. CUP, 1994.
[16] J. Venn. On the diagrammatic and mechanical representation

of propositions and reasonings.Phil.Mag., 1880. 123.
[17] K. Walden and J.-M. Nerson.Seamless Object-Oriented

Software Architecture: Analysis and Design of Reliable Sys-
tems. Object-Oriented Series, Prentice-Hall, 1994.

[18] J. Warmer and A. Kleppe.The Object Constraint Language:
Precise Modeling with UML. Addison-Wesley, 1998.

