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tThe basis of indu
tive learning is the pro
ess of generating and refuting hypothe-ses. Natural approa
hes to this form of learning assume that a data item that 
ausesrefutation of one hypothesis opens the way for the introdu
tion of a new (for nowunrefuted) hypothesis, and so su
h data items have attra
ted the most attention.Data items that do not 
ause refutation of the 
urrent hypothesis have until nowbeen largely ignored in these pro
esses, but in pra
ti
al learning situations they playthe key role of 
orroborating those hypotheses that they do not refute.We formalise a version of K.R. Popper's 
on
ept of degree of 
orroboration forindu
tive inferen
e and utilise it in an indu
tive learning pro
edure whi
h has thenatural behaviour of outputting the most strongly 
orroborated (non-refuted) hy-pothesis at ea
h stage. We demonstrate its utility by providing 
hara
terisations ofseveral of the 
ommonest identi�
ation types. In many 
ases we believe that these
hara
terisations make the relationships between these types 
learer than the stan-dard 
hara
terisations. The idea of learning with 
orroboration therefore providesa unifying approa
h for the �eld.Keywords: Degree of Corroboration; Indu
tive Inferen
e; Philosophy of S
ien
e.
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1 Introdu
tionThe �eld of ma
hine indu
tive inferen
e has developed in an ad ho
 manner, inparti
ular in the 
hara
terisations of identi�
ation types whi
h have been a
hieved.In this paper we wish to propose a new unifying framework for the �eld based onthe philosophi
al work of K. R. Popper, and in parti
ular his 
on
ept of degree of
orroboration. We will demonstrate that many of the existing identi�
ation types inthe 
ase of learning from text allow an alternative 
hara
terisation using the 
on
eptof learning with 
orroboration; in parti
ular this approa
h reveals the existen
e of
anoni
al learning algorithms for the various types.In the next se
tion we 
over the basi
s of indu
tive learning. In Se
tion 3 we
over as mu
h of Popper's logi
 of s
ienti�
 dis
overy as ne
essary for our purposes,and in Se
tion 4.1 we treat his 
on
ept of degree of 
orroboration in more detail.In Se
tion 5 we de�ne the basi
s of an indu
tive learner with 
orroboration, andin Se
tion 6 we give 
hara
terisations of many of the standard identi�
ation typesusing these learners. Se
tion 7 
ontains some examples of the use of learning with
orroboration in pra
ti
e. Se
tion 8 dis
usses some re
ent work of Gillies whi
h hasrelevan
e, while Se
tion 9 
ontains our 
on
lusions and dire
tions for further work.2 PreliminariesAs usual IN will denote the set of natural numbers, [ and \ will be set unionand interse
tion respe
tively, while � and � will be the subset and proper subsetrelations respe
tively. We write A �fin B ifA is a �nite subset of B. The 
ardinalityof the set A is written j A j and the length of a sequen
e t is written j t j. Ambiguitywill be resolved by 
ontext.By � we denote any �xed �nite alphabet of symbols. Let �� be the free monoidover �, i.e. the set of all �nite words (strings) produ
ed using that alphabet. Anysubset L � �� is 
alled a language. We set L = �� n L. Let L be a language andt = s0; s1; s2; : : : an in�nite sequen
e (possibly with repetitions) of strings from ��su
h that L = fsk j k 2 INg; then t is said to be a text for L (or, synonymously,a positive presentation of L) written t 2 Txt(L). If L is a 
lass of languages and(9L 2 L)t 2 Txt(L) then we write t 2 Txts(L). We refer to the initial segment oft of length n + 1 by tn, i.e. tn = s0; s1; :::; sn. Also t+n will refer to the 
ontent oftn, i.e. t+n = fs0; :::; sng. We will write (��) for the spa
e of all �nite and in�nitesequen
es from ��.In all that follows, we assume a �xed underlying alphabet �. Note that here wewill only be 
on
erned with the 
ase of learning from text.We will be 
on
erned with the learnability of indexable families of uniformlyre
ursive languages, de�ned as follows. 2



De�nition 1 Let C denote a 
lass of non-empty languages. L = L1; L2; ::: is saidto be an indexing of C (written L 2 Index(C)) i� C = fLj j j 2 INg and thereis a total re
ursive fun
tion p over IN � �� su
h that, for all j 2 IN and s 2 ��,p(j; s) = 1 if and only if s 2 Lj.A 
lass C of non-empty languages is said to be an indexable family i� there existsan indexing of C.We will usually write a 
lass C as a hypothesis spa
e H1;H2; ::: by whi
h we meana parti
ular indexing L of C where ea
h hypothesis Hi is typi
ally a 
hara
teristi
fun
tion for some L 2 C (when i is 
alled an L-index for L). We will blur thedistin
tion between languages and their 
hara
teristi
 fun
tions, and will writeHi =L if Hi is a 
hara
teristi
 fun
tion for L and Hi = Hj if Hi and Hj are 
hara
teristi
fun
tions for the same L 2 C.We will be 
on
erned with the relationship between data streams (here texts)and underlying 
on
epts (here languages).De�nition 2 Let L be a language. We say that a �nite initial segment tn of a textt = s0; s1; ::: refutes L if (9x � n)sx 62 L.Note that tn refutes L i� there exists no text for L 
ontaining tn as an initialsegment.Following Gold [Go67℄ we de�ne an indu
tive inferen
e ma
hine (abbr. IIM)to be a Turing ma
hine working as follows. The IIM takes as its input larger andlarger initial segments of a text t and it either requests the next input string, or itoutputs a hypothesis, i.e. a positive integer whi
h will be interpreted with respe
tto some underlying indexing L of the target family C.A sequen
e (jx)x2IN of numbers is said to be 
onvergent in the limit i� there isa number j su
h that jx = j for almost all numbers x.Now we de�ne some 
on
epts of learning. We start with learning in the limit.De�nition 3 (Go67) Let C be a 
lass, L = (Lj)j2IN 2 Index(C), and L 2 C.An IIM M LIM-TXT-identi�es L w.r.t. L i� on every text t for L M almostalways outputs a hypothesis and the sequen
e (M(tx))x2IN 
onverges in the limit toa number j su
h that L = Lj.An IIM M LIM-TXT-identi�es C w.r.t. L i� M LIM-TXT-identi�es everyL 2 C w.r.t. L.Let LIM-TXT denote the 
olle
tion of all C su
h that there exists L 2 Index(C)and an IIM M LIM-TXT-identifying C w.r.t. L.We regard this form of identi�
ation and its variants as varieties of learning, andindeed use the terms infer and learn as synonyms for identify.3



Note that our learner uses the sequen
e tm as its input. If the natural restri
tionis made that the learner's behaviour should be independent of 
hanges in the orderof the sequen
e and the number of repetitions, we have set-driven learning.De�nition 4 (WC80) An IIM is said to be set-driven i� its output depends onlyon the range of its input, i.e. on any two texts t; u we have(8x; y)[t+x = u+y )M(tx) =M(uy)℄We pre�x the name of an identi�
ation 
riterion by s- if in addition we requirethe learner to be set-driven, e.g. s-LIM-TXT, et
.An alternative form of learning is behaviourally-
orre
t learning, de�ned as fol-lows.De�nition 5 (OW82, CL82) Let C be a 
lass, L = (Lj)j2IN 2 Index(C), andL 2 C. An IIMM BC-TXT-identi�es L w.r.t. L i� on every text t for LM almostalways outputs a hypothesis and almost every element in the sequen
e (M(tx))x2INis an index for L.An IIM M BC-TXT-identi�es C w.r.t. L i� M BC-TXT-identi�es every L 2 Cw.r.t. L.Let BC-TXT denote the 
olle
tion of all C su
h that there exists L 2 Index(C)and an IIM M BC-TXT-identifying C w.r.t. L.Note that, in general, it is unde
idable whether or not an IIM has alreadysu

essfully �nished its learning task. If this is de
idable, then we obtain �nitelearning.De�nition 6 (Go67) Let C be a 
lass, L = L1; L2; ::: 2 Index(C), and L 2 C. AnIIM M FIN-TXT-identi�es L w.r.t. L i� on every text t for L M outputs only asingle hypothesis j whi
h is an L-index for L, and stops.An IIM M FIN-TXT-identi�es C w.r.t. L i� M FIN-TXT-identi�es everyL 2 C w.r.t. L.Let FIN-TXT denote the 
olle
tion of all C su
h that there exists L 2 Index(C)and an IIM M FIN-TXT-identifying C w.r.t. L.A natural property of learning is that the learner should not 
hange its mindwithout good reason.De�nition 7 (An80) Let C be a 
lass L = L1; L2; ::: 2 Index(C), and L 2 C. AnIIM M CONSERV-TXT-identi�es L w.r.t. L i� on every text t for L M learns Lin the limit and for all n ifM(tn) = j is de�ned thenM(tn+1) = j_tn+1 refutes Lj.4



An IIMM CONSERV-TXT-identi�es C w.r.t. L i�M CONSERV-TXT-identi�esevery L 2 C w.r.t. L.Let CONSERV-TXT denote the 
olle
tion of all C su
h that there exists L 2Index(C) and an IIM M CONSERV-TXT-identifying C w.r.t. L.Various forms of monotoni
ity requirements on the learner, i.e. that the learnershould in some sense output in
reasingly `good' hypotheses, are also known.De�nition 8 (Ja91, Wi91) Let C be a 
lass, L = L1; L2; ::: 2 Index(C), andL 2 C. An IIM M identi�es L1. strong monotoni
ally2. monotoni
ally3. weak monotoni
allyw.r.t. L i� on every text t for L M learns L in the limit and if i1; i2; ::: is thesequen
e of hypotheses output by M in learning L from t then1. (8n)Lin � Lin+12. (8n)Lin \ L � Lin+1 \ L3. (8n)[t+n+1 � LM(tn) ) LM(tn) � LM(tn+1)℄respe
tively.We denote by SMON-TXT, MON-TXT and WMON-TXT those 
olle
tions of
lasses C for whi
h there exists L 2 Index(C) and a learner M whi
h learns everymember L of C strong monotoni
ally, monotoni
ally, and weak monotoni
ally w.r.t.L, respe
tively.We will not 
on
ern ourselves with WMON-TXT or MON-TXT in this paper.There exists the possibility that the learner may be able to re
ognise that thetext whi
h it is being fed does not represent a text for any language in C, the 
lasswhi
h it is trying to learn. Its behaviour in this 
ase should be to output a spe
ialsymbol ? `refuting' the 
lass; otherwise it should learn the 
lass in the limit.De�nition 9 (MA93) A refuting indu
tive inferen
e ma
hine (RIIM) is a TuringMa
hine that on any input either behaves like an IIM or outputs the symbol ? andimmediately halts.De�nition 10 (LW94) Let t be a text for any language. t is 
alled an unrepre-sentative text for C if there exists n su
h that (8L 2 C)tn refutes L. The least su
hn is 
alled the refutation point of t for C, written ref(t; C).5



Let C be a 
lass and L = L1; L2; ::: 2 Index(C). A RIIM M JREF-TXT-identi�es L i� on any text t for L 2 C M identi�es L in the limit and for allunrepresentative texts t for C we have (9m � ref(t; C))M(tm) = ?.We write C 2 JREF-TXT if there exists L 2 Index(C) and an IIM M whi
hJREF-TXT-identi�es C w.r.t. L.3 Popper's Logi
 of S
ienti�
 Dis
overy - aPr�e
isIn this se
tion we will summarise as mu
h of Popper's philosophi
al system as weneed for our purposes. Even this is quite a task, as this was the major a
hievementof Popper's professional life and extended to two books [Po34, Po63℄, and a largenumber of published papers.Before Popper the philosophy of s
ien
e 
ould tra
e an unbroken line of devel-opment ba
k to Ba
on. The dominant s
hool, indu
tivism, held that s
ienti�
 ideasare gradually proved indu
tively, by experien
e - when the idea in question haspassed a large number of tests, it may be regarded as e�e
tively proved.Einstein's overthrow of Newtonian me
hani
s in the early Twentieth Centuryprovided the intelle
tual ba
kground for Popper's work. If su
h an established sys-tem of s
ienti�
 law 
ould be disproved1 then it must have seemed that no s
ienti�
idea 
ould ever truly be proved; so indeed Popper reasoned.Popper built his philosophy of s
ien
e rigorously from the ground up. He pos-tulated that s
ienti�
 theories have the 
hara
ter of `all-statements'; they attemptpre
isely to spe
ify behaviour of all entities of a 
ertain kind in all 
ir
umstan
esof a 
ertain kind: for example, all planets in rotation about a star. Further, theobservations of whi
h empiri
al s
ien
e is 
apable are of a di�erent 
hara
ter; theyobserve the behaviour of individual entities in individual 
ir
umstan
es.Popper's �rst key 
ontribution was to note the asymmetry whi
h arises fromthis: no number of observations is suÆ
ient to exhaust all the possibilities of anall-statement, even if all these observations are in a

ord with the predi
tions ofthe theory. By 
ontrast, a single observation (allowing for the usual 
aveats ofreliability and inter-subje
tive repeatability) is enough to refute a theory on
e andfor all, if it 
on
i
ts with that theory's predi
tions. While the theory may be 
orre
tin some 
ir
umstan
es, and a useful approximation in others, it does not providethe ultimate, pre
ise truth to whi
h s
ien
e aspires. An ines
apable 
onsequen
eof this is that s
ienti�
 theories are never truly proven by observations, for amongthose observations never, or not yet taken, may be one that disproves the theory.1Newton's laws of 
ourse remain useful approximations for many pra
ti
al purposes.6



This demolition of indu
tivism raises other problems. It was 
ertainly not Pop-per's intention to suggest that we should stop doing s
ien
e; but if no theory 
anbe proven, then what may we rationally believe? Popper's answer to this problemforms the starting point for our work.Those observations whi
h do not refute a parti
ular theory nevertheless play theimportant role of 
orroborating that theory. Ea
h observation, parti
ularly thosewhi
h are de
isive between theories in the sense that they refute some while 
orrob-orating others, may be seen as a test of these theories. When a theory has surviveda number of su
h tests without being refuted, we may say it is well 
orroborated(though not immune to later refutation) and we may tentatively believe it, for now.It is a small step to Popper's di
tum that we should believe the best 
orroboratedtheory at any parti
ular time.Popper formalised the idea of 
orroboration further by equating the 
orrobora-bility of a theory with its 
ontent, or s
ienti�
 interest, and further with its logi
alfalsi�ability. This will be a key idea for us: a theory whi
h has a large number ofpotential falsi�ers (refuting observations) is also potentially more strongly 
orrob-orable (in the 
ase that none of these behaviours is ever observed) than a theorywith fewer falsi�ers.Popper states in [Po34℄ (p.395 - all page referen
es to [Po34℄ are to the 1997Routledge edition) that:I believe that these two ideas - 
ontent and degree of 
orroboration - arethe most important logi
al tools developed in my book. (Emphasis inoriginal)In Se
tion 4.1 we will look in detail at Popper's formulation of the degree to whi
hdata 
orroborates a theory, prior to formulating our own laws of 
orroboration foruse in the more restri
ted �eld of ma
hine indu
tive inferen
e.4 Degree of Corroboration4.1 Popper's De�nition4.1.1 Dis
ussionIn [Po34℄ (also [Po54℄), Popper went some way towards formalising his key idea ofthe 
orroboration lent by examples (or theory) y to theory (synonymously 
on
ept orhypothesis) x, 
alling it C(x; y). We will further formalise the de�nition of C(x; y),while modifying or dis
arding some features where ne
essitated in the light of thefollowing dis
ussion.It must be mentioned that in [Po34℄ Popper ties his de�nition C(x; y) ratherrigidly to the notion of absolute logi
al probability, whi
h has 
ertain unhelpful7




onsequen
es for our purposes. This is largely be
ause both in [Po34℄ and in [Po54℄he was 
on
erned to distinguish his idea of degree of 
orroboration from any proba-bilisti
 de�nition and needed to demonstrate that to impose the laws of probabilityon C(x; y) leads to a 
ontradi
tion. In later work [Po57℄ he a

epted 
riti
ism byvarious authors of this linkage and loosened the de�nition of C(x; y) a

ordingly.Popper remarks [Po54℄ thatThe parti
ular way in whi
h C(x; y) is here de�ned I 
onsider unimpor-tant. What may be important are the desiderata, and the fa
t that they
an be satis�ed together. (Emphasis in original)We will take this as li
en
e to de�ne a fun
tion, 
(x; y), whi
h di�ers in somesmall ways from Popper's C(x; y), while satisfying his desiderata as far as possible.In the next two se
tions we present �rst Popper's desiderata for a 
orroborationfun
tion, then our own version, and dis
uss the di�eren
es between them.4.1.2 Popper's DesiderataIn [Po54℄ Popper lists nine points whi
h should be satis�ed by a 
orroborationfun
tion, and he adds a further one in [Po57℄.C(x; y) is in all 
ases the degree to whi
h y supports or 
orroborates x, C(x)is the maximum degree to whi
h x may be 
orroborated, while P (x) is the logi-
al probability of x and P (x; y) is the logi
al probablity of x given y. E(x; y) isthe explanatory power of x with respe
t to y, and its value is de�ned based onP (x); P (y); P (x; y) and P (y; x) - we will not be mu
h 
on
erned with this 
on
ept.Finally x is the logi
al negation of x.Popper's desiderata as stated in [Po54℄ and [Po57℄ are as follows.1. C(x; y) is respe
tively greater than, equal to, or less than 0 i� y supports x,is independent of x, or undermines x.2. �1 = C(y; y) � C(x; y) � C(x; x) � 13. 0 � C(x; x) = C(x) = P (x) � 14. If y entails x then C(x; y) = C(x; x) = C(x)5. If y entails x then C(x; y) = C(y; y) = �16. Let x have a high 
ontent, so that C(x; y) approa
hes E(x; y), and let y supportx. Then for any given y, C(x; y) in
reases with the power of x to explain y (i.e.to explain more and more of the 
ontent of y and therefore with the s
ienti�
interest of x).7. If C(x) = C(y) 6= �1 then C(x; u) is respe
tively greater than, equal to or lessthan C(y;w) whenever P (x; u) is greater than, equal to, or less than P (y;w).8



8. If x entails y then: (a) C(x; y) � 0; (b) for any given x, C(x; y) and C(y)in
rease together; and (
) for any given y, C(x; y) and P (x) in
rease together.9. If x is 
onsistent and entails y, then (a) C(x; y) � 0; (b) for any given x,C(x; y) and P (y) in
rease together; (
) for any given y, C(x; y) and P (x)in
rease together.10. If x is 
on�rmed, supported or 
orroborated by y so that C(x; y) � 0, then (a)x is always undermined by y, i.e. C(x; y) < 0, and (b) x is always underminedby y, i.e. C(x; y) < 0.4.2 Our Di�eren
es from Popper's Approa
h - Dis
us-sion4.2.1 Restri
ted DomainWe wish to de�ne a 
orroboration fun
tion analogous to Popper's but for use in thedomain of indu
tive learning theory. This restri
ted domain enables us to make anumber of simplifying assumptions 
ompared to Popper's version above.First we note that we always wish to state how well a hypothesis is 
orrobo-rated by data. This is already more spe
i�
 than Popper's approa
h, in whi
h hespe
i�
ally allows the 
orroboration of, for example, one theory by another. Ourhypotheses will be those of an indu
tive learning ma
hine (see Se
tion 2) and will
ome from a parti
ular hypothesis spa
e, within whi
h we aim to �nd a true des
rip-tion of the phenomenon produ
ing the data, whi
h will be a re
ursive language. Thedata will be a sequen
e of examples forming a text (or stri
tly speaking, an initialsegment of a text) for the phenomenon. To distinguish our 
orroboration fun
tionsfrom Popper's, we will use lower 
ase. Thus 
(H; t) will be the degree to whi
hexample text t 
orroborates hypothesis H.4.2.2 Fixed ValuesNow that we distinguish between theory and data, we are able to simplify further.We assume that data is free of noise, and that we aim to �nd a hypothesis whi
hexa
tly des
ribes or explains the 
on
ept produ
ing the data. Now the idea thatdata undermines (Popper's 
hoi
e of word) a theory 
an be repla
ed by outrightrefutation in the 
ase that data disagrees with the predi
tions of the theory. Thusall the possible negative values in Popper's s
heme may be repla
ed in ours by �1,the 
orroboration value of refuted hypotheses.Similarly the value 0, reserved by Popper for the degree of 
orroboration o�eredto x by an independent theory y, subtly 
hanges its meaning when we restri
t our-selves to 
orroboration of hypotheses by data. The value 0 is now the 
orroborationgiven to any theory 9



� by the empty data set ;� by va
uous data whi
h gives us no help in 
hoosing between 
ompeting hy-potheses in our spa
e� in the 
ase that the theory itself is tautologi
al, metaphysi
al or otherwise notlogi
ally refutable.4.2.3 Referen
es to ProbabilityFor histori
al reasons, Popper's desiderata are tied 
losely to de�nitions in proba-bility; spe
i�
ally, Popper sets out to demonstrate that degree of 
orroboration isin no sense a measure of probability. For our purposes, we have no need of anydire
tly de�ned probabilisti
 measures and so we are able to drop referen
es toP (x); P (x; y); E(x; y), et
. We 
ontinue to use 
(H) to mean the highest degree of
orroboration of whi
h H is 
apable; however we drop the referen
e to P (x) in thede�nition of C(x) and instead add some natural restri
tions on 
(H).Popper's dependen
e on probabilisti
 de�nitions leads him to restri
t the maxi-mum degree of 
orroboration in any 
ase to the value 1. Obje
tions to this unne
-essary restri
tion led him to drop it in [Po57℄, and we do likewise. Further, we maydrop the restri
tion of degrees of 
orroboration to real number values altogether,and use any partially ordered set S with a minimum element �1 su
h that S�f�1ghas a minimum element 0 and de
idable (re
ursive) relations �;� and ./.These points having been made, we pro
eed to our own desiderata.4.3 Our De�nition of Degree of CorroborationLet H range over hypotheses from our spa
e L, and t over texts and �nite initialsegments of texts. We assume that 
(H; t) ranges over some partially ordered setS with minimum element �1 and an element 0 minimal in S � f�1g. Similar toPopper, we use 
(H) as shorthand for 
(H;H), the maximum degree of 
orroborationpossible for H. Falsi�ers(H) is the set of potential data items in �� whi
h refuteH, and we write H = H 0 in the 
ase that H and H 0 des
ribe the same 
on
ept.First we formally de�ne our 
orroboration fun
tions.De�nition 11 A 
orroboration fun
tion 
 : L� (��)! S over L maps hypothesesand texts to some set S with minimum element �1 and an element 0 minimal inS�f�1g su
h that S has a de
idable partial ordering �, and satis�es the followingdesiderata for all hypotheses H;H 0 2 L and all texts t; t0 2 (��):1. 
(H; t) = �1 i� there exists data in t whi
h refutes H.2. 
(H; t) � 0 i� t does not refute H 10



3. 
(H; t) = 0 if t is empty or 
ontains no data 
apable of refutation of anyhypothesis in our spa
e.4. 
(H) = maxfLimn!1
(H; tn) j t is a text for Hg5. 
(H) � 
(H 0) if Falsi�ers(H 0) � Falsi�ers(H)6. If t is a �nite initial subsequen
e of t0 then either 
(H; t) � 
(H; t0) or 
(H; t0) =�1Our de�nition of degree of 
orroboration is simpler than Popper's be
ause wehave dropped all referen
e to probability and this gives us greater freedom whena
tually assigning values to our fun
tions 
(H) and 
(H; t). We will see in the nextse
tion that 
ertain indu
tive learning identi�
ation 
riteria will require 
orrobora-tion fun
tions with additional properties to those spe
i�ed above.Our �rst three points 
ome from Popper's �rst four and tenth desiderata. Ourfourth and �fth points 
apture Popper's sense that a high degree of refutabilityand a high degree of 
orroborability are synonymous. Our sixth point 
apturesthe natural expe
tation that degree of 
orroboration of H 
annot be de
reasedby further non-refuting examples (although these same examples may 
ause analternative hypothesis H 0 to be
ome better 
orroborated than H).5 Learning with CorroborationIn this se
tion we 
over the remaining assumptions and de�nitions ne
essary tode�ne a theory of indu
tive learning with 
orroboration.5.1 Hypotheses and Hypothesis Spa
esIf two hypotheses des
ribe the same 
on
ept, we will write Hi = Hj. Note that thisis exa
tly the 
ase Falsi�ers(Hi) = Falsi�ers(Hj) and may be treated as a shorthandfor the latter. If Falsi�ers(Hi)� Falsi�ers(Hj) then we will writeHj � Hi to 
apturethe natural Popperian sense thatHj is more easily refuted (potentially more strongly
orroborable) that Hi. None of these relations is ne
essarily re
ursive.We will restri
t our attention to 
lass-preserving hypothesis spa
es, i.e. thoseindexed re
ursive families H1;H2; ::: for C su
h that for every L 2 C there exists atleast one (and possibly many) i su
h that L = Hi.Our model of learning requires that 
(H; t) and 
omparison (�) between de-grees of 
orroboration are both re
ursive, but not ne
essarily that 
(H) is re
ursive.Re
ursiveness of 
(H) leads to de
idability of Hi � Hj and therefore of Hi = Hj.All forms of indu
tive inferen
e su�er from the problem that the learner is re-quired to 
hoose one from among (typi
ally) in�nitely many hypotheses at ea
h11



stage. Clearly no learner 
an 
onsider all these hypotheses before it outputs a hy-pothesis or requests further data, so in e�e
t there are only a limited number ofhypotheses in play at any given time. Most authors gloss over this question asa matter of detail, or deal with it impli
itly, but as we intend to propose a newunifying model for ma
hine indu
tive inferen
e, we feel 
onstrained to deal with itexpli
itly.We therefore assume that along with our hypothesis spa
e H1;H2; ::: we have are
ursive, monotoni
ally in
reasing fun
tion ip : IN ! IN with Limn!1ip(n) = 1whi
h gives the number of hypotheses in play at stage n of any learning pro
edurewith this hypothesis spa
e. This leads to one slight 
on
ession with respe
t toour desiderata: hypotheses Hj whi
h are not yet in play at stage n need not be
onsidered to be either refuted or 
orroborated by tn, the examples seen to thatstage - we therefore arbitrarily assign 
(Hj ; tn) = 0 for su
h n; j. This 
annot 
ause
onfusion as these hypotheses are (by de�nition) not 
onsidered by any algorithm;it serves only to simplify some algorithms de�ned later.5.2 Corroboration Fun
tions and Canoni
al Learnerswith CorroborationIn the following se
tion (Se
tion 6) we examine the use of 
orroboration in indu
tivelearning and prove that many of the most natural indu
tive learning identi�
ationtypes 
an be 
hara
terised by an existen
e 
ondition for a suitable 
orroborationfun
tion over the hypothesis spa
e. Our intention is that this 
orroboration fun
tion(whi
h is invariably re
ursive so no unde
idability results are implied, nor is anyadditional 
omputing power gained illi
itly) will be used as an ora
le by a 
anon-i
al learner for the appropriate type; this demonstrates that there is e�e
tively asingle best learning strategy for ea
h identi�
ation type, and only the details of the
orroboration fun
tion 
hange depending on the hypothesis spa
e.The behaviour of a learner with 
orroboration is de�ned as follows.De�nition 12 Turing ma
hine M, with ora
le 
(H; t) is 
alled a learner with 
or-roboration if 
(H; t) is a re
ursive 
orroboration fun
tion and on input t with hy-potheses H1; ::;Hp in play, M outputs some i � p su
h that 
(Hi; t) > 0 is maximalamong the 
(Hj; t); j = 1; :::; p, if de�ned, and requests more input otherwise.If additionally M learns within identi�
ation type �, we 
all M a �-learner with
orroboration.Clearly su
h a learner is 
onsistent with Popper's di
tum that we should preferthe most strongly 
orroborated hypothesis among 
ompeting hypotheses.12



6 Chara
terising TXT-Identi�
ation Types inLearning with CorroborationIn this se
tion we are 
on
erned only with learning from text, and often abbreviatethe names of identi�
ation types by dropping the -TXT.6.1 BC- and LIM-learningDe�nition 13 A 
orroboration fun
tion 
 over L is 
alled 
y
ling i�(8H 2 L)(8t 2 Txt(H))(9n)(9D � IN)[(8i 2 D)Hi = H^(8m � n)(9i 2 D)(8j)[
(Hi; tm) > 
(Hj ; tm) _ [
(Hi; tm) 6< 
(Hj ; tm) ^ i � j℄℄℄Theorem 1 C 2 BC-TXT i� there exists L 2 Index(C) su
h that there is a re
ur-sive 
y
ling 
orroboration fun
tion 
 over L.Proof(()We de�ne a learner M whi
h uses su
h a re
ursive 
y
ling 
 to BC-learn anyH 2 L.Let t be a text for H 2 L. Let the hypotheses in play at stage m be H1; :::;Hp.At the mth stage (i.e. on input tm) M behaves as follows.M(tm)( =min(Bestm) if de�nedrequests more input otherwisewhere Bestm = fi j i � p ^ 
(Hi; tm) > 0 ^ (8j � p)
(Hi; tm) 6< 
(Hj ; tm)gM is re
ursive: M re
ursively 
omputes 
(Hi; tm) for i = 1; :::; p and forms the�nite set of those i for whi
h 
(Hi; tm) > 0 is maximal under the re
ursive relation�. M now outputs the minimum su
h i, unless the set is empty, in whi
h 
ase itrequests more input.On presentation of a text for H 2 C there exists a stage n after whi
h M alwaysoutputs an L-index for H: let t be a text for H. By assumption, 
 is a 
y
ling
orroboration fun
tion, so there exists a set D su
h that (8i 2 D)Hi = H and astage n su
h that (8m � n)min(Bestm) 2 D. The result follows from the de�nitionof M.())Suppose M is an indu
tive learning ma
hine whi
h BC-learns C w.r.t. L =H1;H2; ::: and let t be a text. We de�ne a re
ursive 
 whi
h produ
es values (fordegree of 
orroboration) ranging over IN [ f�1g. Let13




(Hi; tm) = 8><>: �1 if tm refutes Hij tm j +1 if M(tm) = ij tm j otherwise
 is re
ursive: it is de
idable for any i whether tm refutes Hi, and by assumptionM is a Turing ma
hine whi
h always outputs a hypothesis or requests further input.
 is a 
y
ling 
orroboration fun
tion over L: let t be a text for H 2 C. Byassumption there exists a set D su
h that for all i 2 D we have Hi = H, anda stage n su
h that for all m � n our learner M outputs an index i su
h thati 2 D. Therefore at all stages m � n there always exists an i 2 D su
h that
(Hi; tm) > 
(Hj; tm) for all j 6= i, whi
h satis�es the requirements of De�nition 13.2Corollary 1 If C 2 BC-TXT then there exists L 2 Index(C) and a re
ursive 
y
ling
orroboration fun
tion 
 over L with the property that(8H 2 L)(8t 2 Txt(H))(9n)(9D � IN)[(8i 2 D)Hi = H^(8m � n)(9i 2 D)(8j 6= i)
(Hi; tm) > 
(Hj ; tm)℄ProofImmediate from proof of Theorem 1 ()).2Corollary 2 There is a 
anoni
al BC-learner with 
orroboration whi
h will learnany C 2 BC-TXT w.r.t. any L 2 Index(C) using any re
ursive 
y
ling 
orroborationfun
tion 
 over L as an ora
le.ProofImmediate from the ( dire
tion of the proof of Theorem 1 as the de�nition ofM does not depend on C ex
ept via 
.2De�nition 14 A 
orroboration fun
tion 
 over L is 
alled limiting i�(8H 2 L)(8t 2 Txt(H))(9i)[Hi = H^(9n)(8m � n)(8j)[
(Hi; tm) > 
(Hj; tm) _ [
(Hi; tm) 6< 
(Hj; tm) ^ i � j℄℄℄Clearly a limiting 
orroboration fun
tion is also a 
y
ling 
orroboration fun
tionwith j D j= 1.Theorem 2 C 2 LIM-TXT i� there exists L 2 Index(C) su
h that there is are
ursive limiting 
orroboration fun
tion 
 over L.14



Proof(()We de�ne a learner M whi
h uses su
h a re
ursive limiting 
 to LIM-learn anyH 2 L.Let t be a text. Let the hypotheses in play at stage m be H1; :::;Hp. At the mthstage (i.e. on input tm) M behaves as follows.M(tm)( =min(Bestm) if de�nedrequests more input otherwisewhere Bestm = fi j i � p ^ 
(Hi; tm) > 0 ^ (8j � p)
(Hi; tm) 6< 
(Hj ; tm)gM is re
ursive: M re
ursively 
omputes 
(Hi; tm) for i = 1; :::; p and formsthe �nite set of those i for whi
h 
(Hi; tm) is maximal under the re
ursive relation�. M now outputs the minimum su
h i, unless the set is empty, in whi
h 
ase itrequests more input.On presentation of a text t for H, M 
onverges to some j su
h that Hj = H:�x t, an arbitrary text forH. Let n be that stage de�ned in De�nition 14. Now thereis some j with Hj = H su
h that at stage n and all subsequent stages m M willoutput j be
ause j = min(Bestm) by assumption that 
 is a limiting 
orroborationfun
tion and the de�nition of M.())Suppose M is an indu
tive learning ma
hine whi
h LIM-learns C w.r.t. L. Wede�ne a re
ursive 
 whi
h produ
es values (for degree of 
orroboration) ranging overIN [ f�1g. Let 
(Hj; tm) = 8><>: �1 if tm refutes Hjj tm j +1 if M(tm) = jj tm j otherwise
 is re
ursive: it is de
idable for any j, whether tm refutes Hj, and by assump-tion M is an IIM.
 is a limiting 
orroboration fun
tion over L: let t be any text for H 2 C. Byassumption there exists an index j su
h that Hj = H and a stage n after whi
hMalways outputs j. Therefore at all stages m � n we have 
(Hj; tm) > 
(Hk; tm) forall k 6= j, whi
h satis�es the requirements of De�nition 14.2Corollary 3 If C 2 LIM-TXT then there exists L 2 Index(C) su
h that there is are
ursive limiting 
orroboration fun
tion 
 over L with the property that(8H 2 L)(8t 2 Txt(H))(9i)[Hi = H ^ (9n)(8m � n)(8j 6= i)
(Hi; tm) > 
(Hj ; tm)℄15



ProofImmediate from proof of Theorem 2 ()).2Corollary 4 There is a 
anoni
al LIM-learner with 
orroboration whi
h will learnany C 2 LIM-TXT w.r.t. any L 2 Index(C) using any re
ursive limiting 
orrobo-ration fun
tion 
 over L as an ora
le.ProofImmediate from the ( dire
tion of the proof of Theorem 2 as the de�nition ofM does not depend on C ex
ept via 
.2Corollary 5 There is a 
anoni
al (LIM[BC)-learner with 
orroboration whi
h willBC-learn any C 2 BC-TXT w.r.t. any L 2 Index(C) using any re
ursive 
y
ling
orroboration fun
tion 
 over L as an ora
le and will LIM-learn any C 2 LIM-TXTw.r.t. any L 2 Index(C) using any re
ursive limiting 
orroboration fun
tion 
 overL as an ora
le.ProofThe same 
anoni
al learner is used in Corollaries 2 and 4.2Our approa
h of learning with 
orroboration allows us to prove the known result(it appears to be a `folk theorem') that BC-TXT = LIM-TXT as follows.Theorem 3 BC-TXT = LIM-TXTProofThat LIM-TXT � BC-TXT is obvious from the de�nitions.We show that any learner M whi
h BC-learns C w.r.t. L permits the 
onstru
-tion of a learner M0 whi
h LIM-learns C w.r.t. L. Our proof method is to buildM0 to 
opyM until, by enumerating longer and longer initial segments of the 
har-a
teristi
 fun
tions for H, the hypothesis of M, and H 0, the hypothesis of M0, wehave proof that M has `really' 
hanged its hypothesis, instead of just swit
hing toanother hypothesis des
ribing the same language.De�ne the un
hanged length UL(M; tn+1) of a learner M at stage n + 1 to bethe length of the longest sequen
e of stages ending in n at whi
h the learner outputthe same hypothesis.We de�ne M0 and 
 using mutual re
ursion as follows.
16




(Hi; tm+1) = 8>>>>>>>>>><>>>>>>>>>>:
�1 if tm+1 refutes Hij tm+1 j +1 if [M0(tm) is unde�ned _(9j : 0 � j � UL(M0; tm+1))HM0(tm)(j) 6= HM(tm+1)(j)℄^M(tm+1) = ij tm+1 j +1 if M0(tm) = i^(8j : 0 � j � UL(M0; tm+1))HM0(tm)(j) = HM(tm+1)(j)j tm+1 j otherwiseThe se
ond and third 
ases above are mutually ex
lusive in the sense that at mostone of these 
ases will apply to at most one i at any stage. They have been separatedfor 
larity as they represent the 
ases where M0(tm) is de�ned and M0(tm+1) doesnot/does equal M0(tm), respe
tively.We de�ne M0 in the familiar way:M0(tm)( = min(Bestm) if de�nedrequests more input otherwisewhere Bestm = fi j i � p ^ 
(Hi; tm) > 0 ^ (8j � p)
(Hi; tm) 6< 
(Hj ; tm)gClearly 
 andM0 are re
ursive. It is easily 
he
ked that ifM BC-learns L then
 is a limiting 
orroboration fun
tion over L and 
onsequently by Theorem 2 M0LIM -learns L, as required.26.2 Set-driven learningWhen 
onsidering the philosophi
al ba
kground for our model of learning, it seems
lear that the order in whi
h examples are presented to the learner, or the numberof times the same example is repeated, has no signi�
an
e. This leads us to thefollowing de�nition.De�nition 15 A 
orroboration fun
tion 
 over L = H1;H2; ::: is 
alled natural ifon all texts t; u, for all m;n we havet+m = u+n ) (8i)
(Hi; tm) = 
(Hi; un)It might be obje
ted that 
orroboration fun
tions la
king the naturalness prop-erty should be disallowed. However, they are no more unnatural than non-set-drivenlearners (it is known [LZ94℄ that s-LIM-TXT � LIM-TXT).17



Theorem 4 C 2 s-LIM-TXT i� there exists L 2 Index(C) su
h that there exists are
ursive natural limiting 
orroboration fun
tion 
 over L.Proof(()Let 
 be a re
ursive natural limiting 
orroboration fun
tion over L. Let M bethe learner from the( proof of Theorem 2, in whi
h it has already been shown thatM LIM-learns L. We show that M is set-driven as follows. Let u; t be texts andlet Bestt;m and Bestu;n be de�ned similarly to Bestm in the ( proof of Theorem2. It is 
lear that given the naturalness of 
 we havet+m = u+n ) Bestt;m = Bestu;nand so t+m = u+n )M(tm) =M(un) and C 2 s-LIM-TXT as required.())Let C 2 s-LIM-TXT via set-driven learner M working w.r.t. L. Let 
 be the
orroboration fun
tion de�ned as follows:
(Hj; tm) = 8><>: �1 if tm refutes Hjj t+m j +1 if M(tm) = jj t+m j otherwiseNow let t; u be texts and suppose t+m = u+n for some m;n. Now 
learly we have(8i)
(Hi; tm) = 
(Hi; un) as required.2Corollary 6 There is a 
anoni
al s-LIM-learner with 
orroboration whi
h will learnany C 2 s-LIM-TXT w.r.t. any L 2 Index(C) using any re
ursive natural limiting
orroboration fun
tion 
 over L as an ora
le.ProofImmediate from the ( dire
tion of the proof of Theorem 4 as the de�nition ofM does not depend on C ex
ept via 
.26.3 Conservative and Strong Monotoni
 learningDe�nition 16 A 
orroboration fun
tion 
 : L�(��)! S over L is 
alled attainingif (8H 2 L)(8t 2 Txt(H))[(9j)(9n)[Hj = H ^ 
(Hj; tn) 2 
0(Hj)℄^(8i)(8m)[
(Hi; tm) 2 
0(Hi)) (8H 0 2 L)[tm refutes H 0 _Hi 6� H 0℄℄℄18



where 
0(Hi) = f
(Hj) j Hj = Hi ^ (8k)[
(Hk) > 
(Hj)) Hk 6= Hi℄g
 is a re
ursive attaining 
orroboration fun
tion if both 
 and 
0f :L�S!f0; 1gde�ned by 
0f (Hi; s) = ( 1 if s 2 
0(Hi)0 otherwiseare total and re
ursive.Note that 
(Hi; tm) 2 
0(Hi) implies 
(Hi; tm) = 
(Hi) and that 
(H; ;) = 0implies (8s 2 
0(H))s � 0.Theorem 5 C 2 CONSERV-TXT i� there exists L 2 Index(C) su
h that thereexists a re
ursive attaining 
orroboration fun
tion 
 over L.Proof(()Let 
(H; t) be a re
ursive, attaining 
orroboration fun
tion over L. We de�ne aCONSERV-learnerM on text t as follows.M(tm)8>>>>><>>>>>: =M(tm�1) if de�ned and (tm does not refute M(tm�1)or Bestm is unde�ned)= min(Bestm) if de�ned and (tm refutes M(tm�1)or M(tm�1) is unde�ned)requests more input otherwisewhereBestm = fi j i � p ^ 
(Hi; tm) 2 
0(Hi) ^ (8j � p)
(Hj ; tm) 6> 
(Hi; tm)gwhere H1; :::;Hp are the hypotheses in play at stage m.M is re
ursive: it is not diÆ
ult to see that Bestm is a re
ursive set as its 
ompu-tation involves only �nitely many 
omputations of 
(Hi; tm) and 
0f (Hi; 
(Hi; tm)),both of whi
h are re
ursive by assumption. The result follows.For all m su
h that M(tm) is de�ned, M(tm+1) = M(tm) or tm+1 refutesHM(tm): immediate from the de�nition of M.On any text t for H 2 L, M 
onverges to some j with Hj = H: let j bethat index of H (from De�nition 16) for whi
h (9n)
(Hj; tn) 2 
0(Hj) (and so(8m � n)
(Hj; tm) 2 
0(Hj)).We show that 19



(8k < j)[Hk = Hj = H _ (9m0 � m)(8n � m0)
(Hk; tn) 62 
0(Hk)℄Suppose k < j, Hk 6= Hj and Hk is never refuted by t (if Hk is refuted by tm0 then
(Hk; tm0) = �1 < 
(Hj ; tm0) and we are done). Now (8n)t+n � Hj � Hk so byDe�nition 16 we 
annot have 
(Hk; tn) 2 
0(Hk), and we are done.Finally we show that(9n � m0)M(tn) = j _ (8n � m0)[M(tn) =M(tm0) ^HM(tm0 ) = H℄SupposeM(tm0) = k andHk = H. Then 
learlyHk will never be refuted by t, soby the de�nition ofM we are done. IfM(tm0�1) is unde�ned, then min(Bestm0) =k � j with Hk = H from above, so again we are done. The only remaining
ase is when M(tm0) = k and Hk 6= H. Then at some stage n � m0 we have
(Hk; tn) 2 
0(Hk) by the de�nition of M, so Hk 6� Hj by De�nition 16. Nowbe
ause t is a text for H, at some stage n0 > m0 we will have tn0 refutes Hk, andmin(Bestn0) = k � j with Hk = H as before so HM(tn0 ) = H. In all 
ases M
onverges on t to an index for H as required.())Let M be a learner that learns C 
onservatively w.r.t. L. We de�ne a re
ursiveattaining 
orroboration fun
tion 
 :L�(��)!f�1; 0; 1g with 
0(H) = f1g as follows.
(Hi; tn) = 8><>: �1 if tn refutes Hi1 if tn does not refute Hi ^M(tn) = i0 otherwise
(H; t) is re
ursive: follows immediately from the re
ursiveness of M and thede
idability of whether tn refutes Hi.We now prove the two properties ne
essary to prove 
 is an attaining 
orrobo-ration fun
tion (De�nition 16). Fix H 2 C and t 2 Txt(H).(i) (9j)(9n)[Hj = H ^ 
(Hj ; tn) = 1℄: by assumption there exists some j withHj = H and (9n)(8m � n)M(tm) = j. Then by de�nition of 
(H; t), we have
(Hj ; tn) = 1 as required. This also suÆ
es to prove that (8i)
0(Hi) = f1g and so
0f is total and re
ursive.(ii) (8i)(8n)[
(Hi; tn) 2 
0(Hi) ) (8H 0 2 L)[tn refutes H 0 _ Hi 6� H 0℄℄: let
(Hi; tn) = 1. Then by de�nition of 
(H; t) we have thatM(tn) = i. By assumptionM CONSERV-learns C w.r.t. L, so there is no j with t+n � Hj � Hi be
ause ifthere were then we would be able to extend tn to a text t0 for Hj andM would failto CONSERV-learn Hj on t0, a 
ontradi
tion.
(H; t) is an attaining 
orroboration fun
tion over L: immediate from (i), (ii)above.2 20



Corollary 7 There is a 
anoni
al CONSERV-learner with 
orroboration whi
h willlearn any C 2 CONSERV-TXT w.r.t. any L 2 Index(C) using as an ora
le anyre
ursive attaining 
orroboration fun
tion 
 over L.ProofImmediate from the ( dire
tion of the proof of Theorem 5 as the de�nition ofM does not depend on C ex
ept via 
 and 
0.2De�nition 17 A 
orroboration fun
tion 
(H; t) over L = H1;H2; ::: is 
alled stri
tif (8Hi 2 L)(8t 2 Txt(Hi))(8n)[
(Hi; tn) 2 
0(Hi)) (8Hj � t+n )Hj � Hi℄where 
0(H) = f
(Hi) j Hi = H ^ (8j)[
(Hj) > 
(Hi)) Hj 6= H℄g
 is 
alled a re
ursive stri
t 
orroboration fun
tion if both 
 and 
0f :L�S!f0; 1gde�ned by 
0f (Hi; s) = ( 1 if s 2 
0(Hi)0 otherwiseare total and re
ursive.Theorem 6 C 2 SMON-TXT i� there exists L 2 Index(C) su
h that there existsa re
ursive stri
t attaining 
orroboration fun
tion 
 over L.Proof(() Let 
(H; t) be su
h a fun
tion over L. We de�neM to SMON-learn C w.r.t.L as follows.M(tm)8>>>>><>>>>>: =M(tm�1) if de�ned and (tm does not refute HM(tm�1)_Bestm is unde�ned)= min(Bestm) if de�ned and (tm refutes M(tm�1)or M(tm�1) is unde�ned)requests more input otherwisewhereBestm = fi j i � p ^ 
(Hi; tm) 2 
0(Hi) ^ (8j � p)
(Hj ; tm) 6> 
(Hi; tm)gwhere H1; :::;Hp are the hypotheses in play at stage m.21



M is re
ursive: only �nitely many re
ursive 
omputations of 
(Hi; tm) and
0f (Hi; 
(Hi; tm)) are needed on input tm.For all stages m at whi
h M(tm) is de�ned, we have HM(tm) � HM(tm+1): letM(tm) = i. Then in parti
ular tm refutes all Hj su
h that Hj 6� Hi, be
ause 
 isstri
t. Refuted hypotheses remain refuted, so if M(tm+1) = j we have Hj � Hi.Finally it is 
lear from the de�nition of M that M(tm+1) is de�ned.On any text t for H 2 C M 
onverges to some j with Hj = H: be
ause 
 isattaining, this is identi
al to the same part of the proof of Theorem 5 (().()) Let C 2 SMON-TXT, and suppose M is a learner whi
h learns C strongmonotoni
ally w.r.t. L = H1;H2; ::: We de�ne a re
ursive, stri
t, attaining 
 asrequired. 
(Hi; tm) = 8><>: �1 if tm refutes Hi1 if tm does not refute Hi ^M(tm) = i0 otherwise
 is re
ursive: immediate from the re
ursiveness of M.Fix H 2 C and let t be a text for H.
 is attaining: by assumption, there exists a stage m su
h that M(tm) = i forsome Hi = H. Then 
(Hi; tm) = 1. This also proves that 
0(Hi) = f1g and so 
0f isa total re
ursive fun
tion.
 is stri
t: suppose for a 
ontradi
tion that 
(Hi; tm) 2 
0(Hi) and there existsj su
h that Hj 6� Hi and tm does not refute Hj. Then we 
an extend tm into atext t0 for Hj and M fails to learn Hj strong monotoni
ally on t0, 
ontrary to ourassumption.2Corollary 8 There exists a 
anoni
al SMON-learner with 
orroboration whi
h SMON-learns any C 2 SMON-TXT w.r.t. any L 2 Index(C) using any re
ursive stri
tattaining 
orroboration fun
tion over L as an ora
le.ProofImmediate from the proof of Theorem 6 (().2Corollary 9 There is a 
anoni
al (CONSERV[SMON)-learner with 
orroborationwhi
h will CONSERV-learn any C 2 CONSERV-TXT w.r.t. any L 2 Index(C)using any re
ursive attaining 
orroboration fun
tion 
 over L as an ora
le and willSMON-learn any C 2 SMON-TXT w.r.t. any L 2 Index(C) using any re
ursivestri
t attaining 
orroboration fun
tion 
 for L as an ora
le.22



ProofThe same 
anoni
al learner is used in Corollaries 7 and 8.2It is known [LZ93℄ that CONSERV-TXT = WMON-TXT and so immediatelyfrom De�nition 8 we have the following fa
t. The learning with 
orroboration ap-proa
h allows an alternative proof.Corollary 10 SMON-TXT � CONSERV-TXTProofA ne
essary and suÆ
ient 
ondition for membership of SMON-TXT is the ex-isten
e of a re
ursive, stri
t attaining 
orroboration fun
tion over L (Theorem 6),whi
h is stronger than the ne
essary and suÆ
ient 
ondition for membership ofCONSERV-TXT given in Theorem 5.2Stri
tness of this 
ontainment is proved by example [LZ93℄.6.4 FIN- and refuting learningDe�nition 18 Let L = H1;H2; ::: be a hypothesis spa
e. Then f : (��)�IN!f0; 1gis 
alled a suÆ
ien
y fun
tion over L if(8t)(8m)(8n)[f(tm; n) = 1) [(8j)tm refutes Hj_(9i � n)[t+m � Hi ^ (8k)[Hk = Hi _ tm refutes Hk℄℄℄℄and (8t)(8j)(8k � j)(8n)(8m � n)[f(tj; n) = 1) f(tk;m) = 1℄De�nition 19 Let f be a suÆ
ien
y fun
tion over L.f is 
alled an inner suÆ
ien
y fun
tion over L if it additionally holds that forevery text t 2 Txts(L), (9m;n)f(tm; n) = 1:If instead it holds that for every text t 62 Txts(L), (9m;n)f(tm; n) = 1, then f is
alled an outer suÆ
ien
y fun
tion over L.Intuitively, a suÆ
ien
y fun
tion f(t; n) monitors whether there are hypothesesin L whi
h are not yet in play (i.e. have no index less than or equal to n), andwhi
h would not be refuted by E if they were in play. When it returns 1 then this
ondition has 
eased to be true (so we may look for an explanation of t solely inH1; :::;Hn) and further, at most one H 2 L has indi
es less than or equal to n whosea

ompanying hypothesis is unrefuted by t.23



An inner or outer suÆ
ien
y fun
tion ensures that (under 
ertain 
ir
umstan
esto do with the limiting behaviour of the data stream) if the 
ondition 
eases to betrue then 1 will be returned at some later time.Naturally the existen
e of a re
ursive (inner or outer) suÆ
ien
y fun
tion overL is a very strong 
ondition and allows parti
ularly strong forms of learning.Theorem 7 C 2 FIN-TXT i� there exists L 2 Index(C) su
h that there exists are
ursive inner suÆ
ien
y fun
tion over L.Proof(()Suppose the existen
e of a re
ursive inner suÆ
ien
y fun
tion f over L =H1;H2; ::: Let t be a text and the hypotheses in play at stage m be H1; :::;Hp.M behaves as follows.M(tm)( = i (and halt) if f(tm; p) = 1 ^ i = minfj j t+m � Hj ^ j � pgrequests more input otherwiseM is re
ursive: immediate from the re
ursiveness of f and the �niteness of tm.Fix H 2 C and t 2 Txt(H).M only ever outputs one hypothesis, whi
h is an L-index for H, then halts:be
ause f is an inner suÆ
ien
y fun
tion, there exists m su
h that f(tm; p) = 1where H1; :::;Hp are the hypotheses in play at stage m. Then there exists only oneH 2 C whi
h has indi
es i � p su
h that tm does not refute Hi; M outputs su
h anindex and halts at stage m.())Let L = H1;H2; ::: and supposeM is an indu
tive learning ma
hine whi
h LIM-learns C w.r.t. L. Let t be a text.De�ne f(t; n) as follows.f(tm; n) = ( 1 if M(tm) = i � n0 otherwisef is a suÆ
ien
y fun
tion over L: suppose M �rst outputs i at stage m, whenthe hypotheses in play are H1; ::;Hj . Naturally j � i and t+m � Hi. It holds that:(9k)[Hk 6= Hi ^ t+m � Hk℄ be
ause otherwise we 
ould extend the initial segmenttm to a text t0 for Hk andM would fail to FIN-learn Hk from this text, 
ontrary toassumption. Therefore (8k)[Hk = Hi _ t+m 6� Hk℄ as required for the �rst 
onditionin De�nition 18. The se
ond 
ondition is easily 
he
ked.f is an inner suÆ
ien
y fun
tion over L: by assumption, any text t for anyH 2 C results in the output of some k with Hk = H at some stage n when the24



hypotheses in play are H1; :::;Hj . Then by de�nition of f , we have f(tn; j) = 1, asrequired.f is re
ursive: to re
ursively 
ompute f(tm; n), we run the Turing Ma
hine Mon tm with the hypotheses H1; :::;Hn in play. IfM outputs a hypothesis i on inputtm then (obviously i � n) set f(tm; n) = 1. If M requests more input then setf(tm; n) = 0.2Corollary 11 There exists a 
anoni
al FIN-learner whi
h FIN-learns any C 2 FIN-TXT w.r.t. any L 2 Index(C) using any re
ursive inner suÆ
ien
y fun
tion overL as an ora
le.ProofThe Turing Ma
hine M 
onstru
ted in the ( proof of Theorem 7 is su
h alearner as the de�nition of M does not depend on C ex
ept via f .2We may use a suÆ
ien
y fun
tion to de�ne a parti
ularly strong form of 
orrob-oration fun
tion.De�nition 20 
(H; t) is 
alled a suÆ
ient 
orroboration fun
tion over L if thereexists an inner suÆ
ien
y fun
tion f(t; n) over L su
h that:(8t)(8i)(8m)[[
(Hi; tm) > 0 ^ 
(Hi; tm) 2 
0(Hi)℄) f(tm; i) = 1℄and (8t)(8m)(8n)[f(tm; n) = 1) (9i � n)
(Hi; tm) 2 
0(Hi)℄where 
0(Hi) = f
(Hi) j Hi = H ^ (8j)[
(Hj) > 
(Hi)) Hj 6= H℄g
 is 
alled a re
ursive suÆ
ient 
orroboration fun
tion if both 
 and 
0f : L�S !f0; 1g de�ned by 
0f (Hi; s) = ( 1 if s 2 
0(Hi)0 otherwiseare total and re
ursive.Theorem 8 C 2 FIN-TXT i� there exists L 2 Index(C) su
h that there exists are
ursive suÆ
ient 
orroboration fun
tion 
 over L.25



Proof(() We de�ne a re
ursive inner suÆ
ien
y fun
tion f 0 over L based on 
. Theresult then follows from Theorem 7.De�ne f 0(tm; n) = ( 1 if (9i � n)
(Hi; tm) 2 
0(Hi)0 otherwisef 0 is re
ursive: to 
ompute f 0(tm; n), only �nitely many re
ursive 
omputationsof 
(Hi; tm) and 
0f (Hi; 
(Hi; tm)) are needed to test the 
ondition above.f 0 is an inner suÆ
ien
y fun
tion: let f be the suÆ
ien
y fun
tion over L whi
hwe know to exist from De�nition 20. Let t be a text for some Hi 2 L. There existn � i and m su
h that f(tm; n) = 1, by De�nition 19. Then 
(Hi; tm) 2 
0(Hi) byDe�nition 20 and �nally f 0(tm; n) = 1 by our 
onstru
tion of f 0.()) Suppose L 2 FIN-TXT. Let M be a learner whi
h FIN-learns C w.r.t. Land f be the re
ursive inner suÆ
ien
y fun
tion from the ()) proof of Theorem 7.We de�ne 
 using M as follows. Let t be any text.
(Hi; tm) = 8><>: �1 if tm refutes Hi1 if M(tm) = i0 otherwise
 is re
ursive: obvious based on the re
ursiveness of M.
0f is total and re
ursive: immediate sin
e (8i)
0(Hi) = f1g.
 is a suÆ
ient 
orroboration fun
tion over L: it is easily 
he
ked that the
onditions of De�nition 20 are satis�ed.2Corollary 12 There exists a 
anoni
al FIN-learner with 
orroboration whi
h FIN-learns any C 2 FIN-TXT w.r.t. any L 2 Index(C) using any re
ursive suÆ
ient
orroboration fun
tion over L as an ora
le.ProofImmediate from proof of Theorem 8 (() as the de�nition ofM does not dependon C ex
ept via 
.2The existen
e of a re
ursive suÆ
ient 
orroboration fun
tion over some L 2Index(C) for FIN-learning of C to su

eed is a very strong requirement. This shouldnot surprise us. FIN-learning is an identi�
ation 
riterion far removed from Popper'sdi
tum that although a hypothesis may be very strongly 
orroborated, it is never (innormal 
ir
umstan
es) safe from later refutation. Only when the hypothesis spa
eis unusual in some respe
t 
an su
h a 
orroboration fun
tion exist.26



Theorem 9 C 2 JREF-TXT i� there exists L 2 Index(C) su
h that there exists are
ursive outer suÆ
ien
y fun
tion f over L and a re
ursive limiting 
orroborationfun
tion 
 over L.Proof(() Let L = H1;H2; ::: 2 Index(C) and let f and 
 be a re
ursive outer suf-�
ien
y fun
tion over L and a re
ursive limiting 
orroboration fun
tion over L,respe
tively. We de�ne our indu
tive JREF-learner M0 based on the 
anoni
allearnerM from the proof of Theorem 2((), as follows. Re
all that ? is the spe
ialsymbol output by M to refute the entire hypothesis spa
e, prior to halting.M0(tm) = ( ? if f(tm; p) = 1 ^ (8i � p)tm refutes HiM(tm) otherwisewhere H1; :::;Hp are the hypotheses in play at stage m.M0 is re
ursive: follows immediately from the re
ursiveness of f and M.On presentation of a text t for H 2 C, M 
onverges to some j su
h thatHj = H: in this 
ase there are no n;m on whi
h f(tm; n) = 1 so the behaviour ofM0 is identi
al to that ofM on the same text. The result follows from the( proofof Theorem 2.On presentation of a text t 62 Txts(L), M0 eventually outputs the symbol ? andhalts: by assumption f is an outer suÆ
ien
y fun
tion so by De�nition 19, thereexist m;n su
h that f(tm; n) = 1. Also there exists some m0 su
h that tm0 refutesall of H1; :::;Hn, so we are done.())Suppose M JREF-learns C w.r.t. L and let t be any text. De�ne f as follows:f(tm; n) = 8><>: 1 if (9m0 � m)[M(tm0) = ?^ hypotheses in play at stage m0 are H1; :::;Hp where p � n℄0 otherwisef is re
ursive: immediate from re
ursiveness of M.f is an outer suÆ
ien
y fun
tion for L: by assumption that M JREF-learns Cw.r.t L, on any text t 62 Txts(L), M outputs the symbol ? and halts, say at stagem when hypotheses in play are H1; :::;Hp. Then f(tm; p) = 1, as required. The
onditions of De�nition 18 are trivially satis�ed.Finally, the re
ursive limiting 
orroboration fun
tion from the proof of Theorem2()) has the desired properties for our 
.2As in the dis
ussion of FIN-TXT, the learning 
riterion JREF-TXT has a veryun-Popperian aspe
t, and 
onsequently the ne
essary and suÆ
ient 
ondition forC 2 JREF-TXT is very strong. 27



We have not found it possible to give an analogous 
ondition for the form ofrefutational learning (REF-TXT) in [MA93℄, as that identi�
ation 
riterion has anon-e�e
tive element to its de�nition.7 ExamplesThe 
orroboration fun
tions 
onstru
ted in the) proofs in Se
tion 6 were simplisti
.However in pra
ti
al use, the existen
e or non-existen
e of appropriate 
orroborationfun
tions may be suggested naturally by the spa
e of hypotheses in use. We givesome examples of the use of 
orroboration fun
tions to prove the learnability orotherwise under 
ertain identi�
ation 
riteria of some simple examples.Our example languages will be sets of points in the rational plane Q2, so � =f(a; b) j a; b 2 Qg.Example 1 Let C be the set of all 
losed 
ir
les of �nite radius. Let <;> be a�xed re
ursive bije
tion between Q2 and IN and <<;>> a �xed re
ursive bije
tionbetween Q2 and Q. A suitable hypothesis spa
e L = H1;H2; ::: is given byH<a;b> = f(p; q) j a =<< x; y >> ^ (p� x)2+(q � y)2 � b2gIt is easily seen that L is an indexing of C.Consider the following 
orroboration fun
tion 
 : L � (��) ! Q [ f1g, whi
his based on the naturalisti
 idea that the further away a point is from a, the moresevere a test it is of hypothesis H<a;b>. For 
ir
les of non-zero radius b we alsoin
lude a s
aling multiplier of 1=b2 into the 
orroboration fun
tion, so that smaller
ir
les are potentially more highly 
orroborable than large ones.
(H<a;b>; tm) = 8>>>>>>><>>>>>>>:
0 if t+M = ;�1 if tm refutes H<a;b>;i.e. [a =<< x; y >>^(9(
; d) 2 t+m)[(
� x)2 + (d� y)2 > b2℄℄1 if b = 0 ^ a =<< x; y >> ^ t+m = f(x; y)g1=b2 �max(a; b; tm) otherwisewheremax(a; b; tm) = maxf((
 � x)2 + (d� y)2)=b2 j a =<< x; y >> ^ (
; d)2 t+mgWith a little 
he
king we see that 
 is indeed a 
orroboration fun
tion underDe�nition 11, and is re
ursive and natural. 
 is limiting be
ause on any text t forHi we have a stage m at whi
h tm 
ontains two diametri
ally opposed points on the
ir
umferen
e of the 
ir
le de�ned by Hi. Then if we let i =< a; b >:28



� (8j)[[j =< 
; d > ^ d2 < b2℄! [tm refutes Hj ^ 
(Hj; tm) = �1℄℄.� (8j)[[j =< 
; d > ^ d2 > b2℄! (8n � m)
(Hi; tn) = 1=b2 > 1=d2 � 
(Hj ; tn)� (8j)[[j =< 
; d > ^ d2 = b2℄! [
 = a _ tm refutes Hj℄℄These are the only 
ases, so at all stages n � m we have that H<a;b> is themost strongly 
orroborated hypothesis (ex
ept for H<a;�b>, whi
h is equally strongly
orroborated and des
ribes the same 
ir
le).
 is also attaining be
ause� if b = 0 then (8a)
(H<a;0>) =1� if b 6= 0 then (8a)
(H<a;b>) = 1=b2and for example 
(H<a;b>; t0) = 
(H<a;b>) where t = (x + b; y); ::: is a text forH<a;b> and a =<< x; y >>.The above suÆ
es to prove that C 2 s-CONSERV-TXT, by Theorem 5.Finally we 
an see that 
 is not stri
t be
ause for example (let b > 0) t =(x+b; y); ::: results in 
(H<<<x;y>>;b>; t0) = 1=b2 = 
(H<<<x;y>>;b>) although manyhypotheses Hj with H<<<x;y>>;b> 6� Hj remain unrefuted. Nevertheless it is possibleto �nd a re
ursive, stri
t, attaining, limiting, set-driven 
orroboration fun
tion overL by requiring that two diametri
ally opposed points on the 
ir
umferen
e of Himust appear in the text before we set 
(Hi; tm) = 
(Hi). This proves that C 2s-SMON-TXT. The details are left as an exer
ise for the reader.Example 2 Now let C be the set of all open 
ir
les of �nite radius. We show thatC 62 LIM-TXT as follows.Let L be an indexing of C and suppose for a 
ontradi
tion that 
 is a re
ursivelimiting 
orroboration fun
tion over L. Let M be the 
anoni
al LIM-learner fromCorollary 4.Let Hi be a hypothesis for the 
ir
le 
entre a, radius b > 0. We 
onstru
t a textt for Hi su
h that M fails to 
onverge to an index for Hi using ora
le 
.Begin enumerating Hi as the text t. Suppose after m stages we have M(tm) = jwhere Hj = Hi. Now however there exists a 
ir
le Hk with 
entre a, radius b � "for some suitably small ", su
h that t+m � Hk. Continue t by enumerating furtherpoints in Hk.There are two 
ases. If (8n � m)Bestn = j, then t is a text for Hk on whi
h Mfails to 
onverge to an index for Hk. Otherwise at some stage n > m, Bestn 6= j.In this 
ase t resumes enumerating Hi. This 
onstru
tion 
an be repeated in�nitelyoften, so Bestm fails to 
onverge on t, a text for Hi. In either 
ase M fails to LIM-learn C w.r.t. L, a 
ontradi
tion by Corollary 4. We 
on
lude that C 62 LIM-TXT.29



8 Arti�
ial Intelligen
e and Indu
tionWe will brie
y dis
uss a re
ent body of work by Gillies [Gi93, Gi96℄ whi
h puts a`Ba
onian' interpretation on 
ertain su

essful developments in ma
hine learning.Gillies 
ontends, 
ontra Popper's belief that the 
reation of s
ienti�
 theories isnot me
hanisable, nor even amenable to logi
al (as opposed to psy
hologi
al) study,that modern ma
hine learning algorithms behave in a highly Ba
onian manner; thishe des
ribes as me
hani
al falsi�
ation. In short, su
h learners synthesise hypothe-ses from ba
kground knowledge and existing eviden
e before subje
ting them tothe risk of Popperian refutation by later eviden
e. This rolls ba
k the 
reative ele-ment of dis
overy to the higher level problem of de
iding whi
h is the appropriateba
kground knowledge to use - in our parlan
e, whi
h is the appropriate hypothesisspa
e. He posits, furthermore, that this is the �rst time in the history of s
ien
ethat Ba
on's indu
tivism has really been used, for prior to ma
hine learning no gen-eral method was given to enable the learner/dis
overer to me
hani
ally (ie. withoutintelligen
e) produ
e hypotheses - one of Ba
on's stated aims.It is diÆ
ult to deny that ma
hine learners (e.g. ID3 [Qu79℄, GOLEM [MF92℄)do indeed behave in this way. Gillies's theme throughout [Gi96℄ is that logi
 hasboth inferential and 
ontrol 
omponents - in learning or dis
overy the inferen
e
orresponds to Popperian falsi�
ation from data, while the 
ontrol element lies in theprodu
tion of new hypotheses. Gillies spe
i�
ally mentions degree of 
orroborationas just su
h a 
ontrol element.Our work in this paper is entirely in a

ord with Gillies's view, parti
ularly ouruse of 
orroboration fun
tions as a 
ontrol element (indeed given the 
hara
terisationresults with 
anoni
al learners whi
h we have obtained, as the sole 
ontrol element)in indu
tive learning.The results obtained in the 
ase of refuting learning are parti
ularly interestingviewed from this angle. Classi
 examples from the history of s
ien
e su
h as Kepler'slaws of planetary motion (see again [Gi96℄) demonstrate that it is not the synthe-sising of a hypothesis from data and ba
kground knowledge that 
onstitutes greats
ien
e, but the paradigm shift that results from a 
hange in ba
kground knowl-edge or assumptions. This 
orresponds to the various forms of refuting indu
tiveinferen
e whi
h have been de�ned (Se
tion 6.4) and suggests that the truly 
reativema
hine learner will not only be able to learn within or refute an existing hypothesisspa
e, but also to propose a new one. Su
h a learner is unlikely to be developedsoon.
30



9 Con
lusions and Future WorkWe have proposed a unifying model for ma
hine indu
tive inferen
e based on thephilosophi
al work of K.R. Popper, and obtained 
hara
terisations of many of thestandard identi�
ation types in learning indexed families of re
ursive languages fromtext. In our model 
anoni
al learners use re
ursive ora
les whi
h 
ompute a versionof Popper's degree of 
orroboration. These learners then follow the natural strategyof preferring the most strongly (or at least a maximally strongly) 
orroboratedhypothesis at any given time. Membership of a 
lass of 
on
epts within a parti
ularidenti�
ation 
riterion is then equivalent to the existen
e of a re
ursive 
orroborationfun
tion with 
ertain properties depending on the identi�
ation type.We intend to extend this unifying model of learning to in
lude language learningfrom informant and related problems su
h as learning of re
ursive fun
tions. Anextension of our approa
h to learning from noisy data would be parti
ularly inter-esting; in this 
ase it is no longer 
ertain that a single adverse data item refutes ahypothesis and we would be obliged to allow negative 
orroboration values otherthan �1, as in Popper's original model. Given the 
ru
ial role played by the hy-pothesis spa
e in our model, it would also be interesting to extend this approa
h to
over exa
t and 
lass 
omprising learning.A
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