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Abstract

The basis of inductive learning is the process of generating and refuting hypothe-
ses. Natural approaches to this form of learning assume that a data item that causes
refutation of one hypothesis opens the way for the introduction of a new (for now
unrefuted) hypothesis, and so such data items have attracted the most attention.
Data items that do not cause refutation of the current hypothesis have until now
been largely ignored in these processes, but in practical learning situations they play
the key role of corroborating those hypotheses that they do not refute.

We formalise a version of K.R. Popper’s concept of degree of corroboration for
inductive inference and utilise it in an inductive learning procedure which has the
natural behaviour of outputting the most strongly corroborated (non-refuted) hy-
pothesis at each stage. We demonstrate its utility by providing characterisations of
several of the commonest identification types. In many cases we believe that these
characterisations make the relationships between these types clearer than the stan-
dard characterisations. The idea of learning with corroboration therefore provides
a unifying approach for the field.

Keywords: Degree of Corroboration; Inductive Inference; Philosophy of Science.



1 Introduction

The field of machine inductive inference has developed in an ad hoc manner, in
particular in the characterisations of identification types which have been achieved.
In this paper we wish to propose a new unifying framework for the field based on
the philosophical work of K. R. Popper, and in particular his concept of degree of
corroboration. We will demonstrate that many of the existing identification types in
the case of learning from text allow an alternative characterisation using the concept
of learning with corroboration; in particular this approach reveals the existence of
canonical learning algorithms for the various types.

In the next section we cover the basics of inductive learning. In Section 3 we
cover as much of Popper’s logic of scientific discovery as necessary for our purposes,
and in Section 4.1 we treat his concept of degree of corroboration in more detail.
In Section 5 we define the basics of an inductive learner with corroboration, and
in Section 6 we give characterisations of many of the standard identification types
using these learners. Section 7 contains some examples of the use of learning with
corroboration in practice. Section 8 discusses some recent work of Gillies which has
relevance, while Section 9 contains our conclusions and directions for further work.

2 Preliminaries

As usual IN will denote the set of natural numbers, U and N will be set union
and intersection respectively, while C and C will be the subset and proper subset
relations respectively. We write A Cy;;, B if A is a finite subset of B. The cardinality
of the set A is written | A | and the length of a sequence ¢ is written | ¢ |. Ambiguity
will be resolved by context.

By ¥ we denote any fixed finite alphabet of symbols. Let ¥* be the free monoid
over X, i.e. the set of all finite words (strings) produced using that alphabet. Any
subset L C ©* is called a language. We set L = ¥* \ L. Let L be a language and
t = sg, 81, 82,... an infinite sequence (possibly with repetitions) of strings from %*
such that L = {s; | kK € IN}; then ¢ is said to be a text for L (or, synonymously,
a positive presentation of L) written ¢t € Tzt(L). If £ is a class of languages and
(3L € L)t € Txt(L) then we write t € Txts(L). We refer to the initial segment of
t of length n + 1 by t,, i.e. t, = g, 81,..., Sn. Also £, will refer to the content of
tn, 1.e. tF = {s0,..., 8, }. We will write (3*) for the space of all finite and infinite
sequences from >*.

In all that follows, we assume a fixed underlying alphabet 3. Note that here we
will only be concerned with the case of learning from text.

We will be concerned with the learnability of indexable families of uniformly
recursive languages, defined as follows.



Definition 1 Let C denote a class of non-empty languages. L = Ly, Lo, ... is said
to be an indexing of C (written £ € Index(C)) iff C = {L; | j € IN} and there
is a total recursive function p over IN X X* such that, for all j € IN and s € X*,
p(4,8) =1 if and only if s € L;.

A class C of non-empty languages is said to be an indexable family iff there exists
an indexing of C.

We will usually write a class C as a hypothesis space Hy, Hs, ... by which we mean
a particular indexing £ of C where each hypothesis H; is typically a characteristic
function for some L € C (when i is called an L-index for L). We will blur the
distinction between languages and their characteristic functions, and will write H; =
L if H; is a characteristic function for L and H; = H; if H; and H; are characteristic
functions for the same L € C.

We will be concerned with the relationship between data streams (here texts)
and underlying concepts (here languages).

Definition 2 Let L be a language. We say that a finite initial segment t, of a text
t = sg,81,... refutes L if (3z < n)s, & L.

Note that ¢, refutes L iff there exists no text for L containing ¢, as an initial
segment.

Following Gold [Go67] we define an inductive inference machine (abbr. IIM)
to be a Turing machine working as follows. The IIM takes as its input larger and
larger initial segments of a text ¢ and it either requests the next input string, or it
outputs a hypothesis, i.e. a positive integer which will be interpreted with respect
to some underlying indexing L of the target family C.

A sequence (j;)zenw of numbers is said to be convergent in the limit iff there is
a number j such that j, = j for almost all numbers z.

Now we define some concepts of learning. We start with learning in the limit.

Definition 3 (Go67) Let C be a class, L = (Lj)jew € Index(C), and L € C.
An IIM M LIM-TXT-identifies L w.r.t. L iff on every text t for L M almost
always outputs a hypothesis and the sequence (M(t;))zeN converges in the limit to
a number j such that L = L;.

An IIM M LIM-TX T-identifies C w.r.t. L iff M LIM-TXT-identifies every
LeC wrt L.

Let LIM-TXT denote the collection of all C such that there exists L € Index(C)
and an [IM M LIM-TX T-identifying C w.r.t. L.

We regard this form of identification and its variants as varieties of learning, and
indeed use the terms infer and learn as synonyms for identify.



Note that our learner uses the sequence t,, as its input. If the natural restriction
is made that the learner’s behaviour should be independent of changes in the order
of the sequence and the number of repetitions, we have set-driven learning.

Definition 4 (WC80) An IIM is said to be set-driven iff its output depends only
on the range of its input, i.e. on any two texts t,u we have

(Y, )ty = uy = M(tz) = M(uy)]

We prefiz the name of an identification criterion by s- if in addition we require
the learner to be set-driven, e.g. s-LIM-TXT, etc.

An alternative form of learning is behaviourally-correct learning, defined as fol-
lows.

Definition 5 (OW82, CL82) Let C be a class, L = (Lj)jew € Index(C), and
LecC. An IIM M BC-TXT-identifies L w.r.t. L iff on every textt for L M almost
always outputs a hypothesis and almost every element in the sequence (M (tz))zeN
is an index for L.

An ITM M BC-TXT-identifies C w.r.t. L iff M BC-TXT-identifies every L € C
w.r.t. L.

Let BC-TXT denote the collection of all C such that there exists L € Index(C)
and an IIM M BC-TXT-identifying C w.r.t. L.

Note that, in general, it is undecidable whether or not an IIM has already
successfully finished its learning task. If this is decidable, then we obtain finite
learning.

Definition 6 (Go67) Let C be a class, L = Ly, Lo, ... € Index(C), and L € C. An
IIM M FIN-TXT-identifies L w.r.t. L iff on every text t for L M outputs only a
single hypothesis j which is an L-index for L, and stops.

An IIM M FIN-TXT-identifies C w.r.t. L iff M FIN-TXT-identifies every
LeC wrt L.

Let FIN-TXT denote the collection of all C such that there exists L € Index(C)
and an IIM M FIN-TXT-identifying C w.r.t. L.

A natural property of learning is that the learner should not change its mind
without good reason.

Definition 7 (An80) Let C be a class L = Ly, Lo, ... € Index(C), and L € C. An
M M CONSERV-TXT-identifies L w.r.t. L iff on every text t for L M learns L
in the limit and for all n if M(t,) = j is defined then M(tp41) = jVitn41 refutes L.
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An IIM M CONSERV-TX T-identifies C w.r.t. L iff M CONSERV-TX T-identifies
every L € C w.r.t. L.

Let CONSERV-TXT denote the collection of all C such that there exists L €
Index(C) and an IIM M CONSERV-TX T-identifying C w.r.t. L.

Various forms of monotonicity requirements on the learner, i.e. that the learner
should in some sense output increasingly ‘eood’ hypotheses, are also known.

Definition 8 (Ja91, Wi91) Let C be a class, L = Ly, Lo, ... € Index(C), and
LeC. An IIM M identifies L

1. strong monotonically
2. monotonically

3. weak monotonically

w.r.t. L iff on every text t for L M learns L in the limit and if i1,1s,... is the
sequence of hypotheses output by M in learning L from t then

2. (Vn)LG NLC Lin+1 NL
3. (Vn)[t 11 € L) = Laatn) € Lt )]

respectively.

We denote by SMON-TXT, MON-TXT and WMON-TXT those collections of
classes C for which there exists £ € Index(C) and a learner M which learns every
member L of C strong monotonically, monotonically, and weak monotonically w.r.t.
L, respectively.

We will not concern ourselves with WMON-TXT or MON-TXT in this paper.

There exists the possibility that the learner may be able to recognise that the
text which it is being fed does not represent a text for any language in C, the class
which it is trying to learn. Its behaviour in this case should be to output a special
symbol | ‘refuting’ the class; otherwise it should learn the class in the limit.

Definition 9 (MA93) A refuting inductive inference machine (RIIM) is a Turing
Machine that on any input either behaves like an IIM or outputs the symbol L and
immediately halts.

Definition 10 (LW94) Let t be a text for any language. t is called an unrepre-
sentative text for C if there exists n such that (VL € C)t,, refutes L. The least such
n is called the refutation point of t for C, written ref(t,C).



Let C be a class and L = Ly,Ly,... € Index(C). A RIIM M JREF-TXT-
identifies L iff on any text t for L € C M identifies L in the limit and for all
unrepresentative texts t for C we have (3m > ref(¢,C))M(ty,) = L.

We write C € JREF-TXT if there exists L € Index(C) and an IIM M which
JREF-TXT-identifies C w.r.t. L.

3 Popper’s Logic of Scientific Discovery - a
Précis

In this section we will summarise as much of Popper’s philosophical system as we
need for our purposes. Even this is quite a task, as this was the major achievement
of Popper’s professional life and extended to two books [Po34, Po63], and a large
number of published papers.

Before Popper the philosophy of science could trace an unbroken line of devel-
opment back to Bacon. The dominant school, inductivism, held that scientific ideas
are gradually proved inductively, by experience - when the idea in question has
passed a large number of tests, it may be regarded as effectively proved.

Einstein’s overthrow of Newtonian mechanics in the early Twentieth Century
provided the intellectual background for Popper’s work. If such an established sys-
tem of scientific law could be disproved' then it must have seemed that no scientific
idea could ever truly be proved; so indeed Popper reasoned.

Popper built his philosophy of science rigorously from the ground up. He pos-
tulated that scientific theories have the character of ‘all-statements’; they attempt
precisely to specify behaviour of all entities of a certain kind in all circumstances
of a certain kind: for example, all planets in rotation about a star. Further, the
observations of which empirical science is capable are of a different character; they
observe the behaviour of individual entities in individual circumstances.

Popper’s first key contribution was to note the asymmetry which arises from
this: no number of observations is sufficient to exhaust all the possibilities of an
all-statement, even if all these observations are in accord with the predictions of
the theory. By contrast, a single observation (allowing for the usual caveats of
reliability and inter-subjective repeatability) is enough to refute a theory once and
for all, if it conflicts with that theory’s predictions. While the theory may be correct
in some circumstances, and a useful approximation in others, it does not provide
the ultimate, precise truth to which science aspires. An inescapable consequence
of this is that scientific theories are never truly proven by observations, for among
those observations never, or not yet taken, may be one that disproves the theory.

INewton’s laws of course remain useful approximations for many practical purposes.



This demolition of inductivism raises other problems. It was certainly not Pop-
per’s intention to suggest that we should stop doing science; but if no theory can
be proven, then what may we rationally believe? Popper’s answer to this problem
forms the starting point for our work.

Those observations which do not refute a particular theory nevertheless play the
important role of corroborating that theory. Each observation, particularly those
which are decisive between theories in the sense that they refute some while corrob-
orating others, may be seen as a test of these theories. When a theory has survived
a number of such tests without being refuted, we may say it is well corroborated
(though not immune to later refutation) and we may tentatively believe it, for now.
It is a small step to Popper’s dictum that we should believe the best corroborated
theory at any particular time.

Popper formalised the idea of corroboration further by equating the corrobora-
bility of a theory with its content, or scientific interest, and further with its logical
falsifiability. This will be a key idea for us: a theory which has a large number of
potential falsifiers (refuting observations) is also potentially more strongly corrob-
orable (in the case that none of these behaviours is ever observed) than a theory
with fewer falsifiers.

Popper states in [Po34] (p.395 - all page references to [Po34] are to the 1997
Routledge edition) that:

I believe that these two ideas - content and degree of corroboration - are
the most important logical tools developed in my book. (Emphasis in
original)

In Section 4.1 we will look in detail at Popper’s formulation of the degree to which
data corroborates a theory, prior to formulating our own laws of corroboration for
use in the more restricted field of machine inductive inference.

4 Degree of Corroboration

4.1 Popper’s Definition
4.1.1 Discussion

In [Po34] (also [Po54]), Popper went some way towards formalising his key idea of
the corroboration lent by examples (or theory) y to theory (synonymously concept or
hypothesis) z, calling it C'(z,y). We will further formalise the definition of C(z,y),
while modifying or discarding some features where necessitated in the light of the
following discussion.

It must be mentioned that in [Po34] Popper ties his definition C(z,y) rather
rigidly to the notion of absolute logical probability, which has certain unhelpful
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consequences for our purposes. This is largely because both in [Po34] and in [Po54]

he was concerned to distinguish his idea of degree of corroboration from any proba-

bilistic definition and needed to demonstrate that to impose the laws of probability

on C(z,y) leads to a contradiction. In later work [Po57] he accepted criticism by

various authors of this linkage and loosened the definition of C'(z,y) accordingly.
Popper remarks [Po54] that

The particular way in which C(z,y) is here defined I consider unimpor-
tant. What may be important are the desiderata, and the fact that they
can be satisfied together. (Emphasis in original)

We will take this as licence to define a function, ¢(x,y), which differs in some
small ways from Popper’s C(z,y), while satisfying his desiderata as far as possible.
In the next two sections we present first Popper’s desiderata for a corroboration
function, then our own version, and discuss the differences between them.

4.1.2 Popper’s Desiderata

In [Po54] Popper lists nine points which should be satisfied by a corroboration
function, and he adds a further one in [Po57].

C(z,y) is in all cases the degree to which y supports or corroborates z, C(x)
is the maximum degree to which = may be corroborated, while P(z) is the logi-
cal probability of z and P(z,y) is the logical probablity of x given y. FE(z,y) is
the explanatory power of x with respect to y, and its value is defined based on
P(z),P(y), P(x,y) and P(y,z) - we will not be much concerned with this concept.
Finally Z is the logical negation of x.

Popper’s desiderata as stated in [Po54] and [Po57] are as follows.

1. C(z,y) is respectively greater than, equal to, or less than 0 iff y supports z,
is independent of z, or undermines .

—1=CFy) <Clz,y) < C(z,z) <1
0<C(z,z) =C(x)=P(T) <1

If y entails = then C(z,y) = C(z,z) = C(z)
If y entails T then C(z,y) = C(y,y) = —1

S Uk N

Let z have a high content, so that C(z,y) approaches E(z,y), and let y support
x. Then for any given y, C(z,y) increases with the power of z to explain y (i.e.
to explain more and more of the content of y and therefore with the scientific
interest of z).

7. If C(x) = C(y) # —1 then C(x,u) is respectively greater than, equal to or less
than C(y,w) whenever P(z,u) is greater than, equal to, or less than P(y,w).



8. If x entails y then: (a) C(z,y) > 0; (b) for any given z, C(z,y) and C(y)
increase together; and (¢) for any given y, C'(x,y) and P(z) increase together.

9. If T is consistent and entails y, then (a) C(z,y) < 0; (b) for any given =z,
C(z,y) and P(y) increase together; (¢) for any given y, C(z,y) and P(x)
increase together.

10. If z is confirmed, supported or corroborated by y so that C(x,y) > 0, then (a)
7 is always undermined by y, i.e. C(Z,y) < 0, and (b) x is always undermined
by 7, i.e. C(z,7y) <O.

4.2 Our Differences from Popper’s Approach - Discus-
sion
4.2.1 Restricted Domain

We wish to define a corroboration function analogous to Popper’s but for use in the
domain of inductive learning theory. This restricted domain enables us to make a
number of simplifying assumptions compared to Popper’s version above.

First we note that we always wish to state how well a hypothesis is corrobo-
rated by data. This is already more specific than Popper’s approach, in which he
specifically allows the corroboration of, for example, one theory by another. Our
hypotheses will be those of an inductive learning machine (see Section 2) and will
come from a particular hypothesis space, within which we aim to find a true descrip-
tion of the phenomenon producing the data, which will be a recursive language. The
data will be a sequence of ezamples forming a tezt (or strictly speaking, an initial
segment of a text) for the phenomenon. To distinguish our corroboration functions
from Popper’s, we will use lower case. Thus ¢(H,t) will be the degree to which
example text ¢ corroborates hypothesis H.

4.2.2 Fixed Values

Now that we distinguish between theory and data, we are able to simplify further.
We assume that data is free of noise, and that we aim to find a hypothesis which
ezxactly describes or explains the concept producing the data. Now the idea that
data undermines (Popper’s choice of word) a theory can be replaced by outright
refutation in the case that data disagrees with the predictions of the theory. Thus
all the possible negative values in Popper’s scheme may be replaced in ours by —1,
the corroboration value of refuted hypotheses.

Similarly the value 0, reserved by Popper for the degree of corroboration offered
to by an independent theory y, subtly changes its meaning when we restrict our-
selves to corroboration of hypotheses by data. The value 0 is now the corroboration
given to any theory



e by the empty data set ()

e by vacuous data which gives us no help in choosing between competing hy-
potheses in our space

e in the case that the theory itself is tautological, metaphysical or otherwise not
logically refutable.

4.2.3 References to Probability

For historical reasons, Popper’s desiderata are tied closely to definitions in proba-
bility; specifically, Popper sets out to demonstrate that degree of corroboration is
in no sense a measure of probability. For our purposes, we have no need of any
directly defined probabilistic measures and so we are able to drop references to
P(z), P(z,y), E(z,y), etc. We continue to use ¢(H) to mean the highest degree of
corroboration of which H is capable; however we drop the reference to P(%) in the
definition of C'(x) and instead add some natural restrictions on c¢(H).

Popper’s dependence on probabilistic definitions leads him to restrict the maxi-
mum degree of corroboration in any case to the value 1. Objections to this unnec-
essary restriction led him to drop it in [Po57], and we do likewise. Further, we may
drop the restriction of degrees of corroboration to real number values altogether,
and use any partially ordered set S with a minimum element —1 such that S —{—1}
has a minimum element 0 and decidable (recursive) relations >, < and .

These points having been made, we proceed to our own desiderata.

4.3 Our Definition of Degree of Corroboration

Let H range over hypotheses from our space £, and ¢ over texts and finite initial

segments of texts. We assume that ¢(H,t) ranges over some partially ordered set

S with minimum element —1 and an element 0 minimal in S — {—1}. Similar to

Popper, we use ¢(H) as shorthand for ¢(H, H), the maximum degree of corroboration

possible for H. Falsifiers(H) is the set of potential data items in ¥* which refute

H, and we write H = H' in the case that H and H' describe the same concept.
First we formally define our corroboration functions.

Definition 11 A corroboration function c: L x (¥*) — S over L maps hypotheses
and texts to some set S with minimum element —1 and an element O minimal in
S —{—1} such that S has a decidable partial ordering <, and satisfies the following
desiderata for all hypotheses H, H' € L and all texts t,t' € (X*):

1. ¢(H,t) = —1 iff there exists data in t which refutes H.
2. ¢(H,t) > 0 iff t does not refute H
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3. ¢(H,t) = 0 if t is empty or contains no data capable of refutation of any
hypothesis in our space.

4. ¢(H) = mazx{Lim,_oc(H,t,) | t is a text for H}
5. ¢(H) > c(H') if Falsifiers(H') C Falsifiers(H)

6. Ift is a finite initial subsequence of t' then either c(H,t) < ¢(H,t') or c(H,t') =
-1

Our definition of degree of corroboration is simpler than Popper’s because we
have dropped all reference to probability and this gives us greater freedom when
actually assigning values to our functions ¢(H) and c(H,t). We will see in the next
section that certain inductive learning identification criteria will require corrobora-
tion functions with additional properties to those specified above.

Our first three points come from Popper’s first four and tenth desiderata. Our
fourth and fifth points capture Popper’s sense that a high degree of refutability
and a high degree of corroborability are synonymous. Our sixth point captures
the natural expectation that degree of corroboration of H cannot be decreased
by further non-refuting examples (although these same examples may cause an
alternative hypothesis H' to become better corroborated than H).

5 Learning with Corroboration

In this section we cover the remaining assumptions and definitions necessary to
define a theory of inductive learning with corroboration.

5.1 Hypotheses and Hypothesis Spaces

If two hypotheses describe the same concept, we will write H; = H;. Note that this
is exactly the case Falsifiers(H;) = Falsifiers(H;) and may be treated as a shorthand
for the latter. If Falsifiers(H;) C Falsifiers(H;) then we will write H; C H; to capture
the natural Popperian sense that H; is more easily refuted (potentially more strongly
corroborable) that H;. None of these relations is necessarily recursive.

We will restrict our attention to class-preserving hypothesis spaces, i.e. those
indexed recursive families Hy, Ho, ... for C such that for every L € C there exists at
least one (and possibly many) 7 such that L = H;.

Our model of learning requires that c¢(H,¢) and comparison (<) between de-
grees of corroboration are both recursive, but not necessarily that ¢(H) is recursive.
Recursiveness of ¢(H) leads to decidability of H; C H; and therefore of H; = H;.

All forms of inductive inference suffer from the problem that the learner is re-
quired to choose one from among (typically) infinitely many hypotheses at each
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stage. Clearly no learner can consider all these hypotheses before it outputs a hy-
pothesis or requests further data, so in effect there are only a limited number of
hypotheses in play at any given time. Most authors gloss over this question as
a matter of detail, or deal with it implicitly, but as we intend to propose a new
unifying model for machine inductive inference, we feel constrained to deal with it
explicitly.

We therefore assume that along with our hypothesis space Hy, Hs,... we have a
recursive, monotonically increasing function ip : IN — IN with Lim,_,~ip(n) = oo
which gives the number of hypotheses in play at stage n of any learning procedure
with this hypothesis space. This leads to one slight concession with respect to
our desiderata: hypotheses H; which are not yet in play at stage n need not be
considered to be either refuted or corroborated by ¢,,, the examples seen to that
stage - we therefore arbitrarily assign c¢(Hj,t,) = 0 for such n, j. This cannot cause
confusion as these hypotheses are (by definition) not considered by any algorithm;
it serves only to simplify some algorithms defined later.

5.2 Corroboration Functions and Canonical Learners
with Corroboration

In the following section (Section 6) we examine the use of corroboration in inductive
learning and prove that many of the most natural inductive learning identification
types can be characterised by an existence condition for a suitable corroboration
function over the hypothesis space. Our intention is that this corroboration function
(which is invariably recursive so no undecidability results are implied, nor is any
additional computing power gained illicitly) will be used as an oracle by a canon-
ical learner for the appropriate type; this demonstrates that there is effectively a
single best learning strategy for each identification type, and only the details of the
corroboration function change depending on the hypothesis space.
The behaviour of a learner with corroboration is defined as follows.

Definition 12 Turing machine M, with oracle c(H,t) is called a learner with cor-
roboration if ¢(H,t) is a recursive corroboration function and on input t with hy-
potheses Hi, .., Hy in play, M outputs some i < p such that ¢(H;,t) > 0 is mazimal
among the c(Hj,t),j =1,...,p, if defined, and requests more input otherwise.

If additionally M learns within identification type %, we call M a x-learner with
corroboration.

Clearly such a learner is consistent with Popper’s dictum that we should prefer
the most strongly corroborated hypothesis among competing hypotheses.
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6 Characterising TXT-Identification Types in
Learning with Corroboration

In this section we are concerned only with learning from text, and often abbreviate
the names of identification types by dropping the -TXT.

6.1 BC- and LIM-learning

Definition 13 A corroboration function ¢ over L is called cycling iff

(VH € £)(Vt € Tzt(H))(3n)(3D C N)[(Vi € D)H; = HA
(Vm > n)(3i € D)(V§)[e(H;, tm) > c(Hj,tm) V [c(Histm) £ ¢(Hjtm) Ai < 4]]]

Theorem 1 C € BC-TXT iff there exists L € Index(C) such that there is a recur-
sive cycling corroboration function ¢ over L.

Proof

(<)

We define a learner M which uses such a recursive cycling ¢ to BC-learn any
HelL.

Let ¢ be a text for H € L. Let the hypotheses in play at stage m be Hy, ..., H,.
At the mth stage (i.e. on input ¢,,) M behaves as follows.

M(ty) { = min(Best,,) if defined

requests more input otherwise

where
Besty, = {i | i <p Ac(Hi,tm) > 0N (Vi <p)c(Hiytm) £ c(Hj tm)}

M is recursive: M recursively computes ¢(H;, t,,) for i = 1,...,p and forms the
finite set of those ¢ for which ¢(Hj;,t,,) > 0 is maximal under the recursive relation
<. M now outputs the minimum such ¢, unless the set is empty, in which case it
requests more input.

On presentation of a text for H € C there exists a stage n after which M always
outputs an L-index for H: let t be a text for H. By assumption, ¢ is a cycling
corroboration function, so there exists a set D such that (Vi € D)H; = H and a
stage n such that (Vm > n)min(Besty,) € D. The result follows from the definition
of M.

(=)

Suppose M is an inductive learning machine which BC-learns C w.r.t. £ =
Hy, Hy, ... and let t be a text. We define a recursive ¢ which produces values (for
degree of corroboration) ranging over INU {—1}. Let

13



-1 if ¢, refutes H;
c(Hiytym) =13 |tm | +1 f M(ty) =1
| £ | otherwise

c is recursive: it is decidable for any 7 whether ¢,, refutes H;, and by assumption
M is a Turing machine which always outputs a hypothesis or requests further input.
¢ s a cycling corroboration function over L: let t be a text for H € C. By
assumption there exists a set D such that for all # € D we have H; = H, and
a stage n such that for all m > n our learner M outputs an index 4 such that
1 € D. Therefore at all stages m > n there always exists an ¢ € D such that
c(H;,tm) > c(Hj,ty) for all j # 4, which satisfies the requirements of Definition 13.
O

Corollary 1 IfC € BC-TXT then there exists L € Index(C) and a recursive cycling
corroboration function ¢ over L with the property that

(VH € L£)(Vt € Tzt(H))(In)(ID CIN)[(Vi € D)H; = HA
(Vm > n)(3i € D)(Vj # i)c(Hi,tm) > c(Hj, tm)]

Proof
Immediate from proof of Theorem 1 (=).
a

Corollary 2 There is a canonical BC-learner with corroboration which will learn
any C € BC-TXT w.r.t. any L € Index(C) using any recursive cycling corroboration
function ¢ over L as an oracle.

Proof
Immediate from the < direction of the proof of Theorem 1 as the definition of

M does not depend on C except via c.
O

Definition 14 A corroboration function ¢ over L is called limiting iff

(VH € £)(Vt € Tot(H))(3)[H; = HA
(Fn)(Vm > n) (Vi) [c(Histm) > c(Hj tm) V [c(His ty) £ c(Hj, tm) A < §]]]

Clearly a limiting corroboration function is also a cycling corroboration function
with | D |= 1.

Theorem 2 C € LIM-TXT iff there exists L € Index(C) such that there is a
recursive limiting corroboration function ¢ over L.

14



Proof

(<)

We define a learner M which uses such a recursive limiting ¢ to LIM-learn any
Hel.

Let ¢ be a text. Let the hypotheses in play at stage m be Hy, ..., H,. At the mth
stage (i.e. on input t,,) M behaves as follows.

= min(Best,,) if defined
requests more input otherwise

M(tm){

where
Besty, = {i | i <pAc(Hj tpm) >0A (V5 <p)c(Hj ty) £ c(Hj, tm)}

M is recursive: M recursively computes c¢(Hj,t,,) for i = 1,...,p and forms
the finite set of those i for which ¢(H;, ,,) is maximal under the recursive relation
<. M now outputs the minimum such 4, unless the set is empty, in which case it
requests more input.

On presentation of a textt for H, M converges to some j such that H; = H:
fix £, an arbitrary text for H. Let n be that stage defined in Definition 14. Now there
is some j with H; = H such that at stage n and all subsequent stages m M will
output j because j = min(Best,,) by assumption that ¢ is a limiting corroboration
function and the definition of M.

(=)

Suppose M is an inductive learning machine which LIM-learns C w.r.t. £. We
define a recursive ¢ which produces values (for degree of corroboration) ranging over
INU{-1}. Let

-1 if ¢,,, refutes H;
c(Hjtm) =14 | tm |+1 if M(ty) =7
| tm | otherwise

c is recursive: it is decidable for any j, whether ¢,, refutes H;, and by assump-
tion M is an IIM.

¢ 18 a limiting corroboration function over L: let t be any text for H € C. By
assumption there exists an index j such that H; = H and a stage n after which M
always outputs j. Therefore at all stages m > n we have ¢(Hj,ty,) > ¢(Hy, ty) for
all k # j, which satisfies the requirements of Definition 14.

O

Corollary 3 IfC € LIM-TXT then there exists L € Index(C) such that there is a
recursive limiting corroboration function ¢ over L with the property that

(VH € £)(Vt € Tot(H))(3)[H; = H A (In)(¢m > n)(¥Vj # i)e(Hi, tm) > c(Hj, tm)]
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Proof
Immediate from proof of Theorem 2 (=).
a

Corollary 4 There is a canonical LIM-learner with corroboration which will learn
any C € LIM-TXT w.r.t. any L € Index(C) using any recursive limiting corrobo-
ration function ¢ over L as an oracle.

Proof

Immediate from the < direction of the proof of Theorem 2 as the definition of
M does not depend on C except via c.

O

Corollary 5 There is a canonical (LIMUBC)-learner with corroboration which will
BC-learn any C € BC-TXT w.r.t. any L € Index(C) using any recursive cycling
corroboration function ¢ over L as an oracle and will LIM-learn any C € LIM-TXT
w.r.t. any L € Index(C) using any recursive limiting corroboration function ¢ over
L as an oracle.

Proof
The same canonical learner is used in Corollaries 2 and 4.
O

Our approach of learning with corroboration allows us to prove the known result
(it appears to be a ‘folk theorem’) that BC-TXT = LIM-TXT as follows.

Theorem 3 BC-TXT = LIM-TXT

Proof

That LIM-TXT C BC-TXT is obvious from the definitions.

We show that any learner M which BC-learns C w.r.t. £ permits the construc-
tion of a learner M’ which LIM-learns C w.r.t. £. Our proof method is to build
M’ to copy M until, by enumerating longer and longer initial segments of the char-
acteristic functions for H, the hypothesis of M, and H’, the hypothesis of M’, we
have proof that M has ‘really’ changed its hypothesis, instead of just switching to
another hypothesis describing the same language.

Define the unchanged length UL(M,t,1) of a learner M at stage n + 1 to be
the length of the longest sequence of stages ending in n at which the learner output
the same hypothesis.

We define M’ and ¢ using mutual recursion as follows.

16



,

-1 if ;41 refutes H;
| tmy1 | +1  if [M'(t,,) is undefined Vv
(37:0<j <ULM s tin1)) Hpwr (1) (5) # Haa(t 1) ()]
c(Hjytmi1) = AM(tm11) =i
| tm+1 | +1 if Ml(tm) = A
(Vj:0 <j <ULM  tms1) Haw (1) (5) = Hat(tn41)(5)
L | tm | otherwise

The second and third cases above are mutually exclusive in the sense that at most
one of these cases will apply to at most one 7 at any stage. They have been separated
for clarity as they represent the cases where M'(t,,) is defined and M'(t,,+1) does
not/does equal M'(t,,), respectively.

We define M’ in the familiar way:

= min(Best,,) if defined
requests more input otherwise

M (tm) {
where
Best,, = {i | i <pAc(Hj tm) >0A (V) <p)c(Hj tm) £ c(Hj, tm)}

Clearly ¢ and M’ are recursive. It is easily checked that if M BC-learns £ then
¢ is a limiting corroboration function over £ and consequently by Theorem 2 M’
LIM-learns L, as required.

O

6.2 Set-driven learning

When considering the philosophical background for our model of learning, it seems
clear that the order in which examples are presented to the learner, or the number
of times the same example is repeated, has no significance. This leads us to the
following definition.

Definition 15 A corroboration function ¢ over L = Hy, Ho, ... is called natural if
on aoll texts t,u, for all m,n we have

t; = u:{ = (Vi)e(H;, ty) = ¢(Hj, up)

It might be objected that corroboration functions lacking the naturalness prop-
erty should be disallowed. However, they are no more unnatural than non-set-driven
learners (it is known [LZ94] that s-LIM-TXT C LIM-TXT).
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Theorem 4 C € s-LIM-TXT iff there exists L € Index(C) such that there exists a
recursive natural limiting corroboration function c over L.

Proof

(<)

Let ¢ be a recursive natural limiting corroboration function over £. Let M be
the learner from the <= proof of Theorem 2, in which it has already been shown that
M LIM-learns L. We show that M is set-driven as follows. Let u,t be texts and
let Best;,, and Best,, be defined similarly to Best,, in the < proof of Theorem
2. Tt is clear that given the naturalness of ¢ we have

t;; = u;'; = Bestyy, = Bestyy

and so t = ul = M(ty) = M(u,) and C € s-LIM-TXT as required.

(=)

Let C € s-LIM-TXT via set-driven learner M working w.r.t. L. Let ¢ be the
corroboration function defined as follows:

-1 if ¢,,, refutes H;
c(Hjstm) = q |t | +1 i M(tm) =j
|t ] otherwise

Now let ¢,u be texts and suppose ¢, = u,} for some m,n. Now clearly we have
(Vi)e(H;, tm) = ¢(Hj, uy,) as required.
O

Corollary 6 There is a canonical s-LIM-learner with corroboration which will learn
any C € s-LIM-TXT w.r.t. any L € Index(C) using any recursive natural limiting
corroboration function c over L as an oracle.

Proof

Immediate from the < direction of the proof of Theorem 4 as the definition of
M does not depend on C except via c.

O

6.3 Conservative and Strong Monotonic learning

Definition 16 A corroboration function ¢ : L X (X*) — S over L is called attaining
if
(VH € L)(Vt € Tzt(H))[(3j)(3n)[H; = H A c(Hj, t,) € ¢ (Hj)|A
(Vi) (Ym)[c(H;, t) € ¢ (H;) = (VH' € L)[ty, refutes H' vV H; 7 H']]
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where
¢ (Hy) = {e(Hy) | Hy = Hy A (V)[e(Hy) > o(H;) = Hy # Hi}

¢ is a recursive attaining corroboration function if both ¢ and ¢ : Lx S —{0,1}
defined by

Vi oo ) 1 if s €d(Hy)
Cf(H“S) - { 0 otherwise

are total and recursive.

Note that c¢(H;, t,) € ¢(H;) implies ¢(H;, t,,) = ¢(H;) and that ¢(H,0) = 0
implies (Vs € ¢'(H))s > 0.

Theorem 5 C € CONSERV-TXT iff there exists L € Index(C) such that there
exists a recursive attaining corroboration function c over L.

Proof

(<)

Let ¢(H,t) be a recursive, attaining corroboration function over £. We define a
CONSERV-learner M on text t as follows.

= M(tm—1) if defined and (¢, does not refute M (t,—1)
or Best,, is undefined)
M(ty) S = min(Besty,) if defined and (¢, refutes M (t;,_1)

or M(tm,—1) is undefined)
requests more input otherwise

where
Besty,, ={i | i <pAc(Hjtm) € c'(Hi) AN (V) <p)e(Hj,tm) # c(Hi tm)}

where Hy, ..., H, are the hypotheses in play at stage m.

M is recursive: it is not difficult to see that Best,, is a recursive set as its compu-
tation involves only finitely many computations of ¢(H;, t,,) and c’f(Hi, c(Hi,tm)),
both of which are recursive by assumption. The result follows.

For all m such that M(tp,) is defined, M(tymy1) = M(tm) or tmy1 refutes
Hq(t,,): immediate from the definition of M.

On any text t for H € L, M converges to some j with H; = H: let j be
that index of H (from Definition 16) for which (In)c(Hj;,t,) € ¢(H;) (and so
(Ym > n)c(Hj, ty,) € ¢ (Hj)).

We show that
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(Vk < j)[Hy = Hj = HV (3m' > m)(VYn > m')c(Hy, tn) & ¢ (Hy)]

Suppose k < j, Hy # H; and H}, is never refuted by ¢ (if Hy, is refuted by ¢,/ then
c(Hgytpy) = —1 < ¢(Hj,tyy) and we are done). Now (Vn)t C H; C Hy so by
Definition 16 we cannot have ¢(Hyg,t,) € ¢/ (Hy), and we are done.

Finally we show that

(Fn>m)M(t,) = 7V (Yn > m")[M(tn) = M(tm) A Hpyqe, ) = H]

Suppose M (t) = k and Hy = H. Then clearly Hy, will never be refuted by ¢, so
by the definition of M we are done. If M(¢,, 1) is undefined, then min(Best,, ) =
k < j with H, = H from above, so again we are done. The only remaining
case is when M (t,y) = k and Hy # H. Then at some stage n < m' we have
c(Hy,tn) € ¢'(Hy) by the definition of M, so H;, 2 H; by Definition 16. Now
because t is a text for H, at some stage n’ > m' we will have ¢, refutes Hy, and
min(Best,) = k < j with Hy = H as before so Hy; ,) = H. In all cases M
converges on ¢ to an index for H as required.

(=)

Let M be a learner that learns C conservatively w.r.t. £. We define a recursive
attaining corroboration function ¢ : £x(3*) = {—1,0,1} with ¢(H) = {1} as follows.

—1 if ¢, refutes H;
c(Hj,ty) =4 1 if t,, does not refute H; A M(t,) =i
0 otherwise

c(H,t) is recursive: follows immediately from the recursiveness of M and the
decidability of whether ¢, refutes H;.

We now prove the two properties necessary to prove c is an attaining corrobo-
ration function (Definition 16). Fix H € C and ¢t € Tzt(H).

(i) (3j)(3n)[H; = H A ¢(Hj,t,) = 1]: by assumption there exists some j with
H; = H and (3In)(Vm > n)M(t,) = j. Then by definition of ¢(H,t), we have
c(Hj,t,) = 1 as required. This also suffices to prove that (Vi)c'(H;) = {1} and so
c’f is total and recursive.

(ii) (Vi)(Vn)[c(Hi, tn) € ¢ (H;) = (VH' € L)[t, refutes H' vV H; 7 H']]: let
¢(H;, t,) = 1. Then by definition of ¢(H,t) we have that M(t,) = i. By assumption
M CONSERV-learns C w.r.t. L, so there is no j with ¢/ C H; C H; because if
there were then we would be able to extend %, to a text ¢ for H ; and M would fail
to CONSERV-learn H; on t', a contradiction.

c(H,t) is an attaining corroboration function over L: immediate from (i), (i1)
above.

O
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Corollary 7 There is a canonical CONSERV-learner with corroboration which will
learn any C € CONSERV-TXT w.r.t. any L € Index(C) using as an oracle any
recursive attaining corroboration function c over L.

Proof

Immediate from the < direction of the proof of Theorem 5 as the definition of
M does not depend on C except via ¢ and ¢'.

O

Definition 17 A corroboration function c(H,t) over L = Hy, Ho, ... is called strict
if

(VH; € L)(Vt € Tzt(H;))(VYn)[c(Hi, ty,) € ¢ (H;) = (YH; D 1) H; D Hj
where
d(H) = {c(H;) | Hi = H A (Yj)[c(H;) > c(H;) = H; # H]}

¢ is called a recursive strict corroboration function if both ¢ and c;: LxS— {0, 1}
defined by

Voo ) 1 ifse d(H;)
Cf(H“S) - { 0 otherwise

are total and recursive.

Theorem 6 C € SMON-TXT iff there exists L € Index(C) such that there exists
a recursive strict attaining corroboration function c over L.

Proof
(<) Let ¢(H,t) be such a function over L. We define M to SMON-learn C w.r.t.
L as follows.

= M(tpm—1) if defined and (t,, does not refute Hyq(,,_,)
V Best,, is undefined)
M(ty) {4 = min(Besty,) if defined and (¢, refutes M (tm,—1)

or M(tm—1) is undefined)

requests more input otherwise
where
Bestim = {i [ i <pAc(Hi tm) € ¢ (Hy) A (V5 < p)e(Hj,tm) # c(Histm)}

where Hy, ..., H, are the hypotheses in play at stage m.
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M is recursive: only finitely many recursive computations of c¢(H;,t,,) and
ct(H;,c(H;,tm)) are needed on input .

For all stages m at which M(ty,) is defined, we have Hpq,,y € Haq(ry,yq): let
M(ty,) = i. Then in particular t,, refutes all H; such that H; 2 H;, because c is
strict. Refuted hypotheses remain refuted, so if M(t,,11) = j we have H; D H;.
Finally it is clear from the definition of M that M(t,,11) is defined.

On any text t for H € C M converges to some j with H; = H: because c is
attaining, this is identical to the same part of the proof of Theorem 5 (<).

(=) Let C € SMON-TXT, and suppose M is a learner which learns C strong
monotonically w.r.t. £ = Hjp, Hs,... We define a recursive, strict, attaining c as
required.

—1 if ¢, refutes H;
c¢(Hjytm) =< 1 if £, does not refute H; A M(t,) =1
0 otherwise

¢ is recursive: immediate from the recursiveness of M.

Fix H € C and let t be a text for H.

c is attaining: by assumption, there exists a stage m such that M(t,,) = ¢ for
some H; = H. Then ¢(H;,t,) = 1. This also proves that ¢/(H;) = {1} and so ¢ is
a total recursive function.

¢ is strict: suppose for a contradiction that ¢(H;,t,,) € ¢'(H;) and there exists
J such that H; 2 H; and t,, does not refute H;. Then we can extend t,, into a
text ¢ for H; and M fails to learn H; strong monotonically on ¢, contrary to our
assumption.

O

Corollary 8 There exists a canonical SMON-learner with corroboration which SMON-
learns any C € SMON-TXT w.r.t. any L € Index(C) using any recursive strict
attaining corroboration function over L as an oracle.

Proof
Immediate from the proof of Theorem 6 (<).
a

Corollary 9 There is a canonical (CONSERVUSMON )-learner with corroboration
which will CONSERV-learn any C € CONSERV-TXT w.r.t. any L € Index(C)
using any recursive attaining corroboration function ¢ over L as an oracle and will
SMON-learn any C € SMON-TXT w.r.t. any L € Index(C) using any recursive
strict attaining corroboration function c for L as an oracle.
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Proof

The same canonical learner is used in Corollaries 7 and 8.

O

It is known [LZ93] that CONSERV-TXT = WMON-TXT and so immediately
from Definition 8 we have the following fact. The learning with corroboration ap-
proach allows an alternative proof.

Corollary 10 SMON-TXT C CONSERV-TXT

Proof

A necessary and sufficient condition for membership of SMON-TXT is the ex-
istence of a recursive, strict attaining corroboration function over £ (Theorem 6),
which is stronger than the necessary and sufficient condition for membership of
CONSERV-TXT given in Theorem 5.

O

Strictness of this containment is proved by example [LZ93].

6.4 FIN- and refuting learning

Definition 18 Let L = Hy, Hs,... be a hypothesis space. Then f :(£*)xIN—{0,1}
is called a sufficiency function over L if

(V2)(Vm) (Vn)[f (tm,n) =1
= [(V))tn, refutes H;V
(Ji < n)[t) C H; A (VE)[Hy = H; V t, refutes Hy]]

and
(Vt)(V4)(VE > 5)(Vn)(Vm > n)[f(tj,n) =1 = f(ty,m) = 1]

Definition 19 Let f be a sufficiency function over L.

f is called an inner sufficiency function over L if it additionally holds that for
every text t € Txts(L), (3m,n)f(tm,n) = 1.
If instead it holds that for every text t & Txts(L), (3m,n)f(tm,n) = 1, then f is
called an outer sufficiency function over L.

Intuitively, a sufficiency function f(#,n) monitors whether there are hypotheses
in £ which are not yet in play (i.e. have no index less than or equal to n), and
which would not be refuted by E if they were in play. When it returns 1 then this
condition has ceased to be true (so we may look for an explanation of ¢ solely in
Hy, ..., H,) and further, at most one H € £ has indices less than or equal to n whose
accompanying hypothesis is unrefuted by ¢.
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An inner or outer sufficiency function ensures that (under certain circumstances
to do with the limiting behaviour of the data stream) if the condition ceases to be
true then 1 will be returned at some later time.

Naturally the existence of a recursive (inner or outer) sufficiency function over
L is a very strong condition and allows particularly strong forms of learning.

Theorem 7 C € FIN-TXT iff there exists L € Index(C) such that there exists a
recursive inner sufficiency function over L.

Proof

(«)

Suppose the existence of a recursive inner sufficiency function f over £ =
Hy,Hy,... Let ¢ be a text and the hypotheses in play at stage m be Hy,..., H,.
M behaves as follows.

M(t) =1 (and halt) if f(tm,p) =1ANi=min{j|t}, CH; Nj<p}
™71 requests more input otherwise

M is recursive: immediate from the recursiveness of f and the finiteness of #,,.

Fix H e Cand t € Tzt(H).

M only ever outputs one hypothesis, which is an L-index for H, then halts:
because f is an inner sufficiency function, there exists m such that f(¢p,,p) = 1
where Hy, ..., H, are the hypotheses in play at stage m. Then there exists only one
H € C which has indices 7 < p such that ¢,, does not refute H;; M outputs such an
index and halts at stage m.

(=)

Let £L = Hy, Hs, ... and suppose M is an inductive learning machine which LIM-
learns C w.r.t. L. Let ¢t be a text.

Define f(t,n) as follows.

1 if M(ty)=i<n

f(tm,n) = { 0 otherwise

f is a sufficiency function over L: suppose M first outputs i at stage m, when
the hypotheses in play are Hj,.., H;. Naturally j > i and ¢, C H;. It holds that
—(3k)[Hy # H; At} C Hy] because otherwise we could extend the initial segment
tm to a text ' for H; and M would fail to FIN-learn Hj, from this text, contrary to
assumption. Therefore (Vk)[Hy = H; V t,}, € Hy] as required for the first condition
in Definition 18. The second condition is easily checked.

f s an inner sufficiency function over L: by assumption, any text ¢ for any
H € C results in the output of some k£ with Hy = H at some stage n when the
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hypotheses in play are Hy, ..., H;. Then by definition of f, we have f(t,,j) =1, as
required.

f is recursive: to recursively compute f(¢m,,n), we run the Turing Machine M
on t,,, with the hypotheses Hy, ..., Hy, in play. If M outputs a hypothesis ¢ on input
tm then (obviously i < n) set f(ty,,n) = 1. If M requests more input then set

f(tm,n) =0.
Od

Corollary 11 There exists a canonical FIN-learner which FIN-learns any C € FIN-
TXT w.r.t. any L € Index(C) using any recursive inner sufficiency function over
L as an oracle.

Proof

The Turing Machine M constructed in the < proof of Theorem 7 is such a
learner as the definition of M does not depend on C except via f.

O

We may use a sufficiency function to define a particularly strong form of corrob-
oration function.

Definition 20 c(H,t) is called a sufficient corroboration function over L if there
exists an inner sufficiency function f(t,n) over L such that:

(V) (Vi) (Ym)[[e(Hi, tm) > O A e(H;, t) € ¢ (H})] = f(tmyi) = 1]
and
(V) (vm)(Yn)[f (tm,n) = 1 = (3i < n)c(Hi, ) € ¢ (H;)]
where
(H;) = {c(H;) | Hi = H A (Y))[c(H;) > c(H;) = H; # H]}

c 1s called a recursive sufficient corroboration function if both ¢ and c’f tLxS —
{0,1} defined by

1 ifsed(H;)
0 otherwise

clf(Hia 3) = {
are total and recursive.

Theorem 8 C € FIN-TXT iff there exists L € Index(C) such that there exists a
recursive sufficient corroboration function c over L.
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Proof
(<) We define a recursive inner sufficiency function f’ over £ based on c¢. The

result then follows from Theorem 7.
Define

, 1 if (3 < n)e(Hj, ty) € ¢ (H;)

f(tm,m) = { 0 otherwise

f' is recursive: to compute f’(t;,,n), only finitely many recursive computations
of ¢(H;,tm) and c;(Hj, c(Hi, t;)) are needed to test the condition above.

f!is an inner sufficiency function: let f be the sufficiency function over £ which
we know to exist from Definition 20. Let ¢ be a text for some H; € L. There exist
n > 1 and m such that f(¢,,,n) = 1, by Definition 19. Then ¢(H;,t,,) € ¢(H;) by
Definition 20 and finally f’(¢,,,n) =1 by our construction of f’.

(=) Suppose £ € FIN-TXT. Let M be a learner which FIN-learns C w.r.t. £
and f be the recursive inner sufficiency function from the (=) proof of Theorem 7.
We define ¢ using M as follows. Let ¢ be any text.

—1 if ¢, refutes H;
c(Hitm) =1 1 if M(tp,) =1
0 otherwise

c is recursive: obvious based on the recursiveness of M.

cy is total and recursive: immediate since (Vi)c'(H;) = {1}.

¢ is a sufficient corroboration function over L: it is easily checked that the
conditions of Definition 20 are satisfied.

O

Corollary 12 There exists a canonical FIN-learner with corroboration which FIN-
learns any C € FIN-TXT w.r.t. any L € Index(C) using any recursive sufficient
corroboration function over L as an oracle.

Proof

Immediate from proof of Theorem 8 (<) as the definition of M does not depend
on C except via c.

O

The existence of a recursive sufficient corroboration function over some L €
Index(C) for FIN-learning of C to succeed is a very strong requirement. This should
not surprise us. FIN-learning is an identification criterion far removed from Popper’s
dictum that although a hypothesis may be very strongly corroborated, it is never (in
normal circumstances) safe from later refutation. Only when the hypothesis space
is unusual in some respect can such a corroboration function exist.
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Theorem 9 C € JREF-TXT iff there exists L € Index(C) such that there exists a
recursive outer sufficiency function f over L and a recursive limiting corroboration
function ¢ over L.

Proof

(<) Let £ = Hy,Hs,... € Index(C) and let f and ¢ be a recursive outer suf-
ficiency function over £ and a recursive limiting corroboration function over L,
respectively. We define our inductive JREF-learner M’ based on the canonical
learner M from the proof of Theorem 2(<=), as follows. Recall that L is the special
symbol output by M to refute the entire hypothesis space, prior to halting.

M (L) = 1 if f(tm,p) = 1A (Vi < p)ty, refutes H;
mn M(ty,) otherwise

where Hy, ..., H, are the hypotheses in play at stage m.

M’ is recursive: follows immediately from the recursiveness of f and M.

On presentation of a text t for H € C, M converges to some j such that
H; = H: in this case there are no n,m on which f(¢,,,n) = 1 so the behaviour of
M’ is identical to that of M on the same text. The result follows from the < proof
of Theorem 2.

On presentation of a text t & Txts(L), M’ eventually outputs the symbol L and
halts: by assumption f is an outer sufficiency function so by Definition 19, there
exist m,n such that f(¢,,,n) = 1. Also there exists some m’ such that ¢,, refutes
all of Hy, ..., H,, so we are done.

(=)

Suppose M JREF-learns C w.r.t. £ and let ¢ be any text. Define f as follows:

1 if (3 <m)M(ty) =1L
fltm,n) = A hypotheses in play at stage m’ are H, ..., H, where p < n]
0 otherwise

f is recursive: immediate from recursiveness of M.

f is an outer sufficiency function for L: by assumption that M JREF-learns C
w.r.t £, on any text ¢t € Txts(L), M outputs the symbol L and halts, say at stage
m when hypotheses in play are Hy,...,H,. Then f(t,,p) = 1, as required. The
conditions of Definition 18 are trivially satisfied.

Finally, the recursive limiting corroboration function from the proof of Theorem
2(=) has the desired properties for our c.

O

As in the discussion of FIN-TXT, the learning criterion JREF-TXT has a very
un-Popperian aspect, and consequently the necessary and sufficient condition for
C € JREF-TXT is very strong.
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We have not found it possible to give an analogous condition for the form of
refutational learning (REF-TXT) in [MA93], as that identification criterion has a
non-effective element to its definition.

7 Examples

The corroboration functions constructed in the = proofs in Section 6 were simplistic.
However in practical use, the existence or non-existence of appropriate corroboration
functions may be suggested naturally by the space of hypotheses in use. We give
some examples of the use of corroboration functions to prove the learnability or
otherwise under certain identification criteria of some simple examples.

Our example languages will be sets of points in the rational plane Q2, so ¥ =

{(a,b) | a,b € Q}.

Example 1 Let C be the set of all closed circles of finite radius. Let <,> be a
fized recursive bijection between Q% and IN and <<,>> a fized recursive bijection
between Q% and Q. A suitable hypothesis space L = Hy, Ho, ... is given by

Hegps ={(p,q) |a =<<z,y >> A(p— )%+ (q —y)? < b%}

It is easily seen that L is an indexing of C.

Consider the following corroboration function ¢ : L x (£*) — QU {oo}, which
is based on the naturalistic idea that the further away a point is from a, the more
severe a test it is of hypothesis H.qp~. For circles of non-zero radius b we also
include a scaling multiplier of 1/b? into the corroboration function, so that smaller
circles are potentially more highly corroborable than large ones.

(0 iftiy =10
-1 if tm, refutes Hoyp,
e [a=<<z,y>>
A@(e,d) € 15)l(c - 2)2 + (d — y)? > b7
% ifb=0Aa=<<mzy>>At} ={(z,y)}
[ 1/b% x maz(a, b, t,) otherwise

C(H<a,b>a tm) =

where
maz(a,b,ty) = maz{((c — z)® + (d —y)?)/b* | a =<< 2,y >> A(c,d) €t} }

With o little checking we see that ¢ is indeed a corroboration function under
Definition 11, and is recursive and natural. c¢ is limiting because on any text t for
H; we have a stage m at which t,, contains two diametrically opposed points on the
circumference of the circle defined by H;. Then if we let it =< a,b >:
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o (V)[[j =<ec,d>Ad? < b = [ty refutes H; A c(Hj,t,) = —1]].
o (V)[[j =<ec,d>Ad?>> b — (Yn>m)e(H;,t,) =1/ > 1/d> > c(Hj,tp)
o (V)i =<c,d>ANd?>=0b%—[c=aV tn refutes Hj]|

These are the only cases, so at all stages n > m we have that H_ 4~ is the
most strongly corroborated hypothesis (except for Hq s, which is equally strongly
corroborated and describes the same circle).

c 1s also attaining because

o if b=0 then (Va)c(Hc<q0>) = 00
o if b#0 then (Va)c(Henps) = 1/0?

and for example c(Hcqps,t0) = c(Hegps) where t = (x + b,y),... is a text for
H_yp> and a =<< z,y >>.

The above suffices to prove that C € s-CONSERV-TXT, by Theorem 5.

Finally we can see that c is not strict because for example (let b > 0) t =
(2+b,y), ... results in c(Heccpyssps,to) = 1/0* = c(Heccpyssps) although many
hypotheses H; with H < «g >~ p> € Hj; remain unrefuted. Nevertheless it is possible
to find a recursive, strict, attaining, limiting, set-driven corroboration function over
L by requiring that two diametrically opposed points on the circumference of H;
must appear in the text before we set ¢(H;,t,) = c(H;). This proves that C €
s-SMON-TXT. The details are left as an exercise for the reader.

Example 2 Now let C be the set of all open circles of finite radius. We show that
C¢& LIM-TXT as follows.

Let L be an indexing of C and suppose for a contradiction that c is a recursive
limiting corroboration function over L. Let M be the canonical LIM-learner from
Corollary 4.

Let H; be a hypothesis for the circle centre a, radius b > 0. We construct a text
t for H; such that M fails to converge to an indez for H; using oracle c.

Begin enumerating H; as the text t. Suppose after m stages we have M(t,,) = j
where H; = H;. Now however there exists a circle Hy, with centre a, radius b — €
for some suitably small e, such that t;;, C Hy. Continue t by enumerating further
points in Hy.

There are two cases. If (Yn > m)Best, = j, then t is a text for Hy on which M
fails to converge to an index for Hyp. Otherwise at some stage n. > m, Best, # j.
In this case t resumes enumerating H;. This construction can be repeated infinitely
often, so Besty, fails to converge on t, a text for H;. In either case M fails to LIM-
learn C w.r.t. L, a contradiction by Corollary 4. We conclude that C & LIM-TXT.
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8 Artificial Intelligence and Induction

We will briefly discuss a recent body of work by Gillies [Gi93, Gi96] which puts a
‘Baconian’ interpretation on certain successful developments in machine learning.

Gillies contends, contra Popper’s belief that the creation of scientific theories is
not mechanisable, nor even amenable to logical (as opposed to psychological) study,
that modern machine learning algorithms behave in a highly Baconian manner; this
he describes as mechanical falsification. In short, such learners synthesise hypothe-
ses from background knowledge and existing evidence before subjecting them to
the risk of Popperian refutation by later evidence. This rolls back the creative ele-
ment of discovery to the higher level problem of deciding which is the appropriate
background knowledge to use - in our parlance, which is the appropriate hypothesis
space. He posits, furthermore, that this is the first time in the history of science
that Bacon’s inductivism has really been used, for prior to machine learning no gen-
eral method was given to enable the learner/discoverer to mechanically (ie. without
intelligence) produce hypotheses - one of Bacon’s stated aims.

It is difficult to deny that machine learners (e.g. ID3 [Qu79], GOLEM [MF92])
do indeed behave in this way. Gillies’s theme throughout [Gi96] is that logic has
both inferential and control components - in learning or discovery the inference
corresponds to Popperian falsification from data, while the control element lies in the
production of new hypotheses. Gillies specifically mentions degree of corroboration
as just such a control element.

Our work in this paper is entirely in accord with Gillies’s view, particularly our
use of corroboration functions as a control element (indeed given the characterisation
results with canonical learners which we have obtained, as the sole control element)
in inductive learning.

The results obtained in the case of refuting learning are particularly interesting
viewed from this angle. Classic examples from the history of science such as Kepler’s
laws of planetary motion (see again [Gi96]) demonstrate that it is not the synthe-
sising of a hypothesis from data and background knowledge that constitutes great
science, but the paradigm shift that results from a change in background knowl-
edge or assumptions. This corresponds to the various forms of refuting inductive
inference which have been defined (Section 6.4) and suggests that the truly creative
machine learner will not only be able to learn within or refute an existing hypothesis
space, but also to propose a new one. Such a learner is unlikely to be developed
soon.
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9 Conclusions and Future Work

We have proposed a unifying model for machine inductive inference based on the
philosophical work of K.R. Popper, and obtained characterisations of many of the
standard identification types in learning indexed families of recursive languages from
text. In our model canonical learners use recursive oracles which compute a version
of Popper’s degree of corroboration. These learners then follow the natural strategy
of preferring the most strongly (or at least a maximally strongly) corroborated
hypothesis at any given time. Membership of a class of concepts within a particular
identification criterion is then equivalent to the existence of a recursive corroboration
function with certain properties depending on the identification type.

We intend to extend this unifying model of learning to include language learning
from informant and related problems such as learning of recursive functions. An
extension of our approach to learning from noisy data would be particularly inter-
esting; in this case it is no longer certain that a single adverse data item refutes a
hypothesis and we would be obliged to allow negative corroboration values other
than —1, as in Popper’s original model. Given the crucial role played by the hy-
pothesis space in our model, it would also be interesting to extend this approach to
cover exact and class comprising learning.
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