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Abstract. Let f(x) be a formal power series with coefficients in the field k

and let n ≥ 1. We define the notion of n-transcendence of f(x) over k and, more

generally, the stable transcendence function dk(f(x), n). It is shown that, if k

has prime characteristic p, this function determines the minimal Krull dimen-

sion dk(G) of the universal modular Galois-algebras of an elementary Abelian

p-group G, introduced in [2, 3, 4, 5]. Since the concept of n-transcendence is of

independent interest in all characteristics, a number of fundamental theorems

are proved where the generalized Artin-Schreier polynomials surprisingly play

a central role. We make a plausible conjecture in the case when k = Fp, the

truth of which would imply a conjectural result concerning dFp
(G) previously

investigated by the authors.
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1. Introduction

In this paper we introduce the notion of n-transcendence (where n is a positive

integer) of a formal power series f(x) over a field k and the stable transcendence

function dk(f(x), n). It is shown that if k has prime characteristic p then, for

suitable f(x), this function evaluates to the minimal Krull dimension dk(G) of

the universal modular “Galois-algebras” of a finite elementary Abelian p-group

G of order pn (see Theorem 5.1). Universal algebras were introduced in [5] as the

weakly initial objects in the category of all Galois-algebras of G and it was shown

there that every such algebra can be obtained from any universal one simply by

“extending the invariant ring” (see [5], Lemma 2.4). Apart from the application

mentioned above, we believe that the general notion of n-transcendence and the
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function dk(f(x), n) should be of independent interest in algebra.

In Section 2 we therefore prove a number of theorems concerning these concepts

for general k. In particular, we show that if k has characteristic zero and f(x)

is not a polynomial then f(x) is always n-transcendental over k. We discuss the

plausible conjecture that this is still the case if k = Fp and show that it fails for

proper extension fields.

In section 3 we study an interesting special class of formal power series, the

“roots” of the generalized Artin-Schreier polynomials, which play a particularly

important role in the case when k has prime characteristic p.

In Section 4 we turn our attention to the universal Galois-algebras. In particular

we discuss the fundamental conjecture that if k = Fp then dk(G) = n where G is

a finite group of order pn. For general k, dk(G) is always bounded below by the

essential dimension ek(G) of G over k (see [7] for the definition) but it seems very

challenging to obtain a sharper lower bound.

In section 5 we prove Theorem 5.1 (as highlighted above) and hence relate the two

conjectures in sections 2 and 4. Finally, we prove a theorem which provides the

most striking evidence we have at present in direct support of these conjectures.

Acknowledgements: The authors would like to thank an anonymous referee for a

careful reading and many helpful comments.

2. n-Transcendence

We investigate a special case of the general problem of the stability of al-

gebraic independence of formal power series under “polynomial perturbation”

which turns out to be closely connected to Conjecture 4.11 in the case when G

is elementary Abelian (see Section 4). Throughout this section k will be a field,

f(x) =
∑∞

i=0 fix
i ∈ k[[x]], n ≥ 1 an integer and p a prime number.

Definition 2.1 (n-transcendental). The power series f(x) is said to be

n-transcendental over k if the n power series in n variables,

f(xi) + Pi(x1, x2, . . . , xn) ∈ k[[x1, x2, . . . xn]] (1 ≤ i ≤ n), are algebraically inde-

pendent over k for all choices of polynomials Pi(x1, x2, . . . , xn) ∈ k[x1, x2, . . . , xn].
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More generally, we let dk(f(x), n) denote the minimum possible transcendence de-

gree over k of any field of the form

k(f(x1) + P1(x1, . . . , xn), f(x2) + P2(x1, . . . , xn), . . . , f(xn) + Pn(x1, . . . , xn))

⊆ k((x1, x2, . . . , xn)) where Pi(x1, x2, . . . , xn) ∈ k[x1, x2, . . . , xn] for 1 ≤ i ≤ n.

Thus dk(f(x), n) ≤ n and dk(f(x), n) = n if and only if f(x) is n-transcendental

over k.

Clearly dk(f(x), n) is subadditive in n and so in particular limn→∞
dk(f(x),n)

n
exists.

Remarks 2.2. It is clear from the definition that:

(1) If f(x) is (n+ 1)-transcendental over k then it is n-transcendental over k.

(2) The property of n-transcendence over k is stable under “polynomial per-

turbation”.

(3) The power series f(x) is 1-transcendental over k if and only if it is not a

polynomial.

(4) If f(x) is transcendental over k[x] then it is n-transcendental over k (since

“polynomial perturbations” of the f(xi) are algebraically independent over

k(x1, x2, . . . , xn) and so over k).

(5) If R(x) ∈ xk[x] \ {0} and f(R(x)) ∈ k[[x]] is n-transcendental over k then

so is f(x).

(6) If k has prime characteristic p and f(x)p is n-transcendental over k then so

is f(x). (Indeed, if f(xi)+Pi for i = 1, ..., n were not algebraically indepen-

dent over k, then so would be f(xi)
p + P p

i , contradicting n-transcendence

of f(x)p.)

The following lemma will be needed in the proof of Theorem 2.4:

Lemma 2.3. Let R be a ring (commutative with identity element) and let b(x) ∈

R[x] with positive degree and leading coefficient invertible in R. Let a(x) ∈ R[x]

with (a(x), b(x)) = R[x]. Then there is no equation of the form (*)

a(x1)
µ1a(x2)

µ2 . . . a(xn)µnb(x1)
λ1b(x2)

λ2 . . . b(xn)λn =

c1(x1, x2, . . . , xn)b(x1)
λ1+1 + c2(x1, x2, . . . , xn)b(x1)

λ1b(x2)
λ2+1 + · · ·
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+cn(x1, x2, . . . , xn)b(x1)
λ1b(x2)

λ2 . . . b(xn−1)
λn−1b(xn)λn+1 ∈ R[x1, x2, . . . , xn] where

each cr(x1, x2, . . . , xn) ∈ R[x1, x2, . . . , xn] and each µi, λj is a natural number.

Proof. Suppose otherwise so that, for some minimal n ≥ 1 and some ring R, there

exists such an equation (*). Clearly n > 1 for otherwise we have a(x1)
µ1b(x1)

λ1 =

c1(x1)b(x1)
λ1+1 and so a(x1)

µ1 = c1(x1)b(x1) which contradicts (a(x), b(x)) =

R[x]. Now divide equation (*) by b(x1)
λ1 and then reduce it modulo b(x1). We

hence obtain an equation of the form (*) but now with n replaced by n − 1 and

R replaced by R′ = R[x1]/(b(x1)), the required contradiction to the minimality

of n. Note that a(x1) reduces to an invertible element of R′. �

Let k[x](x) denote the localization of k[x] at the prime ideal (x).

Theorem 2.4 (Rational Functions). Suppose that f(x) ∈ k[x](x) \ k[x] ⊆ k[[x]] is

rational but not polynomial. Then f(x) is n-transcendental over k for all n ≥ 1.

Proof. We have f(x) = a(x)/b(x) where a(x), b(x) ∈ k[x] with deg(b(x)) ≥ 1,

b(0) 6= 0 and the ideal (a(x), b(x)) = k[x]. Suppose that Pi(x1, x2, . . . , xn) ∈

k[x1, x2, . . . , xn] for 1 ≤ i ≤ n and P (X1, X2, . . . , Xn) ∈ k[X1, X2, . . . , Xn] \ {0}

with leading monomial Xµ1
1 Xµ2

2 . . . Xµn
n (with lex ordering).

Suppose further that we have the equation (+)

P (f(x1) + P1(x1, . . . , xn), f(x2) + P2(x1, . . . , xn), . . . , f(xn) + Pn(x1 . . . , xn)) = 0.

We must derive a contradiction from this. Now multiply equation (+) by

b(x1)
µ1+λ1b(x2)

µ2+λ2 . . . b(xn)µn+λn where λ1, λ2, . . . , λn are suitably large positive

integers to obtain an equation of the form (*) contradicting Lemma 2.3 (with

R = k), as required. �

Before considering the general situation we will need some preliminary results:

Lemma 2.5. Suppose X1, X2, . . . , Xn ∈ k[[x1, x2, . . . , xn]] have non-zero Jacobian

determinant. Then X1, X2, . . . , Xn are algebraically independent over k.

Proof. This is a well known result! Without loss of generality we may suppose that

k is perfect. If X1, X2, . . . , Xn are algebraically dependent over k then choose a
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non-trivial polynomial relation between them of least possible total degree. Now

partially differentiate it to obtain the required contradiction. �

Of course the converse is false but see [12] for an interesting necessary and

sufficient condition for algebraic independence (of polynomials) in prime char-

acteristic p involving what is in effect a subtle “p-adic lifting” of the Jacobian

criterion. Unfortunately we haven’t been able to utilize this idea at present.

Lemma 2.6. Suppose that h(x) ∈ k[[x]] \ k[x](x) is a non-rational formal power

series. Let Q be an n×n matrix with entries in k[x1, x2, . . . , xn] and let H be the

diagonal n × n matrix with diagonal entries h(x1), h(x2), . . . , h(xn). Then the

n× n matrix M = H +Q has non-zero determinant.

Proof. The result clearly holds if n = 1 since h(x1) + Q11(x1) 6= 0. Suppose

that, for some minimal n > 1, det(M) = 0. We will show that h(x1) is rational,

the required contradiction. Expanding the determinant of M by the first row we

obtain 0 = dh(x1)+b where d, b ∈ k[[x2, . . . , xn]][x1]. Now d is an (n−1)×(n−1)

determinant which is non-zero by the minimality of n (just put x1 = 0). Therefore

h(x1) = −b/d ∈ k((x2, . . . , xn))(x1). Hence clearly h(x1) ∈ k(x1), as required. �

Proposition 2.7. Suppose that f ′(x) ∈ k[[x]] \ k[x](x). Then f(x) is

n-transcendental over k.

Proof. This follows directly from Lemmas 2.5 and 2.6. �

Theorem 2.8. Suppose that f ′(x) ∈ k[[x]] \ k[x]. Then f(x) is n-transcendental

over k.

Proof. By Proposition 2.7 we may suppose that f ′(x) ∈ k[x](x) \ k[x]. Then

f ′(x) = a(x)/b(x) where a(x), b(x) ∈ k[x] with deg(b(x)) ≥ 1, b(0) 6= 0 and the

ideal (a(x), b(x)) = k[x] so that there exist c(x), d(x) ∈ k[x] with a(x)c(x) +

b(x)d(x) = 1 (*). Now let Pi(x1, x2, . . . , xn) ∈ k[x1, x2, . . . , xn] and put Xi =

f(xi) + Pi(x1, x2, . . . , xn) for 1 ≤ i ≤ n. By Lemma 2.5 it is enough to show
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that the Jacobian determinant [J ] of X1, X2, . . . , Xn is non-zero. Suppose oth-

erwise so that [J ] = 0. Then by expanding the determinant [J ] and multiply-

ing by
∏n

i=1 b(xi) we deduce that
∏n

i=1 a(xi) ∈ I = (b(x1), b(x2), . . . , b(xn)) ⊂

k[x1, x2, . . . , xn]. Now put α =
∏n

i=1 a(xi)c(xi) ∈ k[x1, x2, . . . , xn]. Then clearly

α ∈ I and, by (*) above, α− 1 ∈ I, the required contradiction since I is a proper

ideal of k[x1, x2, . . . , xn]. �

Theorem 2.9 (n-transcendence in characteristic zero). If k has characteristic

zero and f(x) is not a polynomial then f(x) is n-transcendental over k.

Proof. Clearly f ′(x) ∈ k[[x]]\k[x] and so the result follows from Theorem 2.8. �

We next consider the case when k is finite:

Proposition 2.10 (Integrality). Let k be a finite field of order q. Suppose that

f(x) is not integral over k[x]. Then f(x) is n-transcendental over k.

Proof. Suppose that Pi(x1, x2, . . . , xn) ∈ k[x1, x2, . . . , xn] for 1 ≤ i ≤ n and

P (X1, X2, . . . , Xn) ∈ k[X1, X2, . . . , Xn]\{0} with leading monomialXa1
1 X

a2
2 . . . Xan

n

(with lex ordering). Suppose further that P (f(x1) + P1(x1, x2, . . . , xn), f(x2) +

P2(x1, x2, . . . , xn), . . . , f(xn) + Pn(x1, x2, . . . , xn)) = 0 (*). We need to show that

f(x) is integral over k[x]. We first note that f(xq
m

) = f(x)q
m

for all m ≥ 0.

Now substitute xi = xq
mi for 1 ≤ i ≤ n into (*) above where we choose a suit-

ably rapidly increasing sequence of positive integers mn,mn−1, . . . ,m1 in turn to

demonstrate the required integrality of f(x). �

Remark 2.11. As Theorem 2.9 shows, Proposition 2.10 also holds if k has char-

acteristic zero and may indeed hold for an arbitrary field k. Certainly if f(x)

is transcendental over k[x] or if f(x) ∈ k[x](x) \ k[x] ⊂ k[[x]] then f(x) is n-

transcendental over k (see Remark 2.2(4) and Theorem 2.4).

Definition 2.12. Let q be an integer with q > 1. Then we define the power series

Fq(x) =
∑∞

r=0 x
qr ∈ k[[x]].
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Theorem 2.13 (n-transcendence over a finite field). Suppose that k is a finite

field of order pm and f(x) is not a polynomial. Suppose further that f(x) is not

n-transcendental over k (where n > 1). Then either

(1) f(x) = Q(x) + g(x)p
s

where Q(x) ∈ k[x], s ≥ 1, and g(x) ∈ xk[[x]] is

integral over k[x] and is n-transcendental over k, or

(2) f(x) = Q(x) + Fps(R(x)) where Q(x) ∈ k[x], R(x) ∈ xk[x] and s ≥ 1.

(In particular of course f(x) is integral over k[x] and f ′(x) ∈ k[x]. Note that

Fps(x)− Fps(x)p
s

= x.)

Proof. Recall from Theorem 2.8 and Proposition 2.10 that f ′(x) ∈ k[x] and f(x) is

integral over k[x]. Without loss of generality we may suppose that f(x) and all the

subsequently constructed series have zero constant term. Then f(x) = Q0(x) +

f0(x)p where Q0(x) ∈ xk[x] has no exponent divisible by p and f0(x) ∈ xk[[x]]

where f0(x)p is not n-transcendental over k. Now if f0(x) is n-transcendental

over k we stop and note that by Proposition 2.10, f0(x)p and therefore f0(x) is

integral. Otherwise f0(x) is not n-transcendental over k, in which case we repeat

this procedure with f(x) replaced by f0(x). Continuing in this way we eventually

find that either f(x) has the first form given in the theorem or f(x) =
∑∞

i=0Qi(x)p
i

is algebraic over k[x], where all the Qi(x) ∈ xk[x] have no exponent divisible by p.

Hence by [13], Corollary 5.4 the k-vector space 〈Ω(f)〉 is finite dimensional, where

Ω(f) denotes the orbit of f under the semigroup generated by certain operators

Ei defined in [12]. In the present case we have: E0(f) =
∑

i≥1Qi(x)p
i−1

and

Ek
0 (f) =

∑
i≥kQi(x)p

i−k
(using the fact that the Qi have zero constant term).

Since k is a finite field and 〈Ω(f)〉 is finite-dimensional, the set Ω(f) is finite,

hence Er+s
0 (f) = Er

0(f) for some r, s ∈ N. It follows that

∞∑
i=0

(Qi+r(x))p
i

=
∞∑
i=0

(Qi+r+s(x))p
i

and so Qi+r(x) = Qi+r+s(x), since each Qj(x) has no exponent divisible by p.

Therefore the series (Qj)j≥r is periodic of period s. Hence f(x) has the second

form given in the theorem since the power series Fps(x) is additive. �
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Remarks 2.14. Suppose that k has prime characteristic p.

(1) By Remarks 2.2 (6) if f(x) ∈ k[[x]] then f(x) is n-transcendental over k

whenever f(x)p is. If the converse also holds then the first possibility in

Theorem 2.13 would be ruled out.

(2) Let s ≥ 1 and r ≥ 1. If Fps(x) is n-transcendental over k then so is

Fpsr(x) by Remarks 2.2 (5) since Fps(x) = Fpsr(
∑r−1

j=0 x
psj). In particular,

if some Fpr(x) is not n-transcendental over k then neither is Fp(x).

(3) Suppose that R(x) ∈ xk[x] \ {0} and f(x) ∈ k[[x]] with f(R(x)) ∈ k[[x]]

not a polynomial. By Remarks 2.2 (5), if f(R(x)) is n-transcendental over

k then so is f(x). If the converse also holds then the second possibility in

Theorem 2.13 would be ruled out if and only if Fp(x) is n-transcendental

over k (by remark (2) just above) and the first possibility in Theorem 2.13

would be ruled out if k = Fp (taking R(x) = xp; see remark (1) just above).

Example 2.15. Let r ∈ Z \ {1} with (p, r) = 1. Put f(x) = (1 + x)1/r =∑∞
j=0 ajx

j ∈ k[[x]] where aj ∈ Fp ⊆ k denotes the reduction modulo p of
(
1/r
j

)
∈

Zp, the p-adic integers. Then, by Theorem 2.8, f(x) is n-transcendental over k

since f ′(x) is not a polynomial. Put g(x) = f(x)p
m ∈ k[[x]] with m ∈ N.

(1) Suppose that r > 1.Then g(x) is integral over k[x] with g′(x) = 0. How-

ever g(x) is still n-transcendental over k at least if pm < r.

For, if we embed k[f(x1), f(x2), . . . , f(xn)] ⊆ k[[x1, x2, . . . , xn]] in

k[t1, t2, . . . , tn] via f(xi) = ti for 1 ≤ i ≤ n, then g(xi) = tp
m

i and

xi = tri − 1. Hence it is enough to show that the n polynomials Xi =

tp
m

i +Qi(t
r
1, t

r
2, . . . , t

r
n) ∈ k[t1, t2, . . . , tn] (1 ≤ i ≤ n) are algebraically inde-

pendent over k for all choices of Q1, Q2, . . . , Qn ∈ k[t1, t2, . . . , tn] (where,

without loss of generality we suppose that each Qi has zero constant term).

The result is now clear if pm < r by considering lowest degree terms. We

don’t know whether or not g(x) is still always n-transcendental over k if

pm > r.

(2) Suppose that r = −1. Then g(x) is rational but not polynomial and so is

n-transcendental over k by Theorem 2.4.
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(3) Suppose that r < −1. Then g(x) is not integral over k[x] and so is n-

transcendental over k by Proposition 2.10 at least if k is finite.

(4) Now let R(x) ∈ xk[x] \ {0} and put h(x) = f(R(x)) = (1 + R(x))1/r ∈

k[[x]]. Then h(x) is n-transcendental over k if h′(x) 6∈ k[x] (by Theorem

2.8) while if h′(x) ∈ k[x] \ {0} then h(x) = (1 + R(x))1/r = rh′(x)(1 +

R(x))/R′(x) ∈ k(x) and so clearly h(x) ∈ k[x].

The following conjecture is plausible by Theorem 5.5 below. It would also imply

Conjecture 4.11 if G is elementary abelian (see Corollary 5.2):

Conjecture 2.16 (n-transcendence over Fp). If k = Fp and f(x) is not a poly-

nomial then f(x) is n-transcendental over k for all n ≥ 1.

Remark 2.17. The conjecture is certainly false if k strictly contains Fp. For

example, in this case Fp(x) is not 2-transcendental over k. For if α ∈ k \ Fp then

the power series G1(x1, x2) = Fp(x1) + (αp−1 − 1)−1(x1 + αpx2) and G2(x1, x2) =

Fp(x2) − (αp − α)−1(x1 + αpx2) in k[[x1, x2]] are algebraically dependent over k

since (G1 −Gp
1) + αp(G2 −Gp

2) = 0.

If n = 2 then we have the following positive result:

Proposition 2.18. If s, r ≥ 1, then Fpsr(x) is 2-transcendental over Fps.

Proof. We embed R = Fps [x, y] in Fps [[X, Y ]] by putting x = Fpsr(X) and y =

Fpsr(Y ) so that X = x − xp
sr

and Y = y − yp
sr

. Hence if f(X, Y ), g(X, Y ) ∈

Fps [X, Y ] we have that Fpsr(X)+f(X, Y ) = x+f(x−xpsr , y−ypsr) = A(x, y) ∈ R

(say) and Fpsr(Y ) + g(X, Y ) = y + g(x − xp
sr
, y − yp

sr
) = B(x, y) ∈ R (say).

We must show that A(x, y) and B(x, y) are algebraically independent over Fps .

Suppose otherwise. (H)

Put S = Fps [A,B] ⊆ R and let T be the integral closure of S in R. Then,

by hypothesis (H), S is a one-dimensional affine algebra. Since T is an integral

extension thereof, it is also one dimensional (see [11], Ex. 9.2, pg. 69). It then

follows from [1], Theorem 1, that T is a polynomial Fps-algebra, T = Fps [t] (say).

Now let G = (Fps ,+)2 act on R by putting (α, β)(x) = x+α and (α, β)(y) = y+β
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for all (α, β) ∈ G. Then (α, β)(A) = A + α and (α, β)(B) = B + β, so G acts

faithfully on S and therefore also on T = Fps [t]. Now if g ∈ G then g(t) = λgt+µg

with λg ∈ F∗ps and µg ∈ Fps . Since gp = 1G it follows that λg = 1 and therefore

the map g 7→ µg must be injective, so |G| ≤ |Fps| = ps, a contradiction to the

definition of G. So the hypothesis (H) is false. �

3. Generalized Artin-Schreier Polynomials

We now consider a class of formal power series f(x) where the function dk(f(x), n)

can be calculated entirely in terms of rational functions and f(x) is “potentially”

not n-transcendental over k (see Theorem 3.5). Throughout this section, k de-

notes a field of prime characteristic p > 0 and f(x) =
∑∞

j=1 fjx
j ∈ xk[[x]] is a

formal power series with zero constant term. We say that the series f(x) satisfies

Property (P) if,

“given M > 0, there are only finitely many exponents j with fj 6= 0 and p-adic

valuation vp(j) < M” .

We now characterize all series f(x) which satisfy Property (P) and are algebraic

over k(x):

Definition 3.1 (Generalized Artin-Schreier Polynomials). A polynomial θ(x, T ) ∈

k[x][T ] of the form
∑N

i=0 θiT
pi−h(x) (where each θi ∈ k, θ0 6= 0 and h(x) ∈ xk[x])

is said to be a generalized Artin-Schreier polynomial (AS-polynomial).

Theorem 3.2. A generalized Artin-Schreier polynomial
∑N

i=0 θiT
pi − h(x) has a

unique root f(x) ∈ xk[[x]]. Further f(x) satisfies property (P) and is integral over

k[x].

Proof. Without loss of generality we may clearly suppose that θ0 = 1. Define

an Fp-linear map α : xk[[x]] −→ xk[[x]] by putting α(g) =
∑N

i=1 θig
pi for all

g ∈ xk[[x]]. Then clearly Ixk[[x]] + α : xk[[x]] −→ xk[[x]] is invertible with inverse∑∞
s=0(−1)sαs, which is well defined, as any finite-dimensional piece of xk[[x]]

involves only finitely many terms of the sum. Note that any exponent j appearing

in αs(g) with αs(g)j 6= 0 is divisible by ps. Now (Ixk[[x]] + α)(f) = h and so
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f = (Ixk[[x]] + α)−1(h) =
∑∞

s=0(−1)sαs(h) ∈ xk[[x]] is a root of the Artin-Schreier

polynomial and uniquely determined. It also satisfies property (P), because each

αs(h) is a polynomial. Clearly f(x) is integral over k[x]. �

Thus, for example, T p
s − T + x has root Fps(x) (see Definition 2.12). We now

prove a converse to Theorem 3.2:

Theorem 3.3. Suppose that f(x) =
∑∞

j=1 fjx
j ∈ xk[[x]] is algebraic over k(x)

and satisfies property (P). Then the series f(x) is a root of a generalized Artin-

Schreier polynomial, that is (E):
∑N

m=0 θmf(x)p
m

= h(x) ∈ xk[x] where each

θm ∈ k with θ0 6= 0.

Proof. Without loss of generality we may suppose that k is perfect: indeed, let

kper be the perfect closure of k, B ⊆ kper a k-basis of kper and f(x) ∈ xk[[x]]

satisfying (P). Then f(x) ∈ xkper[[x]] satisfying (P). By the assumption there is

an AS polynomial Θ :=
∑N

m=0 θmT
pm−h(x) ∈ kper[x, T ] with Θ(x, f(x)) = 0 and

θ0 6= 0. It is easily seen that Θ(x, T ) =
∑

b∈B Θb(x, T ) · b with AS polynomials

Θb(x, T ) ∈ k[x, T ]. It follows that 0 =
∑

b∈B Θb(x, f(x)) · b ∈ ⊕b∈Bk[x]b = kper[x],

with Θb(x, f(x)) ∈ k[x]. Hence Θb(x, f(x)) = 0 for all b ∈ B and at least one has

“θ0 6= 0”.

So we now assume that k is perfect. Since f(x) satisfies property (P), f(x) =∑∞
s=0Qs(x)p

s
where each Qs(x) ∈ xk[x] has no exponent (with non-zero coef-

ficient) appearing which is divisible by p. Now, for each m ≥ 0, put fm(x) =∑∞
s=0Qs+m(x)p

s ∈ xk[[x]]. Then, since f(x) is algebraic over k(x), it follows from

[13] Corollary 5.4, similarly to the proof of 2.13 above, that {fm(x)} (m ≥ 0)

span a finite dimensional vector space over k. Hence there exist θ0, θ1, . . . ,

θN ∈ k (w.l.o.g. θN 6= 0) such that
∑N

m=0 θmfm(x) = 0. Now each fm(x)p
m

=

f(x)−
∑m−1

s=0 Qs(x)p
s
. Hence, putting φm = (θN−m)p

N ∈ k, we have the equation∑N
m=0 φmf(x)p

m
= h(x) ∈ xk[x] (say) with φ0 6= 0, and so f(x) is a root of a

generalized Artin-Schreier polynomial, as required. �

In the situation of Theorem 3.3, for each n ≥ 1, we can calculate dk(f(x), n)

entirely in terms of rational functions:
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Corollary 3.4. Employing the notation of Theorem 3.3 and putting φ(T ) =∑N
m=0 φmT

pm ∈ k[T ], dk(f(x), n) is the minimum possible transcendence degree

over k of any field of the form k(h(x1) + φ(P1), h(x2) + φ(P2), . . . , h(xn) + φ(Pn))

⊆ k(x1, x2, . . . , xn) where Pi = Pi(x1, x2, . . . , xn) ∈ k[x1, x2, . . . , xn] for 1 ≤ i ≤ n.

If, further, h(x) = cx where c ∈ k with c 6= 0, then, putting yi = φ(xi) for

1 ≤ i ≤ n, dk(f(x), n) is the minimum possible transcendence degree over k of

any field of the form k(x1 +Q1, x2 +Q2, . . . , xn +Qn)

⊆ k(x1, x2, . . . , xn) where Qi = Pi(y1, y2, . . . , yn) ∈ k[x1, x2, . . . , xn] for 1 ≤ i ≤ n.

Proof. k[T ] is integral over k[φ(T )] and so k[f(x1)+P1, f(x2)+P2, . . . , f(xn)+Pn]

is integral over k[h(x1) +φ(P1), h(x2) +φ(P2), . . . , h(xn) +φ(Pn)] since φ(f(x)) =

h(x). The first result now follows from Definition 2.1. Now assume that h(x) = cx

with c 6= 0. W.l.o.g. c = 1 and φ(f(xi)) = xi. By definition, dk(f(x), n) =

min tr.deg.k[f(xi) + Pi(x1, · · · , xn) | i = 1, · · · , n] =

min tr.deg.k[f(xi) + Pi(φ(f(x1)), · · · , φ(f(xn))) | i = 1, · · · , n] =

min tr.deg.k[x′i + Pi(φ(x′1), · · · , φ(x′n)) | i = 1, · · · , n] =

min tr.deg.k[x′i + Pi(y
′
1, · · · , y′n) | i = 1, · · · , n],

where we set x′i := f(xi) and y′i = φ(x′i). Re-replacing x′i by xi gives the claim. �

Theorem 3.5. Suppose that k is a perfect field of prime characteristic p and

f(x) ∈ xk[[x]] is not a polynomial. Suppose further that f(x) is not n-transcendental

over k (where n > 1). Then either

(1) f(x) = Q(x) + g(x)p
s

where Q(x) ∈ xk[x], s ≥ 1 and g(x) ∈ xk[[x]] is

algebraic over k(x) and is n-transcendental over k or

(2) f(x) is a root of a generalized Artin-Schreier polynomial.

Proof. We follow the proof of Theorem 2.13 (1) and (2). By Remark 2.2 4. f(x)

is algebraic; in case (1) this implies that g(x) is algebraic. In case (2) the proof

shows that f(x) has the form
∑∞

i=0Qi(x)p
i

with Qi(x) ∈ xk[x] and no exponent

divisible by p, so f(x) has property (P) and hence by Theorem 3.3 is a root of a

generalized Artin-Schreier polynomial. �



STABLE TRANSCENDENCE AND ARTIN-SCHREIER POLYNOMIALS 13

Remark 3.6. Suppose that k is finite. Then we may assume that the equation

(E) in Theorem 3.3 has the form f(x)p
M − f(x) =: R(x) ∈ xk[x].

For we may first suppose that φ0 6= 0 and φN = 1. Let φ(T ) =
∑N

m=0 φmT
pm ∈

Tk[T ] so that φ(T ) is a monic and separable “p-polynomial” (see [10], Chapter 3,

Section 4). Hence φ(T ) has distinct roots V (say) in a splitting field K ⊇ k where

|K| = pM (say) and V is an Fp-subspace of K. Hence φ(T ) =
∏

α∈V (T − α).

Put D(T ) = T p
M − T ∈ Tk[T ]. Then D(T ) is a p-polynomial with D(T ) =∏

β∈K(T − β). Now φ : K −→ K (where β 7→ φ(β)) is an Fp-linear, Gal(K/k)-

equivariant map with kernel V and image W (say). Hence, if we put DW (T ) =∏
w∈W (T − w) ∈ Tk[T ] (not just TK[T ]), then DW (T ) is a p-polynomial and

further it follows easily that D(T ) = DW (φ(T )) (a “symbolic product” of p-

polynomials; see [10], Chapter 3, Section 4).

Since φ(f(x)) = h(x) we therefore have that

f(x)p
M − f(x) = D(f(x)) = DW (φ(f(x))) = DW (h(x)) = R(x)

(say) where R(x) ∈ xk[x] (see also Theorem 2.13 (2)).

4. Universal Algebras

We now consider an outstanding conjecture concerning “non-linear” modular

representations of finite p-groups: Let k be a field of prime characteristic p and

let G be a finite p-group of order pn (n ≥ 1). We recall some results from [2], [3],

[4] and [5]:

Definition 4.1 (Trace-Surjective Algebras). Let A be a finitely generated k-

algebra (commutative with identity element 1) together with a faithful action of

G on A. Then A is said to be trace-surjective if there exists w ∈ A such that

trG(w) :=
∑

g∈G g(w) = 1. Equivalently A is a Galois extension of the invariant

ring AG := {a ∈ A | g(a) = a for all g ∈ G} (see [2], Proposition 4.4).

Remark 4.2. Let (AG)G be the group ring of G over AG. Then A is a free

(AG)G-module of rank one generated by any element w of A with trG(w) = 1 and

hence A is a free AG-module of rank |G| (see [2], Theorem 4.1).
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Examples 4.3. (1) A = K, a Galois field extension of k = KG with

Gal(K/k) = G.

(2) Let V be a finite dimensional linear representation of G over k, S(V ) :=

Sym(V ), the symmetric algebra of V and A := S(V )v or S(V )/(v − 1),

where v ∈ V G \ {0} with vm = trG(f) for some f ∈ S(V ) and m ≥ 1.

Only for relatively few groups G will there be such an “almost linear” A

defined over Fp and with Krull dimension as low as n (see [3]).

(3) Let A = Uk(G) be the algebra defined in [2] Theorem 5.4. Then A is a poly-

nomial k-algebra of Krull dimension n with faithful G-action. This action

is non-linear (but “triangular”), it is defined over Fp and the invariant

ring AG is also polynomial (see [2, 3, 4, 5]). For example:

(a) If G =< σ1, σ2, . . . , σn > is elementary Abelian then

Uk(G) = k[x1, x2, . . . , xn] where each σi(xj) = xj + δij and

trG((−1)nxp−11 xp−12 . . . xp−1n ) = 1. Further

Uk(G)G = k[x1 − xp1, x2 − x
p
2, . . . , xn − xpn].

(b) If G =< σ > is cyclic of order p2 then Uk(G) = k[x, y] where

σ(x) = x+1, σ(y) = y+xp−1 and trG(xp−1yp−1) = 1. Further, if F (x)

denotes the reduction modulo p of the polynomial Bp2−p+1(x)/(p2−p+

1)−Bp(x)/p− δp,2/4 ∈ Zp[x] (where Br(x) denotes the r-th Bernoulli

polynomial) then Uk(G)G = k[xp− x, yp− y−F (x)]. This follows di-

rectly from Remark 4.2, the von Staudt-Clausen theorem and the basic

difference equation for the Bernoulli polynomials (see [8], Chapter 2).

We do not know whether or not Uk(G) is the only trace-surjective polynomial

k-algebra U of dimension n which is “triangular” in the sense of Proposition 4.7.

However it follows easily from [5], Proposition 2.9 that its tensor square U ⊗k U

is independent of the choice of U .

Definition 4.4. A trace-surjective algebra A0 is said to be universal if whenever

A is a trace-surjective algebra there is a G-equivariant k-algebra homomorphism

θ : A0 −→ A.
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Remark 4.5. In the standard categorical terminology such an algebra A0 would be

described as being “weakly initial” rather than “universal”. However here it carries

rather more than usual significance since it can be shown that A is isomorphic to

A0⊗AG
0
AG (see [2], the proof of Theorem 1.2). In particular the minimal number

mk(G) of generators for A0 as an AG0 -algebra is independent of the choice of

universal algebra A0 and every trace-surjective algebra A can be generated as an

AG-algebra by mk(G) elements. Further, taking A0 = Uk(G), we obtain an explicit

“structure theorem” for A (see [2], Theorem 1.2). For example this recovers the

Artin-Schreier theorem in the case when G is cyclic of order p and AG = k.

Example 4.6. A0 = S(V )v, S(V )/(v − 1) and Uk(G) (as in Examples 4.3 (2)

and (3) above) are universal algebras. In fact both Uk(G) and S(V )/(v − 1) are

polynomial with “triangular” action of G (see Proposition 4.7 below).

The following Proposition provides a ready source of universal algebras:

Proposition 4.7. A trace-surjective polynomial algebra A0 = k[x1, x2, . . . , xm] is

universal if the action of G on A0 is “triangular” in the sense that g(xi) − xi ∈

k[x1, x2, . . . , xi−1] for all g ∈ G and 1 ≤ i ≤ n. Further the invariant ring AG0 is

“stably polynomial”.

Proof. This follows directly from Proposition 2.9, Theorem 2.11 and Theorem

2.13 of [5]. �

Remark 4.8. As noted above the invariant ring Uk(G)G is actually polynomial.

We also conjecture that the invariant ring (S(V )/(v − 1))G is always polynomial

which is certainly the case if either G is cyclic or V is a free kG-module (see [4],

Theorems 4 and 5). Note however that not every “stably polynomial” k-algebra is

polynomial (see [6]).

Definition 4.9. We denote by dk(G) the minimum value of the Krull dimension

of a universal algebra A0.

Remarks 4.10. (1) Thus dk(G) ≤ n since the universal (polynomial) algebra

Uk(G) has Krull dimension n.



16 PETER FLEISCHMANN AND CHRIS WOODCOCK

(2) Clearly we may restrict attention to trace-surjective subalgebras A0 of

Uk(G) (or of any other fixed universal algebra) which are themselves nec-

essarily universal.

(3) If H is a subgroup of G then dk(H) ≤ dk(G). For, by Proposition 4.7,

Uk(G) is universal for H and any trace-surjective k-subalgebra for G is

also trace-surjective for H.

It can be shown that dk(G) is always bounded below by the essential dimension

ek(G) of G over k and further if G is elementary Abelian then ek(G) ≤ 2 (see

[5], section 4). However, based on the evidence presently available, we venture to

make the following sharp conjecture in the case when k = Fp.

Conjecture 4.11 (Krull Dimension). If k = Fp then dk(G) = n (this value being

achieved by the universal polynomial algebra Uk(G) as above).

Remarks 4.12. (1) If G is elementary Abelian then the conjecture implies a

substantial difference between dk(G) and ek(G). We consider this impor-

tant special case in Section 5.

(2) Conjecture 4.11 is true for n ≤ 2 (see Proposition 4.14 and [5], section

4).

(3) If, as is conjectured (see [9]), the essential dimension eFp(G) over Fp of a

cyclic group G of order pn is equal to n then Conjecture 4.11 holds for G.

(4) If we restrict consideration to universal algebras A0 which are polynomial

then the conjecture is true. More generally if k = Fp then any universal

algebra requires at least n k-algebra generators ( see [2], Proposition 5.5).

(5) The conjecture would certainly be false if k were to contain Fp strictly. For

example if G is elementary Abelian and |k| ≥ pn then we have a universal

algebra A0 = k[t] with g(t) = t+ θ(g) for all g ∈ G where θ : G, . −→ k,+

is an injective group homomorphism (see Remark 2.17 and Theorem 5.3

and also [5], Theorem 3.15). Hence dk(G) = 1.

We will need the following Lemma below and in Section 5:
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Lemma 4.13. The minimal Krull dimension of a trace-surjective k-subalgebra

A of Uk(G) is dk(G). Further A can be taken to be of the form θ(Uk(G)) where

θ : Uk(G) −→ Uk(G) is a G-equivariant k-algebra homomorphism. In particular

dk(G) = n if and only if every such θ is injective.

Proof. If θ is not injective then θ(Uk(G)) ⊂ Uk(G) is universal of Krull dimension

less than n. On the other hand if A is universal of Krull dimension d < n

then we have G-equivariant k-algebra homomorphisms θ : Uk(G) −→ A and

φ : A −→ Uk(G). Hence the composition φ ◦ θ : Uk(G) −→ Uk(G) is not injective

and the Krull dimension of (φ ◦ θ)(Uk(G)) is at most d. The result now follows

from Remarks 4.10, (1) and (2). �

We conclude this section with a characterization of the pairs G, k for which

dk(G) = 1 thereby confirming the truth of Conjecture 4.11 when n = 2:

Proposition 4.14. The following conditions are equivalent:

(1) dk(G) = 1,

(2) The group (G, .) embeds in (k,+),

(3) G is elementary Abelian and |G| ≤ |k|.

Thus Conjecture 4.11 holds when n = 2.

Proof. Clearly conditions (2) and (3) are equivalent and conditions (2), (3) imply

condition (1) by Remarks 4.12 (5). Finally if dk(G) = 1 then by Lemma 4.13

there is a trace-surjective k-subalgebra A of Uk(G) with Krull dimension one. Let

B be the integral closure of A in the polynomial ring Uk(G). In the same way as

in the proof of Proposition 2.18 we see that B is a trace-surjective k-subalgebra

of Uk(G) of Krull dimension one. Again by [1], Theorem 1, B is a polynomial k-

algebra, B = k[t] (say). The faithful action of G on B is given by g(t) = λgt+ µg

where λg ∈ k∗ and µg ∈ k for all g ∈ G. Since G is a p-group λg = 1 for all

g ∈ G. Therefore the mapping ψ : (G, .) −→ (k,+), given by putting ψ(g) = µg

for all g ∈ G, is an injective group homomorphism and so condition (1) implies

condition (2), as required. �
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5. A Link between the Conjectures when G is elementary Abelian

Let k be a field of prime characteristic p and let G be an elementary Abelian

p-group of order pn (n ≥ 1).

Theorem 5.1. If G is elementary Abelian of order pn then dk(G) = dk(Fp(x), n).

Proof. Recall, from Examples 4.3 (3)(a), that if G =< σ1, σ2, . . . , σn > is ele-

mentary Abelian then Uk(G) = k[x1, x2, . . . , xn] where each σi(xj) = xj + δij

and Uk(G)G = k[x1 − xp1, x2 − xp2, . . . , xn − xpn]. Now let θ : Uk(G) −→ Uk(G)

be a G-equivariant k-algebra homomorphism. Then each θ(xi) = xi + Pi(x1 −

xp1, x2−x
p
2, . . . , xn−xpn) ∈ xi+Uk(G)G (and conversely). Consider the inclusion of

k[x1, x2, . . . , xn] in k[[X1, X2, . . . , Xn]] where each xi = Fp(Xi) and so xi−xpi = Xi.

Then each θ(xi) = Fp(Xi) + Pi(X1, X2, . . . , Xn). The result now follows directly

from Definition 2.1 and the proof of Lemma 4.13. �

Corollary 5.2. If G is elementary Abelian then Conjecture 2.16 implies Conjec-

ture 4.11.

Corollary 5.3 (Link). If G is elementary Abelian then the power series Fp(x) =∑∞
r=0 x

pr is n-transcendental over k if and only if dk(G) = n. In this case Fps(x)

is also n-transcendental over k for all s ≥ 1 (see Remark 2.14 (2)).

We conclude by showing that if k = Fp then Fp(x) is at least n-transcendental

over k in respect of “polynomial perturbations” which either are all affine or all

have zero affine parts! This is perhaps the most striking evidence we have at

present in support of Conjecture 4.11 when G is elementary Abelian. First we

need a curious lemma from linear algebra:

Lemma 5.4. Let A, B be n × n matrices with entries in the field k. Suppose

that B − A is invertible so that the augmented matrix [A|B] has rank n. Then

A can be transformed into an invertible matrix by a sequence of elementary row

operations on [A|B] and interchanges of corresponding rows of “A” and “B” (the

latter type of operation is only employed if and when a row of “A” is zero).
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Proof. First note that the allowable transformations of [A|B] maintain the in-

vertibility of B − A and hence the full rank of [A|B]. We will say that a row

of A is “safe” if the corresponding row of B is zero and such rows will be left

alone. Clearly the safe rows of A are linearly independent. If all the rows of A

are safe then B is zero and A is invertible. It is therefore enough to show that if

A is not invertible then we can increase the number of safe rows of A. Choose a

non-safe row of A which is a linear combination of the other rows of A. Reduce it

to zero by elementary row operations on [A|B] and then interchange it with the

corresponding row of B to create an extra safe row of A, as required. �

Theorem 5.5. Let Xi = Fp(xi) + Pi(x1, x2, . . . , xn) ∈ Fp[[x1, x2, . . . , xn]] where

Pi(x1, x2, . . . , xn) ∈ R = Fp[x1, x2, . . . , xn] for 1 ≤ i ≤ n. Suppose that either (1)

all the Pi(x1, x2, . . . , xn) have degree at most one or (2) all the Pi(x1, x2, . . . , xn)

have no non-zero terms of degree one. Then X1, X2, . . . , Xn are algebraically

independent over Fp.

Proof. Without loss of generality we may clearly suppose that all the polynomials

Pi(x1, x2, . . . , xn) have zero constant term. Case (2) of the theorem follows directly

from Lemma 2.5. We now consider case (1). Clearly the Xi (1 ≤ i ≤ n) are

algebraically independent over Fp if and only if the Yi = xi + Pi(x1 − xp1, x2 −

xp2, . . . , xn − xpn) = xi +
∑n

j=1 aijxj −
∑n

j=1 aijx
p
j ∈ R (say) are algebraically

independent over Fp (see Corollary 3.4). Put A = (aij), an n × n matrix with

entries in Fp. We apply Lemma 5.4 to the augmented matrix [A+ I|A] to obtain

[C|D] with C = (cij) invertible and D = (dij). Note that the row operations in

Lemma 5.4 correspond to taking linear combinations of the Yi and the interchanges

correspond to taking p-th roots. Hence, putting Zi =
∑n

j=1 cijxj−
∑n

j=1 dijx
p
j ∈ R

(1 ≤ i ≤ n), we have that S = Fp[Z1, Z2, . . . , Zn] is a purely inseparable extension

of T = Fp[Y1, Y2, . . . , Yn]. Now the Jacobian determinant of the Zi (1 ≤ i ≤ n) is

equal to det(C) 6= 0. Hence, by Lemma 2.5, the Zi, and therefore also the Yi, are

algebraically independent over Fp, as required. �
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