University of

"1l Kent Academic Repository

Chitil, Olaf (1999) Denotational Semantics for Teaching Lazy Functional
Programming. In: Proceedings of the Workshop on Functional and Declarative
Programming in Education. Rice Technical Report 99-346 .

Downloaded from
https://kar.kent.ac.uk/21703/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21703/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Denotational Semantics for
Teaching Lazy Functional Programming

Olaf Chitil

Lehrstuhl far Informatik 1, RWTH Aachen, Germany

chitil @nformati k. rwt h-aachen. de
http://wwi2.informati k. R\MMH Aachen. de/~chi ti l

Text books explain the meaning of a functional program
concretely only by showing how an expression is evaluated.
Thus the idea that a functional program defines mathemat-
ical functions and that a function is a value is not imparted.

To give a concrete idea of a function as value, we repres-
ent it as a table of arguments and results (its graph):

(&%) | False True
Fal se | Fal se Fal se
True | False True

In general, such tables are infinite and the tables of multi-
argument functions with large domains and higher-order
functions are too complex to visualise even partially. Non-
etheless any function can easily be imagined as being such a
table.

With such tables we can establish by look up that for ex-
ample the value of the expression

even 6 && (4 + 2 > 7)

is Fal se.

To determine the table described by a (recursive) function
definition, we have to evaluate the application of the func-
tion to some arguments. For evaluation we combine reduc-
tion with look up in tables for known functions and prim-
itive functions like (+) . | claim that using such a mixture
of reduction and table look up is a natural way to under-
stand a program. Alternatively, we can construct the table
of a recursive function by table look up alone, if we start
with arguments that do not require recursive calls and con-
tinue such that we only require table entries that we have
already determined. For example, we determine the table of
the factorial function

fac n
|n:: =1
| n>0 =n* fac (n-1)

inthe orderfac 0,fac 1,fac 2,fac 3,...1

I believe that the classical comparison of evaluation
strategies is the best introduction to laziness / non-strictness.
The lazy evaluation strategy is vital for the efficiency of the
data-oriented programming style? and it explains how infin-
ite data structures can be handled by the computer. How-
ever, it is important not to give students the impression that

Icompare with: Simon Thompson: Haskell: The Craft of Functional Program-
ming, 2nd edition, Addison-Wesley, 1999, Section 4.2.

2John Hughes: Why Functional Programming Matters, Computer Journal
32(2), 1989, pp. 98-107.

laziness means giving up the denotational point of view. In
practise, the lazy reduction sequence of an expression is too
complex for a human to follow. On the other hand, functions
can easily be composed.

Whereas it is straightforward to extend tables to cover in-
finite data structures, our table for (&&) lacks an entry for
determining that the value of Fal se && (1 == 1/0) is
Fal se. Hence we introduce a third boolean value L which
represents undefinedness and complete the table as follows:

(&%) | False True 1

Fal se | Fal se False False

True | False True 4
1 1 1 4

For analogous reasons every type contains a value L.
Moreover, projections like f st and head demonstrate why
1 may appear anywhere in an algebraic data structure and
thus gives rise to many partial values:

| L[] False:[] True:[] L:[] False:l ..
head | L L False True 1 Fal se

We can use these tables together with tables for nul | ,
(|]) andtail toconstruct the table of and:

and xs = null xs || (headxs && and(tail xs))

| L [] False:[] True:[] L:[] False:l ...

and | L True False True L Fal se

As an aside we note that we can also reduce expressions
which contain L. In patterns L matches only variables and
the wild-card _.

| taught several Haskell programming courses for second
year university students who are familiar with a (usually im-
perative) programming language. At the beginning of the
course | gave no definition of the meaning of Haskell pro-
grams but just pointed out the similarity to mathematical
definitions and appealed to the students’ intuition. Only
when | came to laziness | introduced reduction and reduction
strategies. Directly afterwards | explained the use of tables
and L.

I believe that tables and L assist in understanding (lazy)
functional programs. They could also be used as a starting
point for a formal introduction to denotational semantics.

