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GLOBALLY EXACT ASYMPTOTICS FOR INTEGRALS
WITH ARBITRARY ORDER SADDLES∗

T. BENNETT† , C. J. HOWLS‡ , G. NEMES§ , AND A. B. OLDE DAALHUIS§

Abstract. We derive the first exact, rigorous but practical, globally valid remainder terms for
asymptotic expansions about saddles and contour endpoints of arbitrary order degeneracy derived
from the method of steepest descents. The exact remainder terms lead naturally to sharper novel
asymptotic bounds for truncated expansions that are a significant improvement over the previous best
existing bounds for quadratic saddles derived two decades ago. We also develop a comprehensive
hyperasymptotic theory, whereby the remainder terms are iteratively reexpanded about adjacent
saddle points to achieve better-than-exponential accuracy. By necessity of the degeneracy, the form
of the hyperasymptotic expansions is more complicated than in the case of quadratic endpoints
and saddles and requires generalizations of the hyperterminants derived in those cases. However, we
provide efficient methods to evaluate them, and we remove all possible ambiguities in their definition.
We illustrate this approach for three different examples, providing all the necessary information for
the practical implementation of the method.
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saddle points
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1. Introduction. From catastrophe theory it is well known that integrals with
saddle points may be used to compactly encapsulate the local behavior of linear wave-
fields near the underlying organizing caustics; see, for example, [44, 4]. The saddle
points correspond to rays of the underpinning ODEs or PDEs. Their coalescence cor-
responds to tangencies of the rays at the caustics, leading to nearby peaks in the wave
amplitude. On the caustics, the coalesced saddle points are degenerate. The local an-
alytical behavior on the caustic may be derived from an asymptotic expansion about
the degenerate saddle [18, Chap. 36]. An analytical understanding of the asymptotic
expansions involving degenerate saddles is thus essential to an examination of the
wavefield behavior on caustics. A modern approach to this includes the derivation of
globally exact remainders, sharp error bounds, and the exponential improvement of
the expansions to take into account the contributions of terms beyond all orders.

Recent work in quantum field and string theories, e.g., [20, 14, 1, 2], has led to
a major increase in interest in such resurgent approaches in the context of integral
asymptotics. One of the reasons to study the higher orders of expansions in quantum
field theory is that they can reveal information as to the location of remote criti-
cal points, corresponding to physical quantities that can give rise to nonperturbative
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effects. A notable recent success is that high order calculations can be used to uncover
previously unknown functional relationships between perturbative and nonperturba-
tive effects within quantum eigenvalue expansions [19].

The first globally exact remainders for asymptotic expansions of integrals possess-
ing simple saddle points were derived by Berry and Howls [7]. The remainder terms
were expressed in terms of self-similar integrals over doubly infinite contours passing
through a set of adjacent simple saddles. Boyd [12] provided a rigorous justification
of the exact remainder terms, together with significantly improved error bounds.

The remainder terms automatically incorporated and precisely accounted for the
Stokes phenomenon [46], whereby exponentially subdominant asymptotic contribu-
tions are switched on as asymptotics or other parametric changes cause the contour
of integration to deform to pass through the adjacent saddles. The Stokes phenomenon
occurs across subsets in parameter space called Stokes lines.

Reexpansion of the exact remainder term about the adjacent saddles, using their
own exact remainder terms, led to a hyperasymptotic expansion, which delivered
better-than-exponential numerical accuracy.

Subsequent work extended globally exact remainder terms and hyperasymptotic
analysis to integrals over contours with finite endpoints [23] and multiple integrals
[24], [16]. Parallel approaches to differential equations using Cauchy–Heine and Borel
transforms were taken by Olde Daalhuis and Olver [41], [37]. This resulted in efficient
methods for computation of the universal hyperterminants [38]. The efficient com-
putation of hyperterminants not only made hyperasymptotic expansions numerically
feasible but, more importantly, in the absence of the geometric information present
in single dimensional integral calculations, allowed them to be used to calculate the
Stokes constants that are required in an exponentially accurate asymptotic calculation
involving, for example, the solution satisfying given boundary data.

However, the general case of globally exact remainder terms and hyperasymptotic
expansions of a single-dimensional integral possessing a set of arbitrary order degen-
erate saddle points has not yet been considered. The purpose of this paper is to fill
this surprising gap.

Hence, in this paper, we provide the first comprehensive globally exact asymptotic
theory for integrals with analytic integrands involving finite numbers of arbitrarily
degenerate saddle points. It incorporates the special case of Berry and Howls [7] and
Howls [23]. However, the complexity of the situation uncovers several new features
that were not present in the simple saddle case.

First, the nature of the steepest paths emerging from degenerate saddles gives
multiple choices as to which contours might be integrated over, or which might con-
tribute to the remainder term. It is necessary to adopt a stricter convention regarding
the choice of steepest paths to clarify the precise nature of the contributions to the
remainder and hyperasymptotic expansions.

Second, the degenerate nature requires us to explore additional Riemann sheets
associated to the local mappings about the saddle points. This gives rise to additional
complex phases, not obviously present in the simple saddle case, that must be taken
into account depending on the relative geometrical disposition of the contours.

Third, we provide sharp, rigorous bounds for the remainder terms in the Poincaré
asymptotic expansions of integrals with arbitrary critical points. In particular, we
improve the results of Boyd [12], who considered integrals with only simple saddles.
Our bounds are sharper and have larger regions of validity.

Fourth, the hyperasymptotic tree structure that underpins the exponential im-
provements in accuracy is prima facie more complicated. At the first reexpansion of
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a remainder term, for each adjacent degenerate saddle there are two contributions
arising from the choice of contour over which the remainder may be taken. At the
second reexpansion, each of these two contributions may give rise to another two,
and so on. Hence, while the role of the adjacency of saddles remains the same, the
numbers of terms required at each hyperasymptotic level increase twofold for each
degenerate saddle at each level. Fortunately these terms may be related, and so the
propagation of computational complexity is controllable.

Fifth, the hyperterminants in the expansion are more complicated than those in
[7], [33], [37], or [38]. However, we provide efficient methods to evaluate them.

Sixth, the results of this integral analysis reveal new insights into the asymptotic
expansions of higher order differential equations.

There have been several near misses at a globally exact remainder term for de-
generate saddles arising from single dimensional integrals.

Ideas similar to those employed by Berry and Howls were used earlier by Meijer.
In a series of papers [27], [31], [32] he derived exact remainder terms and realistic error
bounds for specific special functions, namely, Bessel, Hankel, and Anger–Weber-type
functions. Nevertheless, he missed the extra step that would have led him to more
general remainder terms of [7].

Dingle [17], whose pioneering view of resurgence underpins most of this work,
considered expansions around cubic saddle points and gave formal expressions for the
higher order terms. However, he did not provide exact remainder terms or consequent
(rigorous) error estimates.

Berry and Howls [8], [9] considered the cases of exponentially improved uniform
expansions of single dimensional integrals as saddle points coalesced. The analysis [8]
focused on the form of the late terms in the more complicated uniform expansions.
They [9] provided an approximation to the exact remainder term between a simple
and an adjacent cluster of saddles illustrating the persistence of the error function
smoothing of the Stokes phenomenon [6] as the Stokes line was crossed. Neither of
these works gave globally exact expressions for remainder terms involving coalesced,
degenerate saddles.

Olde Daalhuis [39] considered a Borel plane treatment of uniform expansions but
did not extend the work to include arbitrary degenerate saddles.

Breen [13] briefly considered the situation of degenerate saddles. The work re-
stricted attention to cubic saddles and, like all the above work, did not provide rigorous
error bounds or develop a hyperasymptotic expansion.

Other notable work dealing with exponential asymptotics includes [10], [11], [22],
[25], [26], [45], and [48].

It should be stressed that the purpose of a hyperasymptotic approach is not per
se to calculate functions to high degrees of numerical accuracy: there are alternative
computational methods. Rather, hyperasymptotics is an analytical tool to incorporate
exponentially small contributions into asymptotic approximations, so as to widen the
domain of validity, to understand better the underpinning singularity structures, and
to compute invariants of the system such as Stokes constants whose values are often
assumed or left as unknowns by other methods (see, for example, [21]).

The idea for this paper emerged from the recent complementary and independent
thesis work of [3], [35], which gave rise to the current collaboration. This collaboration
has resulted in the present work which incorporates not only a hyperasymptotic theory
for both expansions arising from nondegenerate and degenerate saddle points but also
significantly improved rigorous and sharp error bounds for the progenitor asymptotic
expansions.
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The structure of the paper is as follows.
In section 2, we introduce arbitrary finite integer degenerate saddle points. In

section 3, we derive the exact remainder term for an expansion about a semi-infinite
steepest descent contour emerging from a degenerate saddle and running to a valley
at infinity. The remainder term is expressed as a sum of terms of contributions from
other, adjacent saddle points of the integrand. Each of these contributions is formed
from the difference of two integrals over certain semi-infinite steepest descent contours
emerging from the adjacent saddles.

In section 4, we iterate these exact remainder terms to develop a hyperasymptotic
expansion. We introduce novel hyperterminants (which simplify to those of Olde
Daalhuis [38] when the saddles are nondegenerate).

In section 5, we provide explicit rigorous error bounds for the zeroth hyperasymp-
totic level. These novel bounds are sharper than those derived by Boyd [12].

In section 6, we illustrate the degenerate hyperasymptotic method with an appli-
cation to an integral related to the Pearcey function, evaluated on its cusp caustic.
The example involves a simple and doubly degenerate saddle. In section 7, we provide
an illustration of the extra complexities of a hyperasymptotic treatment of degenera-
cies with an application to an integral possessing triply and quintuply degenerate
saddle points. In this example, we also illustrate the increased size of the remainder
near a Stokes line as predicted in section 5. In section 8, we give an example of how it
is possible to make an algebraic (rather than geometric) determination of the saddles
that contribute to the exact remainder terms in a swallowtail-type integral through a
hyperasymptotic examination of the late terms in the saddle point expansion.

In section 9, we conclude with a discussion on the application of the results of this
paper to the (hyper-) asymptotic expansions of higher order differential equations.

2. Definitions and assumptions. Let ωj be a positive integer, with j =
1, 2, . . . an integer index. Consider a function f(t), analytic in a domain of the complex
plane. The point t(j) is called a critical point of order ωj − 1 of f(t) if

f (p)(t(j)) = 0 but f (ωj)(t(j)) 6= 0 for all p = 1, . . . , ωj − 1.

When ωj = 1, 2, > 2, t(j) is, respectively, a linear endpoint, a simple saddle point, and
a degenerate saddle point. For analytic f(t), the saddle points are then all isolated.
Henceforth we denote the value of f(t) at t = t(j) by fj .

We shall derive the steepest descent expansion, together with its exact remainder
term, of integrals of the type

(1) I(n)(z;αn) =

∫

P(n)

e−zf(t)g(t)dt, z = |z|eiθ, |z| → ∞,

where P(n) = P(n)(θ;αn) is one of the ωn paths of steepest descent emanating from
the (ωn − 1)st-order critical point t(n) of f(t) and passing to infinity in a valley of
Re[−eiθ(f(t)− fn)].

Suppose we use the notation of (ωn → ωm) to indicate the remainder term
that rises from an asymptotic expansion about a endpoint/saddle point n of order
ωn in terms of the adjacent (in a sense to be defined later) set of saddles m =
{m1,m2,m3, . . .}, of orders corresponding to the values ωm = {ωm1

, ωm2
, . . .}. Thus

Berry and Howls [7] dealt with (ωn → ωm) = (2 → 2) for doubly infinite contours.
Howls [23] dealt with (1 → 2) and the (2 → 2). Our goal here is to derive the exact
remainder terms for arbitrary integers (ωn → ωm).
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Fig. 1. The ωn paths of steepest descent emanating from the (ωn−1)st-order critical point t(n)

of f(t).

On the steepest path P(n)(θ;αn) emerging from t(n), we have

arg
[
eiθ(f(t)− fn)

]
= 2παn(2)

for a suitable integer αn (see Figure 1).
The local behavior of f(t) at the critical point t(n) of order ωj − 1 is given by

(3) f(t)− fn =
f (ωn)(t(n))

ωn!

(
t− t(n)

)ωn
+O

(∣∣∣t− t(n)
∣∣∣
ωn+1

)
.

From (2) and (3), we hence find that

(4) αn =
θ + arg(f (ωn)(t(n))) + ωnϕ

2π
,

where −π < arg(f (ωn)(t(n))) ≤ π, and ϕ (−π < ϕ ≤ π) is the angle of the slope of
P(n)(θ;αn) at t(n), i.e., lim(arg(t− t(n))) as t→ t(n) along P(n)(θ;αn).

The functions f(t) and g(t) are assumed to be analytic in the closure of a domain
∆(n). We suppose further that |f(t)| → ∞ as t → ∞ in ∆(n), and f(t) has several
other saddle points in the complex t-plane at t = t(j) labeled by j ∈ N.

The domain ∆(n) is defined by considering all the steepest descent paths for
different values of θ, which emerge from the critical point t(n). In general these paths
can end either at infinity or at a singularity of f(t). We assume that all of them end
at infinity. Since there are no branch points of f(t) along these paths, any point in the
t-plane either cannot be reached by any path of steepest descent issuing from t(n) or
else can be reached by only one. A continuity argument shows that the set of all the
points which can be reached by a steepest descent path from t(n) forms the closure of
a domain in the t-plane. It is this domain which we denote by ∆(n); see, for example,
Figure 2.

Instead of considering the raw integral (1), it will be convenient to consider its
slowly varying part, defined by

(5) T (n)(z;αn) := ωnz
1/ωnezfnI(n)(z;αn) = ωnz

1/ωn

∫

P(n)

e−z(f(t)−fn)g(t)dt.
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Fig. 2. Contours used in the derivation of the exact remainder terms. (a) The contour Γ(n)(θ)
relative to the integration contour P(n)(θ;αn) as used in (17). (b) A schematic representation of

the saddle points t(mj) that are adjacent to t(n) and the adjacent contours P(mj) emanating from
them in (20), together with the domain ∆(n).

The ωnth root is defined to be positive on the positive real line and is defined by
analytic continuation elsewhere. We call T (n)(z;αn) the slowly varying part because
it is O(1) as z →∞ (cf. (9)).

It is convenient to introduce the following notation for the special double integrals
and their coefficients in the asymptotic expansions:

T(m)(u;αn) = T (m)(u;αn)− T (m)(u;αn + 1),

T(m)
r (αn) = T (m)

r (αn)− T (m)
r (αn + 1).

(6)

The path P(n)(θ;αn) passes through certain other saddle points t(m) when θ =

θ
[1]
nm, θ

[2]
nm, θ

[3]
nm, . . ., with θ

[j]
nm = θ

[k]
nm mod 2πωn. Such saddle points are defined as

being “adjacent” to t(n).
Initially we chose the value of θ so that the steepest descent path P(n)(θ;αn) in

(1) does not encounter any of the saddle points of f(t) other than t(n). We define

θ+
nm := min

{
θ[j]
nm : j ≥ 1, θ < θ[j]

nm

}
and θ−nm := max

{
θ[j]
nm : j ≥ 1, θ[j]

nm < θ
}
.

Note that θ+
nm = θ−nm + 2πωn. Thus, in particular, θ is restricted to an interval

θ−nm1
< θ < θ+

nm2
,(7)

where θ−nm1
:= maxm θ

−
nm and θ+

nm2
:= minm θ

+
nm. We shall suppose that f(t) and

g(t) grow sufficiently rapidly at infinity so that the integral (1) converges for all values
of θ in the interval (7).

Let Γ(n) = Γ(n)(θ) be an infinite contour that encircles the path P(n)(θ;αn)
in the positive direction within ∆(n) (see Figure 2(a)). This contour Γ(n)(θ) is now
deformed by expanding it onto the boundary of ∆(n). We assume that the set of saddle
points which are adjacent to t(n) is nonempty and finite. Under this assumption,
it is shown in Appendix C that the boundary of ∆(n) can be written as a union
of contours

⋃
m P(m)(θ+

nm, α
+
nm) ∪ −P(m)(θ−nm, α

−
nm), where P(m)(θ±nm, α

±
nm) are

steepest descent paths emerging from the adjacent saddle t(m) (see Figure 2(b)). These
paths are called the adjacent contours. The integers α±nm are computed analogously
to αn (cf. (4)) as

(8) α±nm =
θ±nm + arg(f (ωm)(t(m))) + ωmϕ

±

2π
,
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where −π < arg(f (ωm)(t(m))) ≤ π, and ϕ± (−π < ϕ± ≤ π) is the angle of the slope
of P(m)(θ±nm, α

±
nm) at the (ωm−1)st-order saddle point t(m) to the positive real axis.

We assume initially that each adjacent contour contains only one saddle point.1 The
other steepest descent paths from t(m) are always external to the domain ∆(n).

Finally, we introduce the so-called singulants F±nm (originally defined by Dingle
[17, pp. 147–149]) via

F±nm := |fm − fn|ei argF±
nm , argF±nm = −θ±nm + 2παn.

3. Derivation of exact remainder term. In this section we will show that

(9) T (n)(z;αn) =

N−1∑

r=0

T
(n)
r (αn)

zr/ωn
+R

(n)
N (z;αn),

where

T (n)
r (αn) = e

2πiαn(r+1)
ωn

Γ
(
r+1
ωn

)

2πi

∮

t(n)

g(t)

(f(t)− fn)
(r+1)/ωn

dt(10)

= e
2πiαn(r+1)

ωn

(
ωn!

f (ωn)(t(n))

)(r+1)/ωn Γ
(
r+1
ωn

)

Γ (r + 1)

×


 dr

dtr


g(t)

(
f (ωn)(t(n))

ωn!

(
t− t(n)

)ωn

f(t)− fn

)(r+1)/ωn




t=t(n)

,(11)

and for the remainder we have

(12) R
(n)
N (z;αn) =

∑

m(n)

z(1−N)/ωn

2πiωm

∫ ∞eiθ
+
nm

0

e−F
+
nmuu

N+1
ωn
− 1
ωm
−1

z1/ωn − u1/ωn
T(m)(u;α+

nm)du,

in which m(n) means that we sum over all saddles that are adjacent to n. The result
(12) for the exact remainder term of the asymptotic expansion around the degenerate
saddle t(n), expressed in terms of the adjacent (other degenerate) saddles t(m), is one
of the main results of this paper.

If we omit the remainder term R
(n)
N (z;αn) in (9) and formally extend the sum to

infinity, the result becomes the asymptotic expansion of an integral with (ωn − 1)st-
order endpoint (cf. [42, eqn. (1.2.16), p. 12]). A representation equivalent to (10)
was given, for example, by Copson [15, p. 69]. The expression (11) is a special case
of Perron’s formula (see, e.g., [34]).

In the examples below we use (11) to compute conveniently and analytically
the exact coefficients. However, we remark that (10) may be combined with the
trapezoidal rule evaluated at periodic points on the loop contour about t(n) (see, for
example, [47]) to give an efficient approximation for the coefficients as

(13) T (n)
r (αn) ≈ e

2πiαn(r+1)
ωn

Γ
(
r+1
ωn

)

2M

2M−1∑

m=0

g (tm)

wrm

((
tm − t(n)

)ωn

f(tm)− fn

)(r+1)/ωn

,

1This condition may be relaxed by extending the definition of integrals of the form (5) to include
the limiting case when the steepest descent path connects to other saddle points. Also, a limiting case,
such as (28), has to be used for the generalized hyperterminants in the corresponding re-expansions.
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in which tm = t(n) +wm and wm = ρeπim/M . Typically this approximation converges
exponentially fast with M . Note that in hyperasymptotics n can be large and so we
would need to take at least M > n.

For the proof of the results above we will obtain new integral representations for
T (n)(z;αn) via several changes of variables. The local behavior (3) of f(t) at the
critical point t(n) suggests the parameterization

(14) sωn = z(f(t)− fn)

of the integrand in (5) along P(n)(θ;αn). Substitution of (14) in (5) yields

T (n)(z;αn) = ωnz
1/ωn

∫ ∞e
2πiαn
ωn

0

e−s
ωn
g(t)

dt

ds
ds

= ωn

∫ ∞e
2πiαn
ωn

0

e−s
ωn ωns

ωn−1

z1−1/ωn

g(t(s/z1/ωn))

f ′(t(s/z1/ωn))
ds,

(15)

where t = t(s/z1/ωn) is the unique solution of (14) with t(s/z1/ωn) ∈ P(n)(θ;αn).
Since the contour P(n)(θ;αn) does not pass through any of the saddle points of f(t)
other than t(n), the quantity

(16)
ωns

ωn−1

z1−1/ωn

g(t(s/z1/ωn))

f ′(t(s/z1/ωn))
=
ωn(f(t(s/z1/ωn))− f(t(n)))1−1/ωn

f ′(t(s/z1/ωn))
g(t(s/z1/ωn))

is an analytic function of t in a neighborhood of P(n)(θ;αn). (We examine the
analyticity of the factor (f(t)− fn)1/ωn in ∆(n), after (18) below.) Hence, according
to the residue theorem, the right-hand side of (16) is2

Res
t=t(s/z1/ωn )

g(t)

(f(t)− fn)1/ωn − s/z1/ωn
=

1

2πi

∮

t(s/z1/ωn )

g(t)

(f(t)− fn)1/ωn − s/z1/ωn
dt.

Substituting this expression into (15) leads to an alternative representation for the
integral T (n)(z;αn) of the form

(17) T (n)(z;αn) =

∫ ∞e
2πiαn
ωn

0

e−s
ωn ωn

2πi

∮

Γ(n)

g(t)

(f(t)− fn)1/ωn − s/z1/ωn
dtds.

The infinite contour Γ(n) = Γ(n)(θ) encircles the path P(n)(θ;αn) in the positive direc-
tion within ∆(n) (see Figure 2(a)). This integral will exist provided that g(t)/f1/ωn(t)
decays sufficiently rapidly at infinity in ∆(n). Otherwise, we can define Γ(n)(θ) as a
finite loop contour surrounding t(s/z1/ωn) and consider the limit

(18) lim
S→∞

∫ Se
2πiαn
ωn

0

e−s
ωn ωn

2πi

∮

Γ(n)

g(t)

(f(t)− fn)1/ωn − s/z1/ωn
dtds.

The factor (f(t)− fn)1/ωn in (17) is carefully defined in the domain ∆(n) as follows.
First, we observe that f(t) − fn has an ωnth-order zero at t = t(n) and is nonzero

2If P (t) and Q(t) are analytic in a neighborhood of t0 with P (t0) = 0 and P ′(t0) 6= 0, then
Q(t0)/P ′(t0) = Rest=t0 Q(t)/P (t).



2152 BENNETT, HOWLS, NEMES, AND OLDE DAALHUIS

elsewhere in ∆(n) (because any point in ∆(n), different from t(n), can be reached from
t(n) by a path of descent). Second, P(n)(θ;αn) is a periodic function of θ with (least)
period 2πωn. Hence, we may define the ωnth root so that (f(t)− fn)1/ωn is a single-
valued analytic function of t in ∆(n). The correct choice of the branch of (f(t)−fn)1/ωn

is determined by the requirement that arg s = 2παn/ωn on P(n)(θ;αn), which can
be fulfilled by setting arg[(f(t)− fn)1/ωn ] = (2παn− θ)/ωn for t ∈P(n)(θ;αn). With
any other definition of (f(t)− fn)1/ωn , the representation (17) would be invalid.

Now, we employ the finite expression for nonnegative integer N

1

1− x =

N−1∑

r=0

xr +
xN

1− x, x 6= 1,

to expand the denominator in (17) in powers of s/[z(f(t)− fn)]1/ωn . We thus obtain

T (n)(z;αn) =
N−1∑

r=0

1

zr/ωn

∫ ∞e
2πiαn
ωn

0

e−s
ωn
sr
ωn
2πi

∮

Γ(n)

g(t)

(f(t)− fn)(r+1)/ωn
dtds

+R
(n)
N (z;αn)

with

R
(n)
N (z;αn) =

ωn
2πizN/ωn

∫ ∞e
2πiαn
ωn

0

e−s
ωn
sN

×
∮

Γ(n)

g(t)

(f(t)− fn)(N+1)/ωn

dt

1− s
(z(f(t)−fn))1/ωn

ds.

(19)

Again, a limiting process is used in (19) if necessary. Throughout this work, if not
stated otherwise, empty sums are taken to be zero.

For each term in the finite sum, the contour Γ(n)(θ) can be shrunk into a small
positively oriented circle with center t(n) and radius ρ, and we arrive at (9), where
the coefficients are given by (10) and (11).

By expanding Γ(n)(θ) to the boundary of ∆(n) (see section 2), we obtain

R
(n)
N (z;αn) =

ωn
2πizN/ωn

∑

m(n)

∫ ∞e
2πiαn
ωn

0

e−s
ωn
sN

×
(∫

P(m)(θ+nm,α
+
nm)

g(t)

(f(t)− fn)(N+1)/ωn

dt

1− s
(z(f(t)−fn))1/ωn

−
∫

P(m)(θ−nm,α
−
nm)

g(t)

(f(t)− fn)(N+1)/ωn

dt

1− s
(z(f(t)−fn))1/ωn

)
ds.

(20)

The expansion process is justified provided that (i) f(t) and g(t) are analytic
in the domain ∆(n), (ii) the quantity g(t)/f (N+1)/ωn(t) decays sufficiently rapidly at
infinity in ∆(n), and (iii) there are no zeros of the denominator 1−s/[z(f(t)−fn)]1/ωn

within the region R through which the loop Γ(n)(θ) is deformed.
The first condition is already satisfied by prior assumption. The second condi-

tion is met by requiring that g(t)/f (N+1)/ωn(t) = o(1/|t|) as t → ∞ in ∆(n) which
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we shall assume to be the case. The third condition is satisfied according to the fol-
lowing argument. The zeros of the denominator are those points of the t-plane for
which arg[eiθ(f(t) − fn)] = 2παn, in particular the points of the path P(n)(θ;αn).
Furthermore, no components of the set defined by the equation arg[eiθ(f(t)− fn)] =
2παn other than P(n)(θ;αn) can lie within ∆(n), otherwise f(t) would have branch
points along those components. By observing that P(n)(θ;αn) is different for dif-
ferent values of θ mod 2πωn, we see that the locus of the zeros of the denominator
1 − s/[z(f(t) − fn)]1/ωn inside ∆(n) is precisely the contour P(n)(θ;αn), which is
wholly contained within Γ(n)(θ) and so these zeros are external to R.

We now consider the convergence of the double integrals in (20) further. To do
this, we change variables from t to v by

(21) f(t)− fn = ve(−θ±nm+2παn)i,

where v ≥ |F±nm|. Since e(θ±nm−2παn)i(f(t) − fn) is a monotonic function of t on the
contour P(m)(θ±nm, α

±
nm), corresponding to each value of v, there is a value of t, say,

t±(v), that satisfies (21). The assumption (7) implies that the factor [1− s/[z(f(t)−
fn)]1/ωn ]−1 in (20) is bounded above by a constant. Hence, the convergence of the
double integrals in (20) will be ensured provided the real double integrals

∫ ∞

0

∫ ∞

|F±
nm|

e−|s|
ωn |s|N

v(N+1)/ωn

∣∣∣∣
g(t±(v))

f ′(t±(v))

∣∣∣∣dvd|s|

exist. In turn, these real double integrals will exist if and only if the single integrals

(22)

∫ ∞

|F±
nm|

1

v(N+1)/ωn

∣∣∣∣
g(t±(v))

f ′(t±(v))

∣∣∣∣dv

exist. Henceforth, we assume that the integrals in (22) exist for each of the adjacent
contours.

On each of the contours P(m)(θ±nm, α
±
nm) in (20), we perform the change of vari-

able from s and t to u and t via

sωn = u(f(t)− fn) = F±nmu+ u(f(t)− fm)

to obtain

R
(n)
N (z;αn) =

∑

m(n)

z(1−N)/ωn

2πi

×



∫ ∞eiθ

+
nm

0

e−F
+
nmuu

N+1
ωn
−1

z1/ωn − u1/ωn

∫

P(m)(θ+nm,α
+
nm)

e−u(f(t)−fm)g(t)dtdu

−
∫ ∞eiθ

−
nm

0

e−F
−
nmuu

N+1
ωn
−1

z1/ωn − u1/ωn

∫

P(m)(θ−nm,α
−
nm)

e−u(f(t)−fm)g(t)dtdu


 .

(23)

This change of variable is permitted because the infinite double integrals in (20) are
assumed to be absolutely convergent, which is a consequence of the requirement that
the integrals (22) exist. Hence the exact remainder of the expansion (9) about the
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critical point t(n) is expressible in terms of similar integrals over infinite contours
emanating from the adjacent saddles t(m) as

R
(n)
N (z;αn) =

∑

m(n)

z(1−N)/ωn

2πiωm



∫ ∞eiθ

+
nm

0

e−F
+
nmuu

N+1
ωn
− 1
ωm
−1

z1/ωn − u1/ωn
T (m)(u;α+

nm)du

−
∫ ∞eiθ

−
nm

0

e−F
−
nmuu

N+1
ωn
− 1
ωm
−1

z1/ωn − u1/ωn
T (m)(u;α−nm)du


 .

(24)

Since θ+
nm = θ−nm + 2πωn, a simple change of integration variable in (23) then yields

R
(n)
N (z;αn) =

∑

m(n)

z(1−N)/ωn

2πi

×



∫ ∞eiθ

+
nm

0

e−F
+
nmuu

N+1
ωn
−1

z1/ωn − u1/ωn

∫

P(m)(θ+nm,α
+
nm)

e−u(f(t)−fm)g(t)dtdu

−
∫ ∞eiθ

+
nm

0

e−F
+
nmuu

N+1
ωn
−1

z1/ωn − u1/ωn

∫

P(m)(θ+nm,βnm)

e−u(f(t)−fm)g(t)dtdu


 .

(25)

The path P(m)(θ+
nm, βnm) is geometrically identical to P(m)(θ−nm, α

−
nm), and since

the angle of the slope of P(m)(θ−nm, α
−
nm) to the positive real axis at t(m) is 2π/ωm

higher than the corresponding angle of P(m)(θ+
nm, α

+
nm), we find (cf. (8))

βnm =
θ+
nm + arg(f (ωm)(t(m))) + ωm(ϕ+ + 2π/ωm)

2π

=
θ+
nm + arg(f (ωm)(t(m))) + ωmϕ

+

2π
+ 1 = α+

nm + 1.

With the notation in (6), integral representation (25) can be written as (12). The
observation that

R
(n)
N (z;αn + 1) =

∑

m(n)

z(1−N)/ωn

2πiωm

∫ ∞ei(θ
+
nm+2π)

0

e−F
+
nmuu

N+1
ωn
− 1
ωm
−1

z1/ωn−u1/ωn
T(m)(u;α+

nm+1)du

(26)

will also be useful.
In previous publications [7, 24] there were issues with the exact sign of the terms

on the right-hand side of (12). These were referred to as “orientation anomalies.”
Here we do not encounter these issues because of the careful definitions of the phases
on the contours (4), (8).

4. Hyperasymptotic iteration of the exact remainder. In this section we
reexpand the exact remainder terms (12) and (26) to derive a template for hyper-
asymptotic calculations.

First, we begin by defining a set of universal, but generalized, hyperterminant
functions F(j), that form the basis of the template.
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Let us introduce the notation
∫ [η]

0
=
∫∞eiη

0
. Then, for k a nonnegative integer,

we define

F(0)(z) := 1, F(1)


z;

M0

ω0

σ0


 :=

∫ [π−arg σ0]

0

eσ0t0tM0−1
0

z1/ω0 − t1/ω0

0

dt0,

F(k+1)


z;

M0,
ω0,
σ0,

. . . ,

. . . ,

. . . ,

Mk

ωk
σk




(27)

:=

∫ [π−arg σ0]

0

· · ·
∫ [π−arg σk]

0

eσ0t0+···+σktktM0−1
0 · · · tMk−1

k

(z1/ω0 − t1/ω0

0 )(t
1/ω1

0 − t1/ω1

1 ) · · · (t1/ωkk−1 − t
1/ωk
k )

dtk · · · dt0

for arbitrary sets of complex numbers M0, . . . ,Mk and σ0, . . . , σk such that Re(Mj) >
1/ωj and σj 6= 0 for j = 0, . . . , k and for an arbitrary set of positive integers ω0, . . . , ωk.
The multiple integrals converge when | arg(σ0z)| < πω0. The F(j) is termed a “gen-
eralized jth-level hyperterminant.” If ω0 = · · · = ωj−1 = 1, F(j) reduces to the much
simpler jth-level hyperterminant F (j) discussed in the paper [38].

Note that in the case that two successive σ’s have the same phase the choice of
integration path over the poles in (27) needs to be defined more carefully. In those
cases we can define the hyperterminant via a limit. For example,

(28) lim
ε→0+

F(k+1)


z;

M0,
ω0,

σ0e−kεi,

M1,
ω1,

σ1e−(k−1)εi,

. . . ,

. . . ,

. . . ,

Mk−1,
ωk−1,

σk−1e−εi,

Mk

ωk
σk




is an option. Other limits are also possible.
The efficient computation of these generalized hyperterminant functions is out-

lined in Appendix A.

4.1. Superasymptotics and optimal number of terms. A necessary step in
hyperasymptotic reexpansions is to determine the “optimal” number of terms in the
original Poincaré expansion (9), defined as the index of the least term in magnitude.

For this section it reasonable to denote the original number of terms in the trun-

cated asymptotic expansion as N = N
(n)
0 and we denote the associated remainder as

R
(n)
0 (z;αn). With this notation the integrands in (12) will have a factor uN

(n)
0 /ωn .

Therefore, when N
(n)
0 is large, the main contribution to the integrals in (12) comes

from infinity where T(m)(u;α+
nm) = O(1). In the case that z and u are collinear, i.e.,

on a Stokes line, it is well known (see, e.g., [12, sect. 8] or [40, sect. 5]) that the Stokes

phenomenon produces an extra factor of O(

√
N

(n)
0 ) when estimating R

(n)
0 (z;αn) (see

also the proof of Proposition B.1). Thus, we have

R
(n)
0 (z;αn) =

√
N

(n)
0

Γ

(
N

(n)
0 +1
ωn

)

|z|
N

(n)
0
ωn

∑

m(n)

1

|F+
nm|

N
(n)
0
ωn

(
N

(n)
0

) 1
ωm

O(1)

for large N
(n)
0 and θ−nm1

≤ θ ≤ θ+
nm2

. Let N
(n)
0 = η

(n)
0 ωn|z| + ν

(n)
0 with ν

(n)
0 being

bounded. Then, with the help of Stirling’s formula,
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(29) R
(n)
0 (z;αn) = e−η

(n)
0 |z|

∑

m(n)

|z| 1
ωn
− 1
ωm

(
η

(n)
0∣∣F+
nm

∣∣

)η(n)
0 |z|

O(1),

as |z| → ∞ in the sector θ−nm1
≤ θ ≤ θ+

nm2
. For a fixed m the magnitude of the

right-hand side of (29) is minimal in the case that η
(n)
0 = |F+

nm|. Since we sum over
all the adjacent saddles we obtain that for the optimal number of terms we have

η
(n)
0 = r

(n)
0 := minm(n) |F+

nm|, and with that choice we have

(30) R
(n)
0 (z;αn) = e−r

(n)
0 |z| |z| 1

ωn
− 1
ω̃ O(1),

as |z| → ∞ in the sector θ−nm1
≤ θ ≤ θ+

nm2
with ω̃ = maxj ωj .

In the hyperasymptotic process below, we will reexpand this remainder and each
of these reexpansions will be truncated and reexpanded and so on. Correspondingly

we have to determine the number of terms to take in the original expansion N
(n)
0 , in

the first reexpansions N
(m)
1 , and so on. The criterion for determining the “optimal”

N
(n)
0 , N

(m)
1 , . . . , is that the overall error obtained by summing all the contributing

expansions should be minimized. This may be determined from considering estimates
such as (29) and (35), (37) below. The procedure for determining these optimal
numbers of terms is very similar to that of [37] and may be summarized as follows.

Let G = (V,E) be a graph with for the vertices V all the fj and for the edges

E = {(fm, fn) : t(m) is adjacent to t(n)}. We define r
(n)
k to be the length of the

shortest path of k + 1 steps in this graph starting at t(n). For a hyperasymptotic
expansion of Level k the optimal number of terms is

(31) N
(m0)
0 = η

(m0)
0 ωm0

|z|+ ν
(m0)
0 , . . . , N

(mk)
k = η

(mk)
k ωmk |z|+ ν

(mk)
k ,

with m0 = n, in which

η
(m0)
0 := r

(m0)
k , η

(mj)
j := max

(
0, η

(mj−1)
j−1 − |F+

mj−1mj |
)
, j = 1, . . . , k,

and the νj are all bounded as |z| → ∞, with estimate

(32) R
(n)
k (z;αn) = e−r

(n)
k |z| |z| 1

ωn
− 1
ω̃ O(1),

for the remainder as |z| → ∞ in the sector θ−nm1
≤ θ ≤ θ+

nm2
. The main difference

from the results in [37] is that here in (31) we have the extra factors ωj .

4.2. Level 1 hyperasymptotics. We now derive the Level 1 hyperasymptotic
expansion. In the integral representation (12) for this remainder we substitute (9)
into the T(m) function. We obtain the reexpansion

R
(n)
0 (z;αn) =

∑

m(n)

z(1−N(n)
0 )/ωn

2πiωm

N
(m)
1 −1∑

r=0

T(m)
r (α+

nm)F(1)


z;

N
(n)
0 +1
ωn

− r+1
ωm

ωn
|F+
nm|ei(π−θ+nm)




+R
(n)
1 (z;αn).

(33)
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The remainder R
(n)
1 (z;αn) depends on the number of terms N

(n)
0 and N

(m)
1 and can

be represented as

R
(n)
1 (z;αn) =

∑

m(n)

∑

`(m)

z(1−N(n)
0 )/ωn

(2πi)
2
ωmω`

×
(∫ ∞eiθ

+
nm

0

∫ ∞eiθ
+
nm`

0

e−F
+
nmu−F+

m`vu
N

(n)
0 +1

ωn
−N

(m)
1
ωm
−1v

N
(m)
1 +1

ωm
− 1
ω`
−1

(
z1/ωn − u1/ωn

) (
u1/ωm − v1/ωm

)

×T(`)(v;α+
nm`)dvdu

−
∫ ∞eiθ

+
nm

0

∫ ∞eiθ
+
nm`

+2πi

0

e−F
+
nmu−F+

m`vu
N

(n)
0 +1

ωn
−N

(m)
1
ωm
−1v

N
(m)
1 +1

ωm
− 1
ω`
−1

(
z1/ωn − u1/ωn

) (
u1/ωm − v1/ωm

)

×T(`)(v;α+
nm` + 1)dvdu

)
,

(34)

in which θ+
nm`(θ

+
nm) corresponds to the path P(n)(θ+

nm;α+
nm) and is defined similarly

as θ+
nm = θ+

nm(θ). The α+
nm` is the corresponding α+

nm, which is defined (8). In this
derivation we have used the observation (26).

We can estimate the remainder R
(n)
1 (z;αn) in a similar way as we did R

(n)
0 (z;αn),

and one finds

R
(n)
1 (z;αn) =

1

|z|
N

(n)
0
ωn

∑

m(n)

√(
N

(n)
0 −N (m)

1

)
N

(m)
1

×
Γ

(
N

(n)
0 +1
ωn

− N
(m)
1 +1
ωm

)
Γ

(
N

(m)
1 +1
ωm

)

|F+
nm|

N
(n)
0
ωn
−N

(m)
1
ωm

∑

`(m)

1

|F+
m`|

N
(m)
1
ωm

(
N

(m)
1

) 1
ω`

O(1).

Then

R
(n)
1 (z;αn) = e−η

(n)
0 |z|

∑

m(n)

(
η

(n)
0 − η(m)

1

|F+
nm|

)(η
(n)
0 −η

(m)
1 )|z|

×
∑

`(m)

|z|
1
ωn
− 1
ω`

(
η

(m)
1

|F+
m`|

)η(m)
1 |z|

O(1),

(35)

as |z| → ∞ in the sector θ−nm1
≤ θ ≤ θ+

nm2
. For fixed m and `, using an approach

similar to subsection 4.1 above, it is easy to show that the optimal number of terms

is obtained when η
(n)
0 − η(m)

1 = |F+
nm| and η

(m)
1 = |F+

m`|.
Rigorous bounds for Level 1 hyperterminants are derived in Appendix B.

4.3. Level 2 hyperasymptotics. The Level 2 hyperasymptotic expansion is
now derived by reexpanding the Level 1 expansion. Again we substitute (9) into the
T(`) functions on the right-hand side of (34) and obtain the reexpansion
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R
(n)
1 (z;αn) =

∑

m(n)

∑

`(m)

z(1−N(n)
0 )/ωn

(2πi)
2
ωmω`

N
(`)
2 −1∑

r=0




T(`)
r (α+

nm`)F
(2)


z;

N
(n)
0 +1
ωn

− N
(m)
1

ωm
,

ωn,

|F+
nm|ei(π−θ+nm),

N
(m)
1 +1
ωm

− r+1
ω`

ωm
|F+
m`|ei(π−θ+nm`)




−T(`)
r (α+

nm` + 1)F(2)


z;

N
(n)
0 +1
ωn

− N
(m)
1

ωm
,

ωn,

|F+
nm|ei(π−θ+nm),

N
(m)
1 +1
ωm

− r+1
ω`

ωm
|F+
m`|ei(−π−θ+nm`)








+R
(n)
2 (z;αn).

(36)

We also obtain an exact integral representation for the remainder, and this can be
used to obtain the estimate

R
(n)
2 (z;αn) = e−η

(n)
0 |z|

∑

m(n)

(
η

(n)
0 − η(m)

1

|F+
nm|

)(η
(n)
0 −η

(m)
1 )|z|∑

`(m)

(
η

(m)
1 − η(`)

2

|F+
m`|

)(η
(m)
1 −η(`)2 )|z|

(37)

×
∑

k(`)

|z|
1
ωn
− 1
ωk

(
η

(`)
2

|F+
`k|

)η(`)2 |z|

O(1),

as |z| → ∞ in the sector θ−nm1
≤ θ ≤ θ+

nm2
.

4.4. Level 3 hyperasymptotics. We can continue with this process and will
obtain at Level 3 the expansion

R
(n)
2 (z;αn) =

∑

m(n)

∑

`(m)

∑

k(`)

z(1−N(n)
0 )/ωn

(2πi)
3
ωmω`ωk

N
(k)
3 −1∑

r=0

T(k)

r (α+
nm`k)F(3)


z;

N
(n)
0 +1
ωn

− N
(m)
1

ωm
,

ωn,

|F+
nm|ei(π−θ+nm),

N
(m)
1 +1
ωm

− N
(`)
2

ω`
,

ωm,

|F+
m`|ei(π−θ+nm`),

N
(`)
2 +1
ω`

− r+1
ωk

ω`
|F+
`k|ei(π−θ+nm`k)




−T(k)
r (α+

nm`k + 1)F(3)


z;

N
(n)
0 +1
ωn

− N
(m)
1

ωm
,

ωn,

|F+
nm|ei(π−θ+nm),

N
(m)
1 +1
ωm

− N
(`)
2

ω`
,

ωm,

|F+
m`|ei(π−θ+nm`),

N
(`)
2 +1
ω`

− r+1
ωk

ω`
|F+
`k|ei(−π−θ+nm`k)




−T(k)
r (α+

nm`k + 1)F(3)


z;

N
(n)
0 +1
ωn

− N
(m)
1

ωm
,

ωn,

|F+
nm|ei(π−θ+nm),

N
(m)
1 +1
ωm

− N
(`)
2

ω`
,

ωm,

|F+
m`|ei(−π−θ+nm`),

N
(`)
2 +1
ω`

− r+1
ωk

ω`
|F+
`k|ei(−π−θ+nm`k)




+T(k)
r (α+

nm`k+2)F(3)


z;

N
(n)
0 +1
ωn

− N
(m)
1

ωm
,

ωn,

|F+
nm|ei(π−θ+nm),

N
(m)
1 +1
ωm

− N
(`)
2

ω`
,

ωm,

|F+
m`|ei(−π−θ+nm`),

N
(`)
2 +1
ω`

− r+1
ωk

ω`
|F+
`k|ei(−3π−θ+nm`k)







+R
(n)
3 (z;αn).

(38)
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An estimate for the remainder R
(n)
3 (z;αn), similar to those of (29), (35), and (37),

may be obtained, and further iterations to higher hyper-levels derived. We spare the
reader these details as the pattern should now be clear.

Initially, this expansion might seem overcomplicated. However, inspection of the
terms shows that once we have line 2 of (38) the details of the other lines can be easily
deduced. It follows from (6) and (11) that the coefficients follow from the coefficients
in line 2 by just multiplying by a simple exponential. The generalized hyperterminants
only differ by a change in the phases of two (bottom center and right) arguments.

4.5. Late coefficients and resurgence. The reexpansion (33) is suitable for

obtaining an asymptotic expansion for the late (large-N) coefficients T
(n)
N (αn). In-

deed, if we combine the identity

T
(n)
N (αn) = zN/ωn

(
R

(n)
N (z;αn)−R(n)

N+1(z;αn)
)

with (33), we deduce

T
(n)
N (αn) =

∑

m(n)

1

2πiωm

N
(m)
1 −1∑

r=0

T(m)
r (α+

nm)
eiθ+nm(N+1

ωn
− r+1
ωm

)Γ
(
N+1
ωn
− r+1

ωm

)

|F+
nm|

N+1
ωn
− r+1
ωm

+ R̃
(n)
1 (N ;αn).

(39)

Note that the coefficients in this expansion are the coefficients of the asymptotic
expansions of integrals over doubly infinite contours passing through the adjacent
saddles, a manifestation of “resurgence.” The form (39) is of a generalized sum of
factorials over powers. Note the careful representation of the phases of the singulants.
Various special cases of (39) were derived, using nonrigorous methods, by Dingle (see
[17, Chap. VII], including exercises). See also [7], [23].

When we eliminate |z| in the definitions (31) we obtain for the optimal numbers
of terms in (39) that

N
(m)
1 =

η
(m)
1 ωm

η
(n)
0 ωn

N +O(1),

as N →∞.
In the swallowtail example below we shall illustrate how this result can be used

to determine the adjacency of the saddles algebraically rather than geometrically.

5. Error bounds. In this section we derive rigorous, novel, and sharp error

bounds for the exact remainder R
(n)
N (z;αn) of asymptotic expansions of the form (9)

derived from integrals of the class (1).
The remainder term (20) can be written as

R
(n)
N (z;αn)

=
ωn

2πizN/ωn

∑

m(n)

∫

C (m)(θ+nm)

g(t)

(f(t)− fn)(N+1)/ωn

∫ ∞e
2πiαn
ωn

0

e−s
ωn
sN

1− s
(z(f(t)−fn))1/ωn

dsdt

=
e2πiN+1

ωn
αn

2πizN/ωn

∑

m(n)

∫

C (m)(θ+nm)

g(t)

(f(t)− fn)(N+1)/ωn

∫ ∞

0

e−uu
N+1
ωn
−1

1 +
(
ueπi(2αn−ωn)

z(f(t)−fn)

)1/ωn
dudt,

(40)
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where C (m)(θ+
nm) := P(m)(θ+

nm, α
+
nm) ∪ −P(m)(θ+

nm, α
+
nm + 1). We note that

arg

(
ueπi(2αn−ωn)

z(f(t)− fn)

)
= 2παn − πωn − θ − (−θ+

nm + 2παn)

= −πωn − θ + θ+
nm > −πωn

and

arg

(
ueπi(2αn−ωn)

z(f(t)− fn)

)
= 2παn − πωn − θ − (−θ+

nm + 2παn) = −πωn − θ + θ+
nm

= −πωn − θ + θ−nm + 2πωn = πωn − θ + θ−nm < πωn

whenever t ∈ C (m)(θ+
nm). Thus,

∣∣∣∣arg

(
ueπi(2αn−ωn)

z(f(t)− fn)

)∣∣∣∣ < πωn.

Consequently, the u-integral may be expressed in terms of the generalized first-level
hyperterminant as

∫ ∞

0

e−uu
N+1
ωn
−1

1 +
(
ueπi(2αn−ωn)

z(f(t)−fn)

)1/ωn
du

= e−π
N+1
ωn

i
(

eπi(ωn−2αn)z(f(t)− fn)
) 1
ωn

F(1)


eπi(ωn−2αn)z(f(t)− fn);

N+1
ωn
ωn
1


.

Inserting this expression into (40), we obtain the following alternative representation

of R
(n)
N (z;αn):

R
(n)
N (z;αn) =

e(2αn−1)πiN+1
ωn

2πizN/ωn

∑

m(n)

∫

C (m)(θ+nm)

g(t)

(f(t)− fn)(N+1)/ωn

×
(

eπi(ωn−2αn)z(f(t)− fn)
) 1
ωn

F(1)


eπi(ωn−2αn)z(f(t)− fn);

N+1
ωn
ωn
1


dt.

(41)

This representation is valid when θ−nm1
− π

2 < θ < θ+
nm2

+ π
2 (cf. (42) below). We may

then bound the t integral as follows:

∣∣∣R(n)
N (z;αn)

∣∣∣ ≤
Γ
(
N+1
ωn

)

2π |z|N/ωn
∑

m(n)

∫

C (m)(θ+nm)

∣∣∣∣
g(t)

(f(t)− fn)(N+1)/ωn
dt

∣∣∣∣

× sup
r≥1

∣∣∣∣∣∣∣

(
z
∣∣F+
nm

∣∣e(πωn−θ+nm)ir
) 1
ωn

Γ
(
N+1
ωn

) F(1)


z
∣∣F+
nm

∣∣e(πωn−θ+nm)ir;

N+1
ωn
ωn
1




∣∣∣∣∣∣∣
.

A further simplification of this bound is possible by employing the estimates for the
generalized first-level hyperterminant given in Appendix B. In this way, we obtain



GLOBALLY EXACT ASYMPTOTICS FOR INTEGRALS 2161

∣∣∣R(n)
N (z;αn)

∣∣∣ ≤
Γ
(
N+1
ωn

)

2π |z|N/ωn
∑

m(n)

∫

C (m)(θ+nm)

∣∣∣∣
g(t)

(f(t)− fn)(N+1)/ωn
dt

∣∣∣∣

×





1 if |θ − θ+
nm + πωn| ≤ π

2ωn,

min

(∣∣∣csc
(
θ−θ+nm
ωn

)∣∣∣ , ωn
√

e
(
N+1
ωn

+ 1
2

))
if π

2ωn < |θ − θ+
nm + πωn| ≤ πωn,

√
2πωn(N+1)

|cos(θ−θ+nm)|N+1
ωn

+ ωn

√
e
(
N+1
ωn

+ 1
2

)
if πωn < |θ − θ+

nm + πωn| < πωn + π
2 .

(42)

In the case of linear endpoint (ωn = 1), the quantity
√

e(N+
3
2 ) in (42) can be replaced

by (51) with M = N + 1.
In (10) we may expand the loop contour of integration around the critical point

t(n) across the domain ∆(n) to obtain a representation of the asymptotic coefficients
in terms of integrals over the contours C (m)(θ+

nm) as follows:

(43)

∣∣∣∣∣
T

(n)
N (αn)

zN/ωn

∣∣∣∣∣ =
Γ
(
N+1
ωn

)

2π |z|N/ωn

∣∣∣∣∣∣
∑

m(n)

∫

C (m)(θ+nm)

g(t)

(f(t)− fn)(N+1)/ωn
dt

∣∣∣∣∣∣
.

This representation illustrates the close relation between the form of the bound (42)
and the absolute value of the first neglected term. The modulus bars are inside the
integral in (42), whereas they are at the outside of the integral in (43). However,
in (43) we integrate along steepest descent paths C (m)(θ+

nm) on which f(t) − fn is
monotonically decreasing. This means that only when g(t) is highly oscillatory will
the integral in (42) be considerably larger than the integral in (43). The larger the
value of N , the smaller the difference in size of the two integrals.

Figure 4, for our first example below, clearly demonstrates the asymptotic prop-
erty that sizes of the exact terms and the corresponding remainders are approximately
the same. This follows from the factor 1 in the second line of (42). In Figure 6, which
is for our second example, the remainders are considerably larger than the terms.
That example illustrates the effect of the additional factor ωn

√
e(N+1

ωn
+ 1

2 ) in the third

line of (42) pertaining to the parameters θ, ωn, and θ+
nm of that particular calculation.

5.1. Bounds for simple saddles. If t(n) is a simple saddle, then the integral
over the double infinite contour through t(n) can be expanded as

T(n)(z, 0) =

N−1∑

r=0

T
(n)
2r (0)

zr
+ R

(n)
N (z, 0)

with R
(n)
N (z, 0) = R

(n)
2N (z; 0)−R(n)

2N (z; 1). The estimation of R
(n)
N (z, 0) was considered

by Boyd [12] in the case that all the adjacent saddles are simple. Employing (41) and
simplifying the result, we obtain

R
(n)
N (z, 0) =

(−1)N+1

πzN

∑

m(n)

∫

C (m)(θ+nm)

g(t)

(f(t)− fn)N+ 1
2

× eπiz(f(t)− fn)F (1)

(
eπiz(f(t)− fn);

N + 1
2

1

)
dt.
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This representation is valid when θ−nm1
− π

2 < θ < θ+
nm2

+ π
2 . We may then bound the

t integral as follows:

∣∣∣R(n)
N (z, 0)

∣∣∣ ≤
Γ
(
N + 1

2

)

π |z|N
∑

m(n)

∫

C (m)(θ+nm)

∣∣∣∣
g(t)

(f(t)− fn)N+ 1
2

dt

∣∣∣∣

× sup
r≥1

∣∣∣∣∣
z|F+

nm|e(π−θ+nm)ir

Γ
(
N + 1

2

) F (1)

(
z|F+

nm|e(π−θ+nm)ir;
N + 1

2
1

)∣∣∣∣∣ .

A further simplification of this bound is possible by applying the estimates for the
generalized first-level hyperterminant given in Appendix B. In this way, we deduce

∣∣∣R(n)
N (z, 0)

∣∣∣ ≤
Γ
(
N + 1

2

)

π |z|N
∑

m(n)

∫

C (m)(θ+nm)

∣∣∣∣
g(t)

(f(t)− fn)N+ 1
2

dt

∣∣∣∣

×





1 if |θ − θ+
nm + π| ≤ π

2 ,

min(| csc(θ − θ+
nm)|,

√
e(N + 1)) if π

2 < |θ − θ+
nm + π| ≤ π,√

2π(N+ 1
2 )

|cos(θ−θ+nm)|N+1
2

+
√

e(N + 1) if π < |θ − θ+
nm + π| < 3π

2 .

(44)

The quantity
√

e(N + 1) in this bound can be replaced by (51) with M = N + 1
2 .

The bound (44) improves Boyd’s [12] results in three ways. First, it is more general
in that the adjacent saddles need not be simple. Second, (44) extends the range of
validity of the bound to include π < |θ−θ+

nm+π| < 3π
2 . Third, the new result sharpens

the bound with a factor
√

e(N + 1) in place of Boyd’s larger 2
√
N factor, and for this

larger factor to hold he even requires the extra assumption N ≥ cot2( 1
2 (θ+

nm2
−θ−nm1

)).

6. Example 1: Pearcey on the cusp. A rescaled Pearcey function (compare
[18, sect. 36.2]) is defined by the integral

(45) Ψ2(x, y; z) =

∫ +∞

−∞
e−zf(t;x,y)dt, f(t;x, y) = −i

(
t4 + yt2 + xt

)
.

Due to the polynomial nature of the exponent function and the ability to scale t,
z, with x and y, without loss of generality the modulus of the large parameter z
may be set to 1. The function represents the wavefield in the neighborhood of the
canonically stable cusp catastrophe [5] and occurs commonly in two-dimensional linear
wave problems.

The integrand possesses three saddle points t(j), j = 1, 2, 3, satisfying

f ′(t(j);x, y) = 4
(
t(j)
)3

+ 2yt(j) + x = 0.

In [7] a hyperasymptotic expansion of the Pearcey function was calculated in the case
of three distinct saddle points. Here we have extended that analysis to cover the case
where two of the saddles have coalesced.

Two of the three saddle points coalesce on the cusp-shaped caustic given by

f ′(t;x, y) = f ′′(t;x, y) = 0 ⇒ 27x2 = −8y3, (x, y) 6= 0;

see Figure 3(a). (At the origin (x, y) = (0, 0), all three saddles coalesce, where the
integral reduces to an exact explicit representation [18, eqn. 36.2.15].)

http://dlmf.nist.gov/36.2
http://dlmf.nist.gov/36.2.E15
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Fig. 3. (a) Location of the parameter point (x, y) = (2
√

2,−3) at which we evaluate the integral
(45) relative to the caustic of the Pearcey function, satisfying 27x2 = −8y3. (b) The steepest
descent paths P(1)(−π

4
, 0), P(1)(−π

4
, 1) in the complex t-plane emerging from the simple saddle

t(1) (ω1 = 2) and traveling to labeled valleys Vj , j = 2, 3, at infinity. Also shown is the degenerate

saddle t(2) (ω2 = 3). (c) The steepest descent paths P(2)(π
2
, α2), α2 = 0, 1, 2, emerging from

t(2), as a Stokes phenomenon occurs between t(1) and t(2) when θ+12 = π
2

. The bold lines are the

steepest paths that are used in the Level 1 hyperasymptotic expansion about t(1) (33), (6). (d) The
steepest descent paths P(2)( 11

2
π, α2), α2 = 0, 1, 2, emerging from t(2), as a Stokes phenomenon

occurs between t(2) and t(1) when θ+121 = 11
2
π. The bold lines are the steepest paths that are used in

the Level 2 hyperasymptotic expansion about t(1) (36), (6). (Or Level 1 hyperasymptotic expansion
about t(2).)

We shall choose x = 2
√

2, y = −3. There is a simple saddle at t(1) = −
√

2 and
a double saddle denoted by t(2) = 1/

√
2. The asymptotic expansion about t(1) has

ω1 = 2 and is controlled by the double saddle at t(2) with ω2 = 3, and vice versa.
We shall calculate a hyperasymptotic expansion about t(1). We take z = eiθ and

chose θ = −π4 . The steepest paths are denoted by P(1)(−π4 , 0) and P(1)(−π4 , 1); see
Figure 3(b).

In the calculations below we will use (8) many times and observe that in this
case arg(f (ω1)(t(1))) = arg(f (ω2)(t(2))) = −π2 , and in Figures 3(c), (d) for the curve

P(2)(π2 , 1) we have ϕ = 2
3π and for curve P(1)( 11

2 π, 1) we have ϕ = −π2 .
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The normalized integrals that we consider are

T (1)(z;α1) = 2z1/2

∫

P(1)(−π4 ,α1)

ezi(t
4−3t2+2

√
2t+6)dt, α1 = 0, 1,

which posses the asymptotic expansions

(46) T (1)(z;α1) =

N
(1)
0 −1∑

r=0

T
(1)
r (α1)

zr/2
+R

(1)
1 (z;α1),

with coefficients

T (1)
r (0) = e

π
4 (r+1)i Γ( r+1

2 )

Γ(r + 1)


 dr

dtr

(
(t+
√

2)2

t4 − 3t2 + 2
√

2t+ 6

)(r+1)/2


t=−
√

2

= e
π
4 (r+1)i Γ( r+1

2 )

Γ(r + 1)

[
dr

dtr

(
1

t2 − 4
√

2t+ 9

)(r+1)/2
]

t=0

=
e
π
4 (r+1)i

32r+1
Γ

(
r + 1

2

)
C

( r+1
2 )

r

(
2
√

2

3

)
,

(47)

T
(1)
r (α1) = e2πiα1(r+1)/2T

(1)
r (0). In deriving the coefficients, in the penultimate line

of (47) we have recognized the presence of the generating function [18, eqn. 18.12.4]

for the ultraspherical polynomials C
(p)
r (w).

We will also need the coefficients of the asymptotic expansions of the integrals

T (2)(z;α2) = 3z1/3

∫

P(2)(−π4 ,α2)

ezi(t
4−3t2+2

√
2t− 3

4 )dt, α2 = 0, 1, 2,

which possess the asymptotic expansions

T (2)(z;α2) =

N
(1)
0 −1∑

r=0

T
(2)
r (α2)

zr/3
+R

(2)
0 (z;α2),

with coefficients

T (2)
r (0) = e

π
6 (r+1)i Γ( r+1

3 )

Γ(r + 1)


 dr

dtr

(
(t− 1/

√
2)3

t4 − 3t2 + 2
√

2t− 3/4

)(r+1)/3


t=1/

√
2

= e
π
6 (r+1)i Γ( r+1

3 )

Γ(r + 1)

[
dr

dtr

(
1

t+ 2
√

2

)(r+1)/3
]

t=0

=
e
π
6 (r+1)i

22r+1/2
Γ

(
r + 1

3

)(− r+1
3

r

)
,

and T
(2)
r (α2) = e2πiα2(r+1)/3T

(2)
r (0).

For the singulant on the caustic we have

∣∣F+
12

∣∣ =
∣∣f(t(2); 2

√
2,−3)− f(t(1); 2

√
2,−3)

∣∣ =
27

4
.

The effective asymptotic parameter in the expansion is thus |zF+
12| = 6.75, and hence

the optimal number of terms in (46) is N
(1)
0 = [|zF+

12|ω1] = 13.

http://dlmf.nist.gov/18.12.E4
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Since θ = −π4 it follows that for the integral T (1)(z; 0), the corresponding θ+
12 =

π
2 . The corresponding contour of integration emanating from adjacent saddle t(2) is

P(2)(π2 , 1) (see Figure 3(c)), and hence, the Level 1 reexpansion is of the form

R
(1)
0 (z;αn) =

z(1−N(1)
0 )/2

6πi

N
(2)
1 −1∑

r=0

T(2)
r (1)F(1)


z;

N
(1)
0 +1

2 − r+1
3

2
27
4 e

π
2 i


+R

(1)
1 (z; 0).

The optimal numbers of terms at Level 1 are N
(1)
0 = [2|zF+

12|ω1] = 27 and N
(2)
1 =

[|zF+
12|ω2] = 20.
With θ+

12 = π
2 and contour P(2)(π2 , 1) it follows that θ+

121 = θ+
12 + 5π = 11

2 π,

and the corresponding contour of integration emanating from adjacent saddle t(1) is
P(1)( 11

2 π, 2) (see Figure 3(d)), and hence, the Level 2 reexpansion is of the form

R
(1)
1 (z; 0) =

N
(1)
2 −1∑

r=0

z(1−N(1)
0 )/2

(2πi)
2

6

×


T(1)

r (2)F(2)


z;

N
(1)
0 +1

2 − N
(2)
1

3 ,
2,

27
4 e

π
2 i,

N
(2)
1 +1

3 − r+1
2

3
27
4 e−

9
2πi




−T(1)
r (3)F(2)


z;

N
(1)
0 +1

2 − N
(2)
1

3 ,
2,

27
4 e

π
2 i,

N
(2)
1 +1

3 − r+1
2

3
27
4 e−

13
2 πi







+R
(1)
2 (z; 0).

The optimal numbers of terms at Level 2 are given in Table 1.
Finally, with θ+

121 = 11
2 π and contour P(1)( 11

2 π, 2) it follows that θ+
1212 = θ+

121 +

3π = 17
2 π, α+

1212 = 5, and the optimal numbers in (38) are again given in Table 1.
When we compute our integral numerically with high precision for these values

of x, y, and z we obtain

T (1)(z, 0) = 0.37277007370182291370 + 0.47493131741141216950i.

The numerics of the hyperasymptotic approximations are given in Table 1, and for
the Level 3 expansion we display the terms and errors in Figure 4. We observe in this

Table 1
The numbers of terms in each series of the hyperasymptotic expansion that are required to

minimize overall the absolute error for the (1 → 2) Pearcey example derived from (31). Note
that each row corresponds to a decision to stop the reexpansion at that stage. Hence the table
row corresponding to Level 2 corresponds to the truncations required at each level up to two, after
deciding to stop after two reexpansions of the remainder. Note that all the truncations change with
the decision to stop at a particular level.

Level N
(1)
0 N

(2)
1 N

(1)
2 N

(2)
3 Error

0 13 1.9× 10−4

1 27 20 9.5× 10−9

2 40 40 13 3.8× 10−14

3 54 60 27 20 9.0× 10−17



2166 BENNETT, HOWLS, NEMES, AND OLDE DAALHUIS

10�16

10�10

10�4

10+2

1

1

Fig. 4. For Example 1: The modulus of the nth term in the Level 3 hyperasymptotic expan-
sion (blue dots), and the modulus of the remainder after taking n terms in the approximation (red
crosses).

figure that the remainders in the original Poincaré expansions are of the same size as
the first neglected terms, as predicted in section 5. In fact at all levels the remainders
are of a similar size as the first neglected terms. Occasionally, the remainders are
considerably smaller.

In this section we derived hyperasymptotic approximations for T (1)(z, 0). Note
that we can repeat the calculation for the integral T (1)(z, 1). The only changes in
the reexpansions are that all the θ+ are increased by 2π and all the α+ are increased
by 1. The optimal numbers of terms will remain the same.

7. Example 2: Higher order saddles. In the second main example we take
an integral of the form (1), but now with g(t) ≡ 1 and

f(t) = 15
28 t

7 − 5t6 + 18t5 − 30t4 + 20t3 =⇒ f ′(t) = 15
4 t

2 (t− 2)
4
.

The saddle points are t(1) = 0 and t(2) = 2, with ω1 = 3 and ω2 = 5. Hence
this example is an example of the hyperasymptotic method when both saddles are
degenerate.

Once again, due to the scaling properties of the polynomial f(t) we may take
z = eiθ and also choose θ = −π4 . The steepest descent paths are displayed in Figure
5(a). For the coefficients in the asymptotic expansions we have

T (1)
r (0) =

Γ( r+1
3 )

Γ(r + 1)

[
dr

dtr

(
1

15
28 t

4 − 5t3 + 18t2 − 30t+ 20

)(r+1)/3
]

t=0

,

T (2)
r (0) =

Γ( r+1
5 )

Γ(r + 1)

[
dr

dtr

(
(t− 2)5

15
28 t

7 − 5t6 + 18t5 − 30t4 + 20t3 − 32
7

)(r+1)/5
]

t=2

=
Γ( r+1

5 )

Γ(r + 1)

[
dr

dtr

(
1

15
28 t

2 + 5
2 t+ 3

)(r+1)/5
]

t=0

=
(5/28)

r/2

3(r+1)/5
Γ

(
r + 1

5

)
C

( r+1
5 )

r

(
−
√

35

36

)
,

and the other coefficients are defined via T
(m)
r (αm) = e2πiαm(r+1)/ωmT

(m)
r (0).
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P(1)(�⇡
4 ; 0)

(a)

-1 0 1 2 3 4

-2

-1

0

1

2

Re(t)

Im(t)

t(1) t(2)

P(2)(0; 2)

P(2)(0; 3)

P(1)(0; 0)

(b)

-1 0 1 2 3 4

-2

-1

0

1

2

Re(t)

Im(t)

t(1) t(2)

P(2)(9⇡; 2)

P(1)(9⇡; 2)

P(1)(9⇡; 1)

(c)

Fig. 5. (a) Steepest descent paths in the complex t-plane passing through the third order saddle
t(1) (ω1 = 3) and the fifth order saddle t(2) (ω2 = 5) between labeled valleys Vj , j = 1, 2, . . . , 6,

at infinity for θ = −π
4

. The path of integration chosen is P(1)(−π
4
, 0) which runs between t(1)

and V3. (b) The rotated steepest descent path P(1)(0, 0) emerging from t(1) connects with t(2)

at the Stokes phenomenon θ+12 = 0. The bold lines are the steepest paths that are used in the

Level 1 hyperasymptotic expansion about t(1) (33), (6). (c) The steepest descent path P(2)(9π, α2),
emerging from t(2) connects with t(1) at the Stokes phenomenon θ+121 = 9π. The bold lines are the

steepest paths that are used in the Level 2 hyperasymptotic expansion about t(1) (36), (6) (or Level
1 hyperasymptotic expansion about t(2)).

For the singulant we have

∣∣F+
12

∣∣ = |f(2)− f(0)| = 32

7
.

The effective asymptotic parameter in the expansion is thus |zF+
12| = 32

7 , and hence
the optimal number of terms in

(48) T (1)(z;α1) =

N
(1)
0 −1∑

r=0

T
(1)
r (α1)

zr/3
+R

(1)
1 (z;α1)

is N
(1)
0 = [|zF+

12|ω1] = 13.
We will focus again on T (1)(z; 0) and give only the main details, which are

θ+
12 = 0, θ+

121 = 9π, θ+
1212 = 14π, α+

12 = 2, α+
121 = 4, α+

1212 = 9.

When we compute this integral numerically for this value of z with high precision, we
obtain

T (1)(z, 0) = 1.244081553113296 + 0.145693991003805i.

The numerics of the hyperasymptotic approximations are given in Table 2, and for
the Level 2 expansion we display the terms and errors in Figure 6. We observe that
this time the remainders in the original Poincaré expansion are considerably larger
than the first neglected terms, again, as predicted in section 5. However, in the higher
levels the remainders are again of a similar size as the first neglected terms.

8. Example 3: Swallowtail and the adjacency of the saddles. In this ex-
ample we apply hyperasymptotic techniques to determine the relative adjacency, and
hence which saddles would contribute to the exact remainder terms of an expansion,
using algebraic, rather than geometric means. We choose to illustrate this using the
swallowtail integral [18, sect. 36.2].

http://dlmf.nist.gov/36.2
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Table 2
The numbers of terms required to minimize the absolute error at each level of the hyperasymp-

totic reexpansions for the (3→ 5) degenerate example.

Level N
(1)
0 N

(2)
1 N

(1)
2 N

(1)
3 Error

0 13 6.9× 10−3

1 27 22 3.7× 10−7

2 41 45 13 2.0× 10−10

3 54 68 27 22 1.1× 10−13

10�9

10�6

10�3

1

2

Fig. 6. For Example 2: The modulus of the nth term in the Level 2 hyperasymptotic expan-
sion (blue dots), and the modulus of the remainder after taking n terms in the approximation (red
crosses).

For the swallowtail integral the bifurcation set is given in [18, eqn. 36.4.7] and
with the notation in this reference we take t = 1

2 i − 1
4 and z = 5

6 i − 25
8 . (The choice

of complex parameters is to force one of the saddles to be nonadjacent; see below.)
The resulting semi-infinite contour integral that we will study is again integral

(1), but now with g(t) ≡ 1 and

f(t) = t5 + 5
24 (4i− 15) t3 + 45

16 (2i− 1) t2 + 5
256 (101 + 168i) t.

The saddle points are t(1) = 7
4− 1

2 i, t(2) = − 5
4− 1

2 i, and t(3) = 1
2 i− 1

4 , with ω1 = ω2 = 2
and ω3 = 3. Once again, the polynomial form of f(t) means that we may take z = eiθ

with the choice of θ = −π4 . To obtain the Level 1 hyperasymptotic approximation we
find that

|F+
12| =

9
√

109

4
, |F+

13| =
125
√

5

12
, θ+

12 = 3π − arctan 10
3 , θ+

13 = 3π − arctan 278
29 .

It follows that α+
12 = 1 and α+

13 = 0. We write the Level 1 hyperasymptotic approxi-
mation as

T (1)(z; 0) =

N−1∑

r=0

T
(n)
r (0)

zr/2
+K12

z(1−N)/2

4πi

N
(2)
1 −1∑

r=0

T(2)
r (1)F(1)


z;

N+1
2 − r+1

2
2

|F+
12|ei(π−θ+12)




+K13
z(1−N)/2

6πi

N
(3)
1 −1∑

r=0

T(3)
r (0)F(1)


z;

N+1
2 − r+1

3
2

|F+
13|ei(π−θ+13)


+R

(1)
1 (z; 0).

(49)

http://dlmf.nist.gov/36.4.E7
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Note that we have here introduced unknown constant prefactors Knm into the ex-
pression for the Level 1 hyperasymptotic expansion (33). Each constant will be equal
to 1 if the saddles t(n) and t(m) are adjacent and zero otherwise. We could determine
these constants by examining how the steepest descent contours deform as θ is varied.
However, here we illustrate their algebraic calculation. These constants appear in the
late term expansion (39) (which also follows from (49)) as follows:

T
(1)
N (0) =

K12

4πi

N
(2)
1 −1∑

r=0

T(2)
r (1)

eiθ+12(
N+1

2 −
r+1
2 )Γ

(
N+1

2 − r+1
2

)

|F+
12|

N+1
2 −

r+1
2

+
K13

6πi

N
(3)
1 −1∑

r=0

T(3)
r (0)

eiθ+13(
N+1

2 −
r+1
3 )Γ

(
N+1

2 − r+1
3

)

|F+
13|

N+1
2 −

r+1
3

+ R̃
(1)
1 (N ; 0).

In this (asymptotic) expression, everything is known except K12 and K13. Hence if

we take two high orders N = 50 and N = 51 and set R̃
(1)
1 (N ; 0) = 0 we obtain two

linear algebraic equations with two unknowns. The optimal numbers of terms on the

right-hand side may be calculated from (31) and are N
(2)
1 = 7 and N

(3)
1 = 11. Hence

we can solve this simultaneous set of equations to obtain numerical approximations
for K12 and K13 as

K12 = −0.00123 + 0.00095i, K13 = 1.00076 + 0.00060i.

Given that the Knm are quantized as integers, within the limits of the errors at this
stage, we may infer that K12 = 0 and K13 = 1.

Hence we may assert that t(3) is adjacent to t(1), but t(2) is not. This may be
confirmed geometrically by consideration of the steepest paths.

9. Discussion. The main results of this paper are the exact remainder terms
(12), (26), the hyperasymptotic reexpansions (33), (36), (38), with novel hyperter-
minants (27), the asymptotic form for the late coefficients (39), and the improved
error bounds for the remainder of an asymptotic expansion involving saddle points
(42), degenerate or otherwise. We have illustrated the application of these results to
the better-than-exponential asymptotic expansions and calculations of integrals with
semi-infinite contours and degenerate saddles.

The results of this paper are more widely applicable, for example, to broadening
the class of differential equations for which a hyperasymptotic expansion may be
derived using a Borel transform approach. We observe that all the examples in this
paper are of the form

w(z) =

∫ ∞

t(1)
e−zf(t)g(t)dt,

in which f(t) and g(t) are polynomials in t. (In fact g(t) ≡ 1.) Using computer alge-
bra, it is not difficult to construct the corresponding inhomogeneous linear ordinary
differential equations for w(z):

(50)

P∑

p=0

ap(z)w
(p)(z) = h(z),

in which the ap(z)’s and h(z) are polynomials.
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For our second example with (ω1, ω2) = (3, 5) we find P = 6, the ap(z)’s are
polynomials of order 9, and h(z) is of order 6. Integrals involving combinations pairs
of the contours P(n) are solutions of the homogeneous version of (50).

In that example, for the first saddle point we have ω1 = 3, and hence, there are
2 independent double infinite integrals through this saddle, and for the second saddle
point we have ω2 = 5, and hence, there are 4 independent double infinite integrals
through the second saddle. Thus, P = 2 + 4.

The differential equation (50) has an irregular singularity of rank one at infinity,
but we are dealing with the exceptional cases. That is, the solutions all have initial
terms proportional to exp(λpz)z

µp but now with coinciding λp’s. For example, in
our second example we have two distinct solutions with λ1 = λ2 = 0 and four other
different solutions but each with λ3 = λ4 = λ5 = λ6 = 32

7 .
Note also that h(z) in (50) is a polynomial in z. Hence we should expect a

particular integral of (50) to involve only integer powers of z. However, the particular
integral w(z) = z−1/3T (1)(z; 0) has, according to (48), an asymptotic expansion in
inverse powers of z1/3. The resolution of this paradox is that the combination of such
solutions

w(z) =
z−1/3

3

(
T (1)(z; 0) + T (1)(z; 1) + T (1)(z; 2)

)

is itself a particular integral but contains only integer powers. This solution involves
a star-shaped contour of integration, typically not studied if the problem is posed in
terms of integrals alone.

We also remark that differential equations of the form (50) will give us recurrence
relations for the coefficients in the asymptotic expansions, and these are, of course,
much more efficient than our formula (11).

Appendix A. Computation of the generalized hyperterminants. In this
appendix we relate the generalized hyperterminants (27) to the simpler ones given in
[38] and thereby develop an efficient method to calculate them.

First, the following theorem improves on the main theorem in [38].

Theorem A.1. For k ≥ 0, | arg z + arg σ0| < π and 0 < arg σj − arg σj−1 < 2π,
j ≥ 1, Re(M1) > 2 and Re(Mj) > 1, j 6= 1, we have the convergent expansion

F (k+1)

(
z;

M0,
σ0,

. . . ,

. . . ,
Mk

σk

)
=

∞∑

n=0

A(k+1)

(
n;

M0,
σ0,

. . . ,

. . . ,
Mk

σk

)
U(n+1, 2−M0, zσ0),

where

A(1)

(
n;

M0

σ0

)
= δn,0eM0πiσ1−M0

0 Γ(M0),

A(2)

(
n;

M0,
σ0,

M1

σ1

)
= −eπM0iσ2−M0−M1

0

(
e−πiσ1

σ0

)n−M1+1

Γ(M0 + n)Γ(M1)

× n!Γ(M0 +M1 − 1)

Γ(M0 +M1 + n)
2F1

(
M0 + n, n+ 1

M0 +M1 + n
; 1 +

σ1

σ0

)
,
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and when k ≥ 1,

A(k+1)

(
n;

M0,
σ0,

. . . ,

. . . ,
Mk

σk

)
= eπM0iσ1−M0

0

(
e−πiσ1

σ0

)n
Γ(M0 + n)Γ(M0 +M1 − 1)

×
∞∑

m=0

(n+m)! A(k)

(
m;

M1,
σ1,

. . . ,

. . . ,
Mk

σk

)

m!Γ(M0 +M1 + n+m)
2F1

(
M0 + n, n+m+ 1

M0 +M1 + n+m
; 1 +

σ1

σ0

)
.

Here 2F1 stands for the hypergeometric function [18, sect. 15.2].

The proof of this theorem is very similar to the one for Theorem 2 in [38]. The
main difference here is that we must be more careful with the definitions of the phases
and use the restrictions 0 < arg σj − arg σj−1 < 2π. This removes any phase-related
ambiguity in the calculation of the hyperterminants.

Note that the representation of A(k+1) is a convergent infinite series. In a practical
implementation it is necessary to truncate the series appropriately. In our numerical
examples we took 40 terms of the convergent series and checked, by taking successively
more terms, that this truncation gave us sufficient correct digits in the evaluation of
the corresponding hyperterminants.

In the theorem above we also require, for example, that 0 < arg σ1− arg σ0 < 2π.
In fact, one often encounters the case σ0 = σ1 and some care is then needed to evaluate
the 2F1. Numerical methods to evaluate the (confluent) hypergeometric function may
be found in [21].

With these phase clarifications, the generalized hyperterminants (27) can be ex-
pressed in terms of the ones above as follows.

First, by rationalization, we have

F(k+1)


z;

M0,
ω0,
σ0,

. . . ,

. . . ,

. . . ,

Mk

ωk
σk




=

ω0−1∑

`0=0

z1−(`0+1)/ω0

∫ [π−arg σ0]

0

· · ·
∫ [π−arg σk]

0

k∏

j=1

eσ0t0t
M0+`0/ω0−1
0

z − t0

×
ωj−1∑

`j=0

eσjtj t
1−(`j+1)/ωj
j−1 t

Mj+`j/ωj−1
j

tj−1 − tj
dtk · · · dt0

=

ω0−1∑

`0=0

· · ·
ωk−1∑

`k=0

z1−(`0+1)/ω0

∫ [π−arg σ0]

0

· · ·
∫ [π−arg σk]

0

eσ0t0t
M0+`0/ω0−(`1+1)/ω1

0

z − t0

×



k−1∏

j=1

eσjtj t
Mj+`j/ωj−(`j+1+1)/ωj+1

j

tj−1 − tj


 eσktkt

Mk+`k/ωk−1
k

tk−1 − tk
dtk · · · dt0.

We make the changes of integration variables from t0 to s0 and from tj to sj (1 ≤ j ≤
k) via t0 = s0e2πγ0i and tj = sje

2π(γj−1+γj)i. Here, the integers γ0 and γj are chosen
so that |arg z + arg σ0 + 2πγ0| < π and 0 < arg σj − arg σj−1 + 2πγj < 2π.

http://dlmf.nist.gov/15.2
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Thus, we can finally relate the F(k+1) to the F (k+1) with the result:

F(k+1)


z;

M0,
ω0,
σ0,

. . . ,

. . . ,

. . . ,

Mk

ωk
σk




=

ω0−1∑

`0=0

· · ·
ωk−1∑

`k=0

z1−(`0+1)/ω0e
2πi
(
γk−1(Mk−1+Mk+

`k−1
ωk−1

− 1
ωk

)+γk(Mk+
`k
ωk

)
)

×
k−2∏

j=0

e
2πiγj(Mj+Mj+1+

`j
ωj
− 1
ωj+1

− `j+2+1

ωj+2
)

×
∫ [π−arg σ0−2πγ0]

0

· · ·
∫ [π−arg σk−2π(γk−1+γk)]

0

eσ0s0+···+σksksM0+`0/ω0−(`1+1)/ω1

0

z − s0

×



k−1∏

j=1

s
Mj+`j/ωj−(`j+1+1)/ωj+1

j

sj−1 − sj


 s

Mk+`k/ωk−1
k

sk−1 − sk
dsk · · · ds0

=

ω0−1∑

`0=0

· · ·
ωk−1∑

`k=0

z1−(`0+1)/ω0e
2πi
(
γk−1(Mk−1+Mk+

`k−1
ωk−1

− 1
ωk

)+γk(Mk+
`k
ωk

)
)

×
k−2∏

j=0

e
2πiγj(Mj+Mj+1+

`j
ωj
− 1
ωj+1

− `j+2+1

ωj+2
)

× F (k+1)

(
z;
M0 + `0

ω0
− `1+1

ω1
+ 1,

σ0e2πγ0i,

M1 + `1
ω1
− `2+1

ω2
+ 1,

σ1e2π(γ0+γ1)i,

. . . ,

. . . ,

Mk + `k
ωk

σke2π(γk−1+γk)i

)
.

Appendix B. Bounds for the generalized first-level hyperterminant.

Proposition B.1. For any positive real M and positive integer ω, we have

∣∣∣∣∣∣
z1/ω

Γ(M)
F(1)


z;

M
ω
1



∣∣∣∣∣∣
≤





1 if |θ| ≤ π
2ω,

min
(∣∣csc

(
θ
ω

)∣∣ , ω
√

e
(
M + 1

2

))
if π

2ω < |θ| ≤ πω,
ω
√

2πM
|cos θ|M + ω

√
e
(
M + 1

2

)
if πω < |θ| < πω + π

2 .

If ω = 1, the quantity
√

e(M+ 1
2 ) can be replaced by

(51)
√
π

Γ
(
M
2 + 1

)

Γ
(
M
2 + 1

2

) + 1,

which is asymptotic to
√

π
2 (M+ 1

2 ) as M → ∞ and hence yields a sharper bound for
large M .

Proof. The case ω = 1 was proved in a recent paper by Nemes [36, Propositions
B.1 and B.3]. For the general case, let M be any positive real number and ω be any
positive integer. The integral representation of the first generalized hyperterminant
can be rewritten

(52)
z1/ω

Γ(M)
F(1)


z;

M
ω
1


 =

eπM i

Γ(M)

∫ ∞

0

e−ttM−1

1 + (t/z)1/ω
dt,
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provided that |θ| < πω. For t ≥ 0, we have

(53)

∣∣∣∣1 +
t

w

∣∣∣∣ ≥
{

1 if | argw| ≤ π
2 ,

| sin (argw) | if π
2 < | argw| < π,

and therefore
∣∣∣∣∣∣
z1/ω

Γ(M)
F(1)


z;

M
ω
1



∣∣∣∣∣∣
≤ 1

Γ(M)

∫ ∞

0

e−ttM−1

∣∣1 + (t/z)1/ω
∣∣dt

≤
{

1 if |θ| ≤ π
2ω,∣∣csc

(
θ
ω

)∣∣ if π
2ω < |θ| < πω.

We continue by showing that the absolute value of the left-hand side of (52) is bounded
by ω
√

e(M+ 1
2 ) when π

2ω < θ ≤ πω. (The analogous bound for the range −πω ≤ θ <
−π2ω follows by taking complex conjugates.) For this purpose, we deform the contour
of integration in (52) by rotating it through an acute angle ϕ. Thus, by appealing to
Cauchy’s theorem and analytic continuation, we have, for arbitrary 0 < ϕ < π

2 , that

z1/ω

Γ(M)
F(1)


z;

M
ω
1


 =

eπM i

Γ(M)

(
eiϕ

cosϕ

)M ∫ ∞

0

e−
eiϕu
cosϕuM−1

1 +
(

eiϕu
z cosϕ

)1/ω
du

when π
2ω < θ ≤ πω. Employing the inequality (53), we find that

∣∣∣∣∣∣
z1/ω

Γ(M)
F(1)


z;

M
ω
1



∣∣∣∣∣∣
≤ 1

Γ(M)

1

cosM ϕ

∫ ∞

0

e−uuM−1

∣∣∣∣1 +
(

eiϕu
z cosϕ

)1/ω
∣∣∣∣
du

≤ 1

cosM ϕ
×
{

1 if π
2ω < θ ≤ π

2ω + ϕ,∣∣∣csc
(
θ−ϕ
ω

)∣∣∣ if π
2ω + ϕ < θ ≤ πω.

We now choose the value of ϕ which approximately minimizes the right-hand side of
this inequality when θ = πω, namely, ϕ = arctan(M−1/2). We may then claim that

1

cosM (arctan(M−1/2))
=

(
1 +

1

M

)M/2

≤ ω
√

e

(
M +

1

2

)

when π
2ω < θ ≤ π

2ω + arctan(M−1/2), where the last inequality can be obtained by

means of elementary analysis. In the remaining case π
2ω + arctan(M−1/2) < θ ≤ πω,

we have
∣∣∣csc

(
θ−arctan(M−1/2)

ω

)∣∣∣
cosM (arctan(M−1/2))

≤

∣∣∣csc
(
π − arctan(M−1/2)

ω

)∣∣∣
cosM (arctan(M−1/2))

=

(
1 +

1

M

)M/2

csc

(
arctan(M−1/2)

ω

)
≤
(

1 +
1

M

)M/2

ω csc(arctan(M−1/2))

= ω

(
1 +

1

M

)(M+1)/2√
M ≤ ω

√
e

(
M +

1

2

)
.
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Here we have used the convexity of csc(x) for 0 < x < π
2 and that the quantity

(1+ 1
M )(M+1)/2

√
M
M+a , as a function of M > 0, increases monotonically if and only if

a ≥ 1
2 , in which case it has limit

√
e.

We finish by proving the claimed bound for the range πω < |θ| < πω + π
2 . It is

sufficient to consider the range πω < θ < πω + π
2 , as the estimates for −πω − π

2 <
θ < −πω can be derived by taking complex conjugates. The proof is based on the
functional relation

z1/ω

Γ(M)
F(1)


z;

M
ω
1


 =

2πiω
(
ze−πi(ω−1)

)
)M

Γ(M)eze−πiω +
(ze−2πiω)1/ω

Γ(M)
F(1)


ze−2πiω;

M
ω
1




(see [43, eqn. (A.13)]). From this functional relation, we can infer that

∣∣∣∣∣∣
z1/ω

Γ(M)
F(1)


z;

M
ω
1



∣∣∣∣∣∣
≤ 2πω |z|M

Γ(M)e|z||cos θ| +

∣∣∣∣∣∣
(ze−2πiω)1/ω

Γ(M)
F(1)


ze−2πiω;

M
ω
1



∣∣∣∣∣∣

≤ 2πω |z|M
Γ(M)e|z||cos θ| + ω

√
e

(
M +

1

2

)
.

Notice that the quantity rMe−ra, as a function of r > 0, takes its maximum value at
r = M/a when a > 0 and M > 0. We therefore find that

∣∣∣∣∣∣
z1/ω

Γ(M)
F(1)


z;

M
ω
1



∣∣∣∣∣∣
≤ ω
√

2πM

|cos θ|M
MM−1/2e−M

√
2π

Γ(M)
+ ω

√
e

(
M +

1

2

)

≤ ω
√

2πM

|cos θ|M
+ ω

√
e

(
M +

1

2

)
.

The second inequality can be obtained from the inequality MM−1/2e−M
√

2π ≤ Γ(M)
for any M > 0 (see, for instance, [18, eqn. 5.6.1]).

Appendix C. The boundary of the domain ∆(n). In this appendix, we
prove that the boundary of ∆(n) can be written as a union

⋃
m P(m)(θ+

nm, α
+
nm) ∪

−P(m)(θ−nm, α
−
nm), where P(m)(θ±nm, α

±
nm) are steepest descent paths emerging from

the adjacent saddle t(m) (see Figure 2(b)). For α±nm, see (8).
First, we show that as we change θ, the steepest descent path P(n)(θ;αn) varies

smoothly, unless, perhaps, it encounters an adjacent saddle point t(m). To see this,
consider the map s(t) between the t-plane and the s-surface, defined by

s = f(t)− fn.

The steepest descent path P(n)(θ;αn) is mapped into a half line with phase 2παn−θ
emerging from the origin as an ωnth-order branch point on the s-surface. As this
half line is rotated on the s-surface, the corresponding steepest descent path varies
smoothly, unless we encounter a singularity of the inverse map t(s). Since f(t) is
holomorphic in the closure of ∆(n), and |f(t)| → ∞ as t → ∞ in ∆(n), the only
singularities of t(s) are branch points located at the images of the saddle points of
f(t) under the map s(t). When the half line hits a branch point of t(s) on the s-surface,
the corresponding steepest descent path hits a saddle point in the t-plane.

http://dlmf.nist.gov/5.6.E1
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If we rotate θ in the positive direction, the steepest descent path P(n)(θ;αn)
runs into a saddle point t(m) when θ = θ+

nm. Likewise, if we rotate θ in the negative
direction, the steepest descent path P(n)(θ;αn) hits a saddle t(m) when θ = θ−nm. By
definition, the domain ∆(n) is the union

⋃
θ 6=θ±nm P(n)(θ;αn), which is precisely the

image of the points on the s-surface that can be seen from the branch point at the
origin minus half lines with phases 2παn − θ±nm issuing from the points s(t(m)) under
the map t(s). The boundary of the domain ∆(n) therefore consists of the images
of these half lines under the map t(s). It is easy to see that the image of the half
line with phase 2παn − θ+

nm emerging from s(t(m)) under the map t(s) is precisely
the steepest descent path P(m)(θ+

nm, α
+
nm) emanating from the adjacent saddle t(m).

Similarly, the image of the half line with phase 2παn − θ−nm emerging from s(t(m))
under the map t(s) is the steepest descent path P(m)(θ−nm, α

−
nm) emanating from the

adjacent saddle t(m). In order to make the orientation of the domain ∆(n) positive,
the orientation of the steepest path P(m)(θ−nm, α

−
nm) has to be reversed.
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