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Abstract—Ant-Miner is a classification rule discovery algo-
rithm that is based on Ant Colony Optimization (ACO) meta-
heuristic. cAnt-Miner is the extended version of the algorithm
that handles continuous attributes on-the-fly during the rule
construction process, while ©Ant-Miner is an extension of the
algorithm that selects the rule class prior to its construction,
and utilizes multiple pheromone types, one for each permitted
rule class. In this paper, we combine these two algorithms to
derive a new approach for learning classification rules using
ACO. The proposed approach is based on using the measure
function for 1) computing the heuristics for rule term selection, 2)
a criteria for discretizing continuous attributes, and 3) evaluating
the quality of the constructed rule for pheromone update as well.
We explore the effect of using different measure functions for on
the output model in terms of predictive accuracy and model size.
Empirical evaluations found that hypothesis of different functions
produce different results are acceptable according to Friedman’s
statistical test.

I. INTRODUCTION

Data mining is a process that supports knowledge discov-
ery by finding hidden patterns, associations and constructing
analytical models from databases [1]. Classification is one of
the widely studied data mining tasks in which the aim is to
discover, from labeled cases, a model that can be used to
predict the class of unlabeled cases. Ant-Miner, proposed by
Parpinelli et al. [2], is the first ACO algorithm for discovering
classification rules of the form:

IF <Term-1> AND <Term-2> AND ... THEN<Class>,
where each term is represented as an (attribute = value) pair,
and the consequent of a rule corresponds to the class value to
be predicted. Ant-Miner has been shown to be competitive
with well-known classification algorithms, in terms of pro-
ducing comprehensible model with high predictive accuracy.
Therefore, there has been an increasing interest in improving
the Ant-Miner algorithm. Nonetheless, the majority extended
versions of the algorithm introduced in the literature have an
important limitation of only being able to process nominal
attributes, whilst in practice most real-world classification
problems involve both nominal and continuous attributes.

Thus, cAnt-Miner was presented by Otero et al. [3], [4] as
a variation of the original algorithm, which is able to cope
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with continuous-valued attributes during the rule construction
process through the creation of discrete intervals on-the-
fly. The discretization was performed based on entropy and
Minimum Description Length (MDL) to create two intervals
[3], or several intervals from the continuous attribute and
selecting the best interval [4].

On the other hand, Salama et al. recently introduced an ef-
ficient version of the algorithm, pAnt-Miner [5], [6], based on
selecting the consequent class of the rule before constructing
its antecedent and utilizing multiple pheromone types, one for
each permitted rule class. This motivated the idea of utilizing
the pre-selected class in heuristic information calculation, and
continuous attribute discretization.

From this ground, in this paper we combine cAnt-Miner
with pAnt-Miner to fabricate a novel approach for learning
classification rules via ant-based optimization. The proposed
approach is built upon the notion of using a unified classifi-
cation measure function in three essential aspects of the algo-
rithm. First, the heuristic information of a term is computed
by this measure function. Second, we use the same measure
function as criteria for discretizing continuous attributes and
dynamically creating intervals during rule construction. Third,
the quality of the constructed rule is evaluated for pheromone
update also using this unified measure function.

In addition, we explore how the use of different measure
functions affects the quality of the produced classification
model in terms of predictive accuracy and model size. We
examined eight different measure functions, where each played
the rule of the unified measure function in the three aforemen-
tioned aspects of the algorithm, on 22 UCI datasets.

The rest of the paper is organized as follows. In Section
II, we briefly discuss both cAnt-Miner and pAnt-Miner as
a foundation of our research. Section III describes in detail
our proposed learning approach. Section IV discusses our
experimental methodology, where the results are shown in
Section V. Finally, conclusions and future work suggestions
are presented in Section VI.



II. BACKGROUND

Although Ant-Miner has several extensions, presented and
discussed in recent surveys [7], [8], we build our approach
upon two recently introduced extended versions of the algo-
rithm, namely cAnt-Miner and pAnt-Miner. It is recommended
for the reader to have a background on these two algorithm in
order to understand the foundation of the extensions proposed
in the current work [3], [4], [5], [6].

Otero et al. have introduced two versions of the cAnt-Miner
algorithm to dynamically discretize the continuous attributes
during the rule construction process. The first version of cAnt-
Miner [3] produces two intervals from a continuous attribute,
while the second version [4] produces several intervals to
select the best to create a real-valued term to be added to the
constructed rule. cAnt-Miner creates thresholds on continuous
attributes’ domain values during the rule construction process,
producing terms of the form (a; < v) or (a; > v), where a; is
a continuous attribute and v is a threshold value. The threshold
value is dynamically generated using binary discretization
(in the first version) or MDL-based discretization (in the
second version). These discretization techniques are based on
information theory, discussed in [9].

The use of multiple pheromones was introduced in pAnt-
Miner [5], [6] as an extension to the original algorithm. The
motivation behind the multi-pheromone system is based on
the following hypothesis: the selection of the terms (in the rule
antecedent) that are relevant to the prediction of a specific class
(rule consequent) constructs better rules than selecting terms
simply to reduce the entropy among the class distribution on
the dataset, as in the original Ant-Miner. Therefore, it was
proposed to select the class of the rule first, and then select
the rule’s antecedent terms based on this selected class. On
the other hand, sharing pheromone information among ants
constructing rules with different classes can negatively affect
the quality of the constructed rules, as the terms that lead
to construct a good rule for class C, as a consequent do
not necessarily lead to construct a good rule for C as a
consequent. Hence, using multiple pheromone types is related
to the selection of the rule’s consequent class prior to the rule’s
antecedent construction.

III. PROPOSED LEARNING APPROACH

In this approach, we employ the pAnt-Miner’s idea of
selecting the class before the rule’s antecedent construction, to
extend cAnt-Miner in three essential aspects of the algorithms,
using a unified class-based measure function. First, we use this
unified measure function to compute the heuristic information
of the terms to be selected to construct the rule’s antecedent.
Second, we use the same function as criteria to carry out the
dynamic discretization of the continuous attributes and select
the best created interval with respect to the pre-selected class.
Third, we use this unified measure function, used for both
pervious operations, to evaluate the quality of the constructed
rule for the sake of pheromone update. What we mean by
class-based measure function is a function that calculates the

quality of a rule (or a term) with respect to a class value—
rather than entropy, MDL or information gain.

The rationale behind using a unified measure function (i.e.
using the same function used in rule quality evaluation to
compute the term’s heuristic information, and as a criterion
to discretize and construct intervals for continuous) is the
following. Since we evaluate the quality of a constructed rule
with a given function f,, there is no need to select terms
that maximize another function f,. Intuitively, the selection of
terms that maximize f, should lead to construct a high quality
rule with respect to f,.. Moreover, using class-based evaluation
function for heuristic information calculation and continuous
attributes discretization should lead to the selection of terms
that are relevant to the prediction of a specific class, rather
than selecting terms simply to reduce the entropy among the
class distribution on the dataset as in cAnt-Miner. Therefore,
we use a unified quality evaluation function QEF' to compute
the heuristic information of a term, to create intervals from
continuous attributes in the discretization, with respect to the
pre-selected class value, and to evaluate the quality of the
constructed rule as well.

Note that, it is possible in our approach to use class-
based functions for heuristic information calculation and as
a criterion for discretizing continuous attributes only as we
take advantage of the yAnt-Miner’s idea of class pre-selection.
Thus, we explore how the use of different measure functions
in all these aforementioned aspects of the algorithm affects
the quality of the produced classification model in terms of its
predictive accuracy.

A. Extended Algorithm Overview

Algorithm 1 draws the outline of our extended approach.
As shown, the selection of the class to be predicted by a
rule takes place before its antecedent construction. At the
beginning of the execution of the algorithm, pheromone levels
for every class value are initialized. Then, the algorithm
enters an iterative (while) loop, where heuristic information is
computed for each term with respect to each value of the class
attribute using the unified quality evaluation function (QEF).

Each ant; constructs a rule as follows. First, the class
value to be predicted by the rule is selected probabilistically
according to pheromone and heuristic information associated
with the different class values. Then, the antecedent of the
rule is constructed by selecting terms based on pheromone and
heuristic information associated with the previously selected
class value, using the following state transition formula:

, (D)

Tig,k " g,k
Zi:l Zl:zl (Trs,k ' nrs,k)

where 7;; 5, is the heuristic information for term;; given that
class k£ has been selected. 7;; ) is the pheromone amount of
type class k associated with term;;.

We can claim that the amount of pheromone 7;; 1, is a direct
representation of the quality of term;; in the prediction of
class k with respect to Q F'F function. This is induced by the

Probability(term;j; ) =



Algorithm 1 The Extended Multi-pheromone cAnt-Miner
Begin
QEF <+ quality_evlaution_function;
training_set < all training examples;
rule_list < ¢;
Initialize Pheromone Amounts();
while |training_set| > max_uncovered_examples do
Calculate HeuristicIn formation(QEF);
Rbest — ¢a
Qbest — ¢;
repeat
Rlbest — (bv leest — ¢a
for i < 1 to colony_size do
Select RuleClass(ant;);
R; + ant;.Construct Antecedent(QEF);
R; + PruneRule(R;, QEF);
Q; + QFEF.Calculate RuleQuality(R;);
if Q; > Qipest then
Rlbest <~ R17 leest <~ le
end if
11+ 1;
end for
ant;.Update Pheromone(Qipes);
if leest > Qbest then
Rbest — Rlbest; Qbest — leest;
end if
until maz_iterations or Convergence()
append Ry to rule_list;
training_set < training_set — Examples(Rpest);
Reinitialize Pheromone Amounts(Class(Rpest));
end while
End

fact that 7;; 5, is the amount of the pheromone dropped — so for
— by the ants that selected term;; to construct rules with class
k as a consequent, and evaluated the quality of these rules with
the QFE'F measure function, to increase the pheromone level
on trermyj ) according to the rules’ quality.

When a continuous attributes is selected, a term should be
constructed in the form of (a; < Vupper), (@i > Viower)
or (Viower < @i < Uypper) by dynamically generating the
thresholds vjpwer and viower. After each ant; constructs a
rule, it undergoes a pruning process, same used in cAnt-Miner
[4], and the quality of the rule is evaluated using the unified
measure function, Q EF'. Only the ant that constructed the best
rule in the colony (R;pes¢) updates the pheromone level on the
construction graph, using the pheromone type corresponding
to the class value of the rule. This concludes a single iteration
of the (repeat — until) loop.

At the completion of the loop, the best rule (Rpes;) con-
structed in the colony is added to the list of discovered rules
and the examples covered by that rule are removed from
the training set. This iterative process is performed until the
remaining examples in the training set are less than a user-
defined maximum number of uncovered examples, or until a

maximum number of iterations is reached.

B. Computing Heuristic Information

The heuristic information is a value associated with each
term, which influences its selection during the rule’s an-
tecedent construction according to Equation 1. In our proposed
approach, as we take advantage of selecting the class value
before selecting the terms for the rule antecedent, we use a
three dimensional structure (attribute ¢, value j, class k) to
store the heuristic information for each term;; with respect
to class k, annotated by 7;;,. By this way, the heuristic
information gives a direct clue of the quality of term;; with
respect to class k.

In order to compute 1;;, we construct a temporary rule
with only term,; in its antecedent and with class k as a
consequent. Then we evaluate the quality of this rule using the
unified Q E'F measure function, which gives us the heuristic
information value for term,; with respect to class k.

C. How the New Discretization Works

In our extended algorithm, we propose a new method for
locating a threshold value in the continuous attribute domain.
Taking advantage of the pre-selected class value, we aim to
select a threshold value that generates the partitions with high
relevance for predicting this specific pre-selected class. This is
unlike the original version of cAnt-Miner, where the threshold
value is selected only to minimize the entropy among all the
class values. In essence, we calculate a “discrimination” value
for each value v in the boundary points of the continuous
attribute a; given class k, as follows:

d’L'SC(CLi,’U, k) = |Q(S¢li<7ﬂ k) - Q(Saizva k)|, 2)

where Q(Sq;<v, k) and Q(Sq;>v, k) represent the quality of
intervals S, <, and Sy, >, respectively with respect to the pre-
selected class k, and are calculated using the unified measure
function QFEF. As shown in Equation 3, we calculate the
absolute difference in quality (measured in terms of QFEF)
between the upper and the lower intervals of the candidate
value v;. The idea is to select the threshold value vy.s; that
maximizes the quality discrimination — with respect to the
current selected class value — between the two intervals.

In order to discretize the values in the continuous attribute
domain we have two options: 1) generating two intervals, 2)
generating multiple intervals from its domain of values. The
former we call Binary Interval Discretization (BID) and the
latter we call Multi-Interval Discretization (MID).

As for the BID, after locating the threshold that produces the
highest quality discrimination value, we select the relational
operator that produces the interval with the higher value in
terms of QEF. i.e. if Q(Sa;<vyousr k) > Q(Sa;>vp..:5 k), then
the generated term would be (a; < vpest), else it would
be (a; > Upest). Finally, the interval that has the highest
value of QFEF is selected, this value is also considered as
a heuristic information for the continuous attribute node a; in
the construction graph.



TABLE I
DESCRIPTION OF THE QUALITY EVALUATION FUNCTIONS USED IN EXPERIMENTS.

Quality Evaluation Function Symbol Formula
, L) —(B)
Certainty Factor t —T—m
AB 1— | (A)-(B)+(A)«(B)
Collective Strength c (AB)+(AB) [ —— }
(4)-(B)+(A4)-(B) - [(AB)+(AB)]
(AB) (AB)
A B
f-Measure f 1.5 x [(AB)]O.s (AB)
(A) (B)
(A,B)
Jaccard é DTE A
« (A,B)+(AB)-[(4):(B)+(A)-(B)]
appa K -
P 1= (A)-(B)+ (D) (B)
0.5 (AB)
klosgen w (AB)0-5 x [W - (B)]
m-Estimate m %%;B)
R-Cost r 2-(4,B) - (4)
Sensitivity X Specificity o ('(4}’3}?) X ('(45?)
Support + Confidence s (A,B) + ('(41’4}?)

On the other hand, when using MID, we repeat the BID
procedure recursively on both of the generated intervals, until
we there is no increase in the quality of the generated intervals
in terms of QFEF or the generated intervals contains example
less than min_examaples_per_rule parameter. After-
wards, we can have potentially multiple threshold values. In
order to select the best threshold value(s), the list of threshold
values is sorted and the quality — according to QFEF — for
each discrete interval is calculated. Then, the interval with the
highest value is selected. If an internal interval is selected (an
interval between two threshold values), a term in the form
(v; < a; < vj41) is generated; otherwise, a term in the form
(a; < vj) or (y; > vj) is generated (where j is the j — th
threshold value selected).

We note that the number of boundary points for selecting the
threshold in our approach is generally less than or equal to the
number of boundary points in cAnt-Miner. In our approach,
we are only interested in a boundary point 7" in the range of a;,
given that class k is selected, if in the sequence of examples
sorted by the value of a;, there are two examples ey, e € .S
having different classes, such that a;(e1) < T < a;(e2) and
one of these two classes is k. Therefore, the time needed for
locating the threshold vpes; is reduced, since fewer candidate
boundary points need to be evaluated.

D. Exploring Different Measure Functions

We aim to explore how the use of different measure func-
tions (QEF) affects the quality of the produced classification
model in terms of its predictive accuracy.

The use of different functions only for rule quality evalua-
tion has been studied in [10], where the heuristic information
was discarded and continuous attributes were not used. How-
ever, in this paper we explore the use of different functions in

our new unified approach, i.e., for heuristics information cal-
culation, continuous attributes discretization and rule quality
evaluation. Besides, we extend the number of datasets used in
our experiments from 13 to 22 (compared to [10]), to include
datasets with continuous attributes without prior discretization
step.

Table I describes the measure functions used in our exper-
iments. The formulas shown use the following terms:

e (A) is the ratio of the number of cases that match the
rule antecedent to the size of the training set.

e (B) is the ratio of the number of cases that match the
rule consequent to the size of the training set.

o (A) is the ratio of the number of cases that do not match
the rule antecedent to the size of the training set.

o (B) is the ratio of the number of cases that do not match
the rule consequent to the size of the training set.

e (A, B) is the ratio of the number of cases that match
both the rule antecedent and consequent to the size of
the training set.

e (A, B) is the ratio of the number of cases that neither
match the rule antecedent nor the consequent to the size
of the training set.

e (A, B) is the ratio of the number of cases that match the
rule antecedent but do not match the rule consequent to
the size of the training set.

o (A, B) is the ratio of the number of cases that do not
match the rule antecedent but match the rule consequent
to the size of the training set.

IV. EXPERIMENTAL METHODOLOGY

In order to evaluate the effect of different quality evaluation
functions, we have selected 22 datasets from the UCI Irvine
machine learning repository [11]. Table II shows a summary



of the selected datasets. All experiments were conducted
running a well-known 10-fold cross-validation procedure. For
the experiments concerning the binary interval discretization
procedure, we have selected the cAnt-Miner2 algorithm as our
baseline (denoted as cAM?2); for the ones concerning the multi-
interval discretization procedure, we have selected the cAnt-
Miner2yp1, algorithm as our baseline (denoted as cAM2ypr).
The details of these algorithms can be found in [3], [4].

The proposed extensions of cAnt-Miner using the quality
functions presented in Table I are denoted by the correspon-
dent quality evaluation function symbol. Since all algorithms
used in our experiments are stochastic algorithms, they are run
10 times for each partition of the cross-validation.

We have compared the performance of the algorithms with
respect to predictive accuracy and simplicity of the discovered
rule lists (measured as the total number of terms in the dis-
covered list). In all experiments, the user-defined parameters
were set to: colony size = 10, maximum iterations = 1500,
minimum covered cases = 10 and maximum uncovered exam-
ples = 10; no attempt was made to optimize these parameters
for each individual dataset.

V. RESULTS AND ANALYSIS

Tables III and IV summarizes the results comparing the
predictive accuracy of the algorithms using a binary-interval
discretization strategy and multi-interval discretization strat-
egy, respectively. Tables V and VI summarizes the results
comparing the simplicity of the discovered lists of the algo-
rithms using a binary-interval discretization strategy and multi-
interval discretization strategy, respectively. The entry shown
in bold-face represents the best value obtained for a given
dataset.

The last row in each table shows the average rank for each
measure function. The average rank for a given algorithm g
is obtained by first computing the rank of g on each dataset
individually. The individual ranks are then averaged across all
datasets to obtain the overall average rank. Note that, in case
of predictive accuracy, the lower the value of the rank, the
better the algorithm. The nonparametric Friedman test [12],
[13] was applied on the performance average rankings the
measure functions used in our experiments.

Concerning the predictive accuracy, there is no algorithm
that performs absolutely best, although we have found that
some extensions of pAnt-Miner perform statistically signifi-
cantly worse according to the Friedman test with the Holm’s
post hoc test. The use of Kappa, Collective Strength, Confi-
dence, Certainty Factor, Klosgen, and Jaccard in p/Ant-Miner
resulted in a decrease in performance that is statistically
significantly worse (at the o = 0.05 level) than cAnt-Miner2,
in the case of binary-interval discretization, and statistically
significantly worse (at the o« = 0.05 level) than cAnt-
Miner2yipr,, in the case of multi-interval discretization; the
use of F-Measure resulted in a decrease in performance that
is statistically significantly worse (at the o = 0.05 level) than
cAnt-Miner2, in the case of multi-interval discretization.

TABLE II
SUMMARY OF THE DATA SETS USED IN OUR EXPERIMENTS.

data set attributes classes size
nominal continuous

annealing 29 9 6 898
breast-1 9 0 2 286
breast-tissue 0 9 6 106
breast-w 0 30 2 569
chess 36 0 2 3196
credit-a 8 6 2 690
credit-g 13 7 2 1000
cylinder-bands 16 19 2 540
dermatology 33 1 6 366
glass 0 9 7 214
heart-c 6 7 5 303
heart-h 6 7 5 294
s-heart 7 6 2 270
horse 15 7 2 368
ionosphere 0 34 2 351
iris 0 4 3 150
liver-disorders 0 6 2 345
mushrooms 22 0 2 8124
parkinsons 0 22 2 195
pima 0 8 2 768
vertebral 0 6 2 310
wine 0 13 3 178

Concerning the simplicity, there are four variations of pAnt-
Miner that have consistently discovered simpler rule lists,
namely R-Cost, Kappa, Sensitivity x Specificity, Jaccard
and support + confidence. All the remaining, including the
baselines cAnt-Miner2 and cAnt-Miner2yipr,, have discovered
statistically significantly larger (at the o = 0.05 level) rule
lists than cAnt-Miner’s extension using the Collective Strength
function.

We say a measure function h is dominated by another
measure function g if g is better than h in both predictive
accuracy and model size. A measure function g is said to be
Pareto-optimal if it is not dominated by any other competing
evaluation function-this means g cannot be improved upon in
any one performance measure without sacrificing in another
performance measure. The set of Pareto-optimal functions are
said to form a Pareto-frontier.

Fig. 1 shows an illustrative plot based on the average
accuracy and size rankings. In this figure, the y-axis represents
the average accuracy ranking, the x-axis represents the average
size ranking, and each measure function is represented as a
data-point. The graph on the left represents the binary-interval
discretization strategy (BID), while the graph on the right
represents the multi-interval discretization strategy (MID). The
connected line shows a Pareto-frontier in each of the two
strategies with respect to predictive accuracy and model size.
Collective Strength, f-measure, m-Estimate and cAnt-Miner2
represent the Pareto-frontier in both BID and MID.

VI. CONCLUSION

In this paper we presented a study of the effect, with respect
to predictive accuracy and simplicity of the discovered rule
list, of different quality evaluation functions in an ACO clas-



TABLE III
AVERAGE PREDICTIVE ACCURACY (%) USING THE BINARY-INTERVAL DISCRETIZATION PROCEDURE (BID).

cAM2 t c f ) K w m r 10 s
annealing 93.4 948 253 889 89.7 748 437 968 813 643 816
breast-1 764 744 7177 66.7 754 732 659 363 716 663 73.6
breast-tissue 632 639 653 636 643 634 603 604 64.1 609 588
breast-w 93.6 926 602 933 937 88.0 71.7 937 932 90.0 926
chess 919 929 726 966 93.0 850 973 554 747 734 85.1
credit-a 86.0 81.6 51.0 849 853 695 726 828 854 772 852
credit-g 71.8 66.8 360 716 703 70.8 725 692 715 719 70.7
cylinder-bands 733 744 574 696 703 639 70.8 739 700 64.6 67.1
dermatology 90.0 77.7 885 91.8 921 902 886 91.6 80.0 877 923
glass 67.7 635 596 693 647 641 642 651 635 487 670
heart-c 573 527 551 550 58.0 554 532 538 527 543 548
heart-h 63.2 578 647 653 651 646 619 607 635 588 654
s-heart 778 801 749 770 768 764 759 570 69.0 77.6 710
horse 79.0 833 851 778 844 848 772 616 755 797 785
ionosphere 87.1 89.8 627 885 91.6 731 61.1 88.0 905 836 90.1
iris 943 89.1 81.0 909 938 939 81.5 919 925 86.1 919
liver-disorders 652 669 492 59.1 59.7 50.0 628 675 63.0 51.1 600
mushrooms 985 963 96.0 967 968 960 975 577 750 769 932
parkinsons 884 854 290 873 836 651 565 876 848 740 83.0
pima 751 718 392 694 734 629 723 720 735 689 715
vertebral 797 69.6 66.1 788 809 735 786 436 66.6 79.7 784
wine 91.1 919 77.1 927 91.1 852 823 908 91.6 80.1 919
average rank 331 7.14 6.64 559 857 627 779 468 350 570 6.79
TABLE IV

AVERAGE PREDICTIVE ACCURACY (%) USING THE MULTI-INTERVAL DISCRETIZATION PROCEDURE (MID).

cAM2vp1, t c f 1) K w m r 0 s
annealing 943 949 253 89.0 89.7 780 492 96.6 814 650 81.6
breast-1 764 748 718 662 749 733 662 366 712 651 739
breast-tissue 664 615 653 640 639 629 592 604 628 603 594
breast-w 93.6 92,6 61.1 934 939 864 743 941 933 90.2 92.8
chess 919 924 742 9677 93.1 869 974 596 78.6 71.8 845
credit-a 86.2 819 504 853 853 682 707 8177 854 764 852
credit-g 71.7 668 357 713 703 706 723 69.6 713 713 706

cylinder-bands 72.1 739 531 69.8 70.1 63.7 707 728 70.1 652 66.7
dermatology 893 779 89.0 914 922 896 897 91.1 796 883 O91.6

glass 69.5 647 575 702 650 638 643 650 624 487 66.0
heart-c 57.1 533 549 558 583 553 547 527 519 53.6 543
heart-h 639 567 645 646 648 652 613 606 638 558 65.5
s-heart 785 797 744 762 767 753 758 584 69.7 771 711
horse 792 824 85.0 775 844 847 777 597 753 79.1 794
ionosphere 87.0 882 625 885 919 704 628 887 909 831 90.1
iris 944 895 809 913 940 939 799 918 926 853 919

liver-disorders 654 68.1 485 593 597 506 644 689 63.1 513 600
mushrooms 984 965 963 96.8 96.8 962 976 573 749 756 93.5

parkinsons 882 855 283 865 833 640 559 875 842 743 829
pima 742 718 3677 693 734 617 722 706 739 699 717
vertebral 79.7 698 662 794 808 735 800 454 636 789 788
wine 80.8 916 751 93.0 913 859 830 912 922 81.8 922

average rank 310 6.66 6.70 559 859 645 827 466 350 560 6.89




TABLE V
AVERAGE NUMBER OF TERMS IN THE DISCOVERED LIST USING USING BINARY-INTERVAL DISCRETIZATION PROCEDURE (BID).

cAM2 t c f 1) K w m r 10 s
annealing 13.6 548 315 8.1 70 282 284 336 9.0 17.1 6.3
breast-1 7.5 5.6 29 551 3.1 5.1 57.2 25.4 6.2 359 7.3
breast-tissue 7.9 140 63 99 80 88 7.9 135 60 73 121
breast-w 9.9 46.7 84 148 33 8.1 13.4 29.0 3.2 8.0 4.9
chess 11.6 75 26 85 54 47 106.1 257 260 380 153
credit-a 11.8 169.6 282 10.3 21 280 44.0 137.0 33 111 2.9
credit-g 16.1 2789 462 90 22 202 1200 2503 52 126 19
cylinder-bands 16.1 1495 293 11.2 3.0 11.1 70.7  139.5 5.4 9.6 24
dermatology 202 57.1 203 284 219 214 276 475 150 225 351
glass 16.4 508 162 282 114 198 28.7 49.2 107 158 513
heart-c 214 784 252 410 199 284 521 76.0 4.6 18.7 612
heart-h 16.2 703 2377 29.0 185 228 44.5 63.3 21 162 30.6
s-heart 12.0 89 34 531 27 49 587 13.5 109 23.1 8.5
horse 7.6 3.5 29 60.1 3.0 3.0 67.0 13.1 81 15.8 52
ionosphere 1.2 391 109 95 63 113 126 339 58 92 54
iris 4.0 9.5 4.7 5.6 3.0 32 54 6.9 35 54 4.3
liver-disorders 106 815 238 638 1.8 262 582 8.9 85 104 12
mushrooms 6.3 5.0 49 18.8 4.16 4.0 36.9 139 11.1 112 43
parkinsons 88 213 94 105 26 95 10.1 154 21 67 35
pima 1577 1939 276 133 43 257 78.3  208.2 6.2 120 6.8
wine 5.9 102 60 79 67 64 6.7 79 49 73 72
vertebral 10.1 6.7 1.8 37.8 5.3 3.1 44.2 7.6 127 200 7.08
average rank 532 879 932 904 477 332 573 743 2359 4.68 493
TABLE VI

AVERAGE NUMBER OF TERMS IN THE DISCOVERED LIST USING A MULTI-INTERVAL DISCRETIZATION PROCEDURE (MID).

cAM2Mp1L t c f 1) K w m r 0 s
annealing 17.3 54.8 32.6 8.3 7.0 28.5 28.0 33.0 8.7 17.0 6.3
breast-1 7.4 5.14 29 550 3.1 4.9 57.5 25.3 6.1 3538 7.6
breast-tissue 6.3 14.3 6.4 10.3 8.0 8.7 8.0 13.9 6.1 72 121
breast-w 9.8 46.7 83 153 31 8.0 13.3 28.8 3.2 8.0 5.0
chess 12.5 7.0 2.7 89.1 54 52 106.3 273 267 372 15.0
credit-a 124 1689 27.8 10.7 21 290 446 137.6 33 11.0 2.8
credit-g 16.1 281.6 4477 9.2 2.1 22,6 119.0 250.6 48 122 1.9

cylinder-bands  15.8  148.1 323 110 3.0 108 712 139.8 52 9.5 2.5
dermatology 20.5 581 202 281 21.6 20.7 273 472 151 23.0 36.0

glass 16.1 520 167 28,6 11.6 19.8 280 495 109 159 522
heart-c 209 789 250 1.8 199 276 528 762 45 19.6 595
heart-h 156 695 235 290 179 238 448 627 21 164 307
s-heart 12.3 8.8 35 524 27 49 586 13.0 11.1 211 8.6
horse 8.6 3.6 29 595 30 30 670 130 7.6 156 5.1
ionosphere 10.8 390 106 99 64 109 124 337 5.8 94 57
iris 4.0 9.8 48 55 30 32 5.4 6.9 35 53 41
liver-disorders 9.4 826 243 6.7 1.8 260 574 86.7 84 103 1.2
mushrooms 6.2 5.5 50 183 42 40 385 13.0 105 108 4.2
parkinsons 8.6 20.6 94 105 2.6 9.5 10.0 15.4 2.1 6.5 3.5
pima 16.8 1928 282 143 43 2738 77.5 206.9 62 116 6.7
wine 6.9 10.0 5.9 80 6.7 6.3 6.7 78 5.0 78 7.3
vertebral 9.95 67 917 376 53 3.1 449 79 13.1 190 638

average rank 5.36 868 934 9.00 5.18 327 5.82 7.18 250 4.66 5.00
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Plot of average accuracy ranking (y-axis) and average size ranking (x-axis) of the 10 evaluation functions, in addition to cAnt-Miner. The graph

represents the binary-interval discretization strategy (BID), while the graph on the right represents the multi-interval discretization strategy (MID). The
connected line shows a Pareto-frontier in each of the two strategies with respect to predictive accuracy and model size.

sification algorithm combining the strategies of cAnt-Miner
and pAnt-Miner algorithms. Given that the class is selected
before constructing the rule antecedent, the quality evaluation
functions can be used to calculate the heuristic information,
guide the dynamic discretization, as well as evaluate the rule
quality.

Our results show a great diversity amongst the performance
of different quality evaluation functions. This suggests that
combining the measures of multiple quality evaluation func-
tions can lead to improvements in the search of the algorithm,
since the use of different measures can capture different
aspects of the performance of a candidate rule and provide
a more robust measure of quality across multiple datasets.
How to combine the measures of different quality evaluation
functions is left as a future research direction.
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