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Abstract

Adaptive systems should be able to adapt to changes
that occur in their operating environment withoutya
external human intervention. Software architectuias
such systems should be flexible enough to allow
components to change their pattern of collaboration
depending on the environmental changes and goals of
the system, without changing the actual components
themselves. This paper describes a co-operativecthj
oriented style that is able to represent software
architectures for adaptive systems. The connedtors
this style, described as co-operations, embody the
description of complex interacting behaviour betwee
the architectural components. Depending on the
environmental changes, the behavioural adaptabitity
a co-operative object-oriented architecture is askd
by replacing the connectors. The applicability bt
architectural style is demonstrated in terms of ase
study of a control system that has to adjust tHghteof
a vehicle’s suspension to different road conditions

1. Introduction

In the engineering of computer based systems, there
has been a trend in which the quality of services
delivered by a system, in terms of its dependabilit
performance and cost, is directly related to thaliu
and extent of the computer facilities embeddedhat t
system. Software has played a central role in tteisd
because of its inherent flexibility in emulatingygical
devices and replacing human operators. As thesjin
of new emerging software intensive applications
increases, so does the need for software to hawe th
capability of adapting to changes that occur in its
operating environment. However, providing an adegpti
capability leads to an increase in software sizd an
complexity, which could put system integrity atkris
unless the software architecture enables adapyabili
be engineered in a disciplined and structured nranne

Architectural structures for systems tend to alostra
away from the details of a system, but assist in
understanding broader system-level concerns [1Bk T
can be achieved in software architectures by enmmioy
abstractions and notations that are appropriate for

describing the software components, the interastion
between these components, and the properties that
regulate the composition of components. This paper
introduces an architectural style based on comgsnen
and connectors, where components embody
computation, and connectors embody the descriftfon
interacting behaviour between components. However,
instead of adopting the notion of a connector as an
architectural element that just mediates interastio
between components, in this architectural style
connectors are also able to describe collaborative
behaviour between components in terms of the roles
played by the components [1]. That is, connectars i
addition of being the place of communication betwee
components, they are also the place of state and
computation. This architectural style is associatéith
some of the design principles cbllaboration-based
designs In these designs, software systems are
represented as a composition of independently-alefin
collaborations [16]Collaborationsare a group of object
roles together with a group of activities that deiiee
how objects interact: thele of an object prescribes the
activity of an object when involved in collaboratio
There are several design description languages;hwhi
have richer vocabulary, and that are able to desdri

the form of collaborative diagrams interactionswestn
objects in terms of messages and events [2], and to
represent the implementation of components as a
composition of object roles [7]. However, theseeabj
oriented languages lack the means for describieg th
properties associated with objects and their ictevas,
which should be an essential feature of architectur
description languages. Moreover, there are several
software applications in which the notion of
collaboration is not sufficient to represent cotiedtive
behaviour between components, for instance, in texmp
concurrent applications it is also necessary tauraghe
notion of co-ordination for supporting error handli
between multiple interacting objects [14, 19].

In this paper, we introduce an architectural sfgle
describing software systems in terms of co-opegativ
object-oriented architectures. The architecturaingnts
of this style are objects and co-operatioolsjectsare
modelling abstractions for representing the comptme



of the system, whileco-operations are modelling
abstractions for representing the connectors of the
system. Objects are able to participate in seveoal
operations through the different roles that they ale

to play, while co-operations co-ordinate the intéioms
between the objects, through the roles that objelets

The behaviour of both objects and co-operations is
described in terms of properties that have to be
maintained for the system to provide the required
services. This uniform way for describing the elatse

of a software architecture is advantageous for kihg¢
early in the lifecycle, whether the composition of
components and connectors are able to satisfy the
requirements for the software system. Moreover, the
description of software systems in terms of comptse
and connectors provides the necessary architectural
flexibility for describing adaptive software becaus its
convenience in manipulating software structures.

In the context of this paper, it is assumed that ru
time adaptability of a software system can be asue
by changing the way components interact rather than
changing the components themselves. For example,
when adapting a command and control system to
changes that might occur in its environment, ircteg
modifying or replacing the components of the system
the intent is to change how the components colktior
The architectural description of adaptive softwaem
then be made in terms of several architectural
configurations that implement a wide range of
behaviours. If objects and co-operations are ubeth, a
co-operation is the architectural element that
encapsulates change by representing the different
collaborations between objects, thus capturing hat t
architecture level the dynamic composition assediat
with run-time adaptability. In this paper, the mibidg
abstraction co-operative action (CO action) is
introduced as an architectural entity for represgnto-
operations. CO actions describe the collaborative
activity between objects, which can either be co-
operative or competitivgl]. The notion of a CO action
has some similarities to that of antionin DisCo [12],
and joint actions (or use case@s in Catalysis [7].
However in this paper we aim to give an architedtur
interpretation to the notion of an action (i.e. icector)
while abstracting away from the actual activity.isTts
achieved, but focusing on the specification of the
participants, and the conditions for the particigaior
starting, maintaining and finishing a collaborative
activity.

The rest of the paper is organised as follows. In
section 2 the architectural style is defined inadeby
defining a meta-model for co-operative actions (CO
actions). Section 3 discusses some basic issuatedel
with run-time adaptability, and defines an arcHiteal
pattern that supports run-time adaptability. Intieec4,

we present a case study that will be used to iifitstthe
feasibility of representing adaptive software dtuues in
terms of the co-operative object-oriented style.e Th
architectural description of the case study is¢méd in
section 5., and finally, section 6 concludes with a
discussion evaluating our contribution and indiogti
directions for future work.

2. Co-operative Object-Oriented Style

An architectural style provides a specialised
language for a specific class of systems that elsged
by shared structural and semantic properties [Ihg
definition of an architectural style includes: a
vocabulary of architectural elements (components and
connectors), configuration rulesthat constraint how
components and connectors can be compasadantic
interpretationsthat provide well-defined meanings for
the components, connectors, and compositions gkthe
and the type ofanalysesthat can be performed on
systems employing a particular style. For example,
software system might be described using one of the
following more commonly used styles: pipes anceff
objects, repositories, layers, and interpreters.

Systems are defined in terms of their components
and relationships among their components, whichbean
captured by connectors. Hence the need, when
modelling systems using an object-oriented approtach
introduceco-operative actiongCO actions), as entities
for modelling interactions between classes that
characterise collaborative behaviour [4]. The USE©
actions in an object-oriented approach is motivdigd
the ability of CO actions to extract from the sffieation
of a class those issues related with its collabgrat
activities (although preserving encapsulation priype
thus avoiding a specification of a collaboration e
scattered among classes. CO actions are a vafiaot o
ordinated atomic action§CA actions) which are design
mechanisms for structuring complex concurrent activ
ties and supporting error recovery between multiple
interacting objects in an object-oriented syste# [l19].

In the following, we present in more detail the co-
operative object-oriented style, which adopts dmsis
the features of object-oriented models.

2.1. Architectural Elements

The architectural elements of the co-operative
object-oriented style areclasses as the basic
components, an€CO actionsas the basic connectors.
(Classes and CO actions are instantiated, respggtiv
into objects and co-operations.) In this style, &fions
in addition of being the place of communicatiorgyt
are also the place for computation. The difference
between components and connectors is that classes
perform local computation, while CO actions carmeit



co-ordinate the computation performed by the
participant classes, or perform local computatiwat is

not part of any participant class. In a CO actibwe, role

of a class is prescribed by the activity of thatssl A
class may have as many roles as the number of CO
actions it participates in, and the compositionttedse
roles defines the interface of the class.

At the architectural level no relational informatics
spread across classes, only CO actions contaitioreda
information (how a co-operative object-oriented
architecture is implemented is discussed later gvewa
CO action can be instantiated into an UML assamiati
when interactions between classes are simple servic
requests). An advantage for only CO actions to aiont
relational information is that, once a co-operatigect-
oriented architecture is instantiated, co-operatican be
added or removed without interfering with the
implementation of objects, thus improving modularit
and reusability of the software.

2.1.1. Classes

As in object-oriented models, classes in the pregos
approach support the representation of both straictu
and behavioural aspects of a system. A class wides
by a template with the following fields: a name,
declaration of attributes in terms of constants and
variables which are local to the class, a desornipf its
structure in terms of a collection of components in
composed of and the intra-relations between thesek
and its components, and finally, a description loé t
behaviour of the class. The behaviour field inchitiee
initial state of the object, and behavioural assiong
or (consistency invariants) associated with theslahe
behavioural field also includes the specificatidntte
complete space of the behaviour of the class,rmgef
its normal, exceptional and failure behaviours. rivalr
and exceptional behaviours are related with thenkss
properties of a system (“something good" eventually
happens), while failure behaviours are related it
safety properties of a system (“something bad" duxs
happen).

2.1.2. Co-operative Actions (CO Actions)

CO actions are employed in the specification of co-
operative behaviour between classes. CO actions can
either co-ordinate the activities to be performedtte
classes, or execute some activity that is not &ssac
with any of the class participants of the CO actidiCO
action is described by a template with the follayvin
fields: the CO action's name, declaration of attels in
terms of the names and types of the participanthef
CO action, constants and variables local to the CO
action, and the specification of the collaborative
behaviour of the classes participating in the Ctibac

The initial state of a CO action represents itdesta
when is activated, and is dissociated from the pre-
conditions of the CO action: it either refers te gtate
of classes participating in the co-operation ordtage of
the variables local to the CO action. Associatetth Wie
description of normal behaviour, pre-condition gast-
condition establish the respective conditions faetof
classes to start and finish a particular collabeeat
activity, and the invariant establishes the coondgithat
should hold while the collaborative activity is begi
performed. For the description of systems that are
potentially concurrent, there is the need to caersitie
conditions that define the pre- and post-condititnbe
trigger (necessary and sufficient) conditions. The
successful execution of a collaborative activitycurs
when the pre- and post-conditions of the normal
behaviour are satisfied, and that the invarianb@ased
with the collaborative activity is not violated dhy its
execution. For the specification of exceptional
behaviour, the invariant is replaced by a handtet t
identifies the exception event, together with ttaetsaand
finish events associated with the handler of the
exception. Although the pre-conditions for normaba
exceptional behaviours are the same, the post-tionsli
for the exceptional behaviour might be different,
depending on the degraded outcomes of a CO action,
once an exception has occurred. In the definitibra o
CO action, an exception can be associated with the
invariant whenever this is violated, or with thespo
conditions whenever one of the conditions is not
satisfied.

A CO action provides the basis for dealing withtbot
co-operative and competitive concurrency by integga
two complementary conceptspnversations[13] and
transactions [9]. Conversational support is used to
control co-operative concurrency and to implememnt c
ordinated and disciplined error recovery, whilst
transactional support maintains the consistenshafed
resources in the presence of failures and conatyren
among different collaborative activities competifay
these resources [14, 19].

2.2. Configuration Rules

For the description of systems, the configuration
rules of the co-operative object-oriented styleirgef
how objects and co-operations can be combinechdn t
following, we will focus on the static propertie$ the
co-operative object-oriented style, rather tharcdemg
how the architectural elements should be configured
depending on their dynamic properties.

In a co-operative object-oriented architecture each
class and CO action has a unique name. Classes can
participate in more than one CO action, and att lees
classes have to be associated with a CO actioms, thu



avoiding the “dangling” of CO actions. A CO action
defines and is defined by the roles of the clastes
creating the context in which classes collaboré&ter.
describing the architecture of a software systemg t
different diagrams are employed:ckass diagramthat
describes the relationships between componentsaand
CO action diagram that describes the relationships
between connectors. These diagrams provide a campac
representation of the software system, which can be
completed with a more detailed textual descriptieor

a rigorous description of software system, a finster
predicate logic can be used for describing the gntigs

of the architectural elements.

Instead of using two diagrams for describing the
architecture of a system, we could have employed a
single diagram to represent both the components and
their interacting activities, in a similar way of
collaboration diagramsof the Catalysis approach [7].
From our experience, such diagrams are adequate for
systems that have few numbers of components, and
which have interactions involving few components.
However, the type of system we are concerned wih a
complex systems containing several componentsatieat
able to engage in interactions which might invaivest
of the system components. Hence the preference for
having one diagram of components and other of
connectors, which facilitates the structural repnéstion
of complex systems.

At the architectural level of representation, theyo
type of relationships acceptable between the nades
both class and CO action diagrams are generalisatio
and aggregations/compositions (white and black
diamonds represent aggregation and composition,
respectively). The diagrams of figure 4 provide an
example how to represent software systems usingahe
operative object-oriented style.

2.3. Meta-Model of a Co-operative Action
(CO Action)

In the following, we define in more detail the
concept of a CO action according with the semantic
description of UML [18]. A CO action is considerad a
specialisation olassifierin the Core package of UML
Foundation, which also includes the following sfieci
forms: Class DataTypeand Interface The diagram of
figure 1 shows the concrete constructs that detfire
relationships of a CO action.

The purpose of aCO action is to declare the
attributes and the collaborative activities thatlyfu
describe the structure and behaviour of co-operstio
All the co-operations instantiated from a CO actidilh
have attribute values matching the attributes ef @O
action descriptor, and will support the collaborati
activities defined by the CO action descriptor. An

Attribute is a name property of a CO action that
describes the range of values that instances of the
property may hold. These attributes can eitherrrife
remote attributes defined by the classes which peite

in the co-operation, or local attributes to the &ion
which includes the list of participants that takartpin

the CO action. A Collaborative Activity is the
implementation of a service that can effect thealeiur
of two or more objects. Associated with
collaborative activity of a CO action there arePee-
conditionthat defines the start of the activity, and one or
morePost-conditionavhich define end of the activity. A
collaborative activity of a CO action is specified
terms of a name, together with dnvariant which
defines the collaborative activity, a set Operations
which establish the normal behaviour of the co-
operation, and a set @xceptionswhich establish the
exceptional behaviour of the co-operation. The
exceptions are defined in terms of exceptioBaents
and Handlers The Interface of a CO action is the
collection of collaborative activities that definthe
service to be delivered by the CO action.

the

Association Interface

2." . generalizatio
1 1
CO Action

/

Pre-Condition

AssociationEnds Generalization

1

\ specializatio
1
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Exceptions

VRN

Signal Handler

Attributes Post-Condition

Invariant Operations

Figure 1.Meta-model of a CO action.

A Generalisation is a taxonomic relationship
between a more general element and a more specific
element. A CO action can have generalisations terot
CO actions, but not with classes. The full CO actio
descriptor of a CO action is derived by inheritafroen
its own segment declaration and those of its aocest

Following the Catalysis approach, we could instead
have considered a single diagram to represent both
classes and CO actions. If this is the case themation
of association has to be included. Associationis a
structural relationship that specifies a connection



between classifiers, e.g. classes and CO actions.
Associations are described in terms of a namegast |
two AssociationEndgwhich define the roles and the
properties that should be observed of the classifie
participating in the association), and a multipici
property. An association may represent an agg@gati
between CO actions, but not between CO actions and
classes. An aggregation specifies a whole-part
relationship between the aggregate (“the wholey an
component (“the part”). Composition is a strongriaof
aggregation, and requires that a part instancadleded

in at most one composite at time, although the owne
may be changed over time.

3. Architectural Pattern for Supporting
Adaptability

3.1. Run-Time Adaptability

Run-time adaptability is the ability of a software
system to adapt itself to changes that occur either
internally or in its operating environment. A syatean
either change its behaviour or its structure, altfto
most adaptive systems contain a mixture of these tw
types of adaptability:

* In behavioural adaptability the system structure
remains the same while the architectural elements o
the system can be modified or replaced. For
example, a component could be modified for the
provision of new services, or a connector could be
replaced for changing the communication protocols
between the components.

e In structural adaptability the system behaviour
remains the same while the configuration of the
architectural elements changes. For example,
depending on changes that might occur in the
environment of the system, it might be necessary to
reconfigure the system for coping with different
workloads. At the design level, an example of
structural adaptability is adaptive fault tolerance
[11].

In a co-operative object-oriented architecture the
degree of run-time adaptability of a software gyste
depends on the flexibility of components changimgjrt
pattern of collaboration. Instead of having a safev
system based on components that are individualkly ab
to provide a wide range of services, the proposed
approach relies on the abilty of components to
reconfigure their collaborations while they remain
unchanged. The aim of this paper is to define an
architectural pattern that allows behavioural adhaitity
to be incorporated in co-operative object-oriented
architectures.

3.2. Co-oper ative Object-Oriented
Architectural Pattern

In a co-operative object-oriented system, behasaiour
adaptability is obtained by changing how objects co
operate, and the selection of a co-operation depend
the state of the collaboration between the objekts.
architectural representation of such system should
describe the collaborative activities between eass
terms of CO actions. The conditions for selectingpa
operation should be part of the definition of a &ion,
and these conditions are related to either thernate
state of the co-operation or the states of theobbjéi.e.
roles) participating in the co-operation. Hence the
architectural representation should be able to riesc
across different states, the behavioural adaptyluli
the collaborative activities between classes.

In this section, we define an architectural pattbat
supports run-time adaptability targeted for co-afiee
object-oriented architectures. Aarchitectural pattern
provides guidance for combining architectural eletse
in established and proven ways. The aim is noefind
mechanisms for adding, removing and replacing dabjec
which provide the means for systems to dynamically
reconfigure. Instead, we intend to define an aechitral
pattern that facilitates the representation of esyst
configurations that provide the basis for the gyste
adapt to changes that occur in its environment.

The intent of theStatedesign pattern is to allow an
object to alter its behaviour when its internaltesta
changes [8]. In this paper we claim that this desig
pattern can be also used to provide the requirpdcsti
for a co-operation to alter its behaviour whensitate
changes. The structure of the design pattate in
terms of CO actions, is shown in figure 2. The rust
Select CO action defines the interface common to all
the CO actions that represent the different stafabe
co-operation (an instance dEOAction). COAction
delegates all state-specific collaborations to $ladect
CO action, and depending on its stal®Action uses
an instance of a specialised CO actio@©Actionl,
COAction2,...) of the abstracSelect CO action to
implement a collaboration. Using the architectural
pattern Select, we are able to obtain an effective and
structured representation of behavioural adaptabili
using the co-operative object-oriented style.

The applicability of this architectural pattern da@
demonstrated in terms of two examples. The first
example deals with intelligent motorways, where
autonomous vehicles are able to travel in platoains
high speeds while maintaining minimal distances
between themselves. Depending on the weather
conditions, the properties of the vehicles do reschto
change, instead changes can be associated with the
collaborations that are responsible for maintaintihg



required distances between the vehicles. Another
example comes from the world of the Internet. An
Internet  bookshop might require, for payment
assurances, additional information from a not so
trustworthy customer (the vice-versa being equally
possible). Instead of changing the components
representing the bookshop and the customer, the
collaboration between these two entities can bagdad,

depending on the roles taken by one of its paditig.

- 7
N

delegate to *

COAction
|
D

COAction2

COAction1
| N

Figure 2 Statedesign pattern in terms of CO actions.

4. Description of the Case Study: Electronic
Height Control System (EHCS)

The electronic height control system (EHCS)
controls the height of a vehicle by regulating the
individual heights of the wheels through a pneumati
suspension. The aim of this system is to adjust the
chassis level depending on the road conditionsyder
to improve driving comfort and keep the headligiad-
independent [17].

For this case study three distinct types of roas ar
considered, namely, off-road, gravel and motorvray.
each type of road we define a set point and twe gkt
tolerance intervals, as shown in the diagram afrégl.

In each of the four wheels there is an pneumatic
suspension which is able to control the height of a
individual wheel. Whenever the height of a wheel is
outside the outer tolerance interval, the contrdiles to
bring the height into the inner tolerance interasdund

the set point.

The major components of the EHCS are a valve and
a height sensor at each wheel, and an escape aradva
compressor to be shared by all the wheels, as sirown
the diagram of figure 3. The suspension height is
increased by opening the wheel valve, closing Hoajge
valve, and pumping air into the suspension. The
suspension height is decreased by releasing air fne
suspension by opening the escape valve, and tike vl
the wheel from which the height has to be redudé
compressor and the escape valve cannot be used
simultaneously, priority is given to the compresathien
both have to be used. It is assumed that the heajhés
provided by the sensors are mean values of thelactu

readings from which the disturbances, like roadespl
are eliminated.

The aim of this case study is to define a software
architecture that enables the EHCS to adapt atiman-
to changes that occur in the system environment. In
terms of the height control system, the adaptabilit
element is related with selection of the appropriat
control algorithm depending on the type of road. In
terms of the EHCS software architecture, the so#twa
components remain the same, while the pattern of
collaboration changes between the components.

FR Compressor RR
Valve Valve
Valve D Valve

Escape
FL Valve RL

FR: front right wheel
FL: front left wheel

RR: rear right wheel
RL: rear left wheel

rrrrith
%]
©

sp

=
T
I

ofi kL[

off-road gravel motorway

sp: set point
iti: inner tolerance interval
oti: outer tolerance interval

Figure 3. Diagrammatic representation of the EHCS.

5. A Software Architecturefor the EHCS

In this section the software architecture for the
electronic height control system (EHCS) of a vehicl
suspension is established in terms of the co-operat
object-oriented style, previously defined. The déang of
figure 4 represents the class and CO action disgfam
the EHCS. The notation follows UML [2], except the
CO actions that are represented as boxes with eslind
corners.

The CO action MaintainSP is responsible for
maintaining the height of the suspension aroundstte
point. It is composed by three other CO actions:
ReadMH which is responsible for updatiMyheel with



the value of mean height of the suspension, and
IncreaseMH andDecreaseMH which are responsible,
respectively, for increasing and decreasing the
suspension height of a wheel. Depending on road
condition, a different control algorithm is necegstor
maintaining the height of the suspension, hence
MaintainSP can be specialised intdSPOffRoad,
MSPGravel, and MSPMotorway. For example, it
might be necessary, depending on the road condjtton
establish different tolerance levels focreaseMH and
DecreaseMH, or to establish time intervals for updating
(Aupdate) the value of the mean height in cl&gkeel.

Suspension

1 T] 4

Wheel

Compressor EscapeValve

1 1

HeightSensor WValve

(i) class diagram

MaintainSP m
RoadType

Compressor
ReadMH

EscapeValve
HeighSensor
IncreaseMH
\_ DecreaseMH /
MSPOffRoad

Wheel
e —

WValve
N~

( MSPGravel )
( MSPMotorway ’

delegate to *»

Wheel
HeighSensor

IncreaseMH

Compressor
EscapeValve
Wheel
WValve

DecreaseMH

Compressor
EscapeValve

Wheel
WValve

(if) CO action diagram

Figure 4. Co-operative object-oriented diagrams for
the EHCS.

In this paper, the dynamic behaviour of CO actigns
specified using a property-oriented formalism inst®f
operational formalism (like Statecharts, which peet
of UML). The reason for this is that, at the arebitral
level, we rather to focus on the properties of dapdive
system, than on how a design should be implemeiried.
the following, the CO actions will be formally siféed

in terms of Extended Real-Time Logic (ERTL) [3, 10]
following the template previously presented. Insthi
paper, the behavioural specification of CO actiwiils
be restricted to the normal behaviour. It is notthe
scope of this paper to deal with exceptional anldria
behaviours, which were presented elsewhere [5&]. F
the sake of brevity, and to avoid repetition, otihg
composite CO actioMaintainSP will be specified. The
specifications of MSPOffRoad, MSPGravel, and
MSPMotorway follow directly from MaintainSP. We
assume that MaintainSP, which is considered
appropriate for all types of road, is replaced biyeo
three CO actions that encapsulate control algosttimat
are specific for particular types of road.

The CO action MaintainSP co-ordinates the
activities between the components of Bespension
for maintaining the mean height ofVaheel around the
established set point. The co-ordination of the
collaborative activities is partitioned into threg@O
actions, detailed below. The definition bfaintainSP
states that the pre-condition fdvaintainSP to be
activated is when EHCS is switched @eh¢s.on), and it
will remain activated until the EHCS is switched, of
which is also captured by the invariant. The prioviof
adaptive software will be based on the speciatisatif
MaintainSP for the different types of road, which will
be presented at the end of this section.

MaintainSP:
attributes:
participants:
c Compressor
ev Valve
w Wheel
w.hs HeightSensor
W.WV Valve
ehcs EHCS
behaviour:
initial:
d(-ehcs.on, 1, 0)
normal:

pre-condition:

Ote0il *: ©(ZmaintainSP, i, t) = O(Aehcs.on, i, t)
invariant:

Ote0il *: d(maintainSP, i, t) = ®( ehcs.on, i, t)
post-condition:

Ote0il *: ©(NmaintainSP, i, t) = O(Nehcs.on, i, t)

The CO actiorReadMH captures the collaboration
betweenWheel and HeightSensor, and is responsible
for updating periodically th&Vheel's variable for the
mean height of the suspension, which is obtainech fr
the HeightSensor. The pre-condition for normal
behaviour establishes thReadMH starts periodically
every Aupdate. The invariant states that féteadMH
to be active the current update has still to be aread
the interval for the next reading has not expiréte
post-condition is captured by two transition event



predicates that specify the necessary and sufficien
conditions for the co-operation to end: the vaeabl
w.height has been updated, or the time interval
available for updating that variable has expired.
ReadMH:

attributes:

participants:

w Wheel
w.hs HeightSensor

variables:

Aupdate
behaviour:

initial:

normal:

pre-condition:

OtedilD *: O(AreadMH, i, t) =
(1, ©(AreadMH, i-1, t,) Ot=t, +Aupdate
invariant:
Ot0il *: d(readMH, i, t) =
0, ©(AreadMH, i, t,) Ot<t,+Aupdate
post-condition:
Ote0ilD *: O(NreadMH, i, t) =
O(A(w.height=w.hs.value), i, t) O
(G, ©(AreadMH, i, t) O t=t +Aupdate)

The CO actionincreaseMH is responsible for
increasing the mean height of the suspension once a
minimum threshold is reached. The pre-condition for
normal behaviour establishes that the CO actiortssta
when theCompressor is off (captured byc.on), the
EscapeValve andWheelValve are closed (captured by
variablesev.open and w.wv.open, respectively), and
the minimum height threshold is reached (capturgd b
varaible w.height). While the mean height of the
suspension is being increased tempressor should
be on, theEscapeValve closed, thaVheelValve open.
Once the mean height is within the inner tolerance
interval (ti), IncreaseMH ceases to be active.
IncreaseMH:

Real

attributes:
participants:
c Compressor
ev Valve
w Wheel
w.hs HeightSensor
W.WV Valve
variables:
iti, ofi Real
behaviour:
initial:
®d(~c.on O-ev.open O-w.wv.open, 1, 0)
normal:

pre-condition:
OtedilD *: ©(AincreaseMH, i, t) =
O(A(~c.on O-ev.open 0= w.wv.open [
(w.height<(w.setPoint-oti/2))), i, t)
invariant:
OtedidD *: d(increaseMH, i, t) =
®(-ev.open, i, t) Od(w.height<(w.setPoint-oti/2), i, t)
operations:

OtedilD *: d(w.height<(w.setPoint-oti/2), i, t) O
®(c.on Ow.wv.open, i, t)

OtedilD *: ©(A((w.setPoint+iti/2)>w.height>
(w.setPoint-iti/2increaseMH)), i, t) O
O(A(-~c.on O~ w.wv.open), i, t)

post-condition:

OtedilD *: ©(NincreaseMH, i, t) =
O(A(~c.on O-ev.open 0= w.wv.open
((w.setPoint+iti/2)>w.height> (w.setPoint-iti/2))), i, t)

The description of CO actioDecreaseMH follows
the same pattern ¢rficreaseMH. However, for reducing
the mean height of the suspension tBempressor
should be off, and thEscapeValve and WheelValve
should be open. (At this stage of development, vee a
not concerned with the priority associated with the
Compressor, instead the implementation of this
requirement should be part of a CO action resptasib
for co-ordinating the controllers of the individual

wheels.)
DecreaseMH:
attributes:
participants:
c Compressor
ev Valve
w Wheel
W.WV Valve
variables:
iti, ofi Real
behaviour:
initial:
d(-c.on O-ev.open 0= w.wv.open, 1, 0)
normal:

pre-condition:
Ote0ilD *: ©(AdecreaseMH, i, t) =
O(A(~c.on O-ev.open 0= w.wv.open [
(w.height>(w.setPoint+oti/2))), i, t)

invariant:
Ote0ilD *: d(decreaseMH, i, t) =
d(=c.on, i, t) O d(w.height>(w.setPoint+oti/2), i, t)
operations:
Ot *: d(w.height>(w.setPoint+oti/2), i, t)0
d(ev.open Ow.wv.open, i, t)
Ot *: ©(A((w.setPoint+iti/2)>w.height>
(w.setPoint-iti/2increaseMH)), i, t) O
O(A(—ev.open O -w.wv.open), i, t)
post-condition:
Ote0il *: ©(NdecreaseMH, i, t) =
O(A(-~c.on O-ev.open 0= w.wv.open O
((w.setPoint+iti/2)>w.height> (w.setPoint-iti/2))), i, t)
According with the proposed approach, outlined in
section 3.2, an adaptable software system for th€ &
can be obtained by applying the design pat&iaie[8]
to the CO actions that capture the collaborativieviac
between the components of tBeispension. Referring
to the CO action diagram of figure 4, the behaviofir
MaintainSP depends on the state BioadType, and
according to this state, the behaviour MéintainSP
must change at run-time. Instead of defining a Ctiva
for all types of road, the design pattétateallows to
partition MaintainSP into other CO actions, namely,



MSPOffRoad, MSPGravel andMSPMotorway. These
three CO actions are specified to be mutually
independent, and their selection during run-timeeels

on the type of road.

6. Conclusion

In this paper we have presented how collaborations
between objects can be exploited when defining
software architectures for adaptive systems. Assisb
for the proposed approach, we have assumed thedtsbj
are rigid entities, and the basis for adaptabdiépends
on how they collaborate. Hence all the additional
features which enables an object, or a group ofaibj
to adapt to changes that occur in its environmesntat
captured in the object itself, instead they aréngef in
the co-operations in which the object is a paréinip
For describing the architectures for adaptive sarftw
systems we have defined a co-operative objectimden
style where components are the classes, and camnsect
are the co-operative actions (CO actions). As
architectural elements, CO actions capture the
behavioural dependencies between the classes hat a
related with the adaptability features of an ohjemt
group of objects.

Although the definition of a CO action was presédnte
in the context of components (objects) which haseyv
simple structures, the aim of the work is to obtaimore
general definition of a CO action which can be uas@
sophisticated connector for structurally more campl
software components. For that, it might be necgssar
define a CO action as an architectural pattern (or
framework) which can be instantiated into several
domain related applications. Also in this paper,hage
only considered the type of run-time adaptabilityene
the components remains unchanged while the behaviou
of the system changes, however, depending on pe ty
of application and the purpose of the system, amoth
types of adaptability may also be considered.
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