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Type Inference Builds a Short Cut to Deforestation

Olaf Chitil
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Abstract

Deforestation optimises a functional program by transform-
ing it into another one that does not create certain inter-
mediate data structures. Short cut deforestation is a de-
forestation method which is based on a single, local trans-
formation rule. In return, short cut deforestation expects
both producer and consumer of the intermediate structure
in a certain form. Warm fusion was proposed to automatic-
ally transform functions into this form. Unfortunately, it is
costly and hard to implement. Starting from the fact that
short cut deforestation is based on a parametricity theorem
of the second-order typed λ-calculus, we show how the re-
quired form of a list producer can be derived through the
use of type inference. Typability for the second-order typed
λ-calculus is undecidable. However, we present a linear-time
algorithm that solves a partial type inference problem and
that, together with controlled inlining and polymorphic type
instantiation, suffices for deforestation. The resulting new
short cut deforestation algorithm is efficient and removes
more intermediate lists than the original.

1 Deforestation

In lazy functional programs two functions are often glued
together by an intermediate data structure that is produced
by one function and consumed by the other. For example,
the function any, which tests whether any element of a list
xs satisfies a given predicate p, may be defined as follows in
Haskell [PH+99]:

any p xs = or (map p xs)
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The function map applies p to all elements of xs yielding
a list of boolean values. The function or combines these
boolean values with the logical or operation (||).

John Hughes expounds in his influential paper [Hug89]
the relevance of the obtained modularity and points out that
lazy evaluation makes this programming style practicable.
In contrast to eager evaluation, lazy evaluation ensures that
the boolean list is produced one cell at a time. Such a cell is
immediately consumed by or and becomes garbage, which
can be reclaimed. Thus the function any runs in constant
space. Furthermore, when or comes across the value True,
the production of the list is aborted.

Nonetheless this modular programming style does not
come for free. Each list cell has to be allocated, filled, taken
apart and finally garbage collected. The following mono-
lithic definition of any is more efficient.

any p [] = False
any p (x:xs) = p x || any p xs

It is the aim of deforestation algorithms to automatically
transform a functional program into another one that does
not create such intermediate data structures. We say that
the producer and the consumer of the data structure are
fused. Although there is an extensive literature on various
deforestation methods, their implementation in real com-
pilers proved to be difficult (see Section 7).

1.1 Short Cut Deforestation

In response to these problems short cut deforestation was
developed [GLP93, Gil96], which is based on the single, local
transformation

foldr e(:) e[] (build g) � g e(:) e[]

where build is a new function with a second-order type:

build :: ∀α.(∀γ.(α -> γ -> γ) -> γ -> γ) -> [α]
build g = g (:) []

Short cut deforestation removes an intermediate list that
is produced by the expression build g and consumed by
the function foldr. Lists are the most common intermedi-
ate data structures in functional programs. The compiler
writer defines all list-manipulating functions in the stand-
ard library, which are used extensively by programmers, in
terms of build and foldr. For example the definition of
map is:

map f xs = build (\c n -> foldr (c . f) n xs)



Gill implemented short cut deforestation in the Glasgow
Haskell compiler [GHC] and measured speed ups of 43 %
for the 10 queens program and of 3 % on average for a large
number of programs that were programmed without defor-
estation in mind [Gil96].

1.2 Warm Fusion

Originally, the second-order type of build confined deforest-
ation to producers that are defined in terms of list-producing
functions from the standard library. Today, the Glasgow
Haskell compiler has an extended type system which per-
mits the programmer to use functions like build. However,
asking the programmer to supply list producers in build
form runs contrary to the aim of writing clear and concise
programs. Whereas using foldr for defining list consumers
is generally considered as good, modular programming style,
build is only a crutch to enable deforestation.

Hence warm fusion [LS95] was developed to automat-
ically derive a build/foldr form from generally recursive
definitions. Its basic idea for transforming an arbitrary list
producer e into build form is to rewrite it as

build (\c n -> foldr c n e)

and push the foldr into the e by term rewriting, hoping
that it cancels with builds in there. When it does, the
expression is in build form. Otherwise the transformation
is abandoned. This method is rather expensive and poses
substantial problems for an implementation [NP98].

1.3 Derivation of Build through Type Inference

In this paper we present a different, both efficient and power-
ful method for transforming an arbitrary list-producing ex-
pression into build form which can then be fused with a
foldr consumer.

We were inspired by the fact that short cut deforesta-
tion is based on a parametricity theorem of the second-order
typed λ-calculus. So we reduce the problem of deriving a
build form of the producer to a type inference problem.
At first, the fact that typability for the second-order typed
λ-calculus is undecidable [Wel94] seems to pose a problem,
but we have developed a linear-time partial type inference
algorithm that makes good use of the type annotations in
a second-order typed program and that suffices for our pur-
poses.

The type inference algorithm indicates clearly where in-
lining is needed for deforestation. Hence in contrast to warm
fusion we only need to derive a build form where necessary.
Thus we reduce transformation time and avoid the potential
inefficiency of build forms.

We formally present our improved short cut deforesta-
tion for a small functional language with second-order types,
which is similar to the intermediate language Core used in-
side the Glasgow Haskell compiler.

The paper is structured as follows. In the next section
we informally present our idea of using type inference for
adapting a producer for short cut deforestation. In Sec-
tion 3 we present a type inference algorithm for a simply
typed functional language and demonstrate how our method
works. Furthermore, we discuss inlining of definitions of list
functions used by the producer. In Section 4 we extend our
type inference algorithm to a second-order typed language
and present the whole build derivation algorithm. We see
in particular that we need to instantiate some polymorphic

functions. Afterwards we discuss in Section 5 how an entire
program is deforested. In Section 6 we present two exten-
sions of our deforestation method. In Section 7 we compare
our approach to related ones and we conclude in Section 8.

2 The Idea

The fundamental idea of short cut deforestation is to re-
strict deforestation to intermediate lists that are consumed
by the function foldr. This higher-order function uniformly
replaces the constructors (:) in a list by a given function c
and the empty list constructor [] by a constant n:1

foldr c n [x1, . . . , xk] = x1 ‘c‘ (x2 ‘c‘ (. . . (xk ‘c‘ n) . . . ))

Hence, if foldr just replaces all list constructors in a
list that is produced by an expression e, an eye-catching
optimisation is to replace all list constructors in e already
at compile time:

foldr e(:) e[] e
� e [e(:)/(:)][e[]/[]]

Unfortunately this rule is wrong:

foldr (||) False (map p [1,2])
6= map p (1 || (2 || False))

In this example the constructors in the definition of map,
which is not part of the expression, needed to be replaced
and not those in [1,2].

To solve the problem we distinguish between the con-
structors that build the intermediate list and all the other
list constructors. Let e′ be the producer e where the former
constructors are replaced by variables c and n. Let the new
transformation rule be

foldr e(:) e[] e
� e′ [e(:)/c][e[]/n]

We observe that according to definition e′ [(:)/c][[]/n] = e
and that generally e(:) and e[] have different types from
(:) and []. Hence just for this transformation to be type
correct, e′ must be polymorphic, that is, if e has type [τ],
then e′ :: γ must hold under the assumption c :: τ -> γ -> γ
and n :: γ for some type variable γ.

To express these type conditions in the transformation
rule, the function build is introduced:

foldr e(:) e[] (build (\c n -> e′))
� (\c n -> e′) e(:) e[]

build :: ∀α.(∀γ.(α -> γ -> γ) -> γ -> γ) -> [α]
build g = g (:) []

The function build has the additional effect that computing
the substitution [e(:)/c][e[]/n] is factored out and short cut
deforestation is hence a very simple transformation.

Strikingly, the polymorphic type of e′ also guarantees
the semantic correctness of the transformation. Intuitively,
e′ can only manufacture its value of type γ from c and n,
because only these have the right types. Formally, the trans-
formation is an instance of a parametricity or free theorem
[Wad89, Pit98]. The validity of the foldr/build rule is
proved in [GLP93, Gil96].

There is a straightforward method to obtain e′ from e.
Let us replace in e the constructor (:) at some positions

1Note that [x1, . . . , xk] is only syntactic sugar for the expression
x1:(x2:. . . :[]). . . ).
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Type constants T ::= [Int], Int, . . .
Type inference variables γ, δ, δ1, δ2, . . .

Types τ, ρ ::= T | β | τ → ρ
Term variables x, c

Terms e ::= x | λx : τ.e | e1 e2 | case e of {ci xi → ei}ki=1 | let {xi : τi = ei}ki=1 in e

Figure 1: Terms and types of the simply typed language

Γ + x : τ ` x : τ
var

Γ + x : τ1 ` e : τ2

Γ ` λ(x : τ1).e : τ1 → τ2
term abs

Γ ` e1 : τ2 → τ Γ ` e2 : τ2

Γ ` e1 e2 : τ
term app

∀i = 1..k Γ + {xj : τj}kj=1 ` ei : τi Γ + {xj : τj}kj=1 ` e : τ

Γ ` let {xi : τi = ei}ki=1 in e : τ
let

Γ ` e : T Γ(ci) = ρi → T Γ + xi : ρi ` ei : τ ∀i = 1..k

Γ ` case e of {ci xi 7→ ei}ki=1 : τ
case

Figure 2: Type system of the simply typed language

by c and the constructor [] at some positions by n. Next
we type check the expression. If it has type γ, then we have
found e′. Otherwise, we try a different replacement of (:)s
and []s. If no replacement gives the desired type, then no
short cut deforestation takes place.

Obviously, this generate-and-test approach is prohibit-
ively expensive. Fortunately, we can determine the list con-
structors that need to be replaced in one pass, if we use an
algorithm that infers a principal typing. We just replace
every occurrence of (:) by a new variable ci and every oc-
currence of [] by a new variable ni. If the principal type
of the modified producer is a type variable γ, then defor-
estation is possible. Subsequently we just have to look at
the types of the ci and ni in the typing. Those with types
τ -> [τ] -> [τ], respectively [τ], are turned back into list
constructors. Those with types τ -> γ -> γ, respectively γ,
are replaced by c and n. We obtain e′ and thus have derived
the desired form build (\c n -> e′) of the list producer e.

3 Abstraction of List Constructors in the Simply
Typed Language

The syntax of our simply typed language is defined in Fig-
ure 1 and the type system is given in Figure 2. The language
is essentially the simply typed λ-calculus augmented with
let for arbitrary mutual recursion and case for decompos-
ition of algebraic data structures. We view data construct-
ors c just as special term variables. We introduce type in-
ference variables only for using them in the type inference
algorithm. Nonetheless they may be used inside types like
type constants. Because we have a monomorphic language,
we only have lists with elements of type Int. We view a type
environment Γ as both a mapping from variables to types
and a set of tuples x : τ . The operator + combines two type
environments under the assumption that their domain is dis-

junct. We abbreviate Γ+{x : τ} by Γ+x : τ . The language
does not have explicit definitions of algebraic data types
like data T =c1 τ1| . . . |ck τk. Such a definition is impli-
citly expressed by having the data constructors in the type
environment: Γ(ci) = τ1,i → . . .→ τni,i → T = τ i → T .

We demand that every variable binding construct binds
a different term variable. This condition avoids many com-
plications with scope rules and is usually enforced inside
compilers by a preliminary renaming pass.

3.1 Type Inference

Type inference algorithms for the simply typed λ-calculus
usually take an untyped λ-term as input. However, the in-
put to deforestation is already a typed program and we want
to take advantage of this property. Hence we base our type
inference algorithm on the algorithmM [LY98], which is for
the Hindley-Milner type system. AlgorithmM takes a type
environment Γ, an expression e and a type τ as input, all of
which may contain type variables, and returns a principal
typing for (Γ, e, τ ). A type substitution σ is a typing for
(Γ, e, τ ) iff Γσ ` eσ : τσ. Furthermore, σ̃ is a principal
typing for (Γ, e, τ ) iff it is a typing for (Γ, e, τ ) and for every
typing σ′ for (Γ, e, τ ) there exists a substitution σ̂ such that
Γσ′ = Γσ̃σ̂, eσ′ = eσ̃σ̂ and τσ′ = τ σ̃σ̂. Our type inference
algorithm T is given in Figure 3. It has an initial substitu-
tion as additional argument. We say that a substitution σ′

is an extension of a substitution σ, written σ � σ′, if there
exists a substitution σ̂ such that σ′ = σσ̂. We say that σ̃
is a principal typing with respect to σ for (Γ, e, τ ) iff it is a
typing for (Γ, e, τ ) and for every typing σ′ for (Γ, e, τ ) with
σ � σ′ there exists a substitution σ̂ such that Γσ′ = Γσ̃σ̂,
eσ′ = eσ̃σ̂ and τσ′ = τ σ̃σ̂.

Theorem 3.1 Let Γ be an environment, e an expression
and τ a type. If (Γσ, eσ, τσ) has a typing, then T (Γ, e, τ, σ)
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T (Γ, x, τ, σ) = U(Γ(x)
.
= τ, σ)

T (Γ, λ(x : τ1).e, τ, σ) = T (Γ + x : τ1, e, δ,U(τ1 → δ
.
= τ, σ))

where δ a new type inference variable

T (Γ, e1 e2, τ, σ) = T (Γ, e2, δ, T (Γ, e1, δ → τ, σ))

where δ a new type inference variable

T (Γ, let {xi : τi = ei}ki=1 in e, τ, σ) = σk

where
σ0 = T (Γ + {xi : τi}, e, τ, σ)
σ1 = T (Γ + {xi : τi}, e1, τ1, σ0)
...

...
σk = T (Γ + {xi : τi}, ek, τk, σk−1)

T (Γ, case e of {ci xi → ei}ki=1, τ, σ) = σk

where
Γ(ci) = ρi → T ∀i = 1..k
σ0 = T (Γ, e, T, σ)
σ1 = T (Γ + x1 : ρ1, e1, τ, σ0)
...

...
σk = T (Γ + xk : ρk, ek, τ, σk−1)

Figure 3: Type inference algorithm for the simply typed language

yields a principal typing σ̃ with respect to σ for (Γ, e, τ ).
Otherwise it fails. �

Proof Similar to the soundness and completeness of M
proved in [LY98]. �

For our type inference algorithm we assume the existence
of a unification algorithm. A substitution σ is a unifier for
an equation τ1

.
= τ2 iff τ1σ = τ2σ Moreover, σ̃ is a most

general unifier for τ1
.
= τ2 iff it is a unifier for τ1

.
= τ2 and

for every unifier σ′ for τ1
.
= τ2 we have σ � σ′.

We require Û(τ1
.
= τ2) to return a most general unifier

σ̃ for τ1
.
= τ2, if a unifier exists, and fail otherwise. For

convenience we define U(τ1
.
= τ2, σ) := σÛ(τ1σ

.
= τ2σ).

Hence U(τ1
.
= τ2, σ) returns a most general unifier σ̃ for

τ1σ
.
= τ2σ with σ � σ̃, if a unifier exists, and fails otherwise.

We choose to formulate T with the additional substi-
tution, because it makes the presentation of the algorithm
more readable and it already indicates an efficient imple-
mentation method.

3.2 Abstraction of List Constructors

We present our list constructor abstraction algorithm at the
hand of an example. The following well-typed expression
produces a list.

{g : Int→Int, 1 : Int, 2 : Int,
(:) : Int→[Int]→[Int], [] : [Int]}
` let map : (Int→Int)→[Int]→[Int]

= λf:Int→Int. λxs:[Int].
case xs of {
[] → []
y:ys → (f y) : (map f ys)

in map g [1,2] : [Int]

Our algorithm replaces every list constructor (:), re-
spectively [], by a different variable ci, respectively ni. To
use the existing type annotations as far as possible, we just
replace every type [Int] in the expression by a new type
inference variable. Furthermore, we add ci : τ → δi → δi,
respectively ni : δi, to the type environment, where δi is a
new type inference variable for every variable ci, respect-
ively ni. These type schemes assure that the inferred types
will be appropriate for (:) or the consumer argument e(:),
respectively [] or e[]. As remaining arguments we give T a
type inference variable γ and the identity substitution. For
our example, input and output of T look as follows

T({g : Int→Int, 1 : Int, 2 : Int,
(:) : Int→[Int]→[Int], [] : [Int],
c1 : Int→ δ1 → δ1, c2 : Int→ δ2 → δ2,
c3 : Int→ δ3 → δ3, n1 : δ4, n2 : δ5}

, let map : (Int→Int)→ δ6 → δ7
= λf:Int→Int. λxs:δ8.

case xs of {
[] → n1,
y:ys → c1 y (map f ys)}

in map g (c2 1 (c3 2 n2))
,γ, id )

= [γ/δ1][[Int]/δ2][[Int], δ3][γ/δ4][[Int]/δ5]
[[Int]/δ6][γ/δ7][[Int]/δ8]

The inferred principal typing is easier to read when we apply
the substitution to the input:

{g : Int→Int, 1 : Int, 2 : Int,
(:) : Int→[Int]→[Int], [] : [Int],
c1 : Int→ γ → γ, c2 : Int→[Int]→[Int],
c3 : Int→[Int]→[Int], n1 : γ, n2 : [Int]}
` let map : (Int→Int)→[Int]→ γ

= λf:Int→Int. λxs:[Int].
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Type constructors C := [] | Int | . . .
Type variables α, β

Type inference variables γ, δ, δ1, δ2, . . .
Types τ, ρ ::= C τ | α | β | τ → ρ | ∀α.τ
Terms e ::= . . . | λα.e | e τ

Figure 4: Additional terms and types of the second-order typed language

Γ ` e : C ρ Γ(ci) = ∀α.ρi → C α Γ + {xi : ρi[ρ/α}] ` ei : τ ∀i = 1..k

Γ ` case e of {ci xi 7→ ei}ki=1 : τ
case

Γ ` e : τ α /∈ freeTyVar(Γ)

Γ ` λα.e : ∀α.τ type abs
Γ ` e : ∀α.τ

Γ ` e ρ : τ [ρ/α]
type app

Figure 5: New type rules for the second-order typed language

case xs of {
[] → n1,
y:ys → c1 y (map f ys)}

in map g (c2 1 (c3 2 n2)) : γ

The type environment tells us that c1 and n1 construct
the result of the expression whereas c2, c3, and n2 have to
construct lists that are internal to the expression.

Because build has a polymorphic type, we cannot ex-
press the producer in build form in this section. Instead
we directly consider the final fusion step. For a consumer
foldr e(:) e[] the variables c1 and n1 are replaced by e(:) and
e[]. The other variables are turned back into list construct-
ors. For example, fusion of our producer with the consumer
foldr (+) 0 gives:

{g : Int→Int, 1 : Int, 2 : Int,
(:) : Int→[Int]→[Int], [] : [Int],
(+) : Int→Int→Int, 0 : Int}
` let map : (Int→Int)→[Int]→Int

= λf:Int→Int. λxs:[Int].
case xs of {
[] → 0,
y:ys → y + (map f ys)}

in map g [1,2] : Int

In general, the result of type inference may still contain
other type inference variables than γ. Subexpressions of
type inference variable type are not relevant for the result
and hence the type inference variables can safely be replaced
by [Int]. If type inference fails, no fusion is possible.

As an optimisation to make T fail early if the desired
polymorphic type cannot be inferred, we let the unification
algorithm treat γ like a constant, not like a type inference
variable that can be replaced.

3.3 Inlining of External Definitions

The previous example is rather artificial, because usually the
definition of map will not be part of the producer. Deforest-
ation requires inlining. The example also demonstrates that
it is important not just to inline the right hand side of the
definition but the whole recursive definition. Experiences
with the implementation of other deforestation algorithms

[Mar95, NP98] have shown that leaving inlining to a separ-
ate transformation pass gives unsatisfactory results. We can
in fact use the type environment of a principal typing of the
producer to determine the variables whose definitions need
to be inlined.

Determining which definitions can be inlined without du-
plicating computations is a separate art not discussed here
(see for example [San95, MOTW95, WP99]). At least it is
always safe to inline functions defined by a λ-abstraction.

Before type inference we replace every type [Int] by a
new type variable, not only in the expression but also in the
types of all inlineable variables in the type environment.

As example we consider the producer map g [1,2].
After replacement of the list constructors and types [Int]
the type inference algorithm gives us the typing

{map : (Int→Int)→ δ → γ,
g : Int→Int, 1 : Int, 2 : Int,
n1 : δ, c1 : Int→ δ → δ, c2 : Int→ δ → δ}
` map g (c1 1 (c2 2 n1)) : γ

The special type inference variable γ in the type of map sig-
nifies that the definition of map needs to be inlined. We do
not need to repeat the whole process for an extended pro-
ducer. Instead we continue processing the right hand side of
map with the type substitution we already have. We inline
definitions and process them until γ appears in the type of
no further variable of the type environment, except those
of the ci and ni of course. Subsequently, all processed (po-
tentially mutually recursive) definitions are put into a single
let binding. Furthermore, the bound variables need to be
renamed to preserve our invariant that every binding con-
struct binds a different variable. For our example the output
coincides modulo variable names with the output from Sec-
tion 3.2. The actual fusion is performed as described there.
In contrived cases our algorithm may inline all list functions.
Although we do not expect such a code explosion to occur in
practise, the algorithm will already abandon list constructor
abstraction when the inlined code exceeds a predefined size.
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T (Γ, case e of {ci xi → ei}ki=1, τ, σ) = σk

where
Γ(ci) = ∀α.ρi → C α ∀i = 1..k
δ new type inference variables
σ0 = T (Γ, e, C δ, σ)
σ1 = T (Γ + x1 : ρ1[δ/α], e1, τ, σ1)
...

...
σk = T (Γ + xk : ρk[δ/α], ek, τ, σk−1)

T (Γ, λα.e, τ, σ) = T (Γ, e, δ,U(τ
.
= ∀α.δ, σ))

where
δ a new type inference variable

T (Γ, e ρ, τ, σ) = σ0Û(τσ0
.
= τ0[ρσ0/α])

where
δ a new type inference variable
σ0 = T (Γ, e, δ, σ)
∀α.τ0 = δσ0 for some α and τ0

Figure 6: Modification of the type inference algorithm for the second-order typed language

4 Build Derivation in the Polymorphic Language

We extend the terms of our simply typed language by
type abstraction and type application and the types by
polymorphic algebraic data types and universally quanti-
fied types. The additional syntax is given in Figure 4 and
the new type rules in Figure 5. We distinguish between
type variables which may be bound in types and terms,
and type inference variables which only occur freely. Be-
cause of the polymorphic algebraic data types with poly-
morphic constructors we need a more general type rule for
case. Note that we write [α] instead of [] α for the poly-
morphic list type and that Γ((:)) = ∀α.α→[α]→[α] and
Γ([]) = ∀α.[α]. The functions build and foldr are defined
as follows

build : ∀α.(∀β.(α→ β → β)→ β → β)→ [α]
= λα. λg:∀β.(α→ β → β)→ β → β.

g [α] ((:) α) ([] α)

foldr : ∀α.∀β.(α→ β → β)→ β → [α]→ β
= λα. λβ. λc:α→ β → β. λn:β. λxs:[α].

case xs of {
[] → n
y:ys → c y (foldr α β c n ys) }

and the foldr/build rule takes the form:

foldr τ1 τ2 e(:) e[] (build τ1 g)
� g τ2 e(:) e[]

As for the simply typed language we demand that every
variable binding construct binds a different variable and that
bound variables are disjunct from free variables, both for
term variables and for type variables. However, for better
readability we are more liberal with variable names in our
examples.

4.1 Type Inference

The extension of T to the second-order typed language is
given in Figure 6. It is of central importance that we require

U to treat type variables like constants, only type inference
variables may be replaced. The only place where we replace
a type variable is in the typing of e ρ , but this substitution
is not part of the result substitution of T . All σ, σ̃, σ0,
etc. denote substitutions that only replace type inference
variables.

Note that in general T is neither sound nor complete. In
the case of λα.e, T performs no test to assure that a bound
type variable does not leave its scope. In the case of e ρ we
expect T (Γ, e, δ, σ) to return a universally quantified type.
Hence T ({x : δ}, x ρ, Int, id) fails in finding a typing.

Our algorithm T relies on the fact that the original pro-
ducer is typable and that not only all places of type ab-
straction and type application are known, but that we only
replace list types by type inference variables. Hence a prin-
cipal typing exists and only list types need to be substituted
for the type inference variables in the type environment and
the expression. Therefore the following limited completeness
of T suffices for our fusion method.

Theorem 4.1 Let Γ be an environment, e an expression
and τ and ρ types. If there exists a substitution σ′ with
δσ′ = [ρ] for all δ ∈ freeTyVar(Γσ, eσ) such that σ′ is a
typing for (Γσ, eσ, τσ), then T (Γ, e, τ, σ) yields a principal
typing σ̃ with respect to σ for (Γ, e, τ ). �

Proof The theorem is an instance of Theorem A.1, which
is given and proved in Appendix A. �

The extended algorithm T can be used for abstracting
list constructors in second-order typed programs just as de-
scribed in Section 3.2 for simply typed programs. The only
difference is that we do not replace (:), [] and [Int]. In-
stead, if [τ] is the type of the intermediate list producer, we
replace every (:) τ , respectively [] τ , by a new ci, respect-
ively ni, and replace every type [τ] by a new type inference
variable.
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4.2 Instantiation of Polymorphism

There is however still a problem left. Functions
that manipulate polymorphic lists, such as for example
map : ∀α.∀β.(α → β)→[α]→[β], prevent list constructor
abstraction, because the type annotations contain poly-
morphic list types like [β] instead of [τ].

Hence we replace all occurrences of a type application
f ρ, where f is an inlineable variable with f : ∀α.τ = λα.e
and τ contains a polymorphic list type [α] with α ∈ α,
by a new inlineable variable fρ that is defined through
fρ : τ [ρ/α] = e[ρ/α]. This type instantiation is performed
before the list types [τ] are replaced by type inference vari-
ables. To avoid code explosion we inline at most one such
instantiated definition for every polymorphic variable f .

As example consider the following list producer:

{fst : ∀α.∀β.(α,β)→ α, zs : [(Bool, Char)],
unzip : ∀α.∀β.[(α,β)]→ ([α],[β])}
` fst [Bool] [Char] (unzip Bool Char zs) : [Bool]

Our instantiation of polymorphism replaces all occurrences
of unzip Bool Char by a monomorphic unzip’:

{fst : ∀α.∀β.(α,β)→ α, zs : [(Bool, Char)],
unzip’ : [(Bool,Char)]→([Bool],[Char])}
` fst [Bool] [Char] (unzip’ zs) : [Bool]

Then we replace all occurrences of [Bool] by new type in-
ference variables and replace all (here not existing) list con-
structors. The input and the result of type inference look as
follows.

T ({fst : ∀α.∀β.(α,β)→ α, zs : [(Bool, Char)],
unzip’ : [(Bool,Char)]→(δ1,[Char])}

, fst δ2 [Char] (unzip’ zs) , γ, id)
= [γ/δ1][γ/δ2]

The γ in the inferred type of unzip’ indicates that its defin-
ition must be inlined. The original right hand side of the
definition of unzip is:

{unzip : ∀α.∀β.[(α,β)]→ ([α],[β]),
foldr : ∀α.∀β.(α→ β → β)→ β → [α]→ β,
(:) : ∀α.α→ [α]→ [α], [] : ∀α.[α],
(,) : ∀α.∀β.α→ β →(α,β)}
` λα. λβ. foldr (α,β) ([α],[β])

(λy:(α,β). λu:([α],[β]). case y of {
(v,w) → case u of {
(vs,ws) → (,) [α] [β] ((:) α v vs)

((:) β w ws)}})
((,) [α] [β] ([] α) ([] β))

: ∀α.∀β.[(α,β)]→ ([α],[β])

For processing unzip’ the input and the result of the type
inference algorithm is as follows. Note that we start with
the type substitution that we obtained from previous type
inference.

T ({unzip’ : [(Bool,Char)]→(δ1,[Char]),
foldr : ∀α.∀β.(α→ β → β)→ β → [α]→ β,
(:) : ∀α.α→ [α]→ [α], [] : ∀α.[α],
(,) : ∀α.∀β.α→ β →(α,β),
c1 : Bool→ δ3 → δ3, n1 : δ4}

, foldr (Bool,Char) (δ5,[Char])
(λy:(Bool,Char). λu:(δ6,[Char]). case y of {
(v,w) → case u of {
(vs,ws) → (,) δ7 [Char] (c1 v vs)

((:) Char w ws)}})
((,) δ8 [Char] n1 ([] Char))

, [(Bool,Char)]→(δ1,[Char]), [γ/δ1][γ/δ2])
= [γ/δ1][γ/δ2][γ/δ3][γ/δ4][γ/δ5][γ/δ6][γ/δ7][γ/δ8]

There is no γ in the type of any further variable of the
type environment. Hence list constructor abstraction has
terminated successfully.

We can now express the producer in build form as fol-
lows:

{build : ∀α.(∀β.(α→ β → β)→ β → β)→ [α],
fst : ∀α.∀β.(α,β)→ α, zs : [(Bool, Char)],
foldr : ∀α.∀β.(α→ β → β)→ β → [α]→ β,
(:) : ∀α.α→ [α]→ [α], [] : ∀α.[α],
(,) : ∀α.∀β.α→ β →(α,β)}
` build Bool (λβ. λc:Bool→ β → β. λn:β.

let unzip’ : [(Bool,Char)]→(β,[Char])
= foldr (Bool,Char) (β,[Char])

(λy:(Bool,Char). λu:(β,[Char]).
case y of {(v,w) →
case u of {(vs,ws) →
(,) β [Char] (c v vs)
((:) Char w ws)}})

((,) β [Char] n ([] Char))
in fst β [Char] (unzip’ zs) )

: [Bool]

Note that the producer fst [Bool] [Char] (unzip Bool
Char zs) cannot be fused by standard short cut deforest-
ation, because neither fst nor unzip can individually be
expressed in build form. Note also that the definition of
fst is not needed for deforestation and hence is not inlined.

In practise we finally have to rename all inlined variables
and their types to preserve the invariant that every binding
construct binds a different variable. In general we also may
have instantiated polymorphic variables that we did not in-
line later. These instantiations have to be undone.

The instantiation method may seem restrictive, but note
that the translation of a Hindley-Milner typed program into
our second-order typed language yields a program where
only let-bound expressions are type-abstracted and poly-
morphic variables occur only in type applications. Programs
in the intermediate language Core of the Glasgow Haskell
compiler are nearly completely in this form, because the
Haskell type systems is based on the Hindley-Milner type
system.

5 Deforestation of a Program

To deforest a program we traverse it twice.
During the first traversal we search for potentially fus-

ible expressions foldr τ1 τ2 e(:) e[] e. Furthermore, we
collect all definitions from let bindings that may be inlined.
Note that we only need to collect the definitions of variables
that return lists, that is, have a list type after the last func-
tion arrow → in their type.

Suppose we find the following potentially fusible expres-
sion:

. . .
foldr Bool Bool (&&) True
(fst [Bool] [Char] (unzip Bool Char zs))

. . .

For every such expression we try to convert its producer into
build form.
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. . .
foldr Bool Bool (&&) True
(build Bool (λβ.λc:Bool→ β → β.λn:β. . . . ))

. . .

After this build derivation pass we fuse the foldr/build
pairs in the second, actual deforestation pass.

. . .
(λβ.λc:Bool→ β → β.λn:β. . . . ) Bool (&&) True
. . .

Finally, a few β-reductions put the arguments e(:) and e[]
of the consumer in the former places of the list constructors.

. . .
let unzip’ : [(Bool,Char)]→(Bool,[Char])

= foldr (Bool,Char) (Bool,[Char])
(λy:(Bool,Char).λys:(Bool,[Char]).
case y of {(v,w) →
case (unzip’ ys) of {(vs,ws) →
(,) Bool [Char] (v && vs)
((:) Char w ws)}})

((,) Bool [Char] True ([] Char))
in fst Bool [Char] (unzip’ zs)
. . .

The idea immediately suggests itself that we could dir-
ectly replace the right list constructors by e(:) and e[] during
the build derivation pass, thereby avoiding completely the
explicit construction of the build form. Indeed we did so
in Section 3. However, we want to stress that finding the
right list constructors in a list producer and using this in-
formation are two separate issues. Keeping them separate
increases the potential application area of our build deriv-
ation method. We can, for example, derive build wrappers
of list producing functions for a wrapper/worker scheme as
described in [LS95, Gil96]. Furthermore, the foldr/build
rule and various simple transformations like β-reduction are
already implemented in the Glasgow Haskell compiler.

Note however, that we only derive a build form when
it is needed for deforestation. Thus we avoid the potential
inefficiencies introduced by superfluous build forms which
were observed in [Gil96].

Besides removing the costs of an intermediate data struc-
ture, deforestation also brings together subexpressions of
producer and consumer which previously were separated by
the intermediate data structure. Thus new opportunities
for optimising transformations arise, even for deforestation
itself. Consider for example the expression

map sum (inits [1..])

The function inits returns the list of all prefixes of its ar-
gument, that is, [[],[1],[1,2],. . . ]. A short cut deforest-
ation pass fuses inits with [1..] and map sum with the
result of the former fusion. Afterwards sum is positioned
next to the production of the inner lists [],[1],[1,2],. . .
and can be fused with it in a second deforestation pass.

6 Extensions

6.1 Fusion with Partial Producers

The list append function (++) poses a problem for the
foldr/build rule. The expression (++) τ xs ys does not

produce the whole resulting list itself, because only xs is
copied but not ys. Modifying the definition of (++) to copy
ys as well, as done in [GLP93, LS95, TM95], runs contrary
to our aim of eliminating data structures. Fortunately, Gill
[Gil96] discovered a generalisation of build

augment : ∀α.(∀β.(α→β→β)→β→β)→[α]→[α]
= λα. λg:∀β.(α→β→β)→β→β). λxs:[α].

g [α] ((:) α) xs

and the foldr/build rule

foldr τ1 τ2 e(:) e[] (augment τ1 g xs)
� g τ2 e(:) (foldr τ1 τ2 e(:) e[] xs)

The foldr/augment rule does not eliminate the whole in-
termediate list, but at least the part produced by the partial
producer.

Let us come back to our example (++) τ xs ys. Type
inference indicates that the definition of (++)τ needs to be
inlined. After type inference of the definition, the type envir-
onment contains ys: γ but ys may not be inlineable, because
it is shared or λ-bound. Then this non-inlineable variable
becomes the list argument of augment. So the augment form
of our example is:

augment τ ( λβ. λc:τ → β → β. λn:β.
let (++)τ : [τ]→ β → β

= λvs:[τ]. λws:β. case vs of {
[] → ws,
z:zs → c z ((++)τ zs ws) }

in (++)τ xs n ) ys

The foldr/build rule is a special instance of the
foldr/augment rule, we only have to replace xs by [] and
β-reduce to obtain the former from the latter. So we do not
need build at all. We prefer to use build in this paper,
because it is more intuitive and more wildly known.

6.2 Other Algebraic Data Types than Lists

Our type-based method for transforming a producer into
build form is not specific to lists but can be used for most
other algebraic data types. Consider for example the type
of arbitrarily branching trees:

data RoseTree a = Node a [RoseTree a]

The build function of the type is determined by the the
data constructor(s) and its type(s):

Node : ∀α.α→ [RoseTree α]→ (RoseTree α)

buildRT : ∀α.(∀β.(α→[β]→β)→β)→(RoseTreeα)
= λα. λg:∀β.(α→ [β]→ β)→ β.

g (RoseTree α) (Node α)

Note that ∀β.(α→ [β]→ β)→ β is the canonical encoding
of the data type RoseTree α in the second-order λ-calculus
and buildRT α is the isomorphism from the former type
to the latter, just as ∀β.(α → β → β) → β → β is the
canonical encoding of the data type [α] and build α is the
isomorphism from the former type to the latter (cf. [Pit98]).

Furthermore, an algebraic data type comes with a cata-
morphism which consumes its elements in a regular way (see
e.g. [MH95] for how a catamorphism is defined in general):
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foldRT : ∀α∀β.(α→ [β]→ β)→ (RoseTree α)→ β
= λα. λβ. λn:α→ [β]→ β. λt:RoseTree α.

case t of { Node x ts →
n x (map (RoseTree α) β

(foldRT α β n) ts) }
The foldRT/buildRT rule is an instance of the parametricity
theorem of the type of buildRT:

foldRT τ1 τ2 eNode (buildRT τ1 g) � g τ2 eNode

Obviously, we can derive a buildRT form from an expres-
sion of type RoseTree τ just as easily as a build form from
a list-typed expression. For deforestation we additionally
need a consumer to be defined in terms of the catamorph-
ism of the data type. The catamorphism could be defined
and used explicitly by the user. The compiler would learn
the name of the catamorphism through a directive. Altern-
atively, a consumer could automatically be transformed into
catamorphism form by another algorithm like warm fusion.

We can even handle mutually recursive data types. The
catamorphisms of a set of mutually recursive data types
are mutually recursive. Because the last argument of every
build is polymorphic in as many type variables as there
are types in the set, we need several special type inference
variables γi for build derivation.

However, all the above is limited to regular, covariant al-
gebraic data types. An algebraic data type is called regular,
if all recursive calls in the body are of the form of the head
of the definition. A counter-example is

data Twist a b = Nil | Cons a (Twist b a)

A data type is called contravariant, if some recursive call
appears in a contravariant position of the body, that is, more
or less as the first argument of the function type constructor:

data Infinite a = I (Infinite a -> a)

Catamorphisms for contravariant and mixedvariant
types are more complex than for covariant ones and for
non-regular types a general definition is unknown [MH95].
Furthermore, the validity of parametricity theorems has
only been proved for regular, covariant algebraic data types
[Pit98]. Nonetheless these limitations are mild, because
nearly all types that appear in practise are regular and co-
variant.

7 Related Work

Wadler [Wad90] coined the term deforestation. His method
is based on fold-unfold transformations; see [San96] for the
first proof of correctness and a recent presentation of this
approach.

On the other hand, there are methods like short cut de-
forestation that abandon the treatment of generally recurs-
ive definitions in favour of some ”regular” form of recursion.
These methods use fusion laws based on parametricity the-
orems. Authors take different points of view on how the
”regular” forms of recursion are obtained, if they need to be
provided by the programmer or are automatically inferred
from arbitrary recursive programs by another transforma-
tion.

[MFP91] gives an overview over several such fusion laws.
Hylomorphisms [TM95] enable the description of ”regular”
producers besides ”regular” consumers in a single form.

[HIT96] presents an algorithm for transforming generally re-
cursive definitions into hylomorphisms. The algorithm can
transform most definitions of real world programs [Tüf98].
[Feg96] describes an even more ambitious method of deriving
a recursion skeleton from a definition and using its paramet-
ricity theorem for fusion. The sketched algorithms are still
far from an implementation.

Generally, implementations of deforestation have prob-
lems with controlling inlining to avoid code explosion
[Mar95, NP98]. Unlike the foldr/build rule, most fusion
laws that are based on ”regular” producers or consumers
still require some transformation of arbitrary expressions.
All methods for automatically transforming programs into
some ”regular” form are purely syntax-directed and raise the
question of how generally they are applicable. Finally, the
question of how such a transformation changes the efficiency
of a program is usually not answered.

8 Conclusions

In this paper we presented a type-inference-based method
for adapting producers of intermediate data structures for
short cut deforestation. We showed how the problem of ab-
stracting the data constructors of an arbitrary producer can
be reduced to a partial type inference problem. We presen-
ted a linear-time algorithm that solves this type inference
problem. Together with inlining and polymorphic type in-
stantiation it transforms a producer into build form which
is suitable for fusion with a foldr consumer.

Our method is efficient and easier to implement than
the warm fusion method presented in [LS95]. We also be-
lieve it to be able to transform more producers into the
desired form. This claim is difficult to prove; a complete
definition of the rewriting performed by warm fusion would
be required. However, the example in Section 4.2 demon-
strates that the warm fusion technique of transforming list-
manipulating functions into build form on a per function
basis is insufficient. The functions which comprise the pro-
ducer, fst and unzip, cannot be expressed in build form.

Furthermore, our type based method clearly indicates
which definitions need to be inlined, a control that has been
much searched for [Mar95, NP98]. An optimising compiler
of a high-level programming language has to undo the ab-
stractions of a program. Hence it transforms a modular,
concise program into efficient, longer code. Nonetheless it
has to avoid unnecessary inlining as well.

Because our method basically just replaces list construct-
ors in the producer and performs no complex transforma-
tion, it is also transparent [Mar95], that is, the program-
mer can easily determine from the source program where
deforestation will be applicable. Furthermore, the effect of
our transformation on efficiency is more calculable. We also
showed that our short cut deforestation method is not spe-
cific to lists but can be used for most algebraic data types.
We only require some additional mechanism that ensures
that the consumer of a data structure is defined in terms of
the respective catamorphism.

With our algorithm we adapted by hand a large number
of list producers for fusion. We are currently working on an
implementation of our short cut deforestation algorithm for
the Glasgow Haskell compiler. This compiler was designed
for being easily extendible by further compiler optimisations
[Chi97].

Finally, we believe that the idea of using type inference
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algorithms could also be fruitful for other transformations
based on parametricity theorems.
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A Proof of Theorem 4.1

The theorem we prove here is slightly stronger than Theorem
4.1. This is because the property of principality of a typing
σ̃, that is, that for any typing σ′ for (Γ, e, τ ) there exists
σ̂ such that Γσ′ = Γσ̃σ̂, eσ′ = eσ̃σ̂ and τσ′ = τ σ̃σ̂, is too
weak for an induction. On the other hand, it is not true for
the result σ̃ of T , that there exists σ̂ such that σ′ = σ̃σ̂,
because the call T (Γ, e, τ, σ) generally creates new variables
which σ′ may substitute differently from σ̃. However, we
can prove that δσ′ = δσσ̂ for all type inference variables δ
except the newly created ones.

Hence we define the following: Let N be a set of type
inference variables. We write σ=|N σ

′ iff δσ = δσ′ for all
type inference variables δ /∈ N . We write σ �N σ′ iff there
exists σ̂ with σ′=|N σσ̂.

A non-∀-type is a type that does not have a ∀ at the
outermost level. We write σ �MN σ′ iff there exists σ̂ with
σ′=|N σσ̂ and for all δ ∈ freeTyVar(Mσ) the type δσ̂ is a
non-∀-type. The idea is that for extending σ to obtain σ′

the variables in Mσ need only be replaced by non-∀-types.
Remember that U treats type variables like constants,

only type inference variables may be replaced. Hence σ, σ̃,
σ0, etc. denote substitutions that only replace type inference
variables.

Theorem A.1 (Soundness and Completeness of
�

)

Let σ′ be typing for (Γ, e, τ ) with σ �(Γ,e)
N σ′ for some

variables N not appearing in Γ, e or τ . Then T (Γ, e, τ, σ)

creates new variables Ñ and returns σ̃ with σ � σ̃,

σ̃ �(Γ,e,τ)

N∪Ñ σ′ and Γσ̃ ` eσ̃ : τ σ̃. �

Proof Union of Lemma A.6 and Lemma A.7. �

The following lemmas are used in the proof of the main
lemma.

Lemma A.2 (Substitution in a typing)
If Γ ` e : τ then Γσ ` eσ : τσ for any substitution σ. �

Proof By induction on the derivation of Γ ` e : τ . �

Lemma A.3 Let τ1, τ2, α and σ such that α /∈
freeTyVar(τ1σ). Then τ1σ[τ2σ/α] = (τ1[τ2/α])σ. �

Proof By induction on τ1, using that σ replaces no type
variable α. �

Lemma A.4 If σ1 �MN σ3, σ1 � σ2 and σ2 �N∪N′ σ3, then
σ2 �MN∪N′ σ3. �

Proof Directly from the definition of �MN . �

Lemma A.5 (Properties of � )

1. If U(τ1
.
= τ2, σ) returns σ̃, then σ � σ̃.

2. If U(τ1
.
= τ2, σ) returns σ̃, then τ1σ̃ = τ2σ̃.

3. If τ1σ
′ = τ2σ

′ and σ �MN σ′ then U(τ1
.
= τ2, σ) returns

σ̃ with σ̃ �MN σ′. �

Proof Follows from the prerequisite that Û(τ1
.
= τ2) re-

turns a most general unifier if a unifier exists. �

Note that algorithm T is defined recursively on the struc-
ture of the term argument, but not the structure of embed-
ded types. Because substitutions only replace type inference
variables, they do not increase the size of the actual term
structure. Hence we can prove properties of T by structural
induction on the term argument, applying the induction hy-
pothesis to the recursive calls of T .

Lemma A.6 (
�

extends substitutions)
If T (Γ, e, τ, σ) returns σ̃, then σ � σ̃. �

Proof By induction on e. �

We do not separate the main proof into a proof of sound-
ness and a proof of completeness, because the proof of
soundness would repeat large parts of the proof of com-
pleteness, because in the case of ∀α.e soundness requires
the existence of a typing. We could avoid this complication
by adding a test to T which corresponds to the condition
α /∈ freeTyVar(Γ) in type abs. However, we want to prove
that for our purpose such a test is not necessary.

Lemma A.7 Let σ′ be typing for (Γ, e, τ ) with σ �(Γ,e)
N σ′

for some variables N not appearing in Γ, e or τ . Then
T (Γ, e, τ, σ) creates new variables Ñ and returns σ̃ with

σ̃ �(Γ,e,τ)

N∪Ñ σ′ and Γσ̃ ` eσ̃ : τ σ̃. �

Proof Structural induction on the term e.

Case x.

Because xσ′ = x, the typing Γσ′ ` xσ′ : τσ′ must
be derived by var. Hence Γσ′(x) = τσ′. Furthermore

σ �(Γ,x)
N σ′. According to Lemma A.5 U(Γ(x)

.
= τ, σ)

returns σ̃ with σ̃ �(Γ,x)
N σ′ and Γ(x)σ̃ = τ σ̃. Hence

σ̃ �(Γ,x,τ)
N σ′. Furthermore with rule var follows Γσ̃ `

xσ̃ : τ σ̃.

Case λ(x : τ1).e.

The typing Γσ′ ` (λ(x : τ1).e)σ′ : τσ′ must be derived
by term abs. Hence exists τ̂ with τσ′ = τ1σ

′ → τ̂ and
Γσ′ + x : τ1σ

′ ` eσ′ : τ̂ , that is, τσ′′ = (τ1 → δ)σ′′

and (Γ + x : τ1)σ′′ ` eσ′′ : δσ′′ for a new variable

δ and σ′′ := σ′[τ̂/δ]. From σ �(Γ,λ(x:τ1).e)
N σ′ follows

σ �(Γ,λ(x:τ1).e)
N σ′′. According to Lemma A.5 U(τ1 →
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δ
.
= τ, σ) returns σ0 with σ0 �(Γ,λ(x:τ1).e)

N σ′′ and (τ1 →
δ)σ0 = τσ0.

It follows that σ0 �(Γ+x:τ1,e)
N σ′′. According to the

induction hypothesis T (Γ + x : τ1, e, δ, σ0) creates new

variables N1 and returns σ̃ with σ̃ �(Γ+x:τ1,e,δ)
N∪N1

σ′′ and

(Γ + x : τ1)σ̃ ` eσ̃ : δσ̃.

According to Lemma A.6 σ0 � σ̃. Hence (τ1 →
δ)σ̃ = τ σ̃. It follows that σ̃ �(Γ,λ(x:τ1).e,τ)

N∪N1
σ′′. Hence

T (Γ, λ(x : τ1).e, τ, σ) creates new variables Ñ := N1 ∪
{δ} and returns σ̃ with σ̃ �(Γ,λ(x:τ1).e,τ)

N∪Ñ σ′. Further-

more we can apply term abs to obtain Γσ̃ ` (λ(x :
τ1).e)σ̃ : τ σ̃.

Case e1 e2.

The typing Γσ′ ` (e1 e2)σ′ : τσ′ must be derived by
rule term app. Hence exists τ̂2 with Γσ′ ` e1σ

′ :
τ̂2 → τσ′ and Γσ′ ` e2σ

′ : τ̂2, that is, Γσ′′ `
e1σ
′′ : (δ → τ )σ′′ and Γσ′′ ` e2σ

′′ : δσ′′ for a new

variable δ and σ′′ := σ′[τ̂2/δ]. From σ �(Γ,e1 e2)
N σ′

follows σ �(Γ,e1)
N σ′′. So according to the induc-

tion hypothesis T (Γ, e1, δ → τ, σ) creates new vari-

ables N1 and returns σ1 with σ1 �(Γ,e1,δ→τ)
N∪N1

σ′′ and

Γσ0 ` e1σ0 : (δ → τ )σ0.

According to Lemma A.6 σ � σ1. Hence Lemma A.4

gives σ1 �(Γ,e2)
N∪N1

σ′′. Again according to the induction

hypothesis T (Γ, e2, δ, σ1) creates new variables N2 and

returns σ̃ with σ̃ �(Γ,e2,δ)
N∪N1∪N2

σ′′ and Γσ̃ ` e2σ̃ : δσ̃.

With Lemma A.4 follows that σ̃ �(Γ,e1 e2,τ)
N∪N1∪N2

σ′′. Hence

T (Γ, e1 e2, τ, σ) creates new variables Ñ := N1 ∪N2 ∪
{δ} and returns σ̃ with σ̃ �(Γ,e1 e2,τ)

N∪Ñ σ′. Furthermore,

the Substitution Lemma A.2 assures Γσ̃ ` e1σ̃ : (δ →
τ )σ̃. Therefore we can apply term app to obtain Γσ̃ `
(e1 e2)σ̃ : τ σ̃.

Case λα.e.

The typing Γσ′ ` (λα.e)σ′ : τσ′ must be derived by
rule type abs. Hence Γσ′ ` eσ′ : τ̂ for τ̂ with τσ′ =
∀α.τ̂ . So τσ′′ = (∀α.δ)σ′′ for a new type variable δ and

σ′′ := σ′[τ̂ /δ]. From σ �(Γ,λα.e)
N σ′ follows σ �(Γ,e)

N σ′′.
So according to Lemma A.5 U(τ

.
= ∀α.δ, σ) returns σ0

with σ0 �(Γ,e)
N σ′′ and τσ0 = (∀α.δ)σ0.

According to the induction hypothesis T (Γ, e, δ, σ0)

creates new variables N1 and returns σ̃ with σ̃ �(Γ,e,δ)
N∪N1

σ′′ and Γσ̃ ` eσ̃ : δσ̃.

According to Lemma A.6 σ0 � σ̃. Hence τ σ̃ = (∀α.δ)σ̃
and it follows that σ̃ �(Γ,λα.e,τ)

N∪N1
σ′′. So T (Γ, λα.e, τ, σ)

creates new variables Ñ := N1∪{δ} and returns σ̃ with

σ̃ �(Γ,λα.e,τ)

N∪Ñ σ′.

Because σ′ is a typing for (Γ, e, τ ) we know that α /∈
Γσ′. Together with σ̃ �N σ′ for some variables N not
appearing in Γ, e or τ follows that α /∈ Γσ̃. Therefore
we can apply type abs to obtain Γσ̃ ` (λα.e)σ̃ : τ σ̃.

Case e ρ.

The typing Γσ′ ` (e ρ)σ′ : τσ′ must be derived by
type app. Hence Γσ′ ` eσ′ : ∀α.τ̂ for some α and

τ̂ with τ̂ [ρσ′/α] = τσ′. So Γσ′′ ` eσ′′ : δσ′′ for a

new variable δ and σ′′ := σ′[∀α.τ̂/δ]. From σ �(Γ,e)
N

σ′ follows σ �(Γ,e)
N σ′′. According to the induction

hypothesis T (Γ, e, δ, σ) creates new variables N0 and

returns σ0 with σ0 �(Γ,e,δ)
N∪N0

σ′′ and Γσ0 ` eσ0 : δσ0.

Hence there exists a substitution σ̂0

with σ′′=|N∪N0
σ0σ̂0 and for all δ′ ∈

freeTyVar(Γσ0, eσ0, δσ0) the type δ′σ̂0 is a non-∀-
type. Therefore δσ0 = ∀α.τ0 for a τ0 with τ0σ̂0 = τ̂ .

From the above follows:

τσ0σ̂0 = τσ′′ = τσ′ = τ̂ [ρσ′/α]

= τ ′σ̂0[ρσ′′/α] = τ ′σ̂0[ρσ0σ̂0/α]

According to Lemma A.3 the last type is equal to
τ ′[ρσ0/α]σ̂. So σ̂0 is a unifier of τσ0

.
= τ ′[ρσ0/α] and

hence Û(τσ0
.
= τ ′[ρσ0/α]) returns σ1 with σ1 � σ̂0 and

τσ0σ1 = (τ0[ρσ0/α])σ1.

We have σ̃ = σ0σ1. Together with σ0 �(Γ,e,δ)
N∪N0

σ′′ fol-

lows That T (Γ, e ρ, τ, σ) creates new variables Ñ :=

N0 ∪ {δ} and returns σ̃ with σ̃ = σ0σ1 �(Γ,e,δ)

N∪N0∪{δ} σ
′.

With Lemma A.3 follows τ σ̃ = τ0σ1[ρσ̃/α]. From
∀α.τ0 = δσ0 follows δσ̃ = ∀α.τ0σ1. Together with the
Substitution Lemma A.2 follows Γσ̃ ` eσ̃ : ∀α.τ0σ1.
Therefore we can apply type app to obtain Γσ̃ `
(e ρ)σ̃ : τ σ̃.

The proofs for the remaining cases are similar to the given
ones. �
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