
Constructs for Programming with Graph Rewrites

Peter Rodgers

Computing Laboratory, University of Kent, UK
P.J.Rodgers@ukc.ac.uk

Abstract. Graph rewriting is becoming increasingly popular as a method for
programming with graph based data structures. We present several modifica-
tions to a basic serial graph rewriting paradigm and discuss how they improve
coding programs in the Grrr graph rewriting programming language. The con-
structs we present are once only nodes, attractor nodes and single match re-
writes. We illustrate the operation of the constructs by example. The advantages
of adding these new rewrite modifiers is to reduce the size of programs, improve
the efficiency of execution and simplify the host graph undergoing rewriting.

1 Introduction

Graph rewriting is now a common visual paradigm. It is used in the specification [2]
and parsing [3] of visual languages. It is also used, as here, as an alternative to regular
text programming languages, particularly for applications where graphs are the domi-
nant data structure. This paper concentrates on modifications to the Grrr graph re-
writing programming language [6,7,8] in the light of our experience in programming
with it. We expand and extend the research presented as work in progress in [9].
We introduce three rewrite modifiers: once only nodes, attractor nodes and single
match rewrites. The overall advantage of these constructs is to make programming in
Grrr easier, to shorten execution times and to reduce the number of housekeeping
nodes in the host graph. The disadvantage is in increasing the complexity of both the
paradigm and the language implementation. The constructs are additions to the lan-
guage, rather than alterations, so there is backwards compatibility, and previous code
will work with the new semantics. We emphasise that our approach is pragmatic, so
the motivation for the modifications discussed here is based on experience in pro-
gramming with the system.
The basic Grrr paradigm is a rewriting method that alters arbitrary directed graphs. It
is serial both in the calling of trigger nodes that initiate transformations and in the
graph rewriting process itself, where only one of several candidate subgraphs is re-
written on a call of a trigger node. The choice of subgraph to rewrite is deterministic.
The rewriting process, without modifiers, is performed by a constant embedding with
dangling edges deleted. Transformations are lists of graph rewrite pairs, with each
rewrite having a LHS (Left Hand Side) graph and a RHS (Right Hand Side) graph.
The difference in the LHS and RHS graphs indicates how nodes and edges in the host

graph are to be added, deleted or retained. Only one rewrite in a transformation is used
on a trigger call. Grrr tests the rewrites from the top down, using the first rewrite with
a LHS that matches in the host graph. On the next application of the transformation
the process is repeated, with the topmost rewrite being tested first again. This varies
from other systems, such as AGG which makes all possible applications of a rewrites
before passing down to the next rewrite.
This paradigm is simple in the sense it uses a basic rewrite mechanism and relates to
current logic and functional languages in its LHS/RHS rewrite specification and its top
down matching method. However, in graph rewriting there is no notion of functional
transparency. That is, it is not possible to assume that a given execution of rewrite and
subsequent rewrites that result from it will affect only a restricted part of a graph. This
means that the Grrr system has to deal with marking the parts of the graph that are of
interest. Other problems occur when deleting nodes, as dangling edges are deleted, so
potentially useful information is then lost from the graph. Finally, the top down
matching strategy can be overly simplistic, as often a rewrite will only be required to
execute at most a single time in the host graph.
To address these problems we have introduced three new constructs. The first two,
once only and attractor, are extra possible features of nodes in rewrites. Once only
nodes appear in the LHS, and when specified by a programmer as once only, a node in
a LHS of a rewrite can match with each node in the host graph at most once, making it
easy to execute an operation on each node of the graph. Attractor nodes appear in the
RHS of a rewrite and attract the dangling ends of any edges that result from deleting
nodes. The third construct, Single match, is a feature of rewrites. Once the LHS of a
single match rewrite has been found in the host graph, it will not be tested again.
Transformations are initiated by trigger nodes in the host graph. The scope for once
only and single match is the trigger node in the host graph that initiated the transfor-
mation. This means that restrictions on the rewriting caused by these features only
apply to further applications of the initiating trigger node. Hence, if there are two
trigger nodes with the same name in the host graph, then a node in the host graph that
matches a once only node as a consequence of a first trigger node cannot match again
when the first trigger initiates the same transformation, but the node may match again
as a consequence of the transformation being initiated by the second trigger node.
The constructs alter the rewriting process and reduce the number of steps performed
during execution. Once only and single match do this by considering the history of
matching in the host graph, but differ in that once only is node based and single
match is rewrite based. Attractor nodes change a rewriting step, as the rewriting
process is no longer a constant embedding of a subgraph. The interaction between
these three modifiers is minimal, as a once only node and an attractor node may
appear in single match rewrites without any effect on their operation. Indeed, a node
may be a once only node in a LHS, and an attractor node in the corresponding RHS.
In Section 2 we discuss the semantics of the new rewrite modifiers, and give examples
of use. In Section 3 we present our conclusions, and relate the modifiers to other graph
rewriting based systems such as Progres [11], GOOD [5@�� �JUDPPDU�SURJUDPPLQJ
[4], MONSTR [1] and AGG [10].

2 The rewrite modifiers

The new constructs, once only nodes, attractor nodes and single match rewrites, are
illustrated by example. An associational network, shown in Fig. 1, is the example host
graph. These networks are used frequently in applications such as police investigations
and social network research. Here there are six people in the network, with additional
information about their ages. This is a small example, but this type of network can get
very large, and would usually include much more information about the members.

Fig. 1. The associational network

In order to execute programs on this host graph, trigger nodes will be added to it.
These can be singleton triggers, triggers attached to some part of the host graph, or
triggers with extra information associated with them, in the form of attached nodes.
Trigger nodes are not shown in Fig. 1, but would appear with a rectangular border.
The difference in node shapes indicates the different sort of data held by the nodes and
can vary from graph to graph. In this case round nodes indicate people and oval nodes
indicate information about people.
When matching a subgraph, round nodes may only match with round nodes and oval
nodes may only match with oval nodes. This differs from the node typing found in
systems such as Progres and AGG, in that types are visually specified rather than
named, and Grrr types have no concept of hierarchy.

2.1 Once only nodes

The addition of once only nodes is designed to reduce the use of tags in transforma-
tions. The use of tags was common when programming in Grrr as they were used to
indicate which nodes had been visited. Rewrites which iterated through a graph would
test for the negative presence of a tag attached to a node, and if not present the rewrite
will perform the required action on the node and create a tag attached to it. The next

application of the transformation will then not match with that tagged node, because of
the negative in the LHS of the rewrite. After all the relevant nodes have been matched
the tags were removed by a garbage collection transformation.
This sort of operation is made easier with once only nodes. A node in the host graph
that matches with a once only node in any LHS of a transformation will match with
no other once only node in the transformation in future applications of the trigger
node. This allows a graph to be iterated through, one node at a time, confident that
after a node is visited it will not be visited again. This results in transformations that
are clearer and easier to specify, during execution programming steps are avoided
(testing for negatives, creating tags and destroying tags) and whilst being rewritten the
host graph is clearer because it no longer contains tags.
There is no need for the once only nodes to have the same name, and it is possible for
the once only node to be a variable in one LHS and a constant in another LHS graph.
A once only node is treated as any other node in the rewrite, and can be deleted, or
reconnected to various edges as desired. At present the restrictions are that a only one
once only node is allowed in each LHS graph and a negative cannot be a once only
node. These restrictions are enforced by the graph editor simply disallowing the option
when LHS graphs are constructed. This is the standard technique, used throughout
Grrr in order to maintain a correct syntax for rewrites.

Fig. 2. The transformation ‘AddAge'. The shaded node labeled 'X' in the first LHS is a
once only node

The use of once only nodes is shown in Fig. 2, where the node labeled ’X’ in the first
LHS graph is a once only, indicated by shading. This transformation adds one to the
age of all people in the network. On execution of the AddAge transformation by a
trigger node of the same name in the host graph the first LHS will match in the host
graph, with the ’X’ node matching with a person. The new nodes in the RHS are added
to the host graph, resulting in an increment of the persons age. Then AddAge is trig-
gered for the second time, and ’X’ can no longer match with the person matched first
time, so another will be chosen. This iterative process continues until there are no new
people to be matched, and so the first LHS cannot match. The second LHS is then
tested, and will match. This rewrite deletes the trigger and so terminates the execution
of the transformation.

2.2 Attractor nodes

Attractor nodes are less recent additions than once only and single match. It was
realised at an early stage in the development of this programming system that the
simple rewriting mechanism presented difficulties when dealing with node and sub-
graph replacement. Replacing a node or defining mathematical expressions are tricky
problems when dangling edges are deleted. Attractor nodes can be used in this type
of case. A programmer specifies that (at most) one node in the RHS of a rewrite is an
attractor. When a node deletion occurs, dangling edges then get attached to the at-
tractor node. This allows replacement of a node by simply deleting it, and making its
replacement an attractor node. This technique is also useful when dealing with tree
replacement as new roots of subtrees can attract the connections to children of deleted
roots. The effect is difficult to reproduce without attractor nodes because the edges
attaching to a node cannot be iterated through easily.

Fig. 3. The transformation ‘Change’. The shaded node labeled 'Y' in the RHS is an
attractor node

An example of the use of attractor nodes is shown in Fig. 3 where the transformation
Change replaces the node that matches with ’X’ with the node that matches with ’Y’.
The only node, ’Y’, in the RHS is shaded and so is an attractor. The user adds to the
host graph the Change node and two nodes attached to it by a ’from’ edge and a ’to’
edge, where the nodes are a duplicate of the node to be replaced and the replacement,
respectively. These will match with ’X’ and ’Y’. The effect of the transformation is to
delete the Change trigger node and both ’X’ nodes (i.e. the node added by the user and
the node already in the host graph). The ’Y’ node is an attractor in the LHS, so any
edges dangling because of the original ’X’ node deletion are attached to it, so per-
forming a simple replacement. Note that the edge ’to’ is not attracted to the attractor
node, despite it being left dangling by the deletion of the Change node because it is
explicitly deleted in the rewrite (i.e. it appears in the LHS but not the RHS).
The use of attractor nodes can be seen in a different context in Fig. 2, that of arithm-
etic expressions. The built in transformation Add called by the first RHS adds its two
arguments together, creating a result node and deleting the Add trigger node and the
two argument nodes. The result node is an attractor, hence the ’age’ edge that is left
dangling is attached to it. In general, there may be many such arithmetic triggers in a
tree structure. The basic rewriting process ensures that the leaves of the tree are exe-
cuted first, and the attractor nodes ensure that the result remains attached to the tree.

2.3 Single match rewrites

Single match allows the control of execution of rewrites to be specified more pre-
cisely than a simple top down matching strategy allows. The technique previously was
to introduce flags. Negatives in LHS graphs would prevent the subsequent matching of
rewrites which created the flags. Now rewrites specified as single match will match a
single time in the host graph, and will be ignored during subsequent applications of the
trigger node. This differs from the notion of prioritising rewrites, which forces some
rewrites to be considered before others, but still allows rewrites to be executed a num-
ber of times. As with once only the overall effect is to streamline transformations,
lessening the number of negatives and reducing the clutter in the host graph. There are
no restrictions on which rewrites are single match, and on what they may contain.

Fig. 4. The transformation ‘Infer'. The first rewrite, shown with a shaded background is
a single match rewrite

Fig. 4 shows an example of single match. Infer calls two other triggers, InferSiblings
and InferEmploys. The desired effect is to derive relationships between people where
there is no relationship already, so that InferSiblings finds two people who are not
currently directly connected and connects them if they share the same parent. It can be
seen in Fig. 1 that ’Amy’ and ’Cath’ are both daughters of ’Jim’, hence this transforma-
tion will add a relationship ’sister’ between the two daughters. InferEmploys derives
relationships between people where there is no current connection based on the notion
that where there is an employee of an employee then it can be inferred the most junior
employee works for the most senior. An example of this again in ’Amy’ and ’Cath’,
where ’Cath’ employs ’Billy’ who employs ’Amy’. Hence ’Cath’ employs ’Amy’. We
wish to infer connections between people, but only one connection is allowed between
two people and sibling relations are more significant than employment relations.
Hence, Infer must ensure that InferSiblings is called before InferEmploys.
This is achieved by using single match rewrites. The first rewrite of Infer is single
match, and has a shaded background. It is executed once and only once and its effect
is to call InferSiblings. This results in the sibling relationships being formed. The
second call of Infer with the same trigger node does not test the first single match
rewrite, so the second rewrite is executed. This deletes Infer and calls InferEmploys,
which derives the employs relationships, and then the program terminates. The net
effect on the host graph shown in Fig. 1 is to add a sister relationship between ’Amy’
and ’Cath’, rather than the employs relationship.

3 Conclusions

We have described three constructs for modifying graph rewriting. The once only
nodes allow programmers to more easily iterate through the nodes in a host graph, the
attractor nodes allow dangling edges to be retained in the graph, whilst the single
match rewrites allow closer control of execution order. The overall effect is to make
programming in Grrr simpler and more effective. These constructs seem to be unique,
as similar modifiers do not appear in other programming languages or systems.
The effect on theoretical descriptions of graph rewriting has to be fully integrated if a
formal model of Grrr using common graph grammar techniques is to be developed.
Methods of describing graph rewriting, such as the common techniques based on
pushouts, fail due to attractor nodes. These break the universal property of pushouts
because dangling edges cannot be reattached without being considered new edges,
these new edges then have not appeared in either the LHS or host graph. Also, a his-
tory of rewriting needs to be added to current graph rewriting descriptions to express
the notion of once only and single match as these new constructs cannot be fully
specified by looking only at a set of transformations and a host graph.
Further experimentation with the modifiers discussed here is a possible future area of
work. The once only notion could be extended to edges, multiple nodes, or to a sub-
graph of the LHS graph. Single once only edges are easy to interpret, however there is
a difficulty in interpreting the desired behaviour of multiple once only primitives. For
instance, where there are two once only nodes in a LHS, can each node in the host
graph match with both nodes or just one? Moreover, the mapping between once only
nodes across several LHS graphs in a transformation cannot easily be specified, except
by node label. This reduces the flexibility of the feature as currently variables and
constants can map to the same once only node across different LHS graphs.
Grrr is serial and deterministic, however the modifiers discussed here could be used in
parallel, non-deterministic systems. The single match rewrites, in particular are po-
WHQWLDOO\� RI� XVH�� DV� VLPLODU� H[HFXWLRQ� RUGHU� GLIILFXOWLHV� DULVH� LQ� V\VWHPV� VXFK� DV� �
grammar programming, where there are frequent examples of two transformations at
the same conceptual level, being executed one after the other by initiating one directly
from the other. Attractor nodes could also be a feature of other graph rewriting sys-
tems, although parallel rewriting means unexpected dangling edges appear which
could cause difficulties.
There are other ways of producing the effects of the modifiers suggested here. Attrac-
tor nodes as a mechanism for node replacement could be replaced with a more general
embedding system. It is not clear which variety of embedding is suitable (e.g. path
redirection, as seen in Progres) typically such systems are textual in nature, which
would break the overall visual nature of Grrr. Single match rewrites could be gener-
alised by ensuring that each rewrite in a transformation had some textual application
condition, where the number of matches could be included as a factor. This would also
allow many other useful restrictions to added to rewrites. Again, this has disadvan-
tages when attempting to maintain a fully visual system. An alternative to once only
nodes is to modify the system to parallel rewriting. The motivations for serial over

parallel rewriting are discussed in [6,7], but allowing certain transformations to oper-
ate on the host graph in parallel is a possibility.
Other notions for addition to Grrr include the ‘fold’ and ‘Kleene *’ operators, seen in
�JUDPPDU�SURJUDPPLQJ��ZKLFK�PRGLI\�WKH�UHZULWLQJ�SURFHVV�VR�WKDW�QRGHV�DQG�VXb-

graphs must no longer match in a one-to-one manner. This would prevent the require-
ment for literals to be repeated in the host graph. For example, in Fig. 1 'Harry' and
'Cath' could share the age node '25' and their ages could be changed independently.

Acknowledgements

This work was partially supported by a grant from the UK Engineering and Physical
Sciences Research Council (EPSRC), grant reference GR/M23564.

References

1. R. Banach. MONSTR I -- Fundamental Issues and the Design of MONSTR. Journal of
Universal Computer Science 2,4 (1996) 164-216.

2. R. Bardohl and G. Taentzer. Defining Visual Languages by Algebraic Specification Tech-
niques and Graph Grammars. IEEE Workshop on Theory of Visual Languages. 1997.

3. H. Göttler. Graph Grammars and Diagram Editing. Proceedings 3rd International Work-
shop on Graph Grammars and Their Application to Computer Science. LNCS 291.
Springer-Verlag. pp. 216-231.1987.

4. S.M. Kaplan, S.K. Goering and R.H. &DPEHOO�� 6SHFLI\LQJ� &RQFXUUHQW� 6\VWHPV� ZLWK� �
Grammars. Fifth International Workshop on Software Specification and Design. pp. 20-27.
1989.

5. J. Paredaens, J. Van den Bussche, M. Andries, M. Gyssens and I. Thyssens. An Overview
of GOOD. ACM SIGMOD Record, 21,1. pp. 25-31. March 1992.

6. P.J. Rodgers. A Graph Rewriting Programming Language for Graph Drawing. Proceedings
of the 14th IEEE Symposium on Visual Languages (VL’98). pp. 32-39. 1998.

7. P.J. Rodgers and P.J.H. King. A Graph Rewriting Visual Language for Database Pro-
gramming. The Journal of Visual Languages and Computing 8(6). pp. 641-674. 1997.

8. P.J. Rodgers and N. Vidal. Graph Algorithm Animation with Grrr. Agtive99: Applications
of Graph Transformations with Industrial Relevance, LNCS. Springer-Verlag. 2000.

9. P.J. Rodgers and N. Vidal. Pragmatic Graph Rewriting Modifications. Proceedings of the
15th IEEE Symposium on Visual Languages (VL’99). pp. 206-207. 1999.

10. M. Rudolf and G. Taentzer. Introduction to the Language Concepts of AGG. Available
from http://tfs.cs.tu-berlin.de/agg/. 1998.

11. A. Schürr. Rapid Programming with Graph Rewrite Rules. Proceedings USENIX Sympo-
sium on Very High Level Languages (VHLL), Santa Fe. pp. 83-100. October 1994.

