Constructsfor Programming with Graph Rewrites

Peter Rodgers

Computing Laboratory, University of Kent, UK
P.J.Rodgers@ukc.ac.uk

Abstract. Graph rewriting is becoming increasingly popularamethod for
programming with graph based data structures. Vésemt several modifica-
tions to a basic serial graph rewriting paradigrd discuss how they improve
coding programs in the Grrr graph rewriting prognaimg language. The con-
structs we present are once only nodes, attracddeshand single match re-
writes. We illustrate the operation of the condsury example. The advantages
of adding these new rewrite modifiers is to rediheesize of programs, improve
the efficiency of execution and simplify the hogagh undergoing rewriting.

1 Introduction

Graph rewriting is now a common visual paradignisltised in the specification [2]
and parsing [3] of visual languages. It is alsoduses here, as an alternative to regular
text programming languages, particularly for apliens where graphs are the domi-
nant data structure. This paper concentrates orificattbns to the Grrr graph re-
writing programming language [6,7,8] in the lightaur experience in programming
with it. We expand and extend the research predexgevork in progress in [9].

We introduce three rewrite modifierence only nodes,attractor nodes andingle
match rewrites. The overall advantage of these congtrigcto make programming in
Grrr easier, to shorten execution times and to gedhe number of housekeeping
nodes in the host graph. The disadvantage is ieasing the complexity of both the
paradigm and the language implementation. The naistare additions to the lan-
guage, rather than alterations, so there is badsva@mpatibility, and previous code
will work with the new semantics. We emphasise that approach is pragmatic, so
the motivation for the modifications discussed hisrdbased on experience in pro-
gramming with the system.

The basic Grrr paradigm is a rewriting method titgrs arbitrary directed graphs. It
is serial both in the calling of trigger nodes tlwtiate transformations and in the
graph rewriting process itself, where only one e¥esal candidate subgraphs is re-
written on a call of a trigger node. The choicesobgraph to rewrite is deterministic.
The rewriting process, without modifiers, is perfi@d by a constant embedding with
dangling edges deleted. Transformations are listgraph rewrite pairs, with each
rewrite having a LHS (Left Hand Side) graph and HSR(Right Hand Side) graph.
The difference in the LHS and RHS graphs indicates nodes and edges in the host

graph are to be added, deleted or retained. Oy @nrite in a transformation is used
on a trigger call. Grrr tests the rewrites from the down, using the first rewrite with
a LHS that matches in the host graph. On the ngglication of the transformation
the process is repeated, with the topmost rewetagotested first again. This varies
from other systems, such as AGG which makes aBiplesapplications of a rewrites
before passing down to the next rewrite.

This paradigm is simple in the sense it uses acbasirite mechanism and relates to
current logic and functional languages in its LHSfRrewrite specification and its top
down matching method. However, in graph rewritihgre is no notion of functional
transparency. That is, it is not possible to asstirata given execution of rewrite and
subsequent rewrites that result from it will affeoty a restricted part of a graph. This
means that the Grrr system has to deal with martkiagarts of the graph that are of
interest. Other problems occur when deleting nodsslangling edges are deleted, so
potentially useful information is then lost fromethgraph. Finally, the top down
matching strategy can be overly simplistic, asrofierewrite will only be required to
execute at most a single time in the host graph.

To address these problems we have introduced tieeeconstructs. The first two,
once only andattractor, are extra possible features of nodes in rewridese only
nodes appear in the LHS, and when specified bpgrammer asnce only, a node in

a LHS of a rewrite can match with each node inhibst graph at most once, making it
easy to execute an operation on each node of gphgkttractor nodes appear in the
RHS of a rewrite and attract the dangling endsnyf edges that result from deleting
nodes. The third constru@ingle match, is a feature of rewrites. Once the LHS of a
single match rewrite has been found in the host graph, it moll be tested again.
Transformations are initiated by trigger nodeshie host graph. The scope famce
only andsingle match is the trigger node in the host graph that irgtiathe transfor-
mation. This means that restrictions on the remgittaused by these features only
apply to further applications of the initiatingdgger node. Hence, if there are two
trigger nodes with the same name in the host grttyeim, a node in the host graph that
matches @nce only node as a consequence of a first trigger nodeotanatch again
when the first trigger initiates the same transfation, but the node may match again
as a consequence of the transformation beingtimitiny the second trigger node.

The constructs alter the rewriting process andaedbe number of steps performed
during executionOnce only andsingle match do this by considering the history of
matching in the host graph, but differ in thatce only is node based andngle
match is rewrite basedAttractor nodes change a rewriting step, as the rewriting
process is no longer a constant embedding of argpbgThe interaction between
these three modifiers is minimal, asoce only node and arattractor node may
appear irsingle match rewrites without any effect on their operationdéed, a node
may be anceonly node in a LHS, and aattractor node in the corresponding RHS.
In Section 2 we discuss the semantics of the newiteemodifiers, and give examples
of use. In Section 3 we present our conclusions rafate the modifiers to other graph
rewriting based systems such as Progres [11], G@8B)DA-grammar programming
[4], MONSTR [1] and AGG [10].

2 Therewrite modifiers

The new construct@nce only nodesattractor nodes andingle match rewrites, are
illustrated by example. An associational netwohqwen in Fig. 1, is the example host
graph. These networks are used frequently in agjics such as police investigations
and social network research. Here there are siglpeon the network, with additional
information about their ages. This is a small examiput this type of network can get
very large, and would usually include much moreiinfation about the members.

Fig. 1. The associational network

In order to execute programs on this host grapbger nodes will be added to it.
These can be singleton triggers, triggers attatbesbme part of the host graph, or
triggers with extra information associated withrthen the form of attached nodes.
Trigger nodes are not shown in Fig. 1, but woulgesp with a rectangular border.
The difference in node shapes indicates the diffesert of data held by the nodes and
can vary from graph to graph. In this case rourdesandicate people and oval nodes
indicate information about people.

When matching a subgraph, round nodes may onlyhmaith round nodes and oval
nodes may only match with oval nodes. This diffiecsn the node typing found in
systems such as Progres and AGG, in that typeviswally specified rather than
named, and Grrr types have no concept of hierarchy.

2.1 Onceonly nodes

The addition ofonce only nodes is designed to reduce the use of tags risftnana-
tions. The use of tags was common when programinir@rrr as they were used to
indicate which nodes had been visited. Rewriteskviterated through a graph would
test for the negative presence of a tag attachachtwde, and if not present the rewrite
will perform the required action on the node anelate a tag attached to it. The next

application of the transformation will then not tatvith that tagged node, because of
the negative in the LHS of the rewrite. After d&étrelevant nodes have been matched
the tags were removed by a garbage collectionfremation.

This sort of operation is made easier witite only nodes. A node in the host graph
that matches with ance only node in any LHS of a transformation will match twit
no otheronce only node in the transformation in future applicatiaisthe trigger
node. This allows a graph to be iterated througie wode at a time, confident that
after a node is visited it will not be visited agal his results in transformations that
are clearer and easier to specify, during execypimmgramming steps are avoided
(testing for negatives, creating tags and destgoiags) and whilst being rewritten the
host graph is clearer because it no longer contags

There is no need for tht@ce only nodes to have the same name, and it is possible fo
the once only node to be a variable in one LHS and a constaahather LHS graph.

A once only node is treated as any other node in the rewaitd,can be deleted, or
reconnected to various edges as desired. At présemestrictions are that a only one
once only node is allowed in each LHS graph and a negatvmat be ance only
node. These restrictions are enforced by the gedfibr simply disallowing the option
when LHS graphs are constructed. This is the stdnttachnique, used throughout
Grrr in order to maintain a correct syntax for ries.

AddAge Addige Add

a a /rg1T2

) OO o

AddAge

—

Fig. 2. The transformation ‘AddAge'. The shaded node lab&in the first LHS is a
once only node

The use obnce only nodes is shown in Fig. 2, where the node lab¥ed the first
LHS graph is ance only, indicated by shading. This transformation adds tithe
age of all people in the network. On executionta AddAge transformation by a
trigger node of the same name in the host grapliirsteLHS will match in the host
graph, with the X' node matching with a personeTiew nodes in the RHS are added
to the host graph, resulting in an increment ofghesons age. Then AddAge is trig-
gered for the second time, and X’ can no longetcmavith the person matched first
time, so another will be chosen. This iterativecess continues until there are no new
people to be matched, and so the first LHS canraitim The second LHS is then
tested, and will match. This rewrite deletes tigger and so terminates the execution
of the transformation.

2.2 Attractor nodes

Attractor nodes are less recent additions tleaoe only andsingle match. It was
realised at an early stage in the development isf glogramming system that the
simple rewriting mechanism presented difficultiesenw dealing with node and sub-
graph replacement. Replacing a node or definindhemastical expressions are tricky
problems when dangling edges are delefddractor nodes can be used in this type
of case. A programmer specifies that (at most)rmue in the RHS of a rewrite is an
attractor. When a node deletion occurs, dangling edges gle¢rattached to that-
tractor node. This allows replacement of a node by sindghgting it, and making its
replacement aattractor node. This technique is also useful when dealiity wee
replacement as new roots of subtrees can attraatahnections to children of deleted
roots. The effect is difficult to reproduce withaaitractor nodes because the edges
attaching to a node cannot be iterated througlyeasi

Change

om o

—

Fig. 3. The transformation ‘Change’. The shaded node lab¥Ein the RHS is an
attractor node

An example of the use attractor nodes is shown in Fig. 3 where the transformation
Change replaces the node that matches with X' withnode that matches with Y.
The only node, Y, in the RHS is shaded and saristtractor. The user adds to the
host graph the Change node and two nodes attaohiédy a from’ edge and a to’
edge, where the nodes are a duplicate of the role teplaced and the replacement,
respectively. These will match with X’ and Y. Eheffect of the transformation is to
delete the Change trigger node and both X' nodes the node added by the user and
the node already in the host graph). The Y’ nagl@nattractor in the LHS, so any
edges dangling because of the original X’ nodeetieh are attached to it, so per-
forming a simple replacement. Note that the edgéstnot attracted to thattractor
node, despite it being left dangling by the deletid the Change node because it is
explicitly deleted in the rewrite (i.e. it appe@nghe LHS but not the RHS).

The use ofttractor nodes can be seen in a different context in Figh& of arithm-
etic expressions. The built in transformation Addled by the first RHS adds its two
arguments together, creating a result node andimiglhe Add trigger node and the
two argument nodes. The result node isadnactor, hence the ‘age’ edge that is left
dangling is attached to it. In general, there mayrtany such arithmetic triggers in a
tree structure. The basic rewriting process endinasthe leaves of the tree are exe-
cuted first, and thattractor nodes ensure that the result remains attachde tinde.

2.3 Singlematch rewrites

Single match allows the control of execution of rewrites to $ecified more pre-
cisely than a simple top down matching strategyvadl The technique previously was
to introduce flags. Negatives in LHS graphs woulelvpnt the subsequent matching of
rewrites which created the flags. Now rewrites ffmtassingle match will match a
single time in the host graph, and will be ignodeding subsequent applications of the
trigger node. This differs from the notion of pit@ing rewrites, which forces some
rewrites to be considered before others, butatiws rewrites to be executed a num-
ber of times. As withonce only the overall effect is to streamline transformasion
lessening the number of negatives and reducinglthier in the host graph. There are
no restrictions on which rewrites ai@gle match, and on what they may contain.

Infer o Infer InferSiblings
Infer nferEmployd
Fig. 4. The transformation ‘Infér The first rewrite, shown with a shaded backgobim

a single match rewrite

Fig. 4 shows an example sifigle match. Infer calls two other triggers, InferSiblings
and InferEmploys. The desired effect is to der@lationships between people where
there is no relationship already, so that InfeliSgd finds two people who are not
currently directly connected and connects therhdf/tshare the same parent. It can be
seen in Fig. 1 that Amy’and Cath’ are both dategk of Jim’, hence this transforma-
tion will add a relationship sister’ between theot daughters. InferEmploys derives
relationships between people where there is n@ntiqonnection based on the notion
that where there is an employee of an employeeiti@m be inferred the most junior
employee works for the most senior. An examplehig aigain in ’Amy’ and Cath,,
where Cath’ employs Billy’ who employs ‘Amy’. Hare Cath’ employs Amy’. We
wish to infer connections between people, but omg connection is allowed between
two people and sibling relations are more significthan employment relations.
Hence, Infer must ensure that InferSiblings isechlbefore InferEmploys.

This is achieved by usingingle match rewrites. The first rewrite of Infer isngle
match, and has a shaded background. It is executedar@t®nly once and its effect
is to call InferSiblings. This results in the silgi relationships being formed. The
second call of Infer with the same trigger nodesdoet test the firssingle match
rewrite, so the second rewrite is executed. Thistés Infer and calls InferEmploys,
which derives the employs relationships, and then grogram terminates. The net
effect on the host graph shown in Fig. 1 is to adister relationship between Amy’
and Cath’, rather than the employs relationship.

3 Conclusions

We have described three constructs for modifyingphrrewriting. Theonce only
nodes allow programmers to more easily iterateutiinche nodes in a host graph, the
attractor nodes allow dangling edges to be retained in tlaphy whilst thesingle
match rewrites allow closer control of execution ord€he overall effect is to make
programming in Grrr simpler and more effective. 3deonstructs seem to be unique,
as similar modifiers do not appear in other prograng languages or systems.

The effect on theoretical descriptions of graphrigng has to be fully integrated if a
formal model of Grrr using common graph grammahmégues is to be developed.
Methods of describing graph rewriting, such as ¢bexmon techniques based on
pushouts, fail due tattractor nodes. These break the universal property of puisho
because dangling edges cannot be reattached wibedog considered new edges,
these new edges then have not appeared in eitaéHB or host graph. Also, a his-
tory of rewriting needs to be added to current gregwriting descriptions to express
the notion ofonce only andsingle match as these new constructs cannot be fully
specified by looking only at a set of transformasi@and a host graph.

Further experimentation with the modifiers discuskere is a possible future area of
work. Theonce only notion could be extended to edges, multiple node$p a sub-
graph of the LHS graph. Singtmce only edges are easy to interpret, however there is
a difficulty in interpreting the desired behaviafrmultiple once only primitives. For
instance, where there are twnce only nodes in a LHS, can each node in the host
graph match with both nodes or just one? Morea¥er mapping betweesnce only
nodes across several LHS graphs in a transformesionot easily be specified, except
by node label. This reduces the flexibility of tfeature as currently variables and
constants can map to the saonee only node across different LHS graphs.

Grrr is serial and deterministic, however the miedif discussed here could be used in
parallel, non-deterministic systems. Téiagle match rewrites, in particular are po-
tentially of use, as similar execution order difficulties arise in systems such as A-
grammar programming, where there are frequent ebemgd two transformations at
the same conceptual level, being executed one thitesther by initiating one directly
from the otherAttractor nodes could also be a feature of other graph tiegrsys-
tems, although parallel rewriting means unexpedadgling edges appear which
could cause difficulties.

There are other ways of producing the effects efrttodifiers suggested hersttrac-

tor nodes as a mechanism for node replacement coukplsced with a more general
embedding system. It is not clear which varietyeaibedding is suitable (e.g. path
redirection, as seen in Progres) typically suchesys are textual in nature, which
would break the overall visual nature of Gi®mgle match rewrites could be gener-
alised by ensuring that each rewrite in a transédion had some textual application
condition, where the number of matches could bluded as a factor. This would also
allow many other useful restrictions to added terites. Again, this has disadvan-
tages when attempting to maintain a fully visuategn. An alternative tonce only
nodes is to modify the system to parallel rewritiigpe motivations for serial over

parallel rewriting are discussed in [6,7], but @filog certain transformations to oper-
ate on the host graph in parallel is a possibility.

Other notions for addition to Grrr include the dbland ‘Kleene * operators, seen in
A-grammar programming, which modify the rewriting process so that nodes and sub-
graphs must no longer match in a one-to-one mafiinés.would prevent the require-
ment for literals to be repeated in the host grdgur. example, in Fig. Harry' and
'Cath’ could share the age node '25' and their@meéd be changed independently.

Acknowledgements

This work was partially supported by a grant frdm UK Engineering and Physical
Sciences Research Council (EPSRC), grant refeil@Rz&23564.

References

1. R. Banach. MONSTR | -- Fundamental Issues and tbsigd of MONSTR. Journal of
Universal Computer Science 2,4 (1996) 164-216.

2. R. Bardohl and G. Taentzer. Defining Visual Langsagy Algebraic Specification Tech-
niques and Graph Grammars. IEEE Workshop on Thefovjsual Languages. 1997.

3. H. Gdttler. Graph Grammars and Diagram Editing.cBedlings 3rd International Work-
shop on Graph Grammars and Their Application to Quer Science. LNCS 291.
Springer-Verlag. pp. 216-231.1987.

4. S.M. Kaplan, S.K. Goering and R.lgambell. Specifying Concurrent Systems with A-
Grammars. Fifth International Workshop on Softw@pecification and Design. pp. 20-27.
1989.

5. J. Paredaens, J. Van den Bussche, M. Andries, Mség and |. Thyssens. An Overview
of GOOD. ACM SIGMOD Record, 21,1. pp. 25-31. Madd92.

6. P.J. Rodgers. A Graph Rewriting Programming Langudag Graph Drawing. Proceedings
of the 14th IEEE Symposium on Visual Languages 08). pp. 32-39. 1998.

7. P.J. Rodgers and P.J.H. King. A Graph RewritinguslisLanguage for Database Pro-
gramming. The Journal of Visual Languages and Coimgp&(6). pp. 641-674. 1997.

8. P.J. Rodgers and N. Vidal. Graph Algorithm Animatieith Grrr. Agtive99: Applications
of Graph Transformations with Industrial RelevarlddCS. Springer-Verlag. 2000.

9. P.J. Rodgers and N. Vidal. Pragmatic Graph Rewrikitodifications. Proceedings of the
15th IEEE Symposium on Visual Languages (VL'99). pp6-207. 1999.

10. M. Rudolf and G. Taentzer. Introduction to the Laage Concepts of AGG. Available
from http://tfs.cs.tu-berlin.de/agg/. 1998.

11. A. Schirr. Rapid Programming with Graph RewriteéRulProceedings USENIX Sympo-
sium on Very High Level Languages (VHLL), Santa pj. 83-100. October 1994.

