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Moduli Spaces of Lumps on Real Projective Space
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Abstract

Harmonic maps that minimize the Dirichlet energy in their homotopy

classes are known as lumps. Lump solutions on real projective space are ex-

plicitly given by rational maps subject to a certain symmetry requirement.

This has consequences for the behaviour of lumps and their symmetries.

An interesting feature is that the moduli space of charge three lumps is a

D2-symmetric 7-dimensional manifold of cohomogeneity one. In this paper,

we discuss the charge three moduli spaces of lumps from two perspectives:

discrete symmetries of lumps and the Riemann-Hurwitz formula. We then

calculate the metric and find explicit formula for various geometric quanti-

ties. We also discuss the implications for lump decay.

1 Introduction

Rational maps of degree N are solutions of the Bogomolny equation of the O(3)
sigma model with topological charge N and energy 2π|N |. Belavin and Polyakov
[14] studied the Bogomolyni equations by change of variables and explored the
Lagrangian density of the classically equivalent CP 1 sigma model. The algebraic
topology of rational maps and the construction of harmonics between surfaces have
been studied by Segal [17] and by Eells and Lemaire [4], respectively. Speight and
Sadun [18] showed the moduli space for a compact Riemann surface is geodesically
incomplete. The metric on the space of holomorphic maps is given by restricting
the kinetic energy term where the moduli space coordinates are allowed to depend
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on time. This metric is Kähler [15]. The low energy dynamics of a CP 1 lump on the
space-time S2×R [20] and the geometry of a space of rational maps of degree N [13]
have been studied. The Fubini-Study metric γFS of rational maps of degree one has
been studied by Krusch and Speight [7]. Here a rational map was identified with
the projective equivalence classes of its coefficient such that Rat1 is an open subset
of CP 3 which is equipped with the Fubini-Study metric of constant holomorphic
sectional curvature 4. Lumps can decay but it has been shown in Refs. [10, 23]
that the scattering of lumps takes place before lump decay using the geodesic
approximation. A head-on collisions between lumps in the 2+ 1-dimensional CP 1

model on a flat torus has been studied numerically by Cova and Zakrzewski [3] and
analytically by Speight [22]. Rational maps also play an important role in related
models like the Skyrme model [19]. For example, the rational map ansatz [6]
gives a good approximations for the symmetries of Skyrme configurations, and the
Finkelstein-Rubinstein constraints can be calculated directly from this ansatz using
homotopy theory [8]. We study the symmetries of rational maps to understand
the geometry and dynamics of lumps.

Harmonic maps are solutions of Laplace’s equation on Riemannian manifolds
and are usually known as lumps. Denote by MN the moduli space of degree
N harmonic maps. MN is a 2N + 1-dimensional smooth complex Riemannian
manifold. There is a natural Riemannian metric on MN , which is called the L2

metric. The L2 metric is well defined on a compact Riemann surface as the non-
normalizable zero modes are absent [13]. For the CP 1 model, one can have an
explicit expression of harmonic maps in terms of rational maps given by the ratio
of two polynomials with no common roots. Lumps and their symmetries can be
understood in terms of rational maps on the projective plane. Speight [21] studied
the L2 metric on the moduli spaces of degree 1 harmonic maps on both S2 and
RP 2 and obtained an explicit formula. We focus mainly on charge three rational
maps between RP 2, acquiring a detailed and careful understanding of their L2

geometry. The L2 metric plays an important role in slow lump dynamics just as
Samols [16] metric does for vortices.

In section 2, we discuss the O(3) and CP 1-sigma models on a Riemann surface.
In section 3, we derive families of symmetric rational maps in real projective space.
We then apply the Riemann-Hurwitz formula. We also study an SO(3)× SO(3)
invariant angular integral of rational maps which plays an important role in our
understanding of the moduli space of charge three lumps. In section 4, we discuss
the moduli space metric of charge three lumps on projective space. We evaluate
the metric coefficients explicitly and calculate various geometric quantities. We
end with a conclusion.
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2 The O(3)-sigma model on a Riemann surface

In (d+1)-dimensional space time, the non-linear sigma model on the space Σ with
target space Y is defined by the Lagrangian

L =
1

2

∫

Σ

dµg∂µφl∂
µφmH

lm, (2.1)

where dµg is the volume element of Σ, g is the Riemannian metric on Σ, ∂µ = ηµν∂ν
and ηµν are the components of the inverse of the Lorentzian metric

η = dt2 − g

on the space-time R × Σ, and Hlm is the metric on Y. The O(3)-sigma model is
a famous example of a non-linear sigma model. In the O(3)-sigma model, the
field can be parameterized as a three-component unit vector, φ = (φ1, φ2, φ3) with
φ · φ = 1, and the Lagrangian is given by

L =
1

4

∫

Σ

dµg∂µφ · ∂µφ. (2.2)

Thus, the target space can be identified with a Riemann sphere S2. The sigma
model can be formulated in terms of fields (φ1, φ2, σ) such that σ = ±

√
1− (φ2

1 + φ2
2)

where φ1 and φ2 are locally unconstrained [11]. We consider Σ = S2 and Σ = RP 2,
and target space Y = Σ, but other examples have been discussed in the litera-
ture [21]. Denote by MN the moduli space of degree N static solutions of the
CP 1 model on Σ and let φ : Σ −→ CP 1. The kinetic energy functional induces a
natural metric γ on MN which is a finite dimensional, smooth Riemannian mani-
fold. The moduli space MN is geodesically incomplete with respect to the metric
γ induced by the kinetic energy functional for any degree N static solutions of the
CP 1 model on Σ [18]. The homotopy classes of a continuous map φ, by the Hopf
degree theorem [2], are labeled by the topological degree of φ.

In the following we consider Σ = S2. Let R be the stereographic coordinate
image of φ on the target space. The coordinate R is given by R = φ1+iφ2

1+φ3
and let

the local complex coordinate z = x1+ ix2 and its conjugate z̄ = x1− ix2. One can
then explicitly express φ in terms of R as

φ =

(
R + R̄

1 + |R|2 ,
−i
(
R− R̄

)

1 + |R|2 ,
1− |R|2
1 + |R|2

)
.

Since R = R(t, z, z̄) is the function of t, z and z̄ , the Lagrangian (2.2) becomes

L =

∫

S2

dS
∂µR∂

µR̄

(1 + |R|2)2 , (2.3)
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where µ = t, z, z̄. This Lagrangian is referred to as the CP 1 sigma model. The
CP 1 sigma model in d = 2 + 1 dimensions is a non-linear field theory possessing
topological solitons, called lumps.

For Σ = S2, the energy E and the topological charge N are given by

E = 2

∫
(|∂zR|2 + |∂z̄R|2)(1 + |z|2)2

(1 + |R|2)2
dzdz̄

(1 + |z|2)2 , (2.4)

N =
1

π

∫
(|∂zR|2 − |∂z̄R|2)(1 + |z|2)2

(1 + |R|2)2
dzdz̄

(1 + |z|2)2 , (2.5)

where ∂z =
∂
∂z

= 1
2
(∂1−i∂2) and ∂z̄ =

∂
∂z̄

= 1
2
(∂1+i∂2). Now one can show that the

energy E and the topological degree N satisfy the the Bogomolny bound E ≥ 2πN .
Equality holds if and only if the Cauchy-Riemann equation is satisfied, namely
∂z̄R = 0, whose solutions are holomorphic functions R(z). We can do a similar
calculation to obtain E ≥ −2πN with equality when ∂zR = 0, which is satisfied
by antiholomorphic functions R(z̄). In summary, the energy E is minimized to
2π|N | in each topological class by a solution of the Cauchy-Riemann equations

{
∂z̄R = 0 if N ≥ 0,

∂zR = 0 if N ≤ 0.

Without loss of generality we will focus on holomorphic maps. For the complex
coordinates z and R on the domain and codomain, the general degree N rational
map is

R(z) =
p(z)

q(z)
=

a1 + a2z + ...+ aN+1z
N

aN+2 + aN+3z + ...+ a2N+2zN
,

where ai ∈ C are constants and aN+1 and a2N+2 do not both vanish simultaneously,
and p(z) and q(z) have no common roots. Suppose a2N+2 6= 0 and define a complex
coordinate bα = aα

a2N+2
, α = 1, ..., 2N + 1. The inclusion property MN ⊂ CP 2N+1

implies that the metric γ is Kähler in this coordinate system. Thus, γ is given by

γ = γαβdb
αdbβ, (2.6)

where repeated indices are summed over. The metric γαβ can be written as

γαβ =

∫

C

dzdz̄

(1 + |z2|)2(1 + |R|2)2
∂R

∂bα
∂R

∂bβ
, (2.7)

and R(z) is given by

R(z) =
b1 + b2z... + bN+1z

N

bN+2 + bN+3z + ... + zN
.
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3 Symmetries of rational maps on projective space

In the following, we derive families of symmetric rational maps in real projective
space. We start by considering rational maps between Riemann spheres. A rational
map R(z) has a discrete symmetry if

M1(R(M2(z))) = R(z), (3.1)

where M1 and M2 are Möbius transformations. M1 is a rotation in target space,
also known as an isorotation, whereas M2 is a rotation in space. Note if R(z) has
symmetry (3.1) then the rational map R̃(z) = M̂1(R(M̂2(z))) has the symmetry

R̃(z) = M̃1(R̃(M̃2(z))),

where M̃1(z) = M̂1(M1(M̂
−1
1 (z))) and M̃2 = M̂−1

2 (M2(M̂2(z))). So, by change
of coordinates in domain and target, we can choose our symmetry to be around
convenient axes.

We define a Ck
n symmetry of a rational map as a rotation in space by α = 2π/n

followed by a rotation in target space by β = kα. The following lemma classifies
which Ck

n symmetries are allowed for a rational map of degree N.

Lemma 1. A rational map of degree N can have a Ck
n symmetry if and only if

N ≡ 0 mod n or N ≡ k mod n.

For a proof see [9]. Note that S2 is the universal covering space of RP 2 and
π1(RP

2) = Z2 [12]. The map φ : S2 → S2 projects to a harmonic map φ̃ : RP 2 →
RP 2 if and only if p ◦ φ = φ ◦ p [4, 20], where p : S2 −→ S2, z 7→ −z̄−1 is
the antipodal map in stereographic coordinates. Hence, in real projective space,
rational maps must satisfy the additional constraint

R

(
−1

z̄

)
= − 1

R̄(z)
. (3.2)

Then R(z) can be written in the general form as

R(z) =

N∑
k=0

akz
k

N∑
k=0

(−1)kāN−kzk
, (3.3)

where ak ∈ C. Alternatively, we can write the general form of this rational map as

R(z) = eiφ
(z − z1)(z − z2)...(z − zN)

(1 + z̄1z)(1 + z̄2z)...(1 + z̄Nz)
, (3.4)
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where z1, z2, ..., zn ∈ C, and φ ∈ [0, 2π). This severely restricts the number of

allowed symmetries. Denote by R̃atN the degree N rational maps in real projective
space which is a submanifold of RatN .

Lemma 2. A rational map of degree N which satisfies (3.2) can have a Ck
n sym-

metry if and only if N ≡ k mod n. If n ≥ N then the rational map has D∞
symmetry.

Proof:

Without loss of generality we choose coordinates such that one Ck
n rotation is

around the x3-axis in space and target space.
First consider N ≡ 0 mod n. Then N = nl, and a Ck

n rational map can be
written as

R(z) =
r(zn)

zn−ks(zn)
,

where r(z) has degree l and s(z) has degree less than l. On the other hand, given
r(z) the constraint (3.2) fixes the coefficients of the denominator. In particular,
only coefficients of powers of zn will be non-zero. Hence, the only compatible
solution is k = 0.

Consider the case N ≡ k mod n which includes the k = 0 case for N ≡ 0
mod n. Set k = N mod n and s = (N − k)/n, then the rational map is given by

R(z) =

s∑
j=0

ajz
jn+k

s∑
j=0

bjzjn
. (3.5)

The inversion symmetry (3.2) leads to the following two constraints on the coeffi-
cients

(−1)nj b̄s−j = λaj (3.6)

and
(−1)k+1ās−j(−1)nj = λb̄j , (3.7)

where λ takes account of the fact that numerator and denominator can be multi-
plied with a common factor. Taking the modulus, we obtain that |λ| = 1, so that
λ̄ = 1/λ. By relabelling j 7→ s− j, equation (3.7) becomes

aj = λ̄(−1)k+1+n(s−j)b̄s−j. (3.8)

This is compatible with equation (3.6) provided ns + k = N is odd. For N = n,
we obtain the map

R(z) = λ
a1z

n + a0
−ā0zn + ā1

. (3.9)
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Performing a Möbius transformation in target space to remove the phase λ this is
equivalent to a Möbius transformation of the axial map.

Similarly, for n > N, the rational map (3.5) reduces to

R(z) =
λa0
ā0

zN ,

since in this case N = k and s = 0. This is again the axial map. �

For N = 1, the only rational maps compatible with the constraint (3.2) is

R(z) =
az + b

−b̄z + ā
, (3.10)

where |a|2+ |b|2 6= 1. Hence, this is isomorphic to PU(2) ∼= SO(3), and the moduli
space for charge one is SO(3), as pointed out in Ref. [21].

3.1 N = 3 lumps

In the following, we will discuss the case N = 3 in more detail. According to
Lemma 1 and 2, imposing Cn symmetry with n ≥ 3, we obtain D∞ symmetry,
given by maps of the form

R(z) =
az3 + b

−b̄z3 + ā
, (3.11)

where a, b ∈ C, and a and b are not both zero. Here the rotation axis in space
has been chosen to be the x3-axis. This choice corresponds to fixing two real
parameters. Here, the symmetry is a C0

3 . Consider the case a 6= 0. Then the
rational map (3.11) can be rewritten as

R(z) = eiψ
z3 + c

−c̄z3 + 1
,

where c = b/a and eiψ = a/ā. Hence, the moduli space of the symmetric lumps of
(3.11) is parametrized by one complex number and a phase which together with
the choice of axes gives real dimension 5. The moduli space can also be viewed as
the orbit under rotations and isorotations of the map

R(z) = z3.

Since, rotation and isorotations act independently apart from the axial symmetry
around the third axis, the dimension of the moduli space is again 5.

The only rational maps that are compatible with a C2 symmetry around the
x3-axis are given by

R(z) =
az3 + bz

b̄z2 + ā
. (3.12)

7



By Möbius transformations preserving this symmetry, namely rotations around
the third axis in space and target space, the rational map can be brought into the
form

R(z) =
z3 + cz

cz2 + 1
, (3.13)

such that c is real and non-negative. The surprising fact is that this map has D2

symmetry, since it is also symmetric under

R(z) =
1

R
(
1
z

) .

Hence, imposing a C2 symmetry automatically gives a family of D2 symmetric
maps. Since rotations and isorotations act independently and cannot change the
magnitude of the parameter c, the moduli space of the symmetric lumps of (3.13)
has real dimension 7. Another way of calculating the dimension of the symmetry
orbit of (3.13) is as follows. A general rational map can be written as equation
(3.4) for N = 3:

R(z) = eiφ
(z − z1)(z − z2)(z − z3)

(1 + z̄1z)(1 + z̄2z)(1 + z̄3z)
. (3.14)

When we impose symmetry under a π rotation around the x3-axes in space followed
by an isorotation around the x3-axis in target space, one zero has to be equal to
zero and the other two map into each other under z 7→ −z. The symmetric rational
map is then given by

R(z) = eiφ
z(z − z1)(z + z1)

(1 + z̄1z)(1 − z̄1z)
. (3.15)

Hence, this rational map is parametrized by φ ∈ R and z1 ∈ C, that is by 3
real parameters. A further 4 real parameters correspond to our choice of axes on
S2 × S2.

To list all families of degree 3 rational maps on the projective plane, we can
also use the Riemann-Hurwitz formula [5]. For a degree N rational map R(z)
ramified at points pi in S2, the Riemann-Hurwitz formula is given by

χ(S2) = Nχ(S2)−
∑

pi

(dpi − 1) , (3.16)

where χ(S2) is the Euler characteristic of S2, and dpi is the ramification index of
R(z) at the point pi. Thus, for N = 3,

∑
pi
(dpi − 1) = 4 implies that there are

two possibilities. The first possibility is dp1 = 3 which fixes dp2 = 3. Hence, the
first family is the symmetry orbit of rational maps z3 which coincides with the
family of maps (3.11). The second possibility is dpi = 2, for i = 1, 2, 3, 4. Choosing

8



a critical point at z = 0 with R(0) = 0 and then using Möbius transformations,
we can find the family of rational maps as

R(z) =
z2(z − a)

1 + az
, a > 0. (3.17)

Note that the sign of a can be changed by R(z) 7→ −R(−z). Here rotations
and isorotations act independently and cannot change the magnitude of a, hence
the space is 7-dimensional. This is compatible with writing the rational map as
equation (3.14).

The angular integral of a degree N rational map R is given by

I =
1

4π

∫ (
1 + |z|2
1 + |R|2

∣∣∣∣
dR

dz

∣∣∣∣
)4

dzdz̄

(1 + |z|2)2 . (3.18)

It can be shown that I ≥ N2 [11]. This quantity I is invariant under rotations
in space and rotations in target space. Therefore, it distinguishes between maps
not related by the symmetry group. In Fig.1, we display the angular integral I
for the rational map Rc in (3.13) as a function of c. For c = 0, we obtain the
axial map R(z) = z3, for which the angular integral can be evaluated explicitly to

I0 = 81+16
√
3π

9
. As c → 1, the integral I diverges as two lumps become spiky, see

Fig.2, and for c = 1 the rational map becomes R(z) = z. For c = 3, the angular
integral I again takes the value I0. This can be understood as follows: Since the
D2 symmetry fixes the three axes x1, x2 and x3, we can permute the (x1, x2, x3)
axes cyclically and obtain, after a suitable isorotation, another map of the form
(3.13), but with a new value c̃ = 3−c

c+1
. This relates c = 0 to c̃ = 3, which is the axial

map in disguise. Furthermore, the interval 0 ≤ c < 1 is mapped to 1 < c̃ ≤ 3.
Similarly, we can map the interval 0 ≤ c < 1 to 3 ≤ ĉ <∞, where ĉ = c+3

1−c . Thus,
the angular integral of (3.13) for 0 < c < 1 and 1 < c̃ < 3 are identical, and
similarly for 3 < ĉ < ∞. Hence, it is sufficient to consider the interval 0 ≤ c < 1,
and its symmetry orbit in order to parametrize R̃at3.

The integral I as a function of a for Ra in (3.17) is also displayed in Fig.1.

This indicates that the maps Ra ∈ R̃at3 and Rc ∈ R̃at3 with the same value of I
are related to each other via Möbius transformations. In fact, this can be checked
using Maple by explicitly computing the relevant Möbius transformations. Hence
the moduli space of lumps of (3.13) and (3.17) parametrize the same space, and
therefore (3.17) has a hidden D2 symmetry.

The maps (3.17) and (3.13) can also be used to discuss interesting lump decay

channels. First, consider maps Ra ∈ R̃at3 of the form (3.17). Following the zeros
and poles for a ∈ [0,∞], we start with the axial map with three zeros at the origin
0 and three poles at ∞. Then one zero moves from 0 to ∞ along the positive

9
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Figure 1: Plots of the angular integral I in (3.18) as a function of a and c for Ra

and Rc, respectively.

real axis while one pole moves from ∞ to 0 along the negative real axis. The zero
cancels with a pole at ∞ while the pole cancels with a zero at 0.

Second, consider maps Rc ∈ R̃at3 of the form (3.13), as displayed in Fig.2: For
c = 0 we obtain the axial maps with three zeros at the origin and three poles at
∞. For 0 < c < 1 one zero remains fixed while one zero moves up and one moves
down along the imaginary axis. Also, one pole remains fixed at ∞ while two pole
travel towards 0 along the positive and negative imaginary axis, respectively. For
c = 1 two poles and two zeros cancel. For 1 < c < ∞ the poles move towards 0
while the poles move towards ∞ where they cancel.

Note that since a zero and a corresponding pole are opposite each other, a
single lump cannot decay, and the module space is R̃at1 ∼= SO(3). Similarly, the
axial symmetry D∞ fixes all N zeros and N poles so that axial symmetry prevents
lump decay, and the moduli space of axially symmetric lumps is the 5-dimensional
symmetry orbit of zN .

3.2 N = 5 lumps

In the following we discuss the symmetries of R̃at5. According to Lemma 2, when
a Cn symmetry is imposed with n ≥ 5 then the rational map has a D∞ symmetry

10



and is of the form

R(z) =
az5 + b

−b̄z5 + ā
, (3.19)

where a and b are complex and do not both vanish simultaneously. This moduli
space of axially symmetric rational maps has dimension 5 and can be viewed as
the symmetry orbit of z5.

The rational map which is grouped to the C1
2 symmetry family is given by

R(z) =
z(a0 + a1z

2 + a2z
4)

ā2 − ā1z2 + ā0z4
. (3.20)

An interesting example of this kind of rational map which satisfies the D2 symme-
try is given by

R(z) =
z(1 + iaz2 + bz4)

b+ iaz2 + z4
, a, b ∈ R. (3.21)

When b = 1, lump decay can be observed as a function of a since four zeros cancel
with four poles at 0 and four poles cancel with four zeros at ∞. Furthermore,
when a = 0, R(z) has the symmetry of a square which give rise to C1

4 symmetry.
Another family of maps has C2

3 symmetry, and the corresponding rational map
is given by

R(z) =
z2(a0 + a1z

3)

ā1 − ā0z3
. (3.22)

By Möbius transformations preserving this symmetry, namely rotations around
the third axis in space and target space, the rational map can be brought into the
form

R(z) =
z2(z3 + a)

1− az3
, a ∈ [0,∞), (3.23)

assuming a1 6= 0. This rational map is also symmetric under C1
2 rotations via

R

(
−1

z

)
= − 1

R(z)
, (3.24)

hence (3.23) has D3 symmetry.
The remaining family of maps with a rotational Ck

n symmetry is given by

R(z) =
z(z4 + a)

1 + az4
, a ∈ (0, 1) ∪ (1,∞), (3.25)

which is C1
4 symmetric. This map also has the C1

2 symmetry (3.24), hence (3.25)
is a D4-symmetric map. If a = −5, then the map has an additional C3 symmetry,
the symmetry group is enhanced to octahedral symmetry O [11].

11



In the moduli space identified by the rational map (3.25), lump decay can be
observed. For a = 0 we have the axial maps with 5 zeros at the origin and 5 poles
at ∞. For 0 < a < 1 one zero remains fixed while one zero moves up, one down
along the imaginary axis, one zero moves right along the positive real axis and one
zero moves to the left along the negative real axis. Also, one pole remains fixed at
∞ while two poles travel towards 0 along the positive and negative imaginary axis
and two poles travel to 0 along the positive and negative real axis, respectively.
For a = 1 four poles and four zeros cancel. For 1 < a <∞ the poles move towards
0 while the zeros move towards ∞ where they cancel.

Proposition 1. If N = n+ k with k < n, then the moduli space of rational maps
with Ck

n symmetry is 7-dimensional and has Dn symmetry.

Proof. A rational map of degree N = n+ k with Ck
n symmetry is given by

R(z) =
zk(a1z

n + a0)

(−1)nā0zn + ā1
. (3.26)

By Möbius transformation, the rational map can be brought into the form

R(z) =
zk(zn + a)

1 + azn
, a ∈ [0,∞). (3.27)

The map (3.27) satisfies the C1
2 symmetry given by (3.24). Hence, the moduli

space of the rational map has Dn symmetry.

In the following, we explore the Riemann-Hurwitz formula [5] for charge five
lumps. Thus, for N = 5,

∑
pi
(dpi − 1) = 8 implies that there are five possibilities.

The first possibility is dp1 = 5 which fixes dp2 = 5. Then we obtain the rational
map z5 which coincides with (3.19). The second possibility is dp1 = dp2 = 4 which
fix dp3 = dp4 = 2. In this case, the family of rational map is given by

R(z) =
z4(z + a)

1− az
. (3.28)

The third possibility is dp1 = dp2 = 3 and dpi = 2 for i = 3, 4, 5, 6 which gives
rational maps of the form

R(z) =
z3(z2 + az + b)

(1− āz + bz2)
, (3.29)

where b 6= 0, |a|2(b2 + 1) + (b2 − 1)2 + b(a2 + ā2) 6= 0 and the polynomial

P (z) = 3bz4 + (2ab− 4ā)z3 + (5 + b2 − 3|a|2)z2 − (2āb− 4a)z + 3b

12



has four simple zeros. The fourth possibility is dpi = 3 for i = 1, 2, 3, 4. Then, the
rational map is given by

R(z) =
z3(z2 + az + b)

(1− az + bz2)
, (3.30)

where b 6= 0, a2(b+ 1)2 + (b2 − 1)2 6= 0 and the polynomial

P (z) = 3bz4 + (2ab− 4a)z3 + (5 + b2 − 3|a|2)z2 − (2ab− 4a)z + 3b

has two double zeros.
Finally, the remaining possibility is dpi = 2, i = 1, ..., 8, with rational map

R(z) =
z2(z3 + az2 + bz + c)

1− āz + b̄z2 − cz3
, (3.31)

where the parameter a, b and c are coefficients such that the determinant of the
Sylvester matrix 



−1 −a −b −c 0 0

0 −1 −a −b −c 0

0 0 −1 −a −b −c
c −b a −1 0 0

0 c −b a −1 0

0 0 c −b a −1




is never zero, and furthermore the Wronskian of (3.31) has to have 7 simple roots.

4 The moduli space R̃at3 on RP 2

In this section we discuss the moduli space of charge three lumps on real projective
space. We calculate the metric and various geometric quantities. We first discuss
maps of the form (3.13) which possess dihedral symmetry D2. We describe the

7-dimensional symmetry orbit of Rc ∈ R̃at3 and maps of the form (3.11) which
possess axial symmetry D∞.

Consider first the space of functions Rc given by (3.13). The Wronskian of Rc

is a polynomial of degree 4 given by

w(z) = cz4 + (3− c2)z2 + c.

For c ≈ 1, the poles and zeros of Rc come together and cancel each other, then
Rc becomes a rational map of degree one which is z. For c ≈ ∞, the poles and

13



zeros come together and cancel each other and then Rc becomes the rational map
1
z
. One can see the energy density of this space in Fig.2 that shows the energy

density is symmetric at c = 0, c = 1 and c = ∞. The energy densities dissociate
and form spikes as c approaches 1 and ∞.

(a) c = 0 (b) c = 0.1 (c) c = 0.5

(d) c = 0.9 (e) c = 1 (f) c = 1.1

(g) c = 2 (h) c = 10 (i) c = ∞

Figure 2: These figures display the energy densities of charge three lumps given
by Rc in (3.13) for different values of c.

Proposition 2. R̃at3 is a non-compact totally geodesic Lagrangian submanifold
of the space of degree 3 lumps Rat3.

Proof. One can find a similar proof in Ref. [20].

14



Our next step is to compute the metric on the moduli space of Rat3. Consider
the rotation group SO(3) action on the coordinate systems z and R, R ∈ Rat3.
Consider first the action z 7→ Uz, U ∈ SO(3) ∼= PU(2) ∼= SU(2)/Z2. We can
expand the left invariant 1−form U−1dU in terms of a convenient basis of the Lie
algebra i

2
τa, a = 1, 2, 3, where τa are Pauli matrices:

U−1dU = σ · i
2
τa = σ1t1 + σ2t2 + σ3t3, (4.1)

where dσi =
1
2
εijkσj ∧σk. Similarly, for the action R 7→MR,M ∈ SO(3), we have

an expression in the Lie algebra i
2
τa, a = 1, 2, 3:

M−1dM = η · i
2
τa = η1t1 + η2t2 + η3t3, (4.2)

where dηi =
1
2
εijkηj ∧ ηk. For example, consider M̃ ∈ SU(2) defined by

M̃ =

(
e

i
2
(ψ+φ) cos( θ

2
) e

i
2
(ψ−φ) sin( θ

2
)

−e i
2
(φ−ψ) sin( θ

2
) e−

i
2
(ψ+φ) cos( θ

2
)

)
.

We can then see that M̃−1dM̃ = η1t1 + η2t2 + η3t3 where the ηi’s are computed as

η1 = − sinψdθ + cosψ sin θdφ

η2 = cosψdθ + sinψ sin θdφ

η3 = dψ + cos θdφ.

Furthermore, let R ∈ SU(2) and M 7→ MR,M ∈ SO(3). Then we can
find that σ 7→ Rσ and η 7→ Rη, where R ∈ SO(3) with matrix component
Rab =

1
2
tr(τaR

†τbR). Hence both σ and η transform as 3−vectors under rotations.
One can change from the coordinate basis on SO(3), {dα, dβ, dγ}, to the left
invariant 1-forms on SO(3) which are given by (4.1) and (4.2) as before, but with
the range of angles appropriate to SO(3), α ∈ [0, π), β ∈ [0, 2π), γ ∈ [0, 2π).

The metric is invariant under spatial rotations. Then by considering dc, σ and
η, we can construct the most general possible metric as

g = Aij(c)σiσj +Bi(c)σidc+ C(c)d2c+Dij(c)ηiηj + Ei(c)ηidc+ Fij(c)σiηj , (4.3)

where i, j = 1, 2, 3 and each component function depends only on c and is inde-
pendent of the Euler angles.

The transformations ρ : z 7→ z̄ and w : R 7→ R̄ map lumps to anti-lumps
because each reverses the sign of the topological degree, and so both are not an
isometry of the moduli space. In fact, the composite transformation w ◦ ρ is an

15



isometry. Consider the isometry transformation U 7→ Ū , where U ∈ SO(3) as a
SU(2) Möbius transformation and suppose again c 7→ c. Then

σ = (σ1, σ2, σ3) 7→ (−σ1, σ2,−σ3) and η = (η1, η2, η3) 7→ (−η1, η2,−η3). (4.4)

This isometry removes Bi(c) and Ei(c) for i = 1, 3 from the general possible metric
equation (4.3) because for c 7→ c, we have that

σ · dc 7→ (−σ1dc, σ2dc,−σ3dc),
η · dc 7→ (−η1dc, η2dc,−η3dc).

The isometry (4.4) also results in A12(c) ≡ A21(c) ≡ A23(c) ≡ A32(c) ≡ 0 and
D12(c) ≡ D21(c) ≡ D23(c) ≡ D32(c) ≡ F12(c) ≡ F21(c) ≡ F13(c) ≡ F31(c) ≡
F23(c) ≡ F32(c) ≡ 0. Furthermore, we can use the fact that R ∈ R̃at3 has D2

symmetry. Take a π rotation around the third axis

(σ1, σ2, σ3) 7→ (−σ1,−σ2, σ3) and (η1, η2, η3) 7→ (−η1,−η2, η3). (4.5)

This isometry (4.5) gives A13(c) ≡ A31(c) ≡ D13(c) ≡ D31(c) ≡ F13(c) ≡ F31(c) ≡
B2(c) ≡ E2(c) ≡ 0 because we have that

σ1σ3 7→ −σ1σ3, η1η3 7→ −η1η3, σ2dc 7→ −σ2dc and η2dc 7→ −η2dc.

Hence, they can be removed from the general possible metric equation (4.3).
Our next task is finding the remaining metric functions of c by taking the

appropriate Euler angles. Firstly, consider the parametrization of SO(3) by

M(α, θ, ϕ) =

(
cos α

2
+ i sin α

2
cos θ i sin α

2
(cosϕ+ i sinϕ) sin θ

i sin α
2
(cosϕ− i sinϕ) sin θ cos α

2
− i sin α

2
cos θ

)
. (4.6)

Take first the action R 7→ R⋆ = eiαR. That is, we consider θ = 0 in M(α, θ, ϕ).
Then we have a metric of the form γ = γαα(c)d

2α, where

D33(c) = γαα(c) =

∫

D

|∂αR⋆|2
(1 + |R⋆|2)2

dzdz̄

(1 + |z|2)2 =

∫

D

|R|2
(1 + |R|2)2

dzdz̄

(1 + |z|2)2 .

Now we can also evaluate D11(c) and D22(c). Suppose we are taking (θ = π
2

and
ϕ = 0) the action R 7→ R⋆ = MR, where M is given by the matrix (4.6). Then,
we have a metric of the form γ = γαα(c)d

2α where

D11(c) = γαα(a) =

∫

D

|∂αR⋆|2
(1 + |R⋆|2)2

dzdz̄

(1 + |z|2)2 =
1

4

∫

D

|1− R2|2
(1 + |R|2)2

dzdz̄

(1 + |z|2)2 .
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Similarly, to find the expression for D22(c), take α = π
2

and ϕ = 0 in our
parametrization of SO(3) in (4.6). Then the metric is of the form γ = γθθ(c)d

2θ
where

D22(c) = γθθ(c) =

∫

D

|∂θR⋆|2
(1 + |R⋆|2)2

dzdz̄

(1 + |z|2)2 =
1

4

∫

D

|1 +R2|2
(1 + |R|2)2

dzdz̄

(1 + |z|2)2 .

To find the functions Aii(c), i = 1, 2, 3, we can follow the same argument in eval-
uating the Dii(c), i = 1, 2, 3. Suppose we are considering the same parametrization
of SO(3) as (4.6) and the SO(3) action on z. For instance, let z 7→ eiαz. Then
R 7→ R⋆ = R(eiαz). Therefore, we are now able to find A33(c) from the metric of
the form γ = γαα(c)d

2α where

A33(c) = γαα(c) =

∫

D

|∂αR⋆|2
(1 + |R⋆|2)2

dzdz̄

(1 + |z|2)2 =

∫

D

|z|2|dR
dz
|2

(1 + |R|2)2
dzdz̄

(1 + |z|2)2 .

We can also find the other two functions A11(c) and A22(c) by taking the Euler
angles (θ = π

2
and ϕ = 0) and (α = π

2
and ϕ = 0), respectively. Considering

the above Euler angles and from the metrics of the form γ = γαα(c)d
2α and

γ = γθθ(c)d
2θ, we can find that

A11(c) = γαα(c) =
1

4

∫

D

|1− z2|2|dR
dz
|2

(1 + |R|2)2
dzdz̄

(1 + |z|2)2

and

A22(c) = γθθ(c) =
1

4

∫

D

|1 + z2|2|dR
dz
|2

(1 + |R|2)2
dzdz̄

(1 + |z|2)2 .

Similarly, we can find the following metric functions Fii(c), i = 1, 2, 3 as

F11(c) =
1

4

∫

D

ℜ
(
(1− z2)(1− R̄2)dR

dz

)

(1 + |R|2)2
dzdz̄

(1 + |z|2)2 ,

F22(c) =
1

4

∫

D

ℜ
(
(1 + z2)(1 + R̄2)dR

dz

)

(1 + |R|2)2
dzdz̄

(1 + |z|2)2 ,

F33(c) =

∫

D

ℜ
(
zR̄ dR

dz

)

(1 + |R|2)2
dzdz̄

(1 + |z|2)2 .

Finally, the function C(c) is finite since it is bounded from above by 2π and given
by

C(c) =

∫

D

|∂cR|2
(1 + |R|2)2

dzdz̄

(1 + |z|2)2 .

Hence, the metric on the 7-dimensional space of charge three lumps is given by

g =Aii(c)σ
2
i + C(c)d2c+Dii(c)η

2
i + Fii(c)σiηi, (4.7)
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where i = 1, 2, 3. The coefficient functions of the metric (4.7) are displayed in
Fig.3. As c = 0 is the axial map, we find that A11(0) = A22(0), D11(0) = D22(0)
and F11(0) = F22(0) = 0.
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Figure 3: (a) The metric functions D11(c), D22(c), D33(c). (b) The metric
functions A11(c), A22(c), A33(c). (c) The metric functions F11(c), F22(c), F33(c).
(d) The metric function C(c).

Proposition 3. The moduli space R̃at3 with respect to the general metric g has

finite volume, that is, the volume of (R̃at3, g) is finite.

Proof. The volume on the moduli space R̃at3 is given by

V ol(R̃at3) =

∫

SO(3)×SO(3)×R

√
(| det(gij)|)V olg(R̃at3), (4.8)
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where V olg(R̃at3) is the volume element on g is given by

V olg(R̃at3) =
√

| det(gij)|σ1 ∧ σ2 ∧ σ3 ∧ η1 ∧ η2 ∧ η3 ∧ dc. (4.9)

Note that V ol(SO(3)) =
∫
SO(3)

σ1∧σ2∧σ3 = 8π2 and similarly
∫
SO(3)

η1∧η2∧η3 =
8π2. The determinat of gij is calculated as

det(gij) ≤ (A11A22A33D11D22D33C)(c). (4.10)

We can also find the following inequalities in the metric functions which are A22 ≤
4

(1+c2)2
and both A11 and A2 are bounded above by 2π

3
+ 2π2

√
3

243
. Similarly, we can

see that D33 ≤ π
3
, D22 ≤ π

3
+ 4π2

√
3

243
and D11 ≤ π

3
+ 4π2

√
3

243
. Hence, det(gij) ≤ 4

(1+c2)2
.

Note that
∫∞
0

2
1+c2

dc = π which implies the following integral

V ol(R̃at3) = 64π4

∫ 1

0

√
| det(gij)| dc

≤ 64π4

∫ ∞

0

√
| det(gij)| dc ≤ 64π4

∫ ∞

0

2

1 + c2
dc = 64π5.

This proves the volume of the moduli space of charge three lumps is finite.

Proposition 4. The moduli space (R̃at3, γcc) has a submanifold of finite length,
where γcc(c) = C(c).

Proof. Since the integral
∫ 1

0

√
γccdc <∞, it shows automaticaly the length is finite.

Therefore, the boundary of (R̃at3, γcc) at infinity lies at finite distance. Then the

space R̃at3 is geodesically incomplete.

Finally, we consider rational functions of the form R(z) = z3 and its symmetry

orbit denoted by R̃at03. The energy density is symmetric and its metric is equivalent
to the metric on the moduli space {ξzn : ξ ∈ C×} with ξ = 1 and n = 3 which

was shown in Ref. [13]. Note that R̃at03 is a totally geodesic submanifold of R̃at3

. The general metric g0 on R̃at03 is given by

g0 = fiσ
2
i + hiη

2
i + F33σ3η3, (4.11)

= f1σ
2
1 + f2σ

2
2 + f3(σ3 + 3η3)

2 + h1η
2
1 + h2η

2
2 , (4.12)

where

f1 = f2 =
2π2

√
3

27
, h1 = h2 =

π

6
+

2π2
√
3

243
,

f3 =
3π

2
− 4π2

√
3

27
, h3 =

π

6
− 4π2

√
3

243
, F33 =

π

2
− 4

√
3π2

81
.
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Proposition 5. R̃at03 has a finite volume with

V ol(R̃at03) =
π13/2

19683

(
4 π

√
3 + 81

)√
324− 32

√
3.

Proof. Here to avoid over-counting, we divide the volume element by two since
the space has an additional C2 symmetry. As earlier in Proposition 3, we have
that V ol(SO(3)) =

∫
SO(3)

σ1 ∧ σ2 ∧ σ3 = 8π2. From matrix (4.6), η1 ∧ η2 =

sin(θ)dφdθ, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π, the integral is
∫
SO(3)/SO(2)

η1 ∧ η2 = 4π. The
volume is given by

V ol(R̃at03) =

∫ √
|f1f2f3h1h2| η1 ∧ η2 ∧ σ1 ∧ σ2 ∧ σ3,

which can be evaluated as

V ol(R̃at03) = 32π3
√
|f1f2f3h1h2| =

4π13/2

19683

(
4 π

√
3 + 81

)√
324− 32

√
3.

5 Conclusion

In this paper, we studied the moduli space of lumps on real projective space R̃atN
which is given by the space of rational maps of degree N subject to symmetry
requirements [21]. We examined this moduli space using two different approaches.

First we classified all possible cyclic symmetries of R̃atN . Then we analysed R̃atN
using the Riemann-Hurwitz formula.

The symmetry requirements for R̃atN , which from a geometric point of view
mean that zeros and poles have to be opposite, greatly reduce the number of
allowed cyclic symmetries Ck

n compared to general rational maps. The allowed
symmetries are given in Lemma 2, and can be compared to Lemma 1, which states
a similar results for general rational maps [8].

We then focused on the case N = 3. Imposing a C2 symmetry automatically
leads to a D2 symmetric map, and a cyclic symmetry Cn for n > 2 results in
an axially symmetric rational map with D∞ symmetry. On R̃atN , the symme-
try group SO(3)× SO(3) of rotations and isorotations acts isometrically. Hence,

the moduli space R̃at3 consists of two orbits of the symmetry group, namely a
5-dimensional orbit of the axial map and a 7-dimensional orbit of dihedral sym-

metry. The Riemann-Hurwitz formula also decomposes R̃at3 into a 5-dimensional
space with two ramification points of index 3 and a 7-dimensional space with 4
ramification points of index 2, and we showed that these two points of view pro-
duce the same spaces. In summary, the moduli space of charge three lumps is
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a 7-dimensional manifold which can be described as the symmetry orbit of D2

symmetric maps Rc in (3.13) where c = 0 denotes the axially symmetric map.
Furthermore, as c→ ∞ two lumps become increasingly spiky and collapse, as two
poles of Rc cancel with two zeros. The symmetry requirement that poles and zeros
have to be opposite results in a more complicated lump decay, and in particular,
D∞ symmetry prevents lump decay.

The dihedral symmetry of the symmetry of R̃at3 allowed us to find explicit ex-
pressions of the L2 metric [21] that is induced on the moduli space by the kinetic
energy. It is rare that the moduli space metric can be evaluated for topological
charge greater than one. Recently, the metric of hyperbolic vortices of charge two

has been calculated in Ref. [1]. We showed that the volume of R̃at3 is finite. Fur-
thermore, we constructed a geodesic that connects the axial map to the boundary

of R̃at3 which has finite length. This shows that R̃at3 is geodesically incomplete, as
shown in Ref. [21]. We also evaluated the volume of the space of axially symmetric
maps.

When N = 5 the symmetry approach gives the following possible symmetries:
D∞, O, D4, D3, D2 and C2 and no symmetry. The metrics of submanifolds with Dn

symmetry could be evaluated in a similar way to the metric of R̃at3. The Riemann-
Hurwitz formula provides an alternative decomposition into 5 different spaces, but
now there is no obvious correspondence between the two approaches apart from
the axially symmetric case. How these spaces are related is an interesting problem
for further study.
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