
Fan, Wenjun, Du, Zhihui, Fernandez, David and Villagra, Victor A. (2018) 
Enabling an Anatomic View to Investigate Honeypot Systems: A Survey. 
 IEEE Systems Journal, 12 (4). pp. 3906-3919. ISSN 1932-8184. 

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/64933/ The University of Kent's Academic Repository KAR 

The version of record is available from
https://doi.org/10.1109/JSYST.2017.2762161

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. 
Cite as the published version. 

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type 
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title 
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date). 

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record 
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see 
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies). 

https://kar.kent.ac.uk/64933/
https://doi.org/10.1109/JSYST.2017.2762161
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE SYSTEMS JOURNAL 1

Enabling an Anatomic View to Investigate
Honeypot Systems: A Survey

Wenjun Fan, Zhihui Du, Senior Member, IEEE, David Fernández, and Vı́ctor A. Villagrá

Abstract—A honeypot is a type of security facility deliberately
created to be probed, attacked, and compromised. It is often used
for protecting production systems by detecting and deflecting unau-
thorized accesses. It is also useful for investigating the behavior of
attackers, and in particular, unknown attacks. For the past 17 years
plenty of effort has been invested in the research and development
of honeypot techniques, and they have evolved to be an increasingly
powerful means of defending against the creations of the blackhat
community. In this paper, by studying a wide set of honeypots, the
two essential elements of honeypots—the decoy and the captor—
are captured and presented, together with two abstract organi-
zational forms—independent and cooperative—where these two
elements can be integrated. A novel decoy and captor (D-C) based
taxonomy is proposed for the purpose of studying and classifying
the various honeypot techniques. An extensive set of independent
and cooperative honeypot projects and research that cover these
techniques is surveyed under the taxonomy framework. Further-
more, two subsets of features from the taxonomy are identified,
which can greatly influence the honeypot performances. These two
subsets of features are applied to a number of typical indepen-
dent and cooperative honeypots separately in order to validate the
taxonomy and predict the honeypot development trends.

Index Terms—Computer security, honeypots, intrusion detec-
tion, network security, virtualization.

I. INTRODUCTION

THE new domain of cyberspace is so pervasive that the US
Department of Defense has put cyberspace on a par with

land, sea, and air as a war-fighting domain [1]. Systems in cy-
berspace are constantly faced with cyber threats every day. In
2015, Symantec discovered 54 zero-day vulnerabilities, a 125%
increase from the year before [2]. Since cyber threats cannot be
eliminated completely, the strategy to securing cyberspace is to
remove as many vulnerabilities as possible before they can be

Manuscript received November 4, 2016; revised April 23, 2017, June 20,
2017, and September 3, 2017; accepted October 4, 2017. This work was sup-
ported in part by the National Key Research and Development Program of
China under Grant 2016YFB1000602 and Grant 2017YFB0701501, in part
by the MOE Research Center for Online Education Foundation under Grant
2016ZD302, and in part by the National Natural Science Foundation of China
under Grant 61440057 and Grant 61363019. (Corresponding author: Wenjun
Fan.)

W. Fan is with the School of Computing, University of Kent, Canterbury CT2
7NZ, U.K. (e-mail: W.Fan@kent.ac.uk).

Z. Du is with the Tsinghua National Laboratory for Information Science
and Technology, Department of Computer Science and Technology, Tsinghua
University, Beijing 100084, China (e-mail: duzh@tsinghua.edu.cn).

D. Fernández and V. A. Villagrá are with the Department of Telematics
Engineering, Universidad Politécnica de Madrid, Madrid 28040, Spain (e-mail:
david@dit.upm.es; villagra@dit.upm.es).

Digital Object Identifier 10.1109/JSYST.2017.2762161

exploited [3]. A honeypot is a vital security facility aimed at sac-
rificing its resource to investigate unauthorized accesses in order
to discover potential vulnerabilities in operational systems, and
reduce the risks. Due to its unique design and application fea-
tures, it can help to address the deficiencies of other existing
security methods.

Firewalls are often deployed around the perimeter of an or-
ganization in order to block unauthorized access by filtering
certain ports [4] and content, but they do little to evaluate the
traffic. They can block all accesses to a certain service in order
to prevent malevolent traffic, but this also blocks any benevolent
traffic that wants to access the service. Conversely, honeypots
are aimed at opening ports in order to capture as many attacks
as possible for subsequent data analysis. An intrusion detection
system (IDS) is used to evaluate the traffic and detect any in-
appropriate, incorrect, and anomalous activity. However, IDSs
often have the “false alert problem,” i.e., signature (rule-based)
IDSs often generate false negative alerts, whilst anomaly-based
IDSs generate false positive alerts. Compared to an IDS, a hon-
eypot has the big advantage that it never generates false alerts,
because any observed traffic to it is suspicious since there is no
production service running on the honeypot. Hence, an integra-
tion of a honeypot with an IDS can largely reduce the number
of false alerts [5].

An intrusion prevention system (IPS), comprising a firewall
plus an IDS, can evaluate the traffic and block malicious data.
It acts as a shield against attacks, but it is not able to distinguish
whether an application-layer request is normal or not. This draw-
back could potentially result in attacks permeating the shield
without being detected, e.g., a social engineering attacker may
gain sensitive information by using a compromised legitimate
username and password [6]. If an IPS integrates with a honeypot,
the whole system can then capture all attacking activities regard-
less of whether they are performed by inside or outside adver-
saries. Also, the data captured by honeypots can be used to create
countermeasures, e.g., the automated intrusion response systems
often uses honeypots as the data capture infrastructure [7].

Honeypots are often used to investigate currently unknown
attacks [5], [8]. The Blackhat community is intelligent enough
to create new-unknown threats. A good way to investigate new
threats is to capture the malicious activity step-by-step as it
compromises a system. Honeypots therefore can add value to
research by providing a sacrificial system to be attacked. Fur-
thermore, it is worth observing what the adversaries do in the
compromised system, such as communicating with other attack-
ers and uploading new rootkits. Also, honeypots can effectively

1937-9234 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE SYSTEMS JOURNAL

Fig. 1. Honeypot Anatomy: core elements and their organizations.

capture automated attacks [9], [10]. Due to the fact that auto-
mated attacks often target the entire network, honeypots can
quickly capture them for investigation.

Hence, according to different security requirements, a variety
of honeypots have been proposed, i.e., there is not only ded-
icated honeypot software [11], but also complex cooperative
honeypot systems, such as honeynets [12] and hybrid systems
[9], [10], [13], etc. However, there is a lack of a distinct method
that can quickly catch the key points of the various honeypots
and that can discover new insights, and advance research and
development in this area. Our paper proposes to address these
problems. The main contributions of this paper can be summa-
rized as follows.

1) Two essential elements (decoy and captor) of a honeypot
are captured, and how these elements are organized is
described, which provides a general view for analyzing
honeypots.

2) A decoy and captor (D-C) based taxonomy is proposed to
study different aspects of honeypot technology.

3) Several development trends are identified by comparing
honeypots according to the taxonomy.

The remainder of this paper is organized as follows: Section II
defines the core concepts and terminology; Section III proposes
a way to investigate different honeypot technologies by provid-
ing a novel D-C-based taxonomy; Section IV surveys a number
of honeypots based on the taxonomy in order to analyze their
development; Section V makes a conclusion.

II. HONEYPOT ANATOMY

The first idea for honeypots comes from the book titled “The
Cuckoo’s Egg” [14] that described a series of events about track-
ing a hacker. The second material about honeypots was reported
in a whitepaper [15]. The definition of honeypot was proposed
by Spitzner in 2003 [16]: “A honeypot is an information system
resource whose value lies in the unauthorized or illicit use of that
resource.” However, this definition describes a honeypot based
on its application value, rather than what it is. We therefore
provide a clearer definition of what a honeypot is (see Fig. 1).

A honeypot is an information system that includes two essen-
tial elements, decoys and captors. It aims at using its information
resources to attract unauthorized and illicit access with the pur-
pose of security investigation. The decoy can be any kind of
information system resource, and the captor (security program)
facilitates the security-related functions, i.e., attack monitoring,
prevention, detection, response, and profiling. Besides, the cap-
tors should be running in stealth mode to avoid detection.

Among the existing honeypot projects and honeypot research
work, the terminology is not consistent. Some refer to decoys

as honeypots. For example, a decoy can be a fake digital entity.
The terminology for a digital entity acting as a decoy is hon-
eytoken [16]. In the book “The Cuckoo’s Egg,” Stoll deployed
honeytokens, i.e., digital files, with security programs (here we
call them captors) to track a German hacker. Thus, the honey-
token is a decoy, but Stoll’s system is a honeypot system. Our
definition clarifies that a vulnerable system without any captor
is only a decoy rather than a honeypot. Unless it is equipped
with a captor then we do not call it a honeypot.

The organization of the two essential elements can be roughly
categorized according to their degree of coupling: loose and tight
(see Fig. 1). Coupling refers to the amount of direct knowledge
that one component has of another. Loose coupling is one in
which each component has, or makes use of, little or no knowl-
edge of the other separate ones. It enables components to remain
completely autonomous and unaware of each other while still
interfacing with each other. In contrast, tight coupling is when
a group of components are highly dependent on one another,
or are built into the same unit to perform the task. An indepen-
dent honeypot refers to one using tight coupling, and a coop-
erative honeypot indicates one using loose coupling. Nawrocki
et al. [11] surveyed a number of honeypots that are indepen-
dent honeypots, while complex systems like the honeynets [12]
and hybrid systems [9], [10], [13] are cooperative honeypots.
This paper uses the term “honeypot” and “honeypot system”
interchangeably.

III. REVIEW WITH D-C-BASED TAXONOMY

This section proposes a novel D-C-based taxonomy, as Fig. 2
shows. The classification scheme is divided into two categories.
The first category includes the features of a decoy, and the sec-
ond one consists of the functions of a captor. The D-C-based
taxonomy is used as a basic conceptual model in order to inves-
tigate honeypot technology. Under this taxonomy framework,
we review typical honeypots and specific honeypot-related tech-
niques. The terminology in this paper is described in a technical
way, which can make their definitions distinct and easy to un-
derstand.

A. Features of Decoy

The decoy aims to capture data by being attacked. There are
several primitive characteristics that comprise the design of a
decoy.

1) Fidelity: It denotes the degree of exactness of an infor-
mation system resource that the decoy provides to the attacker.
It classifies the interaction into three levels: low, medium, high
(see Fig. 3).

Low-interaction honeypot (LIH) only provides a little inter-
action to adversaries. The LIH decoy is also known by another
name: facade. A traditional LIH, e.g., Honeyd [17], is a program
that emulates the protocols of an operating system (OS), but with
a limited subset of the full functionality. Consequently, an ad-
versary is not able to compromise a LIH because there are only
the fingerprints of OS functions instead of the real functionality.
Also, a LIH can provide a captor to monitor the facade in order
to capture the network activity.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FAN et al.: ENABLING ANATOMIC VIEW TO INVESTIGATE HONEYPOT SYSTEMS: A SURVEY 3

Fig. 2. D-C-based Taxonomy of honeypot systems.

Fig. 3. Three types of fidelity.

Medium-interaction honeypot (MIH) provides much more in-
teraction to the adversaries. However, unlike an LIH, a MIH does
not implement the TCP/IP stack by itself. Instead, MIHs, e.g.,
Dionaea [18] and Cowrie [19], bind to sockets and leave the OS
to do the connection management. In contrast to LIHs that im-
plement network protocols, the simulation algorithm of MIHs is
based on emulating logical application responses for incoming
requests. Thus, the request arriving to the MIH will be watched
and examined, and fake responses will be created by the captor
of the MIH.

High-interaction honeypot (HIH) is a fully functional system
that can be completely compromised by adversaries. Its decoy
is often a genuine system, such as Argos [8] and Cuckoo Sand-
box [20]. Because the fully functional honeypot can be com-
promised, the HIH must equip the security toolkits for system
activity capture and outgoing traffic containment.

A hybrid honeypot system often consists of decoys of differ-
ent interaction levels, e.g., Artail’s hybrid honeypot framework
[9], and Bailey’s [10] and Lengyel’s [13] hybrid honeypot ar-
chitectures. In a hybrid system, the LIHs or MIHs are often used
as frontends for large-scale deployments, and the HIHs are used
as backends for deep investigation. These distributed frontends
are named sinkholes, which could be the devices (i.e., sensors,
redirectors, etc.), such as network telescopes [21], darknet [22],
blackholes [23], IMS [24], and iSinks [25], or software artifices
assigned with a portion of the routed IP address space. Instead
of deploying a large number of HIHs across multiple networks,
they can be centrally deployed in a consolidated location, which
is called honeyfarm, such as the one used in Potemkin [26].

2) Scalability: It represents the capability to provide a grow-
ing number of decoys, or its potential to be enlarged to

accommodate that growth. It is classified into two categories:
unscalable and scalable. An unscalable honeypot only includes
a certain number (one or more) of decoys and cannot change
the number, e.g., Argos [8] can only monitor one virtual de-
coy. On the contrary, a scalable honeypot system can deploy
multiple decoys and its captor is able to monitor those decoys
simultaneously, e.g., Honeyd [17] is able to emulate multiple
OS fingerprinting artifices at the same time. A honeynet is a
type of scalable honeypot system. In [12] and [27], the term of
honeynet was proposed, which define a honeynet as a network
consisting of HIHs that provides real systems, applications, and
services for adversaries to interact with. The data captured by
scalable honeypots deployed in multiple domains often need to
be collected by secure channels and stored in an isolated data
center for further analysis.

3) Adaptability: It refers to the reconfiguration capability
to adapt the state of the decoy to changed circumstances. It has
two levels: static and dynamic. Traditional static honeypots, e.g.,
Specter [28] and Dionaea [18], need the security researcher to
determine the configuration beforehand and manually config-
ure/reconfigure it. This static configuration scheme has several
drawbacks.

1) It is a complex task to manually configure honeypots.
2) The static configuration scheme is not able to make an

instant response to an intrusion event.
3) It is not able to adapt to changes in the objective of the

cloned network.
In contrast, a dynamic honeypot is able to adapt to specific

events in a timely manner. It is able to change its configuration
periodically, or even adapt to environmental changes in real-
time, and respond to intrusion events, e.g., Honeyd [17] and
Glastopf [29].

4) Role: It describes in which side the decoy plays within
a multitier architecture. A honeypot can play two roles: server
and client. This refers to whether a honeypot actively detects
malicious program or passively captures unauthorized traffic.
Most honeypots are server side ones, e.g., Honeyd [17] and
Dionaea [18], which passively wait being attacked. Adversaries
find these honeypots on their own initiative and probe and attack
them. Most server-side honeypots never advertise themselves,
but some can “advertise” themselves, e.g., Glastopf [29] that
works like a normal web server with a number of vulnerable



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE SYSTEMS JOURNAL

Fig. 4. Virtualization technologies for decoy deployment.

paths and scripts (referred to as dorks) so that the attackers can
index them by using a search engine and/or web crawler. A client
honeypot is used to investigate client-side intrusion. This type of
honeypot can actively initiate requests to servers and investigate
malicious program on the server side, such as Ghost [30].

5) Physicality/Virtuality (P/V): it denotes the state of decoys
as they actually exist, which can be divided into two categories:
physical and virtual. A physical honeypot refers to a genuine
computer system running on a physical machine and acting as a
decoy. Indeed, physical honeypot often implies high-interaction,
but could have higher performance than a virtual HIH. However,
it is infeasible to deploy physical honeypots for each IP address
in a large address space. The contrary concept is virtual honeypot
that uses virtual decoys that need the host machine to respond
to network traffic sent to the virtual decoys [31]. We can have
multiple virtual honeypots hosted concurrently by one physical
machine.

Although according to the definition of a honeypot, any type
of information system resource can be deployed as a decoy,
the use of virtualization technologies has important advantages
in terms of ease of management and maintenance. On the one
hand, all the LIHs and MIHs are virtual honeypots according
to the nature of their design. The decoys of LIHs are software
artifices, which emulate the fingerprints of OSs and services. On
the other hand, HIHs can be virtualized by using virtualization
technologies. Galan et al. [32] summarized the virtualization
technology evolution through three categories: baseline virtual-
ization, testbed oriented virtualization, and datacenter oriented
virtualization. Fig. 4 shows the virtualization technologies used
in deploying HIHs over the last 17 years (dates are approximate).

For the HIHs using baseline virtualization technologies, the
first example is the user-mode Linux (UML). This was used as
the virtualization engine to mimic the Gen II Honeynet in [33],
where the host machine runs the Honeywall to contain and moni-
tor the entire virtual honeynet. The host can apply the built-in tty
logging mechanism to silently capture the keystrokes of the hon-
eypots. However, UML only enables Linux Kernel-based virtual
machines (VM) to run as an application within a normal Linux
host. Instead, Abbasi and Harris [34] used a VMware server to
deploy a virtual Gen III Honeynet, which can support various
OSs based on the x86 architecture. Different from the previous

work, it applied a multisystem virtual honeynet architecture that
installs the Honeywall on a separate singe virtual machine in-
stead of the host. It also used Sebek to perform system activity
capture in the virtual honeypots. Similarly, the KVM (Kernel-
based virtual machine) hypervisor can also provide emulation of
different OSs. Capalik’s system [35] used the low-level surveil-
lance of the KVM hypervisor to stealthily monitor the system
activity from outside of the virtual machine, which results in the
attacks having no way to bypass the surveillance. Recently, some
novel lightweight virtualization technologies have provided al-
ternatives to the hypervisor-based virtualization for honeypot
deployment. For example, Memari et al. [36] created a virtual
honeynet, based on LXC (Linux Containers), which can simul-
taneously create multiple Linux user-space instances through
partitioning the resource of the host. An LXC-based virtual ma-
chine can startup very quickly, but it can only emulate Linux
over Linux. Another case in point is the honeypot [37] created
using Docker, which can implement a high-level API to pro-
vide lightweight containers that run processes in isolation. The
Docker container is even more lightweight than the LXC con-
tainer since it implements application virtualization rather than
full system virtualization.

Because it is a complex task to manually generate all the low-
level details for the creation of medium-to-big size honeypot sce-
narios, several testbed oriented virtualization technologies were
proposed, which can be used to deploy virtual HIHs. VNUML
(virtual network user mode Linux) [38] proposed a high-level
description for virtual honeynets and developed a tool to pro-
cess the description automatically, avoiding the user having to
deal with the complex low-level details. However, it only fo-
cuses on using UML as its underlying technology so it still can
only emulate Linux Kernel-based virtual machines VM. Some
generic tools that integrate multiple virtual machine hypervisors
were also proposed. Network simulation environment (NoSE)
[39] addressed the multihypervisor issue through integrating a
variety of virtual machine hypervisors, such as UML, Xen, and
QEMU, into one generic platform. The drawback of NoSE and
the previous proposals is that they lack the capability of dy-
namic configuration for the honeynet deployment. VNX [40] is
a more powerful generic virtualized tool, which integrates more
hypervisors, such as UML, QEMU, KVM, LXC, etc., and can
even undertake dynamic configuration. Following the idea of
VNX, Fan et al. proposed the Honeyvers [41] framework aimed
at creating and managing heterogeneous honeypots.

Apart from the tools described above, some other multitenant
datacenter oriented virtualization technologies for HIHs deploy-
ment have also been proposed. Honeylab [42] provides a plat-
form to share IP address space and computing resources. It
is a distributed infrastructure overlay that allows security re-
searchers to create their own desired honeypot systems without
setting up distributed sensors in various geographical locations.
DarkNOC [43] is designed to collect interesting traffic from dif-
ferent information sources, e.g., NetFlow, Snort, and Nepenthes,
to analyze the data and present it to users in an efficient manner.
In addition, Han et al. proposed the HoneyMix [44] system that
treats a honeypot as a network security function and instantiates
honeypots by using network function virtualization.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FAN et al.: ENABLING ANATOMIC VIEW TO INVESTIGATE HONEYPOT SYSTEMS: A SURVEY 5

6) Deployment Strategy (D-Strategy): It presents the perti-
nent tactics of deploying decoys. There are five common decoy
deployment strategies: sacrificial lamb, deception ports, prox-
imity decoys, minefield, and redirection shield.

Sacrificial lamb is a normal system, but without connections
to production networks, which waits to be compromised by at-
tackers, e.g., Argos [8] and Cuckoo Sandbox [20]. It can be a
commercial off-the-shelf computer, a router, or a switch, etc.
The typical implementation involves loading the OS, configur-
ing some applications, and then leaving it on the network to see
what happens. Sacrificial lambs provide a mean of analyzing a
compromised system down to the last byte. The analysis often
requires numerous third-party tools. They also do not provide in-
tegrated traffic containment facilities, so will require additional
network considerations.

Deception ports indicate simulated services disguised as well-
known services on production systems. These are basically LIHs
or MIHs, such as Specter [28] and Dionaea [18], which mimic
various services on different ports of the system, e.g., HTTP is
mimicked on port 80. These honeypots first “observe” the OS
they reside on and then portray these services according to that.
The basic idea is deception so that the adversaries are “stuck-
up” in solving the deception from where they can be removed
from the network.

Proximity decoys indicate that the decoys are deployed on
the same network as production systems and possibly clone
the configurations of the production systems. There will be no
legal hassles in monitoring the decoys, because they are part of
the same subnet as the production servers, and it is allowed to
monitor any activity pertaining to your own network. Also, when
some malicious attacks are detected on the production systems,
it is easier to either reroute them to the honeypots, or trap them,
since they are in proximity to the production systems. Honeyd
[17] can use the free IP addresses of a production network to
deploy and integrate the decoys into the production network,
which follows this deployment strategy.

Minefield means deploying a relatively large number of hon-
eypots at the perimeter or the forefront of the protected net-
work to act as landmines that “explode upon contact,” by which
we mean switch on the data capture function upon contact.
Any scans or vulnerability detectors can exploit the contents of
honeypots, sparing the production servers. So this deployment
strategy can be used to capture a large amount of data. As stated,
IDSs are placed at the perimeter, where they can use the con-
tents of honeypots to reduce the probability of generating false
alarms. Sinkholes, e.g., network telescopes [21], often uses this
deployment strategy.

Redirection shield uses port redirection or traffic rerouting to
forward malicious data to the honeypots. This strategy needs
intrusion detection technology to evaluate the network traffic.
If the traffic is interesting, it will be redirected to the honey-
pot shield to avoid the production system being attacked. The
shield and the production network should be tightly or loosely
coupled. The honeypots can reside either in the same address
space as the production network or on another subnet along-
side the production network, or even remotely. For example,
shadow honeypots [5] following this deployment strategy use

the shadow application as a shield dealing with the malicious
traffic for anomaly-based detection.

7) Resource Type (R-Type): It denotes the type of informa-
tion system resource available for the attacks. Most honeypots
provide or emulate general resources, and are aimed at detec-
tion of more than one attack technique. Currently, many specific
resource oriented honeypot systems have been proposed, which
are given as follows.

1) Web application honeypots are tools aimed at detection of
attacks on web application, e.g., Glastopf [29].

2) VoIP honeypots are used to capture threats in internet
telephony (Voice over IP), e.g., Artemisa [45].

3) SSH honeypots are oriented against secure shell (SSH)
attacks, e.g., Cowrie [19].

4) Bluetooth honeypots are aimed to capture attacks propa-
gating through Bluetooth devices, e.g., Bluepot [46].

5) USB honeypots are used to investigate arbitrary malware
on USB storage devices, e.g., Ghost USB Honeypot [30].

6) SCADA/ICS honeypots emulate industrial control system
resources, e.g., Conpot [47].

7) IoT honeypots are used to capture attacks that target IoT
devices, e.g., the IoTPOT [48].

8) IPv6 network honeypots are tools used to capture attacks
targeting IPv6 networks, e.g., Hyhoneydv6 [49].

B. Functions of Captor

As previously stated, the captor aims to carry out all the
security-related functions, such as attack monitoring, preven-
tion, detection, response, and profiling. This section describes
all these function in detail.

1) Attack Monitoring: It is aimed at logging all the intrusion
events and malicious behaviors to allow further investigation.
Two critical layers of data can be identified: network activity
(every inbound and outbound connection, packet and header, as
well as its payload, etc.), and system activity (keystroke, system
call, rootkits, etc.).

Surveying the techniques for capturing and collecting net-
work data, particularly in the case of cooperative honeypots
from distributed decoys, two widely used network data for-
warding methods were found: tunneling and application-level
proxying. Tunneling is used when some distributed decoys, such
as network telescopes, darknets, and blackholes, are placed in
a different location where the processing backends are. As the
decoys are assigned a portion of the routed IP address space cor-
responding to its physical location, a tunnel mechanism based
on a tunneling protocol such as GRE has to be used to transport
data packets to the backends. By using tunnels, the decoy back-
ends seem to be directly deployed in the production network, as
the tunnel is almost invisible to “traceroute,” although the tun-
nel will add some latency and modify the MTU. Some hybrid
systems [26], [50] use GRE tunnels to forward the inbound data
from the frontends to the backends. Application-level proxying
consists of transporting the content of the packets to the back-
ends by means of application specific proxies. Application-level
proxies are also known as application-level gateways, and are
available for common Internet services, e.g., an HTTP proxy is



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE SYSTEMS JOURNAL

TABLE I
VIRTUAL HONEYPOT INTROSPECTION SOLUTIONS

Solution VM Hypervisor Supported OS

Argos [8] QEMU Windows
Nitro [59] QEMU Windows
Timescope [60] QEMU Linux
Virtuoso [61] QEMU Windows, Linux, OS X, Haiku
DRAKVUF [62] Xen Windows
Cuckoo [20] KVM Windows, Linux, OS X, Android

used for Web access, and an FTP proxy is used for file trans-
fers. Honeyd [17] provides application-level proxying function-
ality. For instance, on TCP port 23, Honeyd can be config-
ured to automatically proxy traffic to another machine’s Telnet
port. In contrast, the generic so-called “circuit-level” proxies
(that conceptually work at the session layer of the OSI model)
give support to multiple applications. For example, SOCKS is
and IP-based circuit-level proxy server that supports applica-
tions using TCP and UDP. Application-level proxies provide
better support for the additional capabilities of each protocol
(e.g., application-level proxies can better support virus scan-
ning) than circuit-level ones. Also, they are client-neutral and
require no special software components or OS on the client com-
puter to enable the client to communicate with servers through
the proxy.

On the other hand, system activity monitoring needs to cap-
ture the malicious activity in the HIHs. Clearly the activity must
be captured stealthily. Sebek [51] and Qebek [52] are examples
of the first honeypot monitoring tools used to stealthily capture
system activity. They modify the system kernel by adding new
kernel modules that capture system activity in a supposedly
hard to detect way. However, there are nowadays some tech-
niques that can detect the presence of this type of kernel module
installed inside honeypots. The well-known CWSandbox [53]
uses in-line code overwriting to hook the API function in order
to observe malware behavior without being noticed. However,
this approach still has the possibility of being detected.

In order to address this drawback, Jiang and Wang [54]
proposed another monitoring approach called “out-of-the-box,”
which uses the virtualization hypervisor to monitor the activity
in guest . VMI-Honeymon [13] uses a volatility extension to call
the API of the Xen Access successor LibVMI to access the mem-
ory of the guest VM. LibVMI [55] is a C library with Python
bindings based virtual machine introspection that can support a
variety of virtual machine hypervisors, such as Xen, KVM, etc.
It is easy to monitor the low-level details of a running virtual
honeypot by viewing its memory trapping on hardware events
and accessing the vCPU registers. There were some other vir-
tual machine introspection based approaches that could analyze
malware and simultaneously make it harder for the malware to
detect them, such as Livewire [56], VMScope [54], Lares [57],
VMWatcher [58], etc. However, they are either not open-source
software or not maintained any longer. Nevertheless, the solu-
tions in Table I do provide maintained open-source code for
particular hypervisors and OSs, as listed.

2) Attack Prevention: It is aimed at deterring or blocking in-
trusions. This function can be carried out by several approaches:
data filtering, tarpitting, and containment.

Filtering consists of discarding the data traffic. This is typi-
cally specified by means of filtering rules. There are two filtering
mechanisms: source-destination (Src-Dst) based and content-
based. Src-Ds-based filtering examines the header information
(mainly source and destination addresses, ports and protocols)
of each packet to make the discarding decision. This mech-
anism is effective at reducing the amount of repeated traffic
into nonredundant manageable data. iSinks [25] uses a filtering
strategy of analyzing the connections established with the first
N destination IPs per every source IP. Pang et al. [63] improved
the filtering mechanism by taking into account the source port,
destination, and connection. Bailey et al. [64] improved the
Src-Dst-based filtering mechanism by expanding the individual
darknets into multiple darknets for observing the global behav-
ior and the source distribution. Content-based filtering inspects
the content or payload of the packets to make the discarding
decision. Bailey et al. [10] proposed content prevalence as a
filtering mechanism by inspecting the first packet of each new
payload. Content prevalence analyzes the distribution of content
sequences in payloads and generates an alert when a specific
piece of content sequence becomes prevalent. Similarly, IMS
[24] proposed a caching mechanism to avoid recording dupli-
cated payloads, by only recording the first payload packets in
order to reduce disk utilization. A potential drawback of packet
inspection based filtering is that it is unable to make a decision
until the session has been established and at least the first packet
of content or payload has been received. SweetBait [65] uses
whitelists to filter the traffic that matches benevolent patterns
in order to conduct zero-day worm detection. RolePlayer [66]
can emulate both the client and the server side of an application
session in order to replay and filter variant well-known attacks.
Shadow honeypot [5] uses a signature-based IDS to filter well-
known attacks and then applies an anomaly-based IDS to filter
the input into suspect traffic for further investigation.

Tarpitting consists of purposely slowing down the progress
of an attack, worm propagation, or virus sprawl, etc. Collapsar’s
[67] tarpit module restricts an outgoing attack from a honeypot
by throttling the packet rate that can be sent. Honeywall [68] is
also a tarpit device that can limit the number of outgoing connec-
tions. It can block any outbound connection when it is capturing
automated attacks, or when it is investigating manual attacks.
It can be programmed to allow a limited number of outbound
connections, such as five to ten connections per hour. However,
this strict data tarpitting will raise an adversary’s suspicion, as
well as increase the chance of being detected, and impede data
capture.

Containment is another approach to preventing an adversary
from using a compromised honeypot to attack other nonhoney-
pot systems, through confining the attack in the honeypot envi-
ronment. In order to reduce the risk of being detected, it redirects
the outbound attacks back to other honeypots, rather than lim-
its the number of outgoing connections or discards them. Alata
et al. [69] implemented such an outgoing connection redirection
mechanism by modifying the Linux system kernel. Outgoing



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FAN et al.: ENABLING ANATOMIC VIEW TO INVESTIGATE HONEYPOT SYSTEMS: A SURVEY 7

traffic redirection has some drawback as well: it uses the “in-
the-box” approach, which allows some advanced adversaries to
detect the redirection module.

3) Attack Detection: This function aims at detecting intru-
sion and generating alerts. There are two common detection
approaches: signature-based and anomaly-based.

Signature-based detection identifies well-known attacks by
recognizing malicious patterns. This approach is often used in
production environments to discover unauthorized activity and
generate alerts to administrators. Unlike the attacks captured by
IDSs, which may contain false alerts, the traffic received by hon-
eypots will almost always correspond to malicious activities, as
the honeypots have no production value. Attack detection hon-
eypots therefore have a highly reduced false alarm rate. This
type of honeypot is often called a production honeypot and em-
ulates well-known vulnerabilities to lure and deceive intruders
so that they waste their time interacting with the honeypot. Pro-
duction honeypots are often LIHs and MIHs that have little or
no interaction with either the attacker or production systems in
order to minimize the risk of infecting them. Furthermore, the
performance and response times of production honeypots should
be guaranteed and similar to production systems. For example,
the production honeypot Dionaea [18] can simulate multiple
well-known services to carry out signature-based detection.

Anomaly-based detection identifies unknown attacks by dis-
covering deviations from patterns of normal behavior. Honey-
pots using this detection approach are always used in research
environments as research honeypots. A research honeypot is
designed to detect anomalies and investigate unknown signa-
tures. Thus, research honeypots are often more powerful than
production honeypots. HIHs and hybrid honeypot systems are
always used as research ones to provide fully functional sys-
tems. A wider assortment of data can be captured to facilitate
further investigation. Research honeypots are a step ahead of
production ones. The signatures of new attacks discovered by
research honeypots are often used to update production ones,
and provide an early warning and prediction of future attacks
and exploits. A number of anomaly-based detection techniques
have been proposed in the context of honeypot research. For
example, Argos [8] applies dynamic taint analysis [70] to detect
zero-day attacks and generate new signatures; Honeycomb [71]
uses the longest common substring algorithm to detect repeat-
ing patterns in order to spot worms; and Bailey’s system [10]
performs system behavior profiling by comparing an infected
virtual filesystem with an uninfected one. In addition, some cur-
rent learning techniques, such as the deep learning approach for
NIDS [72], can also be used in decoys so as to acquire new
detection skills for identifying unknown attacks.

Apart from the traditional IDS techniques, Sekar et al. [73]
proposed specification-based anomaly detection using a super-
vised method to develop the specification, instead of unsuper-
vised machine learning techniques. This identifies legitimate
behavior and detects unknown attacks as deviations from the
norm. Not only does it improve the effectiveness of anomaly
detection over signature-based approaches, but also minimizes
the large number of false positives produced by other anomaly-
based techniques.

4) Attack Response: It relates to the measures taken to re-
spond to attacks and adapt to intrusion events based on pre-
defined requirements. These honeypots can take two type of
reaction: traffic redirection and decoy reconfiguration.

a) Traffic redirection: It is used to control how traffic is
sent to an appropriate destination. For example, hybrid honey-
pots redirect malicious traffic from a LIH to an isolated HIH
for further investigation. We review two redirection techniques:
Flow-based routing and TCP connection replaying.

Flow-based routing is where packets are routed from source
to destination by selecting the path that satisfies some require-
ments such as QoS, load balance, security, etc. This mechanism
is based on the same principles as used for normal network rout-
ing, but is applied to more specific data flows. Kohler et al. [74]
proposed the flexible and configurable Click modular router,
which is made of simple packet processing modules that are
combined in a service chain in order to build complex and ef-
ficient network services that can be used to do flow-based rout-
ing. There are several cooperative honeypot systems that use
the Click framework to facilitate data control. For example, the
Potemkin gateway router and the GQ gateway are based on the
Click modular router. With the rapid growth of software-defined
networking (SDN), OpenFlow was designed to allow users to
programmatically control real switches (from companies like
Cisco, HP, etc.) by means of applications running on SDN con-
troller frameworks. The SDN controller can facilitate the fine-
grained dynamic control of traffic by means of flow table entries
configured on each OpenFlow switch. In the near future, pro-
grammable SDN based network architectures will increasingly
take the role of data control for honeypot systems [75].

TCP connection replaying is a connection handover tech-
nique aimed at seamlessly transferring a TCP socket endpoint
from one node to another. When an interesting connection is
established between the attacker and a LIH, a TCP connection
handoff mechanism is needed to redirect the connection from
the LIH to a HIH for further investigation. It transfers the estab-
lished TCP state of the socket endpoint from the original node
to the new one, and then the new node can continue the con-
versation with the other TCP endpoint directly. Bailey’s system
[10] avoids conserving the state of every connection, since the
connection handoff mechanism makes the redirection decision
based on the first payload packet of each connection. However,
the author did not unveil the technical detail about the connec-
tion handoff. The Honeybrid gateway [76] uses the connection
replay mechanism to implement transparent traffic redirection
between LIHs and HIHs. Furthermore, Honeybrid revealed the
technical details of the gateway, which is a TCP replay proxy
using libnetfilter_queue [77] to process packets. The connec-
tion handoff mechanism based on TCP replay is able to provide
stealthy redirection for automated malware. In [78], Lin et al.
proposed a transparent and secure network environment that
allows automated malware to attack or propagate, but under
stealthy control. Although TCP/IP stateful traffic replay can fa-
cilitate transparent TCP connection handoff, it cannot solve the
identical-fingerprint problem, because the LIH and HIH have
different fingerprints (e.g., IP and MAC addresses). This prob-
lem leaves the opportunity for the skilled adversary to detect the



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE SYSTEMS JOURNAL

honeypot environment. VMI-Honeymon [79] provided a novel
solution that retains the MAC and IP address of the original HIH
for cloned HIHs but creates separate network bridges to isolate
them so as to avoid address collisions. Fan et al. [80], [81]
proposed a hybrid honeypots based traffic redirection mecha-
nism intending for addressing the identical-fingerprint problem.
Its drawbacks are that different honeypots using the identical-
fingerprint have to frequently switch up and down according to
research requirements, and it is hard to conduct large-scale de-
ployment using the proposed hybrid architecture. Most recently,
Fan and Fernández [82] proposed a novel SDN-based stealthy
TCP connection handover mechanism that solved this problem
through using different ports of an OpenFlow-based switch to
isolate the honeypots whilst keeping identical-fingerprints.

b) Decoy reconfiguration: It is designed to timely adapt
the decoy’s state to specific events, which could be intrusion
events, state variation of targets, etc. As stated, static honeypot
systems lack the capability to reconfigure the decoy timely. This
is a critical disadvantage when honeypots are deployed in com-
plex and dynamic network scenarios. Several approaches have
been proposed to address this problem, which can be categorized
into dynamic cloning and dynamic catering.

Dynamic cloning synchronously emulates the real production
targets including network topologies, OS fingerprints, services,
open ports, etc. It is designed to rapidly alter the configuration
and deployment by monitoring and learning the target organi-
zation’s network in real time. Thus, dynamic cloning has two
phases. The first phase is called network discovery, and is used
to collect information about the target network. The second
phase is called honeypot deployment, which deploys decoys
that emulate the target systems. There are two ways to discover
the targets: passive and active fingerprinting. Hecker and Hay
[83] discuss both ways for network discovery and automated
honeynet cloning. Passive fingerprinting tools, such as p0f [84],
can sniff the traffic, determine active systems, and open ports in
the target scenario, whilst making little traffic noise. However,
the main problem of this approach is that it does not discover
the systems that do not generate any production traffic. Instead,
active probing tools, such as Nmap [85], can discover all open
ports on the target system, even if there is no production traffic
to those ports, at the price of generating some extra production
traffic. In [9], a dynamic hybrid honeypot systems is proposed
for intrusion detection. It consists of a combination of LIHs and
HIHs, and relies on active probing to get information about the
organization’s network. In the network discovery phase, the ac-
tive probing tool Nmap is used to determine the active systems
and open ports. Then in the honeypot deployment phase, LIHs
are created periodically by Honeyd [17] to represent the produc-
tion systems. It also uses virtual HIHs to receive the redirected
traffic from the LIHs, but the dynamic deployment of HIHs is
not mentioned.

Dynamic catering is used to create honeypots that cater for
certain attacks by gradually escalating the interaction level to
capture malicious data, and redeploy honeypots when intrusion
activity is detected. The idea is to create and deploy honeypots on
demand to increase the efficiency of data capture. Potemkin [26]
used dynamically created HIHs on physical servers to achieve

efficient resource usage. It employs a network gateway, to which
routers all over the Internet tunnel traffic. The gateway acts as an
agent to send traffic to a honeyfarm server. The gateway instructs
the virtual machine monitor (VMM) that runs on each physical
server to create a new HIH on demand for each active destina-
tion IP address. When an HIH is idle, the gateway instructs the
VMM to destroy it and reclaim the resources. VMI-Honeymon
[79] clones VMs by restoring the memory snapshot of its con-
figuration on a QEMU copy-on-write (qcow2) filesystem. The
newly created virtual HIH runs the system and applications with
the same fingerprints as the cloned one for investigating the at-
tacks.

5) Attack Profiling: It is the extrapolation of attack informa-
tion in order to analyze malicious activity, as well as unveil the
intruder’s motives. McGrew and Vaughn, Jr. [86] indicated that
an attack profile should contain the following attributes.

1) Motivation describes the reason of the attack.
2) Breadth/Depth presents the scope of the attack and the

degree of impact to the attacked system.
3) Sophistication shows the level of technical expertise

needed to carry out the attack.
4) Concealment describes the measures used for hiding evi-

dence of the attack.
5) Attacker(s) defines the entity(ies) behind the attack: An

individual or a group of adversaries, and identifies the
source of the attack, e.g., automated malware.

6) Vulnerability is the flaw that can be exploited by the attack.
7) Tools are the software used to carry out attacks, includ-

ing: shellcodes, back-doors, rootkits, and other software
uploaded to the system to perform the rest of the attack.

Some of these attributes can be obtained directly from the
captured honeypot data. For example, through statistically an-
alyzing the log information, including the attack source, des-
tination and frequency, as well as the infection degree on the
HIH, we can identify the breadth and depth of the attack. Also,
the concealment and tools can be identified by observing the
adversary’s activity on the honeypot. Using basic statistics on
the log information is called direct information based attack
profiling. Some honeypots, e.g., Honeyd [17] and Dionaea [18],
use the IP source, destination, and timestamp of an attack to
describe the attack profile.

However, the other attributes have to be obtained from de-
rived information. Motivation can be inferred from insights into
the activity on the HIH. Identifying the attacker and the so-
phistication needs in-depth observation and forensics on the
interaction between the attacker and the honeypot. Determining
the vulnerabilities often needs advanced detection techniques.
Therefore, derived information based attack profiling is much
more complex, since it tries to assess and explain the funda-
mental cause of the attack. Basic statistics are insufficient for
this. It is necessary to apply multiple approaches, e.g., asso-
ciation rule mining, neural networks, virtual machine intro-
spection, etc. Currently, plenty of techniques have been sug-
gested for analyzing malicious data: Nawrocki et al. [11] re-
viewed the different approaches for analyzing honeypot data;
Egele et al. [87] surveyed automated dynamic malware analysis
techniques and tools; Rieck et al. [88] presented the research



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FAN et al.: ENABLING ANATOMIC VIEW TO INVESTIGATE HONEYPOT SYSTEMS: A SURVEY 9

Fig. 5. Constraints between main features.

on machine learning techniques for honeypot system behavior
analysis.

IV. DESIGN SPACE AND TAXONOMY VALIDATION

This section will introduce the design space constructed by the
taxonomy, present some feature constraints that can influence
the theoretical design space, proposes two subsets of features
that can significantly affect the honeypot performances, and also
apply these features to a number of typical honeypots with the
purpose of validating the taxonomy.

A. Design Space and Feature Constraints

Depending on the classification scheme, the honeypot de-
signer can theoretically observe at most 103 680 different com-
binations of features, which provides a global view of the design
space of homogeneous honeypots. However, we have to note that
some features are mutually exclusive (see Fig. 5) and this leads
to a reduction of the design space.

From the point of view of resisting attacks, malicious data can
be captured when honeypots are probed, attacked, and compro-
mised. This corresponds exactly to the three phases of a cyber
attack, i.e., probe, exploit, and violate. Attacks always begin
by probing large-scale IP networks in order to find vulnerable
nodes, and then exploiting the vulnerabilities to compromise the
nodes. Finally, if the compromised nodes are worth utilizing, the
adversary will violate them, e.g., by installing rootkits, setting
up backdoors, or launching new attacks, etc. The large-scale
probing will produce high network traffic, but it will not trans-
late into useful system activity. When the vulnerable nodes are
attacked, i.e., in the exploiting phase, the scale of the attack is
reduced, but the data quality is enhanced, i.e., the attacking traf-
fic will include malicious payloads. In the violating phase, only
a small part of the compromised network, i.e., several specific
nodes, will be involved, and the data quality becomes very high
because any unauthorized system data is worth recording for
further investigation. Therefore, every phase produces different
data quantity and quality. The fidelity and scalability features
are highly related to the three attack phases.

However, fidelity and scalability are a pair of mutually com-
peting features in a decoy. In order to capture high quality data,
the decoy has to increase the interaction level. However, a higher
interaction level leads to a higher risk of being compromised,
so the honeypot has to enhance the captor to protect the de-
coy. Consequently, higher interaction guarantees the fidelity but
sacrifices scalability, which will result in failing to capture ad-
equate data from large-scale IP networks. For example, Provos
[17] showed that a 1.1 GHz Pentium III can support thousands
of LIHs created by Honeyd. The performance penalty is little,
though it depends on the complexity and number of simulated
services available for each decoy: for 1000 templates, the pro-
cessing time is about 0.022 ms per packet, whereas for 250 000
templates, the processing time increases to 0.032 ms. However,
Honeyd needs to forward interesting traffic to HIHs to detect
compromises and unusual activity. The HIH Argos [8] can de-
tect zero-day attacks, but it has a large performance penalty:
even in the fastest configuration, it is at least 16 times slower
than the host. So there needs to be a good balance between
these two features in order to optimize the use of honeypot re-
sources. Cooperative honeypots, particularly hybrid honeypots
have been developed to overcome these issues.

Also, from the above discussion, we can see that attack pro-
filing by the captor is highly related to the fidelity of the decoy.
If the captor wants to perform attack profiling based on derived
information, the decoy needs a high interaction level in order to
record detailed enough information (i.e., system activity) about
the attack. Otherwise, if the honeypot is a LIH or MIH, the
attack profiling can only use direct information.

Furthermore, adaptability is highly related to the P/V. It is
observable that physical honeypots are often static, while virtu-
alization technology has made it easy to create dynamic honey-
pots. The software artifice is the easiest way to enforce dynamic
configuration, and at present, virtual machine based HIHs are
increasingly convenient to perform dynamic configuration, e.g.,
Fan et al. [80] demonstrated that a KVM-based virtual honeypot
can be activated to work in 13 s from the hibernated state and
even only in 1.5 s from the suspended state. Therefore, recon-
figuration of the decoy’s attack response is also tightly related
to the P/V.

Overall, the design space can help to predict future theoretical
designs, while the constraints among the different features can
provide a more practical way for the designer to implement
honeypots in specific technical environments.

B. Subsets of Features Effecting Honeypot Performances

According to the above analysis and the honeypots revisit
with our proposed D-C-based taxonomy in Section III, we re-
alized that several features can actually influence the honeypot
performances in practice. Thereby, we conclude two subsets of
effective features for the independent and cooperative honey-
pots, respectively. By using these features, a honeypot designer
can improve its honeypot or select the most effective one for its
system.

For independent honeypots, we determine the features of class
fidelity, scalability, adaptability, role, D-strategy, R-type, attack



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE SYSTEMS JOURNAL

TABLE II
SUBSET OF FEATURES FOR INDEPENDENT HONEYPOT PERFORMENCES

monitoring, detection, and profiling as the effective ones. We
omit the other classes for the reasons as follows: as P/V, this
class is highly consistent with class fidelity. All the LIHs and
MIHs are software artifices, and all the HIHs are physical or
virtualization techniques based; for attack prevention, single in-
dependent honeypots do not provide any function related to this
class; for attack response, single independent honeypot systems
lack function about this class. Consequently, Table II demon-
strates the subset of features effecting the independent honeypot
performances.

On the other hand, for cooperative honeypots, we conclude
the features of class P/V, D-strategy, R-type, attack monitoring,
prevention, detection, and response as the effective ones. We
ignore the other classes since cooperative honeypots often in-
clude both the advantages of the LIHs/MIHs and the HIHs, so

TABLE III
SUBSET OF FEATURES FOR COOPERATIVE HONEYPOT PERFORMENCES

they are high-interaction (for fidelity), scalable (for scalability),
dynamic (for adaptability), and can provide derived informa-
tion (for attack profiling). So, Table III illustrates the subset of
features effecting the cooperative honeypot performances.

Therefore, the class role, D-strategy, R-type, attack monitor-
ing, and attack detection are the ones that include features both
the independent and cooperative honeypots must take into ac-
count. Meanwhile, the above two tables shows the D-C-based
taxonomy can fully classify these different types of honeypots.
It can be observed that every honeypot has its own features,
which could be strengths or weakness in terms of different
security issues and scenarios. The strengths and weakness of
a honeypot are not absolute, but they are tightly related to the
security requirements.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FAN et al.: ENABLING ANATOMIC VIEW TO INVESTIGATE HONEYPOT SYSTEMS: A SURVEY 11

TABLE IV
COMPARISON OF SUBSYSTEMS OF HYBRID HONEYPOTS

Hybrid
honeypot

Frontend Controller Backend

Bailey’s system Honeyd A central
controller

VMware VM

Artail’s system Honeyd Honeywall Physical
machine

GQ Network
telescopes

Click-based
router

VMware ESX

SweetBait Honeyd +
honeycomb

– QEMU-based
Argos

Honeybrid Honeyd Honeybrid
gateway

VMware VM

SGNET Honeyd +
ScriptGen

SGNET
gateway

QEMU-based
Argos

Li’s system Spamtrap +
Phoneybot +
Phoneytoken

– Phoneypot

VMI-Honeymon Dionaea Honeybrid
gateway

Xen VM

IoTPOT Frontend
responder

– QEMU-based
IoTBox

Hyhoneydv6 Honeydv6 – QEMU VM

V. HONEYPOT DEVELOPMENT TRENDS

A. Hybrid Honeypots

According to the requirement of decoupling and achieving
optimization of both fidelity and scalability, many cooperative
honeypots (particularly, hybrid honeypots) have been developed
(see Table III). A typical hybrid honeypot consists of three sub-
systems: frontends, controller, and backends. The frontends can
be LIHs/MIHs or sinkholes for monitoring large-scale routed IP
address spaces, the backends can be HIHs or a honeyfarm, and
the controller can be, e.g., a Honeywall, Click modular router,
or Honeybrid gateway. These three subsystems are in charge of
providing different functions. The frontends often provide low
interaction with the attacks, because their main objective is to
capture network data. Also, they need to discard the uninterest-
ing traffic for capturing fine-grained data. The controllers are
used to perform data control as well as dynamic system config-
uration in a hidden way. The backends perform stealthy system
data capture and data analysis such as digital forensics to un-
veil the attacker’s skills, tactics, and motives. Table IV shows a
comparison of the subsystems of various hybrid honeypots.

We see that Honeyd takes the role of frontend in most hybrid
honeypots. The wide applications of Honeyd are probably ac-
counted for by its advantages of lightweight design, distributed
appearance, programmable components, and dynamic features.
Honeyd is a virtual LIH framework that can deploy multiple
decoys concurrently following a configurable network topol-
ogy. Though it can only emulate LIHs, it still has following
advantages.

1) Based on the OS fingerprinting database of Nmap, it can
fabricate decoys with almost all the common OS finger-
prints.

2) Users can implement their own fake service responses in
python in order to capture data—Honeyd may even emu-

late a service so that it actually collects more information
than a HIH would.

3) It can dynamically reconfigure the decoys by using a door-
way called Honeydctl to communicate the inner workings
of Honeyd.

Several controllers have been developed that provide the se-
curity functions, e.g., inbound data filtering, outbound data con-
tainment, and dynamic configuration. Most of them are based on
programmable frameworks, e.g., GQ gateway is based on Click,
and Honeybrid gateway is based on libnetfilter. They allow the
developers to implement their own data control functions ac-
cording to specific requirements.

Most hybrid honeypots use VM to deploy their backends. The
most popular hypervisors are Xen and QEMU. Many dynamic
configuration and virtual memory introspection solutions have
been proposed based on these hypervisors. With the evolution
of QEMU-KVM, we can foresee that the KVM will be mainly
responsible for the backends deployment. The following section
will detail the virtual honeypot development.

B. Virtual Honeypots

The development of honeypots now relies heavily on the
progress of virtualization technology. Virtual honeypots pro-
vide several valuable advantages: ease of maintenance, dynamic
configuration, and antidetection.

Virtualization leads to ease of maintenance. First, by using
virtualization technology, one physical machine can simultane-
ously host multiple virtual honeypots, which can significantly
improve resource efficiency. Second, the time-consuming task
of large-scale honeypot deployment is greatly decreased by us-
ing virtualization techniques that only take several minutes to
deploy rather than several hours on physical machines, e.g., the
physical honeypot designed by Cliff Stoll in 1986 [14].

Virtualization also facilitates dynamic configuration, which
is often used to reduce the response times to specific events.
As previously stated, dynamic honeypots can be used to clone
production systems and to synchronize with their changes in a
timely manner. They can also be used to investigate intrusions
by modifying their own state according to the requirements of
the attack research. For example, dynamic configuration can fa-
cilitate redirection containment by redirecting the traffic back
to a dynamically created honeypot, in order to control the out-
bound attack rather than using the brute tarpitting approach. This
function also improves the capability of antidetection, which is
described next.

Antidetection aims to avoid the honeypot being detected.
Virtualization technology provides several ways to hide both
the decoy and the captor. The captor is hidden first, by virtual
machine memory introspection that facilitates “out-of-the-box”
monitoring. This improves the stealthy monitoring capability of
HIHs. Second, because the brute tarpitting approach is easy to
be detected by a skilled adversary, dynamic honeypot systems
often redirect the outbound traffic back into the honeynet for
antidetection. For limited-function honeypots, antidetection fo-
cuses on camouflaging the fact that the decoy is a honeypot.
For example, because the link latency of a Honeyd-based decoy



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE SYSTEMS JOURNAL

can lead to its detection, Fu et al. [92] reduced this in order to
camouflage the Honeyd-based decoy. Additionally, once a de-
coy has been detected, the inbound traffic rate by the attacker
will be reduced [93], so in this case, the system can redeploy
the decoy to perform antidetection.

C. Special Purpose Honeypots

An increasing number of special purpose honeypots [47]–
[49], [88] have been developed. First, both independent hon-
eypots and cooperative honeypots are focused on developing
specific attacked-resource oriented honeypots. These honeypots
focus on fully emulating one type of information resource so
that they can obtain fine-grained data. With the rapid growth of
cyberspace, both SCADA/ICS and IoT systems are faced with
increasing cyber threats. Consequently, honeypots for these are
now being developed. Thus, the trend in honeypot development
closely follows industrial developments. Second, research hon-
eypots, particularly for anomaly-detection and attack profiling,
have become increasingly numerous. These rely on cutting-edge
computer science technologies, such as machine learning, big
data analysis, etc.

VI. CONCLUSION

As a rapidly developing technology, honeypots have become a
hot research topic in the field of computer and network security.
From a variety of honeypot systems, we have captured the two
common essential elements: the decoy and the captor. We have
highlighted the trend to decouple these two elements from tight
to loose coupling, in order to reduce the risk that a change
within one component will create unanticipated changes within
the other.

Based on this core concept, we have proposed the D-C-based
taxonomy, which helps us to investigate honeypot systems.
Thanks to the taxonomy, we identified various decoy features
and reviewed a large number of honeypot techniques and related
cutting-edge technologies. Broadly speaking, current honeypot
development have followed two approaches: independent hon-
eypots and cooperative honeypots. On the one hand, owing to the
advantages of lightweight design, low-cost development, ease of
management, resource efficiency, etc., independent honeypots
have steadily developed in various application scenarios, with
numerous examples of specific attacked-resource oriented hon-
eypots emerging as independent software. On the other hand,
cooperative honeypots cannot only provide broader views due
to their distributed and cooperative deployment in different net-
work domains, but also create opportunities for early network
anomaly detection, attack correlation, and global network status
inference. Also, cooperative honeypots have robustness, relia-
bility, reusability, and understandability because of their decou-
pling feature.

All in all, though current honeypots have been evolving to
be increasingly complex and powerful, the D-C are the two
fundamental elements, which originate all the development in
this important area. Therefore, our work can help security re-
searchers gain insights into honeypot research and explore the
designs and application space of future honeypot systems.

ACKNOWLEDGMENT

The authors would like to thank Prof. D. Chadwick from the
University of Kent, Canterbury, U.K., for conducting proofread-
ing to improve the quality of this entire paper.

REFERENCES

[1] S. Brandes, “The newest warfighting domain: Cyberspace,” Synesis: A J.
Sci., Technol., Ethics, Policy, vol. 4, pp. G90–95, 2013.

[2] “Internet security threat report,” Symantec Corporation, USA, Tech. Rep.
no. ISTR, vol. 21, Apr. 2016.

[3] G. J. Rattray, “An environmental approach to understanding cyberpower,”
in Cyberpower and National Security, Sterling, VA, USA: Potomac Books,
Inc., 2009, pp. 253–274.

[4] S. Peisert, M. Bishop, and K. Marzullo, “What do firewalls protect? An
empirical study of firewalls, vulnerabilities, and attacks,” Univ. California
Davis, Davis, CA, USA, Tech. Rep. CSE-2010-8, 2010.

[5] K. G. Anagnostakis, S. Sidiroglou, P. Akritidis, K. Xinidis, E. Markatos,
and A. D. Keromytis, “Detecting targeted attacks using shadow honey-
pots,” in Proc. 14th Conf. Usenix Security Symp., Berkeley, CA, USA,
2005, vol. 14, pp. 9–25.

[6] W. Fan, K. Lwakatare, and R. Rong, “Social engineering: I-e based model
of human weakness for attack and defense investigations,” Int. J. Comput.
Netw. Inf. Security, vol. 9, no. 1, pp. 1–11, 2017.

[7] V. Mateos, V. A. Villagrá, F. Romero, and J. Berrocal, “Definition of
response metrics for an ontology-based automated intrusion response sys-
tems,” Comput. Elect. Eng., vol. 38, no. 5, pp. 1102–1114, 2012.

[8] G. Portokalidis, A. Slowinska, and H. Bos, “Argos: An emulator for finger-
printing zero-day attacks for advertised honeypots with automatic signa-
ture generation,” in Proc. 1st ACM SIGOPS/EuroSys Eur. Conf. Comput.
Syst., 2006, pp. 15–27.

[9] H. Artail, H. Safa, M. Sraj, I. Kuwatly, and Z. Al-Masri, “A hybrid hon-
eypot framework for improving intrusion detection systems in protecting
organizational networks,” Comput. Security, vol. 25, no. 4, pp. 274–288,
Jun. 2006.

[10] M. Bailey, E. Cooke, D. Watson, F. Jahanian, and N. Provos, “A hybrid
honeypot architecture for scalable network monitoring,” Univ. Michigan,
Ann Arbor, MI, USA, Tech. Rep. CSE-TR-499-04, 2004.

[11] M. Nawrocki, M. Wählisch, T. C. Schmidt, C. Keil, and J. Schönfelder,
“A survey on honeypot software and data analysis,” CoRR, vol. abs/
1608.06249, 2016. [Online]. Available: http://arxiv.org/abs/1608.06249

[12] L. Spitzner, “The honeynet project: Trapping the hackers,” IEEE Security
Privacy, vol. 1, no. 2, pp. 15–23, Mar. 2003.

[13] T. K. Lengyel, J. Neumann, S. Maresca, B. D. Payne, and A. Kiayias, “Vir-
tual machine introspection in a hybrid honeypot architecture,” presented
at the 5th Workshop Cyber Security Experimentation Test, Berkeley, CA,
USA, 2012.

[14] C. Stoll, The Cuckoo’s Egg: Tracking a Spy Through the Maze of Computer
Espionage. New York, NY, USA: Gallery Books, 2000.

[15] B. Cheswick, “An evening with berferd in which a cracker is lured, en-
dured, and studied,” in Proc. Winter USENIX Conf., 1992, pp. 163–174.

[16] L. Spitzner, “Honeypots: catching the insider threat,” in Proc. 19th Annu.
Comput. Security Appl. Conf., Dec. 2003, pp. 170–179.

[17] N. Provos, “A virtual honeypot framework,” in Proc. 13th Conf. USENIX
Security Symp., Berkeley, CA, USA, 2004, pp. 1–14.

[18] “Dionaea—Catched bugs,” Nov. 2011. [Online]. Available: http://dionaea.
carnivore.it/.

[19] M. Oosterhof, “Cowrie—Active kippo fork,” Jul. 2015. [Online]. Avail-
able: http://www.micheloosterhof.com/cowrie/.

[20] CuckooFoundation, “Cuckoo,” Oct. 2014. [Online]. Available: http://
www.cuckoosandbox.org/.

[21] D. Moore, C. Shannon, G. M. Voelker, and S. Savage, “Network tele-
scopes: Technical report,” Univ. California at San Diego, La Jolla, CA,
USA, Tech. Rep. CS2004-0795, Jul. 2004.

[22] T. CYMRU, “The darknet project,” Jul. 2015. [Online]. Available:
http://www.team-cymru.org/darknet.html.

[23] D. Song, R. Malan, and R. Stone, “A snapshot of global Internet worm
activity,” in Proc. 14th Annu. Comput. Security Incident Handling, Jun.
2002, pp. 1–6.

[24] M. Bailey, E. Cooke, F. Jahanian, J. Nazario, and D. Watson, “The internet
motion sensor: A distributed blackhole monitoring system,” in Proc. Netw.
Distrib. Syst. Security Symp., 2005, pp. 167–179.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FAN et al.: ENABLING ANATOMIC VIEW TO INVESTIGATE HONEYPOT SYSTEMS: A SURVEY 13

[25] V. Yegneswaran, P. Barford, and D. Plonka, “ On the design and use
of internet sinks for network abuse monitoring,” in Recent Advances
in Intrusion Detection, E. Jonsson, A. Valdes, and M. Almgren, Eds.,
vol. 3224, Berlin, Germany, Springer, 2004, pp. 146–165.

[26] M. Vrable et al., “Scalability, fidelity and containment in the Potemkin
virtual honeyfarm,” in Proc. ACM Symp. Operating Syst. Principles, Oct.
2005, vol. 39, no. 5, pp. 148–162.

[27] “Know your enemy: Honeynets,” May 2006. [Online]. Available: http://
old.honeynet.org/papers/honeynet/.

[28] L. Spitzner, “Specter: A commercial honeypot solution for windows,”
2003. [Online]. Available: http://www.symantec.com/connect/articles/
specter-commercial-honeypot-solution-windows/.

[29] L. Rist, “Glastopf project,” 2009. [Online]. Available: http://glastopf.org/.
[30] S. Poeplau and J. Gassen, “A honeypot for arbitrary malware on USB

storage devices,” in Proc. 2012 7th Int. Conf. Risks Security Internet Syst.,
Oct. 2012, pp. 1–8.

[31] N. Provos and T. Holz, Virtual Honeypots: From Botnet Tracking to Intru-
sion Detection, 1st ed. Reading, MA, USA: Addison Wesley, Jul. 2007.

[32] F. Galán, D. Fernández, W. Fuertes, M. Gómez, and J. E. López de Vergara,
“Scenario-based virtual network infrastructure management in research
and educational testbeds with VNUML,” Ann. Telecommun.—Annales
Des Télécommun., vol. 64, no. 5, pp. 305–323, 2009.

[33] L. K. Yan, “Virtual honeynets revisited,” in Proc. IEEE SMC 6th Annu.
Inf. Assurance Workshop, Jun. 2005, pp. 232–239.

[34] F. Abbasi and R. Harris, “Experiences with a generation iii virtual hon-
eynet,” in Proc. Australasian Telecommun. Netw. Appl. Conf., Nov. 2009,
pp. 1–6.

[35] A. Capalik, “Next-generation honeynet technology with real-time foren-
sics for U.S. defense,” in Proc. IEEE Mil. Commun. Conf., Oct. 2007,
pp. 1–7.

[36] N. Memari, K. Samsudin, and S. Hashim, “Towards virtual honeynet
based on LXC virtualization,” in Proc. IEEE Region 10 Symp., Apr. 2014,
pp. 496–501.

[37] P. Kasza, “Creating honeypots using docker,” 2015. [Online].
Available: https://www.itinsight.hu/blog/posts/2015-05-04-creating-
honeypots-using-docker.html.

[38] F. Galán and D. Fernández, “Use of vnuml in virtual honeynets deploy-
ment,” in Proc. IX Reunión Española sobre Criptologı́a y Seguridad de la
Información, Barcelona, Spain, 2006, pp. 600–615.

[39] F. Stumpf, A. Görlach, F. Homann, and L. Brückner, “Nose-building
virtual honeynets made easy,” in Proc. 12th Int. Linux Syst. Technol.
Conf., 2005, pp. 1664–1669.

[40] D. Fernández, et al., “Distributed virtual scenarios over multi-host linux
environments,” in Proc. 5th Int. DMTF Academic Alliance Workshop Syst.
Virtualization Manage., Oct. 2011, pp. 1–8.

[41] W. Fan, D. Fernández, and Z. Du, “Versatile virtual honeynet management
framework,” IET Inf. Security, vol. 11, no. 1, pp. 38–45, Mar. 2016.

[42] W. Chin, E. Markatos, S. Antonatos, and S. Ioannidis, “Honeylab: Large-
scale honeypot deployment and resource sharing,” in Proc. 3rd Int. Conf.
Netw. Syst. Security, Oct. 2009, pp. 381–388.

[43] B. Sobesto, M. Cukier, M. Hiltunen, D. Kormann, G. Vesonder, and
R. Berthier, “DarkNOC: Dashboard for honeypot management,” in Proc.
25th Int. Conf. Large Installation Syst. Admin., 2011, pp. 16–16.

[44] W. Han, Z. Zhao, A. Doupé, and G.-J. Ahn, “Honeymix: Toward SDN-
based intelligent honeynet,” in Proc. 2016 ACM Int. Workshop Security
Softw. Defined Netw. Netw. Funct. Virtualization, 2016, pp. 1–6.

[45] R. do Carmo, M. Nassar, and O. Festor, “Artemisa: An open-source
honeypot back-end to support security in VoIP domains,” in Proc. 12th
IFIP/IEEE Int. Symp. Integrated Netw. Manage. Workshops, May 2011,
pp. 361–368.

[46] A. Podhradsky, C. Casey, and P. Ceretti, “The Bluetooth honeypot project:
Measuring and managing bluetooth risks in the workplace,” Int. J. Inter-
discip. Telecommun. Netw., vol. 4, no. 3, pp. 1–22, Jul. 2012.

[47] L. Rist, J. Vestergaard, D. Haslinger, A. Pasquale, and J. Smith,
“Conpot ICS/SCADA honeypot,” Nov. 2013. [Online]. Available:
http://conpot.org/.

[48] Y. M. P. Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama, and
C. Rossow, “IoTPOT: Analysing the rise of IoT compromises,” in Proc.
9th USENIX Workshop Offensive Technol., Aug. 2015, pp. 1–9.

[49] S. Schindler, B. Schnor, and T. Scheffler, “Hyhoneydv6: A hybrid hon-
eypot architecture for IPV6 networks,” Int. J. Intell. Comput. Res., vol. 6,
no. 2, pp. 562–570, 2015.

[50] W. Cui, V. Paxson, and N. C. Weaver, “GQ: Realizing a system to catch
worms in a quarter million places,” , Univ. California Berkeley, Berkeley,
CA, USA, Tech. Rep. TR-06-004, 2006.

[51] “Know your enemy: Sebek, a kernel based data capture tool,” Nov. 2003.
[Online]. Available: http://old.honeynet.org/papers/sebek.pdf.

[52] “Know your tools: Qebek—Conceal the monitoring,” Nov. 2010. [Online].
Available: http://www.honeynet.org/papers/KYT_qebek.

[53] C. Willems, T. Holz, and F. Freiling, “Toward automated dynamic malware
analysis using CWSandbox,” IEEE Security Privacy, vol. 5, no. 2, pp. 32–
39, Mar. 2007.

[54] X. Jiang and X. Wang, “ Out-of-the-box monitoring of VM-based high-
interaction honeypots,” in Recent Advances in Intrusion Detection,
vol. 4637, C. Kruegel, R. Lippmann, and A. Clark, Eds. Berlin, Germany:
Springer, 2007, pp. 198–218.

[55] LibVMIProject, “LibVMI,” 2015. [Online]. Available: http://libvmi.com/.
[56] T. Garfinkel and M. Rosenblum, “A virtual machine introspection based

architecture for intrusion detection,” in Proc. Netw. Distrib. Syst. Security
Symp., 2003, pp. 191–206.

[57] B. D. Payne, M. Carbone, M. Sharif, and W. Lee, “Lares: An architecture
for secure active monitoring using virtualization,” in Proc. 2008 IEEE
Symp. Security Privacy, May 2008, pp. 233–247.

[58] X. Jiang, X. Wang, and D. Xu, “Stealthy malware detection through VMM-
based ‘out-of-the-box’ semantic view reconstruction,” in Proc. 14th ACM
Conf. Comput. Commun. Security, 2007, pp. 128–138.

[59] J. Pfoh, C. Schneider, and C. Eckert, “ Nitro: Hardware-based system call
tracing for virtual machines,” in Advances in Information and Computer
Security, vol. 7038, T. Iwata and M. Nishigaki, Eds. Berlin, Germany:
Springer, 2011, pp. 96–112.

[60] D. Srinivasan and X. Jiang, “Time-traveling forensic analysis of VM-
based high-interaction honeypots,” in Proc. 7th Int. Conf. Security Privacy
Commun. Netw., SecureComm 2011, London, U.K., Sep. 7–9, 2011, pp.
209–226, revised selected papers.

[61] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and W. Lee, “Virtuoso:
Narrowing the semantic gap in virtual machine introspection,” in Proc.
2011 IEEE Symp. Security Privacy, May 2011, pp. 297–312.

[62] T. K. Lengyel, S. Maresca, B. D. Payne, G. D. Webster, S. Vogl, and
A. Kiayias, “Scalability, fidelity and stealth in the drakvuf dynamic mal-
ware analysis system,” in Proc. 30th Annu. Comput. Security Appl. Conf.,
2014, pp. 386–395.

[63] R. Pang, V. Yegneswaran, P. Barford, V. Paxson, and L. Peterson, “Charac-
teristics of internet background radiation,” in Proc. 4th ACM SIGCOMM
Conf. Internet Meas., 2004, pp. 27–40.

[64] M. Bailey, E. Cooke, F. Jahanian, N. Provos, K. Rosaen, and D. Watson,
“Data reduction for the scalable automated analysis of distributed darknet
traffic,” in Proc. 5th ACM SIGCOMM Conf. Internet Meas., 2005, pp. 21–
21.

[65] G. Portokalidis and H. Bos, “SweetBait: Zero-hour worm detection and
containment using low-and high-interaction honeypots,” Comput. Netw.,
vol. 51, no. 5, pp. 1256–1274, 2007.

[66] W. Cui, V. Paxson, N. C. Weaver, and Y. H. Katz, “Protocol-independent
adaptive replay of application dialog,” in Proc. 13th Annu. Netw. Distrib.
Syst. Security Symp. (NDSS), Feb. 2006, pp. 1–15.

[67] X. Jiang and D. Xu, “Collapsar: A VM-based architecture for network
attack detention center,” in Proc. USENIX Security Symp., 2004, pp. 15–
28.

[68] “Know your enemy: Honeywall cdrom,” May 2005. [Online]. Available:
http://old.honeynet.org/papers/cdrom/.

[69] É. Alata, I. Alberdi, V. Nicomette, P. Owezarski, and M. Kaâniche, “ Inter-
net attacks monitoring with dynamic connection redirection mechanisms,”
J. Comput. Virol., vol. 4, no. 2, pp. 127–136, 2008.

[70] J. Newsome and D. Song, “Dynamic taint analysis for automatic detection,
analysis, and signature generation of exploits on commodity software,” in
Proc. 12th Annu. Netw. Distrib. Syst. Security Symp., 2005, pp. 1–17.

[71] C. Kreibich and J. Crowcroft, “Honeycomb: Creating intrusion detection
signatures using honeypots,” SIGCOMM Comput. Commun. Rev., vol. 34,
no. 1, pp. 51–56, Jan. 2004.

[72] A. Javaid, Q. Niyaz, W. Sun, and M. Alam, “A deep learning approach
for network intrusion detection system,” in Proc. 9th EAI Int. Conf. Bio-
inspired Inf. Commun. Technol. (Formerly BIONETICS), 2016, pp. 21–26.

[73] R. Sekar et al., “Specification-based anomaly detection: A new approach
for detecting network intrusions,” in Proc. 9th ACM Conf. Comput. Com-
mun. Security, 2002, pp. 265–274.

[74] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The click
modular router,” ACM Trans. Comput. Syst., vol. 18, no. 3, pp. 263–297,
Aug. 2000.

[75] C. Yoon, T. Park, S. Lee, H. Kang, S. Shin, and Z. Zhang, “Enabling
security functions with SDN: A feasibility study,” Comput. Netw., vol. 85,
no. C, pp. 19–35, 2015.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE SYSTEMS JOURNAL

[76] R. G. Berthier, “Advanced honeypot architecture for network threats quan-
tification,” Ph.D. dissertation, Univ. Maryland at College Park, College
Park, MD, USA, 2009, AAI3359256.

[77] H. Welte and P. N. Ayuso, “The libnetfilter_queue project,” 2014. [Online].
Available: http://www.netfilter.org/projects/libnetfilter_queue/.

[78] Y.-D. Lin, T.-B. Shih, Y.-S. Wu, and Y.-C. Lai, “Secure and transparent
network traffic replay, redirect, and relay in a dynamic malware analysis
environment,” Security Commun. Netw., vol. 7, no. 3, pp. 626–640, 2014.

[79] T. Lengyel, J. Neumann, S. Maresca, and A. Kiayias, “ Towards hybrid
honeynets via virtual machine introspection and cloning,” in Network
and System Security, vol. 7873, J. Lopez, X. Huang, and R. Sandhu, Eds.
Berlin, Germany: Springer, 2013, pp. 164–177.

[80] W. Fan, D. Fernndez, and Z. Du, “ Adaptive and flexible virtual honeynet,”
in Mobile, Secure, and Programmable Networking, vol. 9395, S. Boumer-
dassi, S. Bouzefrane, and R. Renault, Eds. New York, NY, USA: Springer,
2015, pp. 1–17.

[81] W. Fan, Z. Du, D. Fernández, and X. Hui, “Dynamic hybrid honeypot
system based transparent traffic redirection mechanism,” in Proc. 17th Int.
Conf. Inf. Commun. Security, Beijing, China, Dec. 9–11, 2015, pp. 311–
319.

[82] W. Fan and D. Fernández, “A novel SDN based stealthy TCP connection
handover mechanism for hybrid honeypot systems,” in Proc. IEEE 3rd
Conf. Netw. Softwarization, Bologna, Italy, Jul. 2017, pp. 1–9.

[83] C. Hecker and B. Hay, “Automated honeynet deployment for dynamic
network environment,” in Proc. 46th Hawaii Int. Conf. Syst. Sci., Jan.
2013, pp. 4880–4889.

[84] M. Zalewski, “pof v3,” 2012–2014. [Online]. Available: http://lcamtuf.
coredump.cx/p0f3/.

[85] G. Lyon, “Namp,” 2015. [Online]. Available: http://nmap.org/.
[86] R. McGrew and R. B. Vaughn jr, “Experiences with honeypot systems:

Development, deployment, and analysis,” in Proc. 39th Annu. Hawaii Int.
Conf. Syst. Sci., Jan. 2006, vol. 9, pp. 220–229.

[87] M. Egele, T. Scholte, E. Kirda, and C. Kruegel, “A survey on automated
dynamic malware-analysis techniques and tools,” ACM Comput. Surv.,
vol. 44, no. 2, pp. 6:1–6:42, Mar. 2008.

[88] K. Rieck, P. Trinius, C. Willems, and T. Holz, “Automatic analysis of
malware behavior using machine learning,” J. Comput. Security, vol. 19,
no. 4, pp. 639–668, Dec. 2011.

[89] “Know your enemy: Genii honeynets,” May 2005. [Online]. Available:
http://old.honeynet.org/papers/gen2/.

[90] C. Leita and M. Dacier, “SGNET: A worldwide deployable framework to
support the analysis of malware threat models,” in Proc. 7th Eur. Depend-
able Comput. Conf., May 2008, pp. 99–109.

[91] S. Li and R. Schmitz, “A novel anti-phishing framework based on honey-
pots,” in Proc. 2009 eCrime Res. Summit, Sep. 2009, pp. 1–13.

[92] X. Fu, B. Graham, D. Cheng, R. Bettati, and W. Zhao, “Camouflaging vir-
tual honeypots,” Dept. Comput. Sci., Texas A&M Univ., College Station,
TX, USA, Tech. Rep. 2005-7-3, Jul. 2005.

[93] H. Wang and Q. Chen, “Dynamic deploying distributed low-interaction
honeynet,” J. Comput., vol. 7, no. 3, pp. 692–698, 2012.

Wenjun Fan received the Ph.D. degree in telemat-
ics engineering from the Universidad Politécnica de
Madrid, Madrid, Spain, in 2017.

He is a Postdoctoral Researcher of cyber security
with the University of Kent, Canterbury, U.K. His
research interests include cyber security, software-
defined networks, cloud computing, and machine
learning.

Zhihui Du (M’00–SM’16) received the B.E. degree
from the Computer Department, Tianjin University,
Tianjin, China, in 1992, and the M.S. and Ph.D. de-
grees in computer science from Peking University,
Beijing, China, in 1995 and 1998, respectively.

From 1998 to 2000, he was with Tsinghua Uni-
versity, Beijing, China, as a Postdoctoral Researcher.
Since 2001, he has been with Tsinghua University,
as an Associate Professor with the Department of
Computer Science and Technology. His research ar-
eas include high-performance computing and grid

computing.

David Fernández received the M.S. degree in
telecommunications engineering and Ph.D. degree
in telematics engineering from the Universidad
Politécnica de Madrid, Madrid, Spain, in 1988 and
1993, respectively.

He is an Associate Professor of computer networks
with the Technical University of Madrid, Madrid.
His research interests focus on software-defined net-
works, network virtualization, cloud computing dat-
acentres technologies, and network security.

Vı́ctor A. Villagrá received the M.S. degree in
telecommunications engineering and Ph.D. degree
in telematics engineering from the Universidad
Politécnica de Madrid, Madrid, Spain, in 1989 and
1994, respectively.

He is an Associate Professor of telematics en-
gineering with the Technical University of Madrid,
Madrid. He authored a textbook about security in
telecommunication networks. His research interests
focus on network security, network management, and
advanced services design.


