
Howe, Jacob M. (1998) A `Permutation-free' Calculus for Lax Logic. Technical
report.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21694/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21694/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

A Permutation-free Calculus for Lax Logic

Jacob M. Howe

April 3, 1998

University of St Andrews Research Report CS/98/1

Computer Science Division
University of St Andrews, Scotland, KY16 9SS

jacob@dcs.st-and.ac.uk
http://www-theory.cs.st-and.ac.uk/�jacob

1 Introduction

There has been recent interest in a modal logic of Curry (see [Cur52]), now called
Lax Logic. Here the modality (�, somehow) has some of the properties of both
necessity and possibility. For more about Lax Logic see, for example, [FM97],
[BBdP95].

The work of Herbelin ([Her95]), developed by Dyckhoff & Pinto ([DP96],
[DP98]), introduces a sequent calculus, whose proofs can be translated in a 1-1
manner to normal natural deductions. This simple Gentzen system (which we
call MJ following Dyckhoff and Pinto; Herbelin called it LJT) gives an efficient
syntax-directed calculus for enumerating proofs, a task which is considerably
harder in the natural deduction calculus itself.

In this paper the same ‘permutation-free’ techniques used to develop MJ are
applied to Lax Logic, giving a ‘permutation-free’ calculus for Lax Logic. As
our starting point we take the above cited papers of Fairtlough & Mendler and of
Benton, Bierman & de Paiva.

2 Natural Deduction

First we give the natural deduction calculus for propositional Lax Logic. This is
taken directly from [BBdP95], and can be seen in Figure 1.

1

We now look at the normalisation steps. Again these are taken directly from
[BBdP95]. As the reduction rules for the intuitionistic connectives are completely
standard, we do not include them here, concentrating instead on those involving
the modality. We give these reductions in a tree rather than sequent style.

First the�-reduction:

–A�A (�I) [A]....�B�B (�") ;A....�B
Now we give the commuting conversions (orc-reductions) involving the modal-

ity:

–
....�A [A]....�B�B (�") [B]....�C�C (�") ;�A [A]....�B [B]....�C�C (�")�C (�")�; P ` P (ax) � ` > (>)�; P ` Q� ` P � Q (�I) � ` P � Q � ` P� ` Q (�")� ` P � ` Q� ` P ^ Q (^I) � ` P ^Q� ` P (^"1) � ` P ^Q� ` Q (^"2)� ` P� ` P _Q (_I1) � ` Q� ` P _Q (_I2)� ` P _ Q �; P ` R �; Q ` R� ` R (_")� ` P� ` �P (�I) � ` �P �; P ` �Q� ` �Q (�")

Figure 1: Sequent style presentation of natural deduction for Lax Logic

2

–
....A _B [A]....�C [B]....�C�C (_") [C]....�D�D (�");A _B [A]....�C [C]....�D�D (�") [B]....�C [C]....�D�D (�")�B (_")

Definition 1 A natural deduction is said to be in�; c-normal form when no�-
reductions and noc-reductions are applicable.

We now give a presentation of a restricted version of natural deduction for
Lax Logic. In this calculus, the only proofs are those that are in�; c-normal form.
This calculus has two kinds of ‘sequents’, differentiated by their consequence
relations,� and��. Rules are applicable only when the premisses are of a certain
kind, and the conclusions are then of one kind or the other. Thus the valid deduc-
tions are restricted. This calculus, which we shall call NLAX, is givenin Figure
2.

Proposition 1 The calculus NLAX only allows deductions to which no�-reductions
and noc-reductions are applicable. Moreover, it allows all�; c-normal deduc-
tions.

PROOF: By inspection one can see that deductions to which one could apply a re-
duction to are not allowed in NLAX because they would involve a rule application
with a premiss of an incorrect category.

It is easy to see that by use of the(M) rule, all other deductions are possible.�
3 Term Assignment

In this section we give a term assignment system for NLAX. Moggi gave a�-
calculus, which he called thecomputational�-calculus. This calculus naturally
matches Lax Logic, as can be seen in Figure 3. More about the computational�-calculus can be found in [BBdP95].

We give this again using an abstract syntax with explicit constructors that we
prefer. First we give a translation of Moggi’s terms to ours, and then we giveyet

3

another presentation of natural deduction for Lax Logic, this time annotated with
terms in our syntax, in Figure 4.

Translation: Moggi’s terms; our termsx; var(x)�; ��x:e; �x:ee f ; ap(e; f)(e; f); pr(e; f)fst(e); fst(e)snd(e); snd(e)inl(e); i(e)inr(e); j(e)case e of inl(x) ! f j inr(y) ! g ; wn(e; x:f; y:g)val(e); smhi(e)�; P � P (ax) � ��> (>) � � P� ��P (M)�; P ��Q���P � Q (�I) � � P � Q ���P� �Q (�")���P ���Q���P ^Q (^I) � � P ^Q� � P (^"1) � � P ^Q� �Q (^"2)���P���P _Q (_I1) ���Q� ��P _Q (_I2)�� P _Q �; P ��R �; Q ��R���R (_")� ��P��� � P (�I) � � �P �; P �� �Q��� �Q (�")
Figure 2: NLAX: Sequent style presentation for normal natural deduction for Lax
Logic

4

�; x : P ` x : P (ax) � ` � : > (>)�; x : P ` e : Q� ` �x:e : P � Q (�I) � ` e : P � Q � ` f : P� ` e f : Q (�")� ` e : P � ` f : Q� ` (e; f) : P ^ Q (^I) � ` e : P ^ Q� ` fst(e) : P (^"1) � ` e : P ^ Q� ` snd(e) : Q (^"2)� ` e : P� ` inl(e) : P _ Q (_I1) � ` e : Q� ` inr(e) : P _Q (_I2)� ` e : P _Q �; x : P ` f : R �; y : Q ` g : R� ` case e of inl(x) ! f j inr(y) ! g : R (_")� ` e : P� ` val(e) : �P (�I) � ` e : �P �; x : P ` f : �Q� ` let x (e in f : �B (�")
Figure 3: Sequent style presentation of natural deduction for Lax Logic, with
Moggi’s computational� terms

5

let x (e in f ; smhe(e; x:f)
We are interested in the normal natural deductions for Lax Logic as canonical

proofs. We now restrict the terms that can be built, in order that they matchour
restricted natural deduction calculus NLAX, giving us canonical proof objects.
(That is, no reductions will be applicable at the term level; the term reductions
match the�- andc-reductions for types given earlier). The terms come in two
syntactic categories, A and N. V is the category of variables. The extra constructoran(A) matches the(M) rule of NLAX.

A terms: var(x) j ap(A;N) j fstA j snd(A)
N terms: � j an(A) j �V:N j pr(N;N) j i(N) j j(N)wn(A;V:N; V:N) j smhi(N) j smhe(A;V:N)
In Figure 5 we give one final presentation of a natural deduction calculus for

Lax Logic, this time NLAX together with proof annotations.�; x : P ` var(x) : P (ax) � ` � : > (>)�; x : P ` e : Q� ` �x:e : P � Q (�I) � ` e : P � Q � ` f : P� ` ap(e; f) : Q (�")� ` e : P � ` f : Q� ` pr(e; f) : P ^Q (^I) � ` e : P ^ Q� ` fst(e) : P (^"1) � ` f : P ^Q� ` snd(e) : Q (^"2)� ` e : P� ` i(e) : P _Q (_I1) � ` e : Q� ` j(e) : P _Q (_I2)� ` e : P _Q �; x : P ` f : R �; y : Q ` g : R� ` wn(e; x:f; y:g) : R (_")� ` e : P� ` smhi(e) : �P (�I) � ` e : �P �; x : P ` f : �Q� ` smhe(e; x:f) : �Q (�")
Figure 4: Sequent style presentation of natural deduction for Lax Logic

6

�; x;P � var(x) : P (ax) ���� : > (>)�; x : P ��N : Q����x:N : P � Q (�I) � �A : P � Q � ��N : P�� ap(A;N) : Q (�")���N1 : P � ��N2 : Q���pr(N1; N2) : P ^ Q (^I)� �A : P ^Q� � fst(A) : P (^"1) � �A : P ^ Q� � snd(A) : Q (^"2)���N : P� ��i(N) : P _Q (_I1) � ��N : Q���j(N) : P _Q (_I2)� �A : P _ Q �; x1 : P ��N1 : R �; x2 : Q��N2 : R���wn(A;x1:N1; x2:N2) : R (_")���N : P� ��smhi(N) : �P (�I) � �A : �P �; x : P ��N : �Q���smhe(A;x:N) : �Q (�")
Figure 5: NLAX with proof annotations

7

�; P) P (ax) �) > (>) �; P; P) R�; P) R (C)�; P) Q�) P � Q (�R) �) P �; Q) R�; P � Q) R (�L)�) P �) Q�) P ^ Q (^R) �; P) R�; P ^Q) R (^L1) �; Q) R�; P ^Q) R (^L2)�) P�) P _Q (_R1) �) Q�) P _Q (_R2) �; P) R �; Q) R�; P _Q) R (_L)�) P�) �P (�R) �; P) �R�; �P) �R (�L)
Figure 6: Sequent Calculus for Lax Logic

4 Sequent Calculus

The stated aim of this paper is to present a sequent calculus for Lax Logic whose
proofs naturally correspond in a 1-1 way to normal natural deductions for Lax
Logic - i.e. the proofs of NLAX. In this section we give such a sequent calculus,
but first we remind the reader of the sequent calculus as presented in [FM97] and
[BBdP95]. This can be seen in Figure 6.

In fact, our presentation is slightly different from both those cited. The calcu-
lus in [BBdP95] doesn’t mention structural rules, and so presumably the contexts
in that paper are sets. [FM97] have both weakening and contraction on both the
left and the right, plus exchange. Here the only structural rule we consider (or
need) is contraction on the left. The contexts in our presentation are multisets. We
leave all discussion of cut until later in the paper.

We now present a new sequent calculus which we call PFLAX (‘permutation-

free’ Lax Logic). This calculus has two forms of judgment,�) R and� Q�! R,
where the place above the single arrow with the privileged formula in it is known
as the ‘stoup’. The calculus is displayed in Figure 7.

The stoup is a form of focusing: the formula in the stoup is always principal
in the premiss unless it is a disjunction or a ‘somehow’ formula. One might ask

8

� P�! P (ax) �) > (>) �; P P�! R�; P) R (C)�; P) Q�) P � Q (�R) �) P � Q�! R� P�Q�! R (�L)�) P �) Q�) P ^Q (^R) � P�! R� P^Q�! R (^L1) � Q�! R� P^Q�! R (^L2)�) P�) P _Q (_R1) �) Q�) P _Q (_R2) �; P) R �; Q) R� P_Q�! R (_L)�) P�) �P (�R) �; P) �R� �P�! �R (�L)
Figure 7: The Sequent Calculus PFLAX

9

why we do not formulate the(�L) rule as follows� P�! �R� �P�! �R (�L)
To answer this, we point out that the resulting calculus would not then match
normal natural deductions in the manner we would like. We also invite them to
consider proofs of the sequent�� (P ^Q)) �(Q ^ P).
5 Term Assignment for Sequent Calculus

We give a term assignment system for PFLAX. This we get by extending that
given in [Her95], [DP96], [DP98]. The term calculus has two syntactic categories,
M and Ms. V is the category of variables.

M::=� j (V ;Ms) j �V:M j pair(M;M) j inl(M) j inr(M) j smhr(M)
Ms::=[] jM ::Ms j p(Ms) j q(Ms) j when(V:M; V:M) j smhl(V:M)
These terms can easily be attached to PFLAX, as seen in Figure 8.

6 Results

Having presented the calculi for Lax Logic, we now prove that they have the prop-
erties we claim for them. We prove soundness and adequacy for PFLAX, and the
equivalence of the term calculi. These results prove the desired correspondence.

The full details of these proofs are rather repetitive: therefore we only givethe
proofs for the�; � fragment of Lax Logic. The rest of the calculus is the same
as for intuitionistic logic as presented in [DP96], and the reader is referred to that
paper for the remaining cases.

We start by giving pairs of functions that define translations between the term
assignment systems for natural deduction and sequent calculus.

Sequent Calculus! Natural Deduction:� :M ! N
10

� P�! [] : P (ax) �) � : > (>) �; x : P P�!Ms : R�; x : P) (x;Ms) : R (C)�; x : P)M : Q�) �x:M : P � Q (�R) �)M : P � Q�!Ms : R� P�Q�! (M ::Ms) : R (�L)�)M1 : P �)M2 : Q�) pair(M1;M2) : P ^Q (^R)� P�!Ms : R� P^Q�! p(Ms) : R (^L1) � Q�!Ms : R� P^Q�! q(Ms) : R (^L2)�)M : P�) inl(M) : P _Q (_R1) �)M : Q�) inr(M) : P _Q (_R2)�; x1 : P)M1 : R �; x2 : Q)M2 : R� P_Q�! when(x1:M1; x2:M2) : R (_L)�)M : P�) smhr(M) : �P (�R) �; x : P)M : �R� �P�! smhl(x:M) : �R (�L)
Figure 8: The Sequent Calculus PFLAX, with Term Assignment

11

�(x;Ms) = �0(var(x);Ms)�(�x:M) = �x:�(M)�(smhr(M)) = smhi(�(M))�0 : A�Ms! N�0(A; []) = an(A)�0(A;M ::Ms) = �0(ap(A; �(M));Ms)�0(A; smhl(x:Ms)) = smhe(A;x:�(M))
Natural Deduction to Sequent Calculus: : N !M (an(A)) = 0(A; []) (�x:N) = �x: (N) (smhe(A;x:N)) = 0(A; smhl(x: (N))) (smhi(N)) = smhr((N)) 0 : A�Ms!M 0(var(x);Ms) = (x;Ms) 0(ap(A;N);Ms) = 0(A; (N) ::Ms)

We now prove two lemmas showing the equivalence of the term calculi.

Lemma 1

i) (�(M)) = M
ii) (�0(A;Ms)) = 0(A;Ms)
PROOF: The proof is by simultaneous structural induction on M and Ms.

Case 1.M = (x;Ms) (�(x;Ms)) = (�0(var(x);Ms)) def�
= 0(var(x);Ms) ind ii)
= (x;Ms) def 0

Case 2.M = �x:M
12

 (�(�x:M)) = (�x:�(M)) def�
= �x: (�(M)) def
= �x:M ind i)

Case 3.M = smhr(M) (�(smhr(M))) = (smhi(�(M))) def �
= smhr((�(M))) def
= smhr(M) ind i)

Case 4.Ms = [] (�0(A; [])) = (an(A)) def�
= 0(A; []) def 0

Case 5.Ms = M ::Ms (�0(A;M ::Ms)) = (�0(ap(A; �(M));Ms)) def�0
= 0(ap(A; �(M));Ms) ind ii)
= 0(A; (�(M)) ::Ms) def 0
= 0(A;M ::Ms) ind i)

Case 6.Ms = smhl(x:M) (�0(A; smhl(x:M))) = (smhe(A;x:�(M))) def�0
= 0(A; smhl(x: (�(M)))) def
= 0(A; smhl(x:M)) ind i)�

Lemma 2

i) �((N)) = N
ii) �(0(A;Ms)) = �0(A;Ms)
PROOF: By simultaneous structural induction on N and A.

Case 1.N = an(A)�((an(A)) �(0(A; [])) def
= �0(A; []) ind ii)
= an(A) def�0

Case 2.N = �x:N
13

�((�x:N)) = �(�x: (N)) def
= �x:theta((N)) def�
= �x:N ind i)

Case 3.N = smhi(N)�((smhi(N))) = �(smhr((N))) def
= smhi(�((N))) def �
= smhi(N) ind i)

Case 4.N = smhe(A;x:N)�((smhe(A;x:N))) = �(0(A; smhl(x: (N)))) def
= �0(A; smhl(x: (N))) ind ii)
= smhe(A;x:�((N))) def�0
= smhe(A;x:N) ind i)

Case 5.A = var(x)�(0(var(x);Ms)) = �(x;Ms) def 0
= �0(var(x);Ms) def�

Case 6.A = ap(A;N)�(0(ap(A;N);Ms)) = �(0(A; (N) ::Ms)) def 0
= �0(A; (N) ::Ms) ind ii)
= �0(ap(A; �((N)));Ms) def�0
= �0(ap(A;N);Ms) ind i)�

Now we prove soundness and adequacy theorems.

Theorem 1 (SOUNDNESS) The following rules are admissible:�)M : R����(M) : R i) � �A : P � P�!Ms : R� ���0(A;Ms) : R ii)
PROOF: By simultaneous structural induction on M and Ms.

Case 1.M = (x;Ms)
We have a derivation ending in:�; x : P P�!Ms : R�; x : P) (x;Ms) : R (C)

14

and we know that x : P) var(x) : P
is deducible.

So we have:x : P � var(x) : P �; x : P P�!Ms : R����0(var(x);Ms) : R (ii)
and we know that �0(var(x);Ms) = �(x;Ms)

Case 2.M = �x:M
We have a derivation ending in�; x : P)M : Q�) �x:M : P � Q (�R)

whence �; x : P)M : Q�; x : P ���(M) : Q i)����x:�(M) : P � Q (�I)
and we know that �x:�(M) = �(�x:M)

Case 3.M = smhr(M)
We have a derivation ending as follows�)M : P�) smhr(M) : �P (�R)

whence �)M : P� ���(M) : P i)� ��smhi(�(M)) : �P (�I)
and we know that smhi(�(M)) = �(smhr(M))

Case 4.Ms = []
We have a deduction and a derivation:� �A : P � P�! [] : P (ax)

15

From the deduction, we obtain:� �A : P���an(A) : P (M)
and since an(A) = �0(A; [])
we have what we require.

Case 5.Ms = M ::Ms
We have a derivation ending in�)M : P � Q�!Ms : R� P�Q�! M ::Ms : R (�L)

whence � �A : P � Q �)M : P� ���(M) : P i)�� ap(A; �(M)) : Q (�") � Q�!Ms : R� ���0(ap(A; �(M));Ms) : R ii)
and we know that �0(ap(A; �(M));Ms) = �0(A;M ::Ms)

Case 6.Ms = smhl(x:Ms)
We have a derivation ending�; x : P)M : �Q� �P�! smhl(x:M) : �Q (�L)

whence ��A : �P �; x : P)M : �Q�; x : P ���(M) : �Q i)� ��smhe(A;x:�(M)) : �Q (�")
and we know that smhe(A;x:�(M)) = �0(A; smhl(x:M))�

16

Theorem 2 (ADEQUACY) The following rules are admissible:���N : R�) (N) : R i) � �A : P � P�!Ms : R�) 0(A;Ms) : R ii)
PROOF: By simultaneous structural induction on A and N.

Case 1.N = an(A)
We have a deduction ending� �A : P���an(A) : P (M)

We know that we can derive � P�! [] : P (ax)
hence we have ��A : P � P�! [] : P�) 0(A; []) : P ii)
We know that 0(A; []) = (an(A))

Case 2.N = �x:N
We have a deduction ending�; x : P ��N : Q����x:N : P � Q (�I)

whence �; x : P ��N : Q�; x : P) (N) : Q i)�) �x: (N) : P � Q (�R)
and we know that �x: (N) = (�x:N)

Case 3.N = smhe(A;x:N)
We have a deduction ending in��A : �P �; x : P ��N : �Q� ��smhe(A;x:N) : �Q (�")

17

whence ��A : �P �; x : P ��N : �Q�; x : P) (N) : �Q i)� �P�! smhl(x: (N)) : �Q (�L)�) 0(A; smhl(x: (N))) : �Q ii)
and we know that 0(A; smhl(x: (N))) = (smhe(A;x:N))

Case 4.N = smhi(N)
We have a deduction ending in� ��N : P���smhi(N) : �P (�I)

whence ���N : P�) (N) : P i)�) smhr((N)) : �P (�R)
and we know that smhr((N)) = (smhi(N))

Case 5.A = var(x)
We can extend to �; x : P P�!Ms : R�; x : P) (x;Ms) : R (C)

and since (x;Ms) = 0(var(x);Ms)
we have the result without further ado.

Case 6.A = ap(A;N)
We have a deduction ending in��A : P � Q ��N : P� � ap(A;N) : Q (�")

18

whence � �A : P � Q ���N : P�) (N) : P i) � Q�!Ms : R� P�Q�! (N) ::Ms : R (�L)�) 0(A; (N) ::Ms) : R ii)
and we know that 0(A; (N) ::Ms) = 0(ap(A;N);Ms)�
Theorem 3 The normal natural deductions of Lax Logic (the proofs of NLAX)
are in 1-1 correspondence to the proofs of PFLAX.

PROOF: Immediate from theorems 1 and 2 and lemmas 1 and 2.�
7 Cut Elimination

Now we move onto a study of cut in PFLAX. In the usual sequent calculus, cut
may be formulated as follows:�) P �; P) Q�) Q (cut)
In PFLAX, we need four cut rules because of the two judgement forms.� Q�! P � P�! R� Q�! R (cut1) �) P �; P Q�! R� Q�! R (cut2)�) P � P�! R�) R (cut3) �) P �; P) R�) R (cut4)
These have associated terms:M ::= cutP1 (Ms;Ms) j cutP2 (M;V:Ms)Ms ::= cutP3 (M;Ms) j cutP4 (M;V:M)
And we can give the cut rules again with the proof terms:� Q�!Ms1 : P � P�!Ms2 : R� Q�! cutP1 (Ms1;Ms2) : R (cut1)

19

�)M : P �; x : P Q�!Ms : R� Q�! cutP2 (M;x:Ms) : R (cut2)�)M : P � P�!Ms : R�) cutP3 (M;Ms) : R (cut3)�)M1 : P �; x : P)M2 : R�) cutP4 (M1; x:M2) : R (cut4)
We now give reduction rules for PFLAXcut. As in the previous section, we

restrict ourselves to the�; � fragment of the logic, in order to prevent repetition
of results that can be found elsewhere ([DP96]). Here we give reductions without
terms, together with the associated term reductions.

Case 1.cutP1 ([];Ms);Ms� P�! P (ax) � P�! R� P�! R (cut1) ; � P�! R
Case 2.cutP1 (M ::Ms1;Ms2);M :: cutP1 (Ms1;Ms2)�) A � B�! P� A�B�! P (�L) � P�! R� A�B�! R (cut1); �) A � B�! P � P�! R� B�! R (cut1)� A�B�! R (�L)
Case 3.cut�P1 (smhl(x:M);Ms); smhl(x:cut�P3 (M;Ms))�; A) �P� �A�! �P (�L) � �P�! �R� �A�! �R (cut1) ; �; A) �P � �P�! �R�; A) �R (cut3)� �A�! �R (�L)
Case 4.cutP2 (M;x:[]); []�) P �; P R�! R (ax)� R�! R (cut2) ; � R�! R (ax)

20

Case 5.cutP2 (M1; x:(M2 ::Ms)); cutP4 (M1; x:M2) :: (cutP2 (M1; x:Ms))�) P �; P) A �; P B�! R�; P A�B�! R (�L)� A�B�! R (cut2); �) P �; P) A�) A (cut4) �) P �; P B�! R� B�! R (cut2)� A�B�! R (�L)
Case 6.cutP2 (M1; x1:smhl(x2:M2)); smhl(x2:cutP4 (M1; x1:M2))�) P �; P;A) �R�; P �A�! �R (�L)� �A�! �R (cut2) ; �) P �; P;A) �R�; A) �R (cut4)� �A�! �R (�L)
Case 7.cutP3 ((x;Ms1);Ms2); (x; cutP1 (Ms1;Ms2))�; A A�! P�; A) P (C) �; A P�! R�; A) R (cut3); �; A A�! P �; A P�! R�; A A�! R (cut3)�; A) R (C)
Case 8.cutP�Q3 (�x:M1;M2 ::Ms); cutQ3 (cutP4 (M2; x:M1);Ms)�; P) Q�) P � Q (�R) �) P � Q�! R� P�Q�! R (�L)�) R (cut3); �) P �; P) Q�) Q (cut4) � Q�! R�) R (cut3)
Case 9.cut�P3 (smhr(M1); smhl(x:M2)); cutP4 (M1; x:M2)�) P�) �P (�R) �; P) �R� �P�! �R (�L)�) �R (cut3) ; �) P �; P) �R�) �R (cut4)

21

Case 10.cutP3 (M; []);M�) P � P�! P (ax)�) P (cut3) ; �) P
Case 11.cutP4 (M;x:(y;Ms)); (y; cutP2 (M;x:Ms))�; A) P �; P;A A�! R�; P;A) R (C)�; A) R (cut4) ; �; A) P �; A; P A�! R�; A A�! R (cut2)�; A) R (C)
Case 12.cutP4 (M;x:(x;Ms)); cutP3 (M; cutP2 (M;x:Ms))�) P �; P P�! R�; P) R (C)�) R (cut4) ; �) P �) P �; P P�! R� P�! R (cut2)�) R (cut3)
Case 13.cutP4 (M1; x:�y:M2); �y:cutP4 (M1; x:M2)�) P �; P;A) B�; P) A � B (�R)�) A � B (cut4) ; �) P�; A) P (W) �; A; P) B�; A) B (cut4)�) A � B (�R)
Case 14.cutP4 (M1; x:smhr(M2)); smhr(cutP4 (M1; x:M2))�) P �; P) A�; P) �A (�R)�) �A (cut4) ; �) P �; P) A�) A (cut4)�) �A (�R)
Notice that we used the following lemma:

Lemma 3 The following rules are admissible in PFLAX:�) R�; P) R (W) � Q�! R�; P Q�! R (W)
We summarise the term reductions:

1. cutP1 ([];Ms);Ms
22

2. cutP1 (M ::Ms1;Ms2);M :: cutP1 (Ms1;Ms2)
3. cut�P1 (smhl(x:M);Ms); smhl(x:cut�P3 (M;Ms))
4. cutP2 (M;x:[]); []
5. cutP2 (M1; x:(M2 ::Ms)); cutP4 (M1; x:M2) :: (cutP2 (M1; x:Ms))
6. cutP2 (M1; x1:smhl(x2:M2)); smhl(x2:cutP4 (M1; x1:M2))
7. cutP3 ((x;Ms1);Ms2); (x; cutP1 (Ms1;Ms2))
8. cutP�Q3 (�x:M1;M2 ::Ms); cutQ3 (cutP4 (M2; x:M1);Ms)
9. cut�P3 (smhr(M1); smhl(x:M2)); cutP4 (M1; x:M2)

10. cutP3 (M; []);M
11. cutP4 (M;x:(y;Ms)); (y; cutP2 (M;x:Ms))
12. cutP4 (M;x:(x;Ms)); cutP3 (M; cutP2 (M;x:Ms))
13. cutP4 (M1; x:�y:M2); �y:cutP4 (M1; x:M2)
14. cutP4 (M1; x:smhr(M2)); smhr(cutP4 (M1; x:M2))

Definition 2 A simple cut instance is an instance of cut with cut free premisses.

Definition 3 Theweight of a simple cut instance is the ordered quadruple:(jAj; cutno:; h1; h2)
where:� jAj is the size of the cut formula, defined as usual.� cutno: is the type of the cut (i.e. 1, 2, 3, 4)� h1 is the height of the derivation of the right premiss� h2 is the height of the derivation of the left premiss

we make the convention thatcut1 = cut3 < cut2 = cut4
Now we prove the theorem.

Theorem 4 (WEAK CUT ELIMINATION) The rulescut1; cut2; cut3; cut4 are ad-
missible in PFLAX.

23

PROOF: We give a weak cut reduction strategy:

– pick any simple cut instance and reduce

– recursively reduce any simple cut instances in the result

By induction on the weight of the cut instance, and induction on the number of
simple cut instances, this strategy terminates.

This can easily be seen by inspection.�
8 Strong Normalisation

In this section we prove that the cut reduction system strongly normalises, giving
us another proof of cut elimination for PFLAX.

We prove strong normalisation using the recursive path-ordering techniques
from term rewriting ([Der82]). This technique for proving strong normalisation
is attractive because it is purely syntactic; reasoning is about the structure of the
terms themselves rather than about a mapping of terms into tuples of natural num-
bers.

Again we restrict ourselves to the�;� fragment of Lax Logic.

8.1 Termination Using the Recursive Path-Ordering

We define two partial orders, one on term constructors (or operators),>, and one
on terms,�. This second partial order, the recursive path-ordering, is defined
in terms of the first. Given that> has some simple properties (transitivity, ir-
reflexivity, well-foundedness), the recursive path-ordering theorem tells us that�
is well-founded; that is, there is no infinite decreasing sequence�1 � �2 � :::.
Finally we show for any reduction� ; �0, that� � �0. By the well foundedness
of �, every reduction sequence terminates; the cut reduction rules are strongly
normalising.

Definition 4 We define therecursive path-ordering.
Let F be a set of operators,f; g 2 F . Let T(F) be the set of terms over F,s; t 2 T (F). We also write terms asf(s1; :::sn), wheref(s1; :::; sn) is built from

operatorf applied to termss1; :::; sn.
Let> be a transitive, irreflexive partial ordering on F. Then� is defined re-

cursively on T(F) as follows:s = f(s1; :::; sm) = g(t1; :::; tn) = t
iff

24

i) si � t for somei 2 f1; :::;mg
or ii) f > g ands � tj for everyj 2 f1; :::; ng
or iii) f = g and[s1; :::; sm] �� [t1; :::; tn]

We have used the following abbreviations:� for� or equivalent up to permu-
tation of subterms;�� for the extension of� to finite multisets.

Definition 5 A relation� on setK is well-founded iff there are no infinite de-
creasing sequences ofK-terms�1 � �2 � :::.
Theorem 5 (RECURSIVE PATH-ORDERING THEOREM) If > is well founded, then� is well-founded.

8.2 Strong Normalisation for PFLAX

We apply the recursive path ordering technique to the term assignment system of
PFLAX.

The operators are the term constructors of PFLAX; that is, the constructors;,�, ::, [], smhl, smhr, together with those for cut. The cut constructors are in fact
an infinite family of constructors parametrised by the formulae of Lax Logic, i.e.
the constructors arecutPi whereP ranges over the formulae of Lax Logic.Op = fcutPi j i 2 f1; 2; 3; 4g; P a formulag [f; ; �; ::; []; smhl; smhrg
The terms overOp are the proof terms of PFLAXcut.

If we write f(s1; :::; sn), f is the top term constructor ands1; :::; sn are the
immediate subterms.

We define a partial ordering on term constructors:

– if P andQ are formulae thenP > Q if Q is a subterm ofP (i.e. > is the
subterm ordering)

– cutPi > cutQj if P > Q, i; j 2 f1; 2; 3; 4g
– cutP4 ; cutP2 > cutP3 ; cutP1
– we putcutP1 = cutP3 andcutP2 = cutP4
– cutPi >; ; �; ::; []; smhl; smhr
– ; ; �; ::; []; smhl; smhr are ordered equally.

Proposition 2 The ordering> on Op is transitive, irreflexive and well-founded.

25

PROOF: Transitivity and irreflexivity and obvious.
We have an infinite number of term constructors, so it is possible that we could

have an infinite decreasing sequence of them:cutPi1 > cutQi2 > ::::
As either the cut suffix or the size of the cut formula must decrease, the length of
the sequence is bounded (by twice the size ofP). �
Corollary 1 � is well founded for the terms of PFLAX.

PROOF: By the recursive path-ordering theorem.�
Lastly we show for each cut reduction�; �0, that� � �0.

Proposition 3 For each cut reduction�; �0, � � �0 holds.

PROOF: We analyse case by case.

Case 1.cutP1 ([];Ms) �Ms
sinceMs �Ms

Case 2.cutP1 (M ::Ms1;Ms2) �M :: cutP1 (Ms1;Ms2)
sincecutP1 >:: andcutP1 (M ::Ms1;Ms2) �M

sinceM ::Ms1 �Mcut1(M ::Ms1;Ms2) � cutP1 (Ms1;Ms2)
sincecutP1 = cutP1 and[M ::Ms1;Ms2] �� [Ms1;Ms2]

Case 3.cut�P1 (smhl(x:M);Ms) � smhl(x:cut�P3 (M;Ms))
sincecut�P1 > smhl andcut�P1 (smhl(x:M);Ms) � cut�P3 (M;Ms)

sincecut�P1 = cut�P3 and[smhl(x:M);Ms] �� [M;Ms]
Case 4.cutP2 (M;x:[]) � []

since[] � []
26

Case 5.cutP2 (M1; x:(M2 ::Ms)) � cutP4 (M1; x:M2) :: cutP2 (M1; x:Ms)
sincecutP2 >:: andcutP2 (M1; x:(M2 ::Ms)) � cutP4 (M1; x:M2)

sincecutP2 = cutP4 and[M1;M2 ::Ms] �� [M1;M2]cutP2 (M1; x:(M2 ::Ms)) � cutP2 (M1; x:Ms)
sincecutP2 = cutP2 and[M1;M2 ::Ms] �� [M1;M2]

Case 6.cutrP2 (M1; x1:smhl(x2:M2)) � smhl(x2:cutP4 (M1; x1:M2))
sincecutP2 > smhl andcutP2 (M1; x1:smhl(x2:M2)) � cutP4 (M1; x1:M2)

sincecutP2 = cutP4 and[M1; smhl(x2:M2)] �� [M1;M2]
Case 7.cutP3 ((x;Ms1);Ms2) � (x; cutP1 (Ms1;Ms2))

sincecutP3 >; andcutP3 ((x;Ms1);Ms2) � cutP1 (Ms1;Ms2)
sincecutP3 = cutP1 and[(x;Ms1);Ms2] �� [Ms1;Ms2]

Case 8.cutP�Q3 (�x:M1;M2 ::Ms) � cutQ3 (cutP4 (M2; x:M1);Ms)
sincecutP�Q3 > cutQ3 andcutP�Q3 (�x:M1;M2 ::Ms) � cutP4 (M2; x:M1)

sincecutP�Q3 > cutP4 andcutP�Q3 (�x:M1;M2 ::Ms) �M2
sinceM2 ::Ms �M2cutP�Q3 (�x:M1;M2 ::Ms) �M1
since�x:M1 �M1cutP�Q3 (�x:M1;M2 ::Ms) �Ms

sinceM2 ::Ms �Ms
Case 9.cut�P3 (smhr(M1); smhl(x:M2)) � cutP4 (M1; x:M2)

sincecut�P3 > cutP4 andcut�P3 (smhr(M1); smhl(x:M2)) �M1
sincesmhr(M1) �M1

27

cut�P3 (smhr(M1); smhl(x:M2)) �M2
sincesmhl(x:M2) �M2

Case 10.cutP3 (M; []) �M
sinceM �M

Case 11.cutP4 (M;x:(y;Ms)) � (y; cutP2 (M;x:Ms))
sincecutP4 >; andcutP4 (M;x:(y;Ms)) � cutP2 (M;x:Ms)

sincecutP4 = cutP2 and[M; (y;Ms)] �� [M;Ms]
Case 12.cutP2 (M;x:(x;Ms)) � cutP3 (M; cutP2 (M;x:Ms))

sincecutP2 > cutP3 andcutP2 (M;x:(x;Ms)) �M
sinceM �McutP2 (M;x:(x;Ms)) � cutP2 (M;x:Ms)
sincecutP2 = cutP2 and[M; (x;Ms)] �� [M;Ms]

Case 13.cutP4 (M1; x1:�x2:M2) � �x2:cutP4 (M1; x2:M2)
sincecutP4 > � andcutP4 (M1; x1:�x2:M2) � cutP4 (M1; x1:M2)

sincecutP4 = cutP4 and[M1; �x2:M2] �� [M1;M2]
Case 14.cutP4 (M1; x:smhr(M2)) � smhr(cutP4 (M1; x:M2))

sincecutP4 > smhr andcutP4 (M1; x:smhr(M2)) � cutP4 (M1; x:M2)
sincecutP4 = cutP4 and[M1; smhr(M2)] �� [M1;M2]�

Theorem 6 The cut reduction system for PFLAX strongly normalises.

PROOF: Immediate from Corollary 1 and Proposition 3.�
28

9 Conclusion and Related Work

We have presented a Gentzen system for propositional Lax Logic whose proofs
correspond in a 1-1 way to the normal natural deductions. This calculus is syntax-
directed and hence suitable for use in proof enumeration. Although we have only
presented the calculus for the propositional fragment of the logic, the results easily
extend to cover first-order quantifiers. More about quantified Lax Logic can be
found in [FW97].

We have also applied these ‘permutation-free’ techniques to Intuitionistic Lin-
ear Logic, [How97a]. Owing to the nature of the introduction rule for the expo-
nential, the resulting sequent calculus, SILL, is complicated. We are currently
refining this work. The intuitionistic calculus MJ has been used as the basis for
work on propositional theorem proving, [How97b].

Lax Logic has recently been used in hardware verification, see for example,
[FM94]. It has also been applied in constraint logic programming, [FMW97].
‘Permutation-free’calculi are natural extensions to logic programming when logic
programming is thought of as backward proof search on hereditary Harrop formu-
lae.

References

[BBdP95] N. Benton, G. M. Bierman, and V. de Paiva. Computational Types
from a Logical Perspective I. Technical Report TR-365, University of
Cambridge, 1995.

[Cur52] H. B. Curry. The Elimination Theorem When Modality is Present.
Journal of Symbolic Logic, 17(4):249–65, 1952.

[Der82] N. Dershowitz. Orderings for Term-Rewriting Systems.Theoretical
Computer Science, 17:279–301, 1982.

[DP96] R. Dyckhoff and L. Pinto. A Permutation-free Sequent Calculus for
Intuitionistic Logic. Research Report CS/96/9, University of St An-
drews, 1996.

[DP98] R. Dyckhoff and L. Pinto. Cut elimination and a permutation-free
sequent calculus for intuitionistic logic.Studia Logic, 60:107–118,
1998.

[FM94] M. Fairtlough and M. Mendler. An Intuitionistic Modal Logic with
Applications to the Formal Verification of Hardware. InComputer
Science Logic, pages 354–68. Springer, 1994.

29

[FM97] M. Fairtlough and M. Mendler. Propositional Lax Logic.Information
and Computation, 137(1), 1997.

[FMW97] M. Fairtlough, M. Mendler, and M. Walton. First-order Lax Logic as
a Framework for Constraint Logic Programming. Technical Report
MIPS-9714, University of Passau, 1997.

[FW97] M. Fairtlough and M. Walton. Quantified Lax Logic. Technical Report
CS-97-11, University of Sheffield, 1997.

[Her95] H. Herbelin. A�-calculus Structure Isomorphic to Gentzen-style Se-
quent Calculus Structure. In L Pacholski and J Tiuryn, editors,Pro-
ceedings of the 1994 workshop Computer Science Logic, volume 933
of Springer Lecture Notes in Computer Science, pages 61–75, 1995.

[How97a] J.M. Howe. A Sequent Calculus for Intuitionistic Linear Logic. Un-
published, 1997.

[How97b] J.M. Howe. Two Loop Detection Mechanisms: a Comparison.
Springer LNAI, 1227:188–200, 1997. Proceedings of TABLEAUX’97.

30

