University of

"1l Kent Academic Repository

Howe, Jacob M. and King, Andy (1999) Specialising Finite Domain Programs
using Polyhedra. In: Bossi, Annalisa, ed. Lecture Notes In Computer Science.
Lecture Notes in Computer Science, 1817 . Springer-Verlag, pp. 118-135.

ISBN 978-3-540-67628-7.

Downloaded from
https://kar.kent.ac.uk/22049/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information
Copyright Springer-Verlag, see http://www.springer.de./comp/Incs/index.html

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/22049/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Specialising Finite Domain Programs Using Polyhedra

Jacob M. Howe and Andy King

Computing Laboratory
University of Kent, Canterbury, CT2 7NF, UK
{J. M Howe, A. M Ki ng}@kc. ac. uk

Abstract. A procedure is described for tightening domain constradfitfinite
domain logic programs by applying a static analysis basecborex polyhedra.
Individual finite domain constraints are over-approxingaby polyhedra to de-
scribe the solution space oveinteger variables as andimensional polyhedron.
This polyhedron is then approximated, using projectionaas: dimensional
bounding box that can be used to specialise and improve tinaidaconstraints.
The analysis can be implemented straightforwardly and apirézal evaluation
of the specialisation technique is given.

1 Introduction

Finite domain constraint logic programs classically have tomponents: a constraint
component and a generate component. The constraint comppasts to the store
constraints which characterise the problem and define theclsespace. The generate
component systematically enumerates the search space \étielling strategy (such
as fail first). Tightening the constraints, for example tleen@in constraints that bound
the values of the variables, reduces the search space artyrspeeds up the program.

In order to reduce the search space, finite domain constaivérs propagate con-
straints on the values that can be taken by the variablesstzimt propagation does
not necessarily have to be applied with labelling and maryess, for example the
ECL’PS and SICStus finite domain solvers, can prune the values adhlas before
any labelling is applied. This paper describes in detail amgbirically evaluates one
technique for performing constraint propagation at cogtpile through program spe-
cialisation.

The analysis in this paper is founded on classic work on padyhl approxima-
tion [5], [6]. Finite domain constraints are interpretedrakations over sets of points.
These constraints are over approximated and representadasssibly unbounded)
polyhedron. The intersection of polyhedra correspondotofosing constraints. Pro-
jection onto an integer grid gives (low-valency) domain stoaints that can be added
to the program without compromising efficiency. The mairhtd@que for propagating
constraints in finite domain solvers is by bound propagatidis involves substituting
known variable bounds into linear constraints to give nerialde bounds. The polyhe-
dral analysis described here is a stronger compiletimenigcie than bound propaga-
tion; compiletime bound propagation over linear finite dam@onstraints is subsumed
by the technique described in this paper. The example inrEigllustrates that poly-
hedral analysis can give considerably tighter approxiomstithan those resulting from

:- use_nodul e(library(clpfd)).
mai n: -
domain([X, Y], 0, 6),
Y#>=X-1,
Y#=<X+1,
Y#>=4- X,
Y#=<6- X.

Fig. 1. The polyhedron represented y > z — 1,y < z + 1,y > 4 —z,y < 6 — z} with
variable domains: € [0, 6],y € [0, 6].

bound propagation. In this example, projection onto each@¥ariables gives bounds
3/2 <z <7/2,3/2 <y < 7/2. Tightening to integers defines the finite domain so-
lution setz € [2, 3],y € [2, 3], which can be used to specialise the domain constraints
of the original program talomai n([X, Y], 2, 3).Bound propagation does not
tighten the variable bounds at all.

The polyhedral analysis described in this paper developstdtic analysis of con-
straint logic programs outlined in [14]. However, the arsidyin this paper is specifi-
cally tailored to specialise finite domain programs. In jgaitar, the analysis is designed
to complement runtime constraint propagation technigAssthe example above il-
lustrates, polyhedra capture deep inter-variable reiatiips which cannot always be
traced in bound propagation. Note, however, that the teghenis, to a certain extent,
dependent on the data being present in the program — a stetigsés cannot reason
about runtime data. This paper makes the following contidims:

e it presents a deterministic algorithm (not involving ldbej) based on polyhedra
for refining domain constraints and it shows that the analgah be easily imple-
mented using constraint solving machinery;

it shows how interval and polyhedral approximating techeisjcan be combined
to reason about non-linear constraints;

the analysis and the associated program transformatioshasen to be correct;

an empirical study and evaluation of the technique apptiel €Stus finite domain
programs is given. The analysis can significantly improvesheed of programs
(sometimes by several orders of magnitude);

applying the analysis through specialisation means theastiver does not need
to be modified. Specialisation never impedes built-in c@ist propagation tech-
nigues and comes with a no slow down guarantee. Moreoveimimved domain
constraints often interact with built-in constraint prgpgion techniques resulting
in further pruning. Interestingly, the analysis can beripteted as a compiletime
solution to combining constraint solvers.

The structure of the paper is as follows: section 2 worksugtoan example pro-
gram to illustrate the way in which the analysis works andpitsver; section 3 for-
malises the analysis in terms of abstract interpretatieatien 4 describes the various

mathematical techniques utilised in the analysis; se&ioompares the approach taken
by this paper with bound propagation; section 6 works thioagother example pro-
gram to illustrate all of the techniques introduced in thpgrasection 7 describes the
implementation of the analysis and gives the results ofpdieation to some bench-
mark programs; section 8 reviews related work; section kates and outlines future
work.

2 Example: Magic Square

This example illustrates the approach taken by this arglgsiwell as its power relative
to compiletime bound propagation.

The magic square puzzle takes a three by three grid and théersrone to nine
and sets the challenge of placing the numbers in the grida@thof the rows, columns
and diagonals sum to the same number. The solutions areedrderas to reduce the
number of solutions identical up to symmetry which can benthuA SICStus finite
domain program to solve this problem is:

:- use_nodul e(library(clpfd)).
square(A, B, C D E F, G H I):-

domain([A, B, C D E F, G H I], 1, 9),

all different([A B, C D E F, G H 1I1]),

A#<C, AH<G A#<l, Y%ymetry constraints

A+B+C #= D+E+F, A+B+C #= G+H+l,

A+B+C #= A+D+G A+B+C #= B+E+H, A+B+C #= C+F+l,

A+B+C #= A+E+l, A+B+C #= C+E+G

| abeling([], [A, B, C, D E F, G H I]).
(In SICStusdomai n(Li st, I nf, Sup) abbreviate$ nf #=<X, X#=<Sup, for
each variableX in Li st .) The finite domain constraints in this program are approx-
imated by a polyhedron (each constraint is interpreted asnastrict inequality with
rational coefficients, these inequalities define the palybe). Theal | _di f f er ent
constraint cannot be captured in an informative way by alpedyon, hence is ignored.
The finite domain constraints are abstracted to the polydredefined by the following
linear inequalities (an equality can be understood as agb&iequalities):

1< A,B,C,D,E,F,.G,H,T<9

A<C-1 A<G-1 A<T—1
A+B+C=D+FE+ F A+B+C=G+H+1T
A+B+C=A+D+G A+B+C=B+FE+H
A+B+C=C+F+1 A+B+C=A+E+1

A+B+C=C+E+G

The above inequalities define a polyhedron in nine (the nurabeariables) dimen-
sional rational space. Projection onto each variable vi¥é gational bounds on those
variables. The result of this is as follows:

3/2<A<11/2 4<B<8 7/2<C <15/2
5<D<9 3<E<T 1<F<5
5/2<G<13/2 2<H<6 9/2<1<17/2

A specialised finite domain program is obtained by reintetipg these new rational
bounds as finite domain bounds, by tightening to integereslihe constrairdo-
main([A ..., 1], 0, 9) isreplaced inthe program by the finite domain con-
straints given below. The bounds in the left column belowthmse obtained by the
above procedure, those on the right are those that SICStisbinbound propagation.

%ol yhedr al %Bound Propagati on
2 #=< A, A #=< 5, 1 #=< A, A #=< 8,
4 #=< B, B #=< 8, 1 #=< B, B #=< 8,
4 #=< C, C #=< 17, 2 #=< C, C #=< 9,
5 #=< D, D #=< 9, 2 #=< D, D #=< 9,
3 #=< E, E #=< 7, 1 #=< E, E #=< 9,
1 #=< F, F #=< 5, 1 #=< F, F #=< 9,
3 #=< G G #=< 6, 2 #=< G G #=< 9,
2 #=< H, H #=< 6, 1 #=< H, H #=< 9,
5 #=<1, | #=<28, 2 #=< 1, | #=<9,

Notice that the propagation of constraints by the polyhletiethod is better than that
of bound propagation. That the improvement is a large onébeagseen by calculating
the number of points in each of the search spaces. The fimitaihovhich results from
the polyhedral analysis h&sx 10° points, whereas the domain resulting from bounds
propagation has approximately x 108 points, nearly 240 times larger a search space.

3 Formalised Analysis

This section formalises both the analysis and the progranstormation described in
this paper, then states their correctness. Details andgpcan be found in [9].

3.1 Polyhedral Analysis

In order to have confidence in the analysis a mathematicifipadion is essential. The
formalisation is an application of theapproach detailed in [4] and is fairly dense and
complicated. Thus, before giving the formal analysis, dormal overview of the re-
mainder of the section is given, indicating where the openatdescribed in section
4 are required. Abstract interpretation is used to conndcbacrete) ground seman-
tics for finite domain constraint programs [11], [12] to abgaact)s-semantics [4]. A
Galois insertion links the concrete domain (the set of gtbimerpretations) and the
abstract domain (the set of interpretations over constrhimit clauses). The concrete
semantics is essentially the set of solutions for a givegiamm. The abstract semantics
(formulated in terms of a fixpoint) is an over-approximatiminthis set of solutions,
with each predicate constrained by the conjunction of thestraints on its body atoms.
The abstract operator approximates non-linear consgraistinear constraints. In or-
der that the formalised analysis is the same as that implexdethe number of unit
clauses is kept small by over-approximation in the form obavex hull calculation.
The termination of the fixpoint calculation is ensured by tise of a widening. The
analysis is proved to be correct, as is the program trangttbam (which involves the
use of projection with the fixpoint).

Concrete Domain For a (finite domain) progran, let I1 denote the set of predicate
symbols that occur itP and letX' denote the set of integeZj and function symbols
that occurinP. Let Dgp be the set of finite trees over the signatirel et Rpp be the
set of constraint predicates. LBt be a countable set of variablgsyp is the system

of finite domain constraints generated frdl-p, Rrp, V and the function symbols.
Elements ofCrp are regarded modulo logical equivalence aidp is ordered by
entailment=rp. (Crp, Erp,A) is a (bounded) meet-semilattice with bottom and top
elementgrue andfalse. Crp is closed under variable elimination aBz, ..., z, }¢
(projection out) abbreviatége, . .. 3z,,.c. 3X ¢ (projection onto) is used as a shorthand
for 3(var(c) \ X)c, wherevar (o) denotes the set of variables occurring in the syntactic
objecto. The interpretation base fdf is Brp = {p(t) | p € II,t € (Dpp)"}. The
concrete domain i§P(Brp), C,N,U), a complete lattice.

Abstract Domain Let Dy,;, be the set of rational number®, Let Cy,;,, be the sys-
tem of linear constraints ovdpy;,, V, the set of constraint predicatéy ;,, and the
function symbolsC/,;,, is quotiented by equivalence and ordered by entailment,,.
(CLin, ELin, N\) is @ (bounded) meet-semilattice and is closed under piojecut,
3, and projection onto3. Unit clauses have the form(X) « c wherec € Cp,.
Equivalence on clauses;, is defined as follows{(p(X) + ¢) = (p(X) «) iff
Fvar(X)e = Jvar(X)(c' A (X = X')). The interpretation base for prografhis By, =
{[p(X) « c]=|p € II,c € CLin}. Entailment induces an order relatian, onP(Bpn)
as follows:I C I' iff V[p(X) « ¢]= € I.3[p(X) < ']= € I'.c =Lin ¢'. P(BLin)
ordered byC is a preorder. Quotienting by equivalenes, gives the abstract domain
(P(Brin)/=,C,), a complete join-semilattice, wher&?, [I;]= = [U2, Li]=.

Concretisation The concretisation map: Cr;, — Crp, interprets a linear constraint
over the rationals as a finite domain constraint as follows:

~ (i %TZ < g) - i Dd”’q«, < %, whereD = d.ﬁd,;
i i

i=1 i=1 i=1

Note that the coefficients of(c;,;,,) are inZ. The abstraction mapy : Cr.p = Chrin
can be defined in terms afby a(crp) = AMcrinlcrn =rp Y(cLin)}. Observe that
«a, v form a Galois insertion.

The concretisation map : P(Byin)/= — P(Brp) On interpretations is defined
in terms of the concretisation map for constraints:

Y([1l=) = {p®)[p(X) = € I, X=1) Frp 7(0)}-

The abstraction map : P(Brp) — P(BLin)/= is defined as follows:
a(J) = [{[p(X) < d=Ip) € J,a(X =1) = c}]=

Proposition 1 «, v on interpretations form a Galois insertion.

Concrete SemanticsThe fixpoint semanticst rp, is defined in terms of an immediate
consequences operatbf : P(Brp) — P(Brp), defined by

pz(fz) el, (i =) ‘:FD E’UCLT'(X)(/\?:] (ii = fz) N C)

THI) = {p<f>

w e P:w :p(i) — C, D1 (i1)7 7pn(in)7
t
T7, is continuous, thus the least fixpoint exists &@dp [P] = I fp(T7).

Abstract Semantics To define the immediate consequences operator for the abstra
semantics, a special conjunction operatet;, : Crp X Crin — CrLin is introduced.
The operaton r, is assumed to satisfy the propettyp A y(crin) =rp Y(cFD AFL
¢Lin)- This operator allows the approximation of non-linear rdomain constraints.
The fixpoint semanticsFr;,, is defined in terms of an immediate consequences
operator,I'y : P(Brin)/= — P(Brin)/=, defined byl'g ([I]=) = [J]=, where

w€ Pw=pX) <, p1(X1),....,pn(Xn),
[wil= € I,w; = pi(¥;) « ¢,
J =< [p(X) < c]= | Vi.(var(w) Nvar(w;) = ¢),
Vi # j.(var(w;) Nvar(w;) = ¢),
c=c ArL (N (R =Y;) Aci))

T} is continuous, thusfp(T}) exists. SinceP(Bri,)/ = is a complete partial order,
Kleene iteration [5] can be used to compi#te;, [P] =1 fp(T5) = U2, T 1 i, where
Tp10=¢andTp ti+1=T(Tp 1)

Space-Efficient Over-Approximation To keep the number of unit clausesfij 1 &
small, hence the fixpoint calculation manageafflg,t k is over-approximated by an
interpretation/ (that is,7% 1 k£ C I) containing at most one unit clause for each
predicate symbol.

The join for the domain of linear constraints,: Cr;, X Crin — CrLin, is defined
byci Ves = AN € Crinler ErLin ¢, ¢2 =Lin ¢}. When the constraints are interpreted
as defining polyhedra, the meet corresponds to the closuteafonvex hull. The op-
erator is lifted in stages to an operator on the abstract darkést it is lifted to the

interpretation basey : By, x Bi;,, — Bi;,, whereBi, = Br;,U{L}, as follows:
[p(X) < c1]= V [p(X) = co]= = [p(X) = 1V e2]=
[p(X) = e1]= V [g(¥) & eal= =L if p#q
[p(X) <= Vv L = [p(X) < =
1 V [p(X) < c]l= =[p(X) + =

This in turn defines the unary function,: P(By,.)/= — P(BrLi)/=, On the abstract
domaingivenbwy ([I]=z) = [Uwer{Vuer(wVu)}]=. Since forevery € P(Bp:,)/=,
TE(I) C Vo Tg(I),itfollows thatl fp(Tg) C Ifp(V o TE). Hencev does not com-
promise safety.

Termination of the Polyhedral Analysis As before, Kleene iteration can be used to
compute fp(V o T}). However, the chain of iteratéso T, 1+ k may not stabilise in a
finite number of steps. In order to obtain convergence, wittg(a fixpoint acceleration
technique) [5], is applied.

Given a standard widening on polyhedra [3], [5], [6] (or egléntly, on linear
constralnts)v Crin X CLin — Crin, awideningy : Bi; x By, — B, , (Where

Lin Lin Lin?

Bt = Brin U{L}) on the interpretation base is induced as follows:

[p(R) e1]= ¥ [p(R) ea] = [p(R) e19ca)=

[p(X) <= c1]= V [q(Y) « e2]= =L ifp#q
[p(X) < ¢cl= Vv L = [p(X) « c|]=

1 V [p(X) < c]= =[p(X) « c]=

This lifts to the abstract domaiW, : P(By,in)/= X P(Brin)/= = P(BrLin)/=

(L]=V[l:]= = [Uwern{Vuer (wVu)}]=

3.2 Correctness of the Polyhedral Analysis

This section states the correctness of the analysis. Thapvgard iteration ot/ o 7',
with widening, stabilises at an interpretatidrwith [fp(T%) C ~(I). The result is a
corollary of Proposition 13 in [5].

Proposition 2 The upward iteration sequence b 7'}, with wideningv is ultimately
stable with limitl and is safe, thatisy o T5(I) C I andifp(T3) C ~(1).

3.3 Program Transformation and its Correctness

Once an upper approximation % [P] is computed, it can be used to transform the
program. This is done by projecting the convex polyhedraulteng from the fixpoint
calculation onto each variable in turn, tightening thiemwal constraint to integer values
and adding it to the initial program. The following theoretails the transformation
and also asserts safety.

An auxiliary (partial) map;’ : Crin — CrLin, is defined in order to tighten bounds
on variables to integer values, as follows:= u(c) A I(c) where

u(c):{m<LQJ if (z<¢q)=c l(c):{x>[q] if (z>q) =c

true otherwise’ true otherwise’
Theorem 1 If I fp(T%) C y([I]=), thenFrp[P] = Frp[P'], where

w € Pw=pX) < ¢, p1(X1), ..., pn(Xn),
[wil= € I,w; = pi(¥;) + ci,
;| Vi.(var(w) Nwvar(w;) = ¢),
Vi # j.(var(w;) Nvar(w;) = @)
c=cA (/\yEUrzr(m) ((ay /\n =1 (
w' =pX) ¢, p1(X1), .o, pn(X

(’)x y.) A e)))),

4 Computational Techniques

The analysis and program transformation strategy is patensed by the operators
Arr andv. In this section instances of these operators are specifgdlgorithms for
computing other operations, such\asnd3, are presented.

In particular this section reviews some computationalmémphes for: calculating the
convex hull of twon dimensional polyhedra; projecting andimensional polyhedra
onto anm dimension space where < n; widening chains of polyhedra; approximat-
ing non-linear constraints by polyhedra.

4.1 Projection

The analysis described in this paper requires a projectiahtakes as input a set of
inequalities im variables and outputs a set of inequalities in a subset s&thaariables.
The output is such that all solutions of the original set efjnalities can be specialised
to a solution of the new, and all solutions of the new set ofjusities represent partial
solutions of the original. Less formally, projection is tbelculation of the shadow cast
by the polyhedron represented by the inequalities ontopgheesdefined by the subset of
variables. For example, the projection of a two dimensioglpedron onto the variable
x is the shadow cast onto theaxis when the polyhedron is lit from above.

In the implementation of the analysis given in this papeojqution is performed
using Fourier-Motzkin variable elimination (see, for exam [10], [12], [13], [18]), as
this is the algorithm used by SICStus. Fourier-Motzkin &hlé elimination takes a set
of linear inequalities and eliminates variables one at & timtil the only variable occur-
rences left are of those variables being projected ont@ualities are arranged so that
the variable to be eliminated is on the lesser side of alluradities in which it occurs.
It will either have a positive or negative polarity. All pdske ways of eliminating the
variable from a pair of inequalities are explored, givingeawset of inequalities with
one variable fewer. This is illustrated with the followingnple example, projecting
onto the single variable:

z—i_z § g s,h\l.ulf)fle _i i ige y eI\/Ti’n)ate 0 S -2 - 2:[/ s/h\u’ff)le Yy S -1 elimi’n)ate
z2<y z2<y

<7
2<y —y<-z o 2sd

4.2 Convex Hull

The convex hull of two polyhedra is the smallest polyhedmmtaining both polyhedra.
The convex hull calculations are performed as in [3]. Potiraare represented as a set
of linear inequalities. The convex hulf:, of two polyhedra,P, and P, is given by
the following (wherex is a vector and4;, B; are matrices, together giving the linear
inequalities that define the polyhedra):

P ={X € Q'A% < By}, Py, = {X; € Q"|AsXy < By}

PC_{XGQn

Y:y] +72 A Aly] SUIBI A AQVQ S(TQBQ
ANor+oo=1AN -0, <0A —035<0

By projecting outry, 02, Y, ,V,, that is, projecting ont&, the linear inequalities for the
convex hull can be found. In this way, the convex hull caltiahais reduced to variable
elimination.

Example 1.Figure 2 lists a program giving rise to polyhedra that are aasg and
triangle. The trianglé’r and the squar&s are described below:

> :- use_nodul e(library(clpfd)).
at P(X Y):-
- X+Y#=<1,
3t X#=<2,
1#=<Y
2r p(X Y):-
1#=<X, X#=<3,
1 2#=<Y, Y#=<4.
0

0 1 2 3 4 5

Fig. 2. The Convex Hull of trianglé’r and squarePs

{OlE)00 (1 o[

N N 0 1 4

Putting these together as in the definition, and then priogadut oy, 0,Y,,Y,, the
convex hull,P¢, is found to be

18

Observe thaP- describes the convex hull: a pentagon.

4.3 Approximating Non-Linear Constraints

A non-linear inequality cannot be accurately approximdtgdoolyhedra. However,
suppose that the non-linear inequalitsiescribes a regioR and thatP is a polyhedron.
The intersectior? N P can sometimes be approximated by a polyhedrésuch that
P' C P.This problem arises in the analysis of finite domain progr#imt contain non-
linear constraints. This section describes an algorithncéonputing such &’ given
non-linear inequality’ and polyhedrorP.

The following approximation technique arose from boundpagation algorithms
for non-linear inequalities [13] and is outlined below:

1. Lisrewritten to(A7L, [TX: < [TY:) A (AT, X° Z; < ¢;) whereX;,Y;, Z; are
variable multisets and; is a constant. For brevity the rewrite rules are omitted,
instead a simple illustrative example is given. The noedininequalityz < = x
(u+v) xyisrewrittentoz <z xaxy,a—u—v < 0,u+v—a<0,wherea
is a fresh variable.

2. In each producf] W;, whereW; = {wy,...,w,}, every variablav; has an upper
bound,u;, and a lower bound,, which can be calculated by projectidgyonto
that variable (wheré;, u; € Q U {4+0c, —oc0}). For everyk € {1,...,n}, upper
and lower bounds for the produff W; are computed by, = wy. [, u: and
wh, = wy. [T,c4li, whereS = {1, ...,n} — {k}.

3. The upper and lower bounds on the products generate tlsviioly linear con-
straint for each non-linearinequalify X; < [[Y;, whereX; = {z1,...,z,},Y; =
{y] Yoy ym}:

Li= Mzl <yl k€ {1,.in},j € {1, om}}

4. Finally the regionk N P is approximated by the polyhedrd® = R' N P where
R’ is the polyhedron represented by

(AL L) A (ALY Z5 < ey)

Example 2.Consider the regio®® = {(z,y,z)|z < = x y} and the polyhedro® =
{(z,y,2)|]1 < x,2 <y <4}. The regionR N P is approximated by a polyhedrdr!.
The non-linear inequality does not need to be rewritten &satready in the required
form. ProjectingP ontox andy gives1l < z < co and2 < y < 4. Then,z x y has
upper boundso, 4z and lower boundg, 2z. z has itself as upper and lower bounds.
These generate the following linear inequalitiesl oo,y < z,z < 4z,2z < 2. Call
the region generated by these inequalifid¢sThenP’ = R' N P.

The inequalities that arise assume the fafm < ¢y rather tharc;z < ¢o. This s
because if a tighter bound an(or y) is later found, then the inequalityz < ¢,y can
potentially tightery (or x). This can only improve accuracy.

The analysis of non-linear constraints given here is arairest of the special con-
junction operationp gz, given in section 3R App P = P'.

4.4 Widening

Widening is required to ensure that the fixpoint calculatigh stabilise, that is, the
polyhedra in the final two iterates coincide. Widenings folyedra can be found in
[3], [5] and [6]. To keep the exposition reasonably selftedmed, the [5] widening is
detailed here.

Polyhedra are represented by sets of linear inequalififse Iprevious iteration has
produced polyhedro®;, = {X € Q"| A Sy}, whereSy, = {I1, ..., [;} and the current
iteration has given polyhedrdf, .1 = {X € Q" |ASk+1}, whereSyy1 = {J1, ..., I}
(I; and.J; are linear inequalities), then applying the widening ressinl the polyhedron
given by the following set of linear inequalities:

{1 € S| ASk1 = 1Y U{J € it |31 € Sp. A (S — {I}) U {J}) = ASk}.

Example 3.A smaller triangleP, = {(z,y)ly < z,z < 1,y > 0}, and a larger
triangle P, = {(z,y)|y < 2z,2 < 1,y > 0} are widened to give the regidd VP>, =
{(z,y)|z <1,y > 0}. The inequalityy < = from P, is not satisfied by all points i,
and the other inequalities iR, are. The inequality < 2z from P, does not satisfy the
swapping condition, and the other inequalities descrilinglo.

5 Comparison With Bound Propagation

As noted above, the polyhedral analysis described in thiepaubsumes compile-
time bound propagation. Bound propagation is used in firgimain systems, such as
ECL!PS and SICStus. Good expositions of bound propagation canuvelfim [1] and
[13]. A brief outline of the technique is given here.

Given any inequality, the known bounds for each of the vdesbccurring in the
inequality are used to find possibly tighter bounds for thesgables. One variable
is chosen and the upper and lower bounds for the other vagadrke used to find a
possible upper or lower bound for this chosen variable.dftlound calculated in this
way is tighter than the previous known bound for that vaealthis bound is adopted
in place of the older, weaker one. This process can be reppéateeach variable in
the inequality. An equality can be treated as two inequalitiTo give a very simple
illustrative example consider the following two variabkse:

y=z+70<2x<3,0<y <12

Propagating the bounds aninto the inequalities involving: andy it is found that
7 <y < 10, tighter bounds than previously.

Bound propagation can give good tightening of constraifts. example, bound
propagation in the send more money problem (one of the exaprpgrams, see Table
1) actually gives the same results as the polyhedral asalsiwever, there are many
examples where the polyhedral analysis improves on boungiggration, for example
the program in Figure 1 of the introduction. Improvement eéso be seen in the pro-
gramal pha (see Table 1). Improvements over bound propagation canr dec@ny
program with more than one inequality containing more thaa wariable. In bound
propagation, individual constraints interact with the @gomconstraints in the store, but
are unable to interact with each other. The power of the padyal analysis comes from
allowing this interaction between constraints in orderdbiave better propagation.

It can be seen that the polyhedral method subsumes boundgatipn for linear
constraints, when both are applied as static analysesfditae/s since bound propaga-
tion can be viewed as performing Fourier-Motzkin variabimaation on a subset of
the inequalities comprising the problem: a subset comtgionly the bounds from the
store and a single inequality with more than one variableréfore, as extra informa-
tion can only lead to tighter bounds, variables will be boeshdt least as tightly after
Fourier-Motzkin variable elimination for the full problem

6 Example: Calculating Factorials

This section works through a more complicated example dPmihg the analysis auto-
matically on arbitrary (recursive) programs requires nmaety which includes, among

other things: convex hulls, projection, and widening. Thegerations are illustrated by
the example in this section. The example program calcufatgsrials. The objective
again is to infer bounds on the variables. Usually this redigearching, but in this case
it simply tightens one of the constraints — the point of tharaple being illustrative.
The program (in SICStus syntax) is as follows:

:- use_nodul e(library(clpfd)).

fac(0, 1).
fac(N, NewF): -
N#>=0, NewF#>=0,
NewF#=N* F,
M#= N1,
fac(M F).

The clausé ac(0, 1) . is the first considered. The arguments are described by the
polyhedronP;, = {(z,y)|z = 0,y = 1}. Next, the second clause is considered. The
problem here is to compute a two dimensional polyhedrondbstribes the coordinate
space K, NewF). First observe thatac(M F) can be described by the polyhedron
{(N,NewF,M F)|M= 0, F = 1}. Note too, thatthe constraint$ #= N - 1, N#>=0,
NewF#>=0 are represented by the polyhedré(N, NewF,MF))M = N— 1,N >
0,NewF > 0}. The intersection of these two polyhed{éN, NewF, M F)|[M= 0,F =
1,M= N-1,N> 0,NewF > 0}, represents the conjunction of the four constraints.
The non-linear constrairMew#=N* F cannot, by itself, be accurately represented by
a polyhedron. Note, however, that the polyhedf¢N, NewF, M F)|NewF = N,M =
0,F=1,M=N-1,N> 0,NewF > 0} accurately describes all the constraints. Pro-
jecting the four dimensional polyhedron onto the coordirstacéN, Newf) gives the
polyhedron{ (N, NewF)|NewF = N,0 = N— 1}, equivalentlyP; = {(z,y)|z = 1,y =
1}.

To avoid representing disjunctive information, the sauntsetP; U P; is over ap-
proximated by its convex hullPy’ = {(z,y)|0 < z < 1,y = 1}. The bound in-
formation extracted from the convex hull by projection isaetty the same as that
extracted from the union of the original pair of polyhedragrpjection. The convex
hull gives the second iterate. Continuing in this fashiotl give a sequence of in-
creasing polyhedra which does not stabilise. A fixpoint sae¢ion technique, widen-
ing, is therefore used to enforce convergence (albeit aexpense of precision). The
widening essentially finds stable bounds on the sequencelyifigdra.P; is widened
with P;' to give the polyhedro?, = {(z,y)|0 < z,y = 1}. P» # Py, and so the
fixpoint stability check fails and thus the next iterationcalculated. This results in
the polyhedraP; = {(z,y)lz > 1y > 1}, Py = {(z,y)lz > 0,y > 1} and
P; ={(z,y)|z > 0,y > 1}. P, # P3 and stability has still not been reached. However,
P; = Py, and the fixpoint is found. Projecting; onto the first and second arguments
gives the bounds > 0,y > 1.

Specialising the program by adding these bounds resulteifotlowing:
;- use_nodul e(library(clpfd)).
fac(0, 1):-
O#>=0, 1#>=1.
fac(N, NewF): -

N#>=0, NewF#>=1,

NewF#=N* F,

M #= N1,

fac(M F).
The redundant constraints in the first clause can be rema@¥edsecond clause has one
of its domain constraint trivially tightened. The spedation will always preserve the
set of computed answer substitutions.

7 Implementation and Experimental Results

The analysis has been implemented in SICStus Prolog 3.8amhlyser uses ratio-
nal constraints rather than real constraints as problematinding errors occur with
the CLPR) package. Theal | _r esi due built-in that comes as part of the SICS-
tus CLPQ) package is used for projection in this implementation.edtharts of the
analyser, such as the convex hull machinery, are taken fBjnThe analyser uses a
semi-naive iteration strategy.

The prototype analyser was tested on a selection of progiramsthe benchmarks
suite that comes with the SICStus release of the GIIP(package. The programs were
chosen for their compatibility with the parser: those pargs which passed through the
prototype front-end (abstractor) without giving error reages were used.

Bound propagation is applied by the finite domain solver atimie. To demonstrate
that the polyhedral analysis is doing more than shiftingsoifrthe work done by bound
propagation from runtime to compiletime, experiments vwadse carried out with bound
propagation applied as a compiletime analysis and programsformation.

The programsl pha, crypt a, donal d andsnmare all cryptoarithmetic prob-
lems. Letters are assigned digits or numbers and equatiwndving these letters are
given. The solution is an assignment of numbers/digitstterg so that the equations
are satisfied. The prograreg10 andeq20 find solutions to sets of linear equations in
seven variables. The progrénac calculated factorials (in this cadé!). The program
magi ¢ finds magic squares (up to equivalence). The prodrame is a version of the
zebra problem, where five lists of five elements are assigmedumbers one to five so
that certain relational properties hold. The progayt hagor calculates Pythagorean
triples (in this case with individual values up to one thauda

The results of the analysis can be seen in Table 1. Vars isuimeds the arities
of the predicates that occur in the program; T. Vars is the memof these argument
positions tightened by the analysis; Time is the runtiméaefdriginal program (in mil-
liseconds); T. Time is the runtime of the specialised prog(a milliseconds); Bound
Prop. is the runtime of the program when specialised by thgegaobtained by bound
propagation (in milliseconds); Fixpoint is the time takencilculate the fixpoint (in
milliseconds); Fix and Proj. is the runtime of the analysidiiding the final projection
stage (in milliseconds). Note that all times are averagesnt@ver one hundred runs.
The experiments were conducted using a PC with a 366MHz lHamrocessor and
128Mb of RAM, running Red Hat Linux 6.1.

All but one of the example programs have at least one presagition tightened
by the analysis, indicating that the analysis can be widppliad. No specialised pro-

Program Varg(T. VargTime| T. Time/Bound PropFixpoint|Fix. and Proj|
al pha 26 251239 4 2390 280 2100
crypta 10 3 6 6 6 460 59430
donal d 10 3| 47 47 47 80 490
eqlo 7 7 13 0.7 13 100 110
eq20 7 71 20 0.2 19 130 140
fac!? 2 2| 0.8 1.0 0.8 260 260
five 25 3| 1.8 1.8 1.8 100 190
nagi ¢ 9 9] 6.5 3.2 6.4 100 230
smm 8 3| 0.9 0.9 0.9 60 340
pyt hagor '°°| 3 0| 15 15 154 180 190

Table 1. Test Results

gram runs slower than before. After specialisation, thgmmsal pha, eq10, eq20
andmagi ¢ run significantly quicker than both the original programs &éime programs
specialised by adding the results of bound propagatiors ifuicates that the analy-
sis can significantly prune the search space. The fixpoinysisdimes are reasonable
considering that the analyser is a prototype in an earlyestdglevelopment. In par-
ticular, the iteration technique can be improved. Amonhstrhore expensive fixpoint
times are those fdrac andpyt hagor . These programs are recursive, and although
the analyser has been designed to deal with all progransseigected that most finite
domain programs are not recursive. Notice that the mosffiignt factor in analysing
many of the programs is the cost of the final projection stdge. analyser currently
uses the projection technique that comes with SICStustdtli® expected that the use
of a projection technique tailored to the specific task ofguting onto a single variable
would give significantly improved performance.

8 Related Work

The use of convex polyhedra to describe the constraintssteaint logic programs
over the reals has been outlined in [14]. The paper does sctithe an implementation
and does not directly address the analysis and specialisatiinite domain programs.

The analysis in this paper has its foundations in classikwampolyhedral approxi-
mation [5], [6]. Polyhedral approximation has been appiedreas as diverse as: argu-
ment size analysis [3]; compiletime array bounds analyig¢érmination of deductive
databases [21]; off-line partial deduction [15]; paradlation of imperative languages
[19]; control generation for logic programs [16]; memorymagement of symbolic lan-
guages based on cdr-coding of lists [8]. The work in this palirectly builds on the
work of Benoy and King ([3]) to show how a finite domain prograpecialiser can be
built with off-the-shelf linear constraint solving mackeity.

Static analysis of finite domain constraint logic prograsisot a new idea. Bagnara
[2] proposes an interval analysis for refining domain caisets. The critical observa-
tion in this paper is that a finite domain solver will usuallgrfprm constraint propa-
gation at runtime, for example through indexical based agapion. The static analysis

presented in this paper is designed to complement a runtimsti@int analysis: poly-
hedra capture deep inter-variable relationships whicmogtalways be traced in bound
propagation.

The current work could be viewed as a compiletime approattetaollaboration of
constraint solvers. There are many recent papers on codlibo of constraint solvers,
such as [17], [20]. Different kinds of constraint solverdlyropagate information in
different ways, and mixing technologies often gives thet iesnework for solving
a problem. Using a variety of solvers can give propagatiat tannot be achieved
in a single solver. The approach taken here is attractivaumz it uses off the shelf
technologies and combines their use, but this has the dkthat the propagation is
not as intelligent as it might be.

Another compilation technique based on projection arisgeoviding predictable
time-critical user interfaces, [7]. There, however, thgegkive is to remove runtime
constraint solving altogether.

9 Conclusions and Future Work

Analysis of finite domain constraint logic programs usindypedra promises to be a
powerful compiletime technique for reducing the searchcepaf finite domain con-
straint logic programs. This analysis can extract morerimtion than bound propa-
gation alone. By using program specialisation, other nmedtad domain reduction can
still be applied at runtime. The analysis is safe in two sen® specialised program
is never incorrect; it never runs more slowly that the oradirmhe analysis can be im-
plemented straightforwardly using a rational constraiiver.

The results show that the analysis will tighten the domafmsany of the variables
in programs — indeed, the analysis completely solves thielgnas ineq10 andeq20.
The timing values in the results table, in particular thasdlie progranal pha (where
the analysis time plus the tightened time is less than ttgirai time), indicate that
polyhedral analysis can give a significant speed up. As a detimpe technique, some
extra cost is not prohibitive, however, it is expected thatHer development will lead
to a significant speedup of analysis. The analysis can theeréle considered practical.
However, the analysis is not as powerful when data is inpatiratime: clearly, in this
situation no compiletime specialisation procedure wildffective. The programs with
which the analyser has been used have all had the data taithie programs. A wider
study of finite domain programs is needed before the sigmifieaf this drawback can
be assessed.

Future work will focus on developing the analyser. Beyongbiaving the convex
hull and projection calculations, there are several ardesrevwork is in progress. The
use of widening could be delayed to improve precision andlim@ar constraints could
be better approximated. The analyser will also be extendedipport other finite do-
main solvers. It would be an interesting to investigate Whebr not it is practical to
exploit the extra propagation gained by reanalysing theiafised programs.

Acknowledgements The work of both authors is supported by EPSRC grant number
GR/M0O8769. The authors would like to thank Florence BenayHill, Jon Martin and
Barbara Smith for their helpful comments and suggestions.

References

1. K. R. Apt. A Proof Theoretic View of Constraint ProgrammgirFundamenta Informaticae
33:1-27, 1998.

2. R. BagnaraData-flow Analysis for Constraint Logic-based LanguadgekD thesis, Univer-
sita di Pisa, 1997. TD-1/97.

3. F. Benoy and A. King. Inferring Argument Size Relatioqshivith CLPR). In J. Gal-
lagher, editorlogic Program Synthesis and Transformationlume 1207 of_ecture Notes
in Computer Scien¢gages 204-224. Springer, 1996.

4. A. Bossi, M. Gabbrielli, G. Levi, and M. Martelli. Thesemantics Approach: Theory and
Applications.Journal of Logic Programmingl9-20:149-197, 1994.

5. P. Cousot and R. Cousot. Comparing the Galois ConnectidnVdidening/Narrowing
Approaches to Abstract Interpretation. Technical RepoHENS-92-16, Laboratoire
d’Informatique de I'Ecole Normal Superiéure, 1992.

6. P. Cousot and N. Halbwachs. Automatic Discovery of Regsaamong Variables of a
Program. IrProceedings of the Fifth Annual ACM Symposium on Principi&ogramming
Languagespages 84-97, 1978.

7. H.Harvey, P. J. Stuckey, and A. Borning. Compiling CaaisitrSolving Using Projection. In
Proceedings of Principles and Practice of Constraint Peogming volume 1330 of_ecture
Notes in Computer Scienggages 491-505. Springer, 1997.

. R. N. Horspool. Analyzing List Usage in Prolog Code. Unsity of Victoria, 1990.

9. J. M. Howe and A. King. A Semantic Basis for Specialisingriain Constraints. Technical
Report 21-99, University of Kent, 1999.

10. T. Huynh, C. Lassez, and J.-L. Lassez. Practical IssuéiseoProjection of Polyhedral Sets.
Annals of Mathematics and Artificial Intelligend&295-316, 1992.

11. J. Jaffar and J.-L. Lassez. Constraint Logic ProgrargmimProceedings of the Symposium
on Principles of Programming Languaggmges 111-119. ACM Press, 1987.

12. J. Jaffar and M. J. Maher. Constraint Logic Programmixdurvey. Journal of Logic
Programming 19-20:503-582, 1994.

13. K. Marriot and P. J. StuckeProgramming With ConstraintdMIT Press, Cambridge, MA.,
1998.

14. K. Marriott and P. J. Stuckey. The 3 R’s of Optimizing Ciogisit Logic Programs: Refine-
ment, Removal and Reordering. Rroceedings of the Twentieth Annual ACM Symposium
on Principles of Programming Languaggmges 334-344. ACM Press, 1993.

15. J. C. Martin. Judgement Day: Terminating Logic Program$hD thesis, University of
Southampton, 1999.

16. J. C. Martin and A. King. Generating Efficient, TermingtlLogic Programs. IProceedings
of the Seventh International Joint Conference on TheoryRuadtice of Software Develop-
ment volume 1214 ofLecture Notes in Computer Sciengmges 273-284, Lille, France,
1997. Springer.

17. E. Monfroy. An Environment for Designing/Executing Gtraint Solver Collaborations.
Electronic Notes in Theoretical Computer Scient#(1), 1998.

18. K. G. Murty. Linear Programming Wiley, 1983.

19. W. Pugh. The Omega Test: a Fast and Practical Integerda®noging Algorithm for Depen-
dency AnalysisCommunications of the ACNdages 102—-114, August 1992.

oo

20. R. Rodgek and M. Wallace. A Generic Model and Hybrid Algorithm fooikt Scheduling
Problems. IrProceedings of the 4th International Conference on Priats@and Practice of
Constraint Programmingvolume 1520 ofLecture Notes in Computer Sciengages 385—

399. Springer, 1998.
21. A.van Gelder. Deriving Constraints Amongst ArgumergeSiin Logic ProgramsAnnals

of Mathematics and Artificial Intelligen¢8(2-4), 1991.

