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Abstra
tIn previous papers we have proposed an elementary dis
ipline of strong fun
tional pro-gramming (ESFP), in whi
h all 
omputations terminate. A key feature of the dis
ipline isthat we introdu
e a type distin
tion between data whi
h is known to be �nite, and 
odatawhi
h is (potentially) in�nite. To ensure termination, re
ursion over data must be well-founded, and 
ore
ursion (the de�nition s
hema for 
odata) must be produ
tive, and bothof these restri
tions must be enfor
ed automati
ally by the 
ompiler. In our previous workwe used abstra
t interpretation to establish the produ
tivity of 
ore
ursive de�nitions inan elementary strong fun
tional language. We show here that similar ideas 
an be appliedin the dual 
ase to 
he
k whether re
ursive fun
tion de�nitions are strongly normalising.We thus exhibit a powerful termination analysis te
hnique whi
h we demonstrate 
an beextended to partial fun
tions.
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UKC Computing Laboratory TR 2-00 51 Introdu
tionWe are interested in the development of an Elementary Strong Fun
tional Programming(ESFP) system. That is, we wish to exhibit a language that has the strong normalization(every program terminates) and Chur
h-Rosser (all redu
tion strategies 
onverge) proper-ties whilst avoiding the 
omplexities (su
h as dependent types, 
omputationally irrelevantproof obje
ts) of Martin-L�of's type theory [20℄. We would like our language to have a typesystem straightforwardly based on that of Hindley-Milner [22℄ and to be similar in usageto a language su
h as Miranda1 [35℄. The full 
ase for su
h a language is set out in [36℄but we re
ap its main potential bene�ts here:� Su
h a language will allow both dire
t equational reasoning and simple indu
tionprin
iples | we do not have to worry about unde�ned elements when verifyingproperties.� There is no di
hotomy between lazy and stri
t evaluation as we shall have the Chur
h-Rosser property and strong normalisation. This means that we have evaluation trans-paren
y, or what may be termed true referential transparen
y. We believe that thishas the added bene�ts of making program optimisation, debugging and parallelisa-tion easier to a
hieve.� Sin
e it does not have the 
omplexities of type theory it is suÆ
iently elementary tobe used for programming at the undergraduate level. Moreover, it is more satisfa
toryfrom the pedagogi
al point of view: typi
ally undergraduates are given step-by-stepevaluations to perform whi
h are done stri
tly in the re
ursive 
ase, even in a lazylanguage su
h as Haskell (see [28℄). Then, in�nite stru
tures, with the same syntaxand types, are evaluated lazily.In ESFP we make a 
lear distin
tion between data (�nite stru
tures | initial algebras)and 
odata (in�nite stru
tures | �nal 
oalgebras). We have des
ribed the 
hara
teristi
sof the latter in [31℄ and have extended synta
ti
 
he
ks devised by Coquand [6℄ in TypeTheory, and Gim�enez [17℄, in the Cal
ulus of (Indu
tive) Constru
tions, to 
he
k whether
ore
ursive de�nitions are well-formed. Our analysis, used the idea of guardedness (i.e.that 
ore
ursive o

urren
es only o

ur beneath 
onstru
tors), �rst proposed by Milner inthe area of pro
ess algebras [23℄.In this paper we apply the dual ideas to the dual stru
tures, data. This extendsthe Gim�enez work [17℄ in the area of re
ursion. In parti
ular, our analysis allows somenon-primitive re
ursive algorithms whi
h has been a
hieved by formulating a size des
entdete
tion algorithm as an abstra
t interpretation. The key point of using the abstra
tinterpretation method is that it allows us to determine the level of destru
tion of an a
tualparameter when a fun
tion is applied within a re
ursive 
all.We also extend our analysis to 
ope with partial fun
tions using a simple subtypingme
hanism. Furthermore, this extension allows a wider 
lass of total algorithms to be1Miranda is a trademark of Resear
h Software Limited.



6 A Hierar
hy of Languages with Strong Termination Propertiesa

epted. As an illustration of the power of our analysis, we show how it 
an a

eptEu
lid's g
d algorithm, whi
h is unde�ned for two zero inputs.This subtyping me
hanism is itself extended using proje
tion sequen
es so that we 
anshow that the standard de�nition of mergeSort terminates. The proje
tion sequen
e me
h-anism also enables us to a

ept programs that are de�ned re
ursively on nested indu
tivetypes. Whilst it is naturally unde
idable whether a re
ursive fun
tion is well-de�ned, theextension to guardedness that we present here makes programming more straightforwardin a strongly normalizing fun
tional language. We also suggest that our work may besuitable as an enhan
ement to the algorithm for re
ognising strongly normalising re
ursiveforms in the Coq system [5℄.Overview of this Paper. In x 2 we de�ne our EFP language whi
h may be seen asthe rudimentary heart of any fun
tional programming system. We then present a semanti
property, 
onstru
ted from standard termination theory, that guarantees termination of anEFP program in x 3. This termination 
ondition then serves as the basis for the abstra
tinterpretation-based analysis that we develop in x 4. This analysis is strong enough toshow that both A
kerman's fun
tion and the standard, naive de�nition of qui
ksort bothterminate. We then, in x 5, seek to broaden the 
lass of algorithms permitted within thelanguage by introdu
ing a simple subtyping me
hanism that allows 
ertain partial fun
tionsprovided that they are applied to terms of the 
orre
t subtypes. To 
ope with nestedindu
tive types and the asso
iated s
hemes of re
ursion we develop the analysis given inx 6. This method, using proje
tion sequen
es, is then developed further in x 7 to produ
ea more sophisti
ated subtyping me
hanism whi
h allows the subtypes of substru
tures tobe 
aptured, thus widening further the 
lass of ESFP programs. In x 8 we dis
uss howthe analysis developed 
an be pla
ed within a general analysis framework whi
h may beparameterised by the redu
tion semanti
s of the language and hen
e the idea of normalform. This means that our analysis 
an be extended to show not only the termination ofprograms to weak normal form (the standard for stri
t fun
tional languages) but also 
anshow termination to (strong) normal form, in
luding redu
tions under lambdas. Finally,in x 9 we dis
uss related work and in x 10 we 
on
lude.2 An ESFP LanguageWe now present the 
hara
teristi
s of types and terms in an ESFP language. We shall referto the language that we des
ribe below, whi
h 
onsists of the 
ore of languages su
h asMiranda or Haskell together with some basi
 synta
ti
 restri
tions, as our basi
 elementaryfun
tional programming language whi
h we shall 
all EFP. Our full ESFP language will
onsist of this basi
 language together with an augmentation to the type-
he
king systemwhi
h ensures that a program will terminate.



UKC Computing Laboratory TR 2-00 72.1 Data and CodataFirstly, in our basi
 EFP language, we make a distin
tion between data (�nite stru
tures ofindu
tive types) and 
odata (in�nite stru
tures of 
oindu
tive types). The reason for doingthis is that fun
tions a
ting upon data should perform a 
omputation whilst re
ursivelydes
ending through a stru
ture whilst those produ
ing 
odata will be building a stru
ture,possibly using some inputs. The semanti
 issues for in�nite data stru
tures, in whi
hwe explain what it means for 
odata fun
tions to be produ
tive and Chur
h-Rosser, areexplored further in [32℄.2.2 TypesAlgebrai
 data type de�nitions are basi
ally as they appear in Haskell and ea
h type
onstru
tor should o

ur only on
e in all the type de�nitions. In our abstra
t syntax, ea
htype 
onstru
tor is labelled Ci, where i is a natural number. There are the following addedrestri
tions on algebrai
 type de�nitions:1. Only stri
tly positive o

urren
es are allowed in the indu
tive de�nition of types.This means that in the de�nition of a type, T , say, T may not o

ur within thedomain of any fun
tion spa
e in the de�nition of T . For example, the followingwould not be allowed:data ilist def= C (ilist �! Int)2. T may not be de�ned via polymorphi
 type U where T o

urs as an instantiationof U . For example, we would not allow rosetrees whi
h 
an be given the followingde�nition:data Rosetree a def= Leaf a jNode [Rosetree a℄3. T may not be de�ned via a type U whi
h is transitively de�ned using T .4. T must have a base 
ase i.e. one with no re
ursive o

urren
es of T .We use the standard notion of ground types i.e. types whi
h do not 
ontain in their de�-nition any fun
tion types.2.3 ExpressionsDe�nition 2.1 The synta
ti
 domains of our EFP language are as follows:D De�nitionsF Fun
tion namesH Fun
tion parameter namesC Constru
torsM Pattern variablesG PatternsE Expressions
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Syntax d 2 D fi 2 Fxi;j 2 H ei 2 ECi 2 C pi 2 Gvi;r 2 Md ::= fi def= �xi;1 : : : xi;n:eie ::= xi;j j fi jCi e1 : : : er j e1e2 j 
ase es of hp1; e1i : : : hpr; erip ::= Ci vi;1 : : : vi;rOperational Semanti
sxi;j 2 Dom(Env(E)) Env(E)(xi;j)�Env(E) 
xi;j �Env(E) 
 (V ars)8i 2 f1 : : : (j � 1)g:nf(ei) ej �Env(E) 
j (nf(
j))Cie1 : : : er �Env(E) Cie1 : : : ej�1
jej+1 : : : er (Constr)fi def= �xi;1 : : : xi;n:Eifi �Env(E) �xi;1 : : : xi;n:Ei (Fun
) e1 �Env(E) �x:e; e2 �Env(E) 
 (nf(
))e1e2 �Env(E) e[
=x℄ (Appl)(91i:es �Env(E) Ciei;1 : : : ei;n) (pi � Civi;1 : : : vi;n);8j:ei;j �Env(E) 
i;j (nf(
i;j))
ase es of hp1; e1i : : : hpr; eri�Env(E) ei[
i;1=vi;1 : : : 
i;n=vi;n℄ (Case)Table 1: The Syntax and Semanti
s of Data in EFP



UKC Computing Laboratory TR 2-00 9De�nition 2.2 The abstra
t syntax and appli
ative order operational semanti
sof data within our language is given in Table 1.Normal forms within the language are either lambda abstra
tions or 
onstru
tor ex-pressions of the form Ci
i;1 : : : 
i;r where all the 
i;j are in normal form. The fa
t that anexpression 
 is in normal form is denoted nf(
).The set of normal forms of expressions of the language (i.e. the values of the system)is denoted V. This set in
ludes, ?, the unde�ned value.The set of algebrai
 values of the basi
 EFP language is denoted VA and 
onsistsof the subset of V that are of algebrai
 type. This in
ludes ?, the unde�ned value.The redu
tion relation, �Env(E), is a \big-step" one, relative to the environment Env(E)whi
h binds 
losed expressions to free variables.In order to help ensure termination, we stipulate that 
ase expressions must be ex-haustive over the patterns of the type:De�nition 2.3 A 
ase expression, of the form, 
asesofhp1; e1i : : : hpr; eni is exhaustiveover the patterns (of the type of s) i� for every 
onstru
tor of the type of s o

urs within atthe head of the patterns, pi. Furthermore, patterns nested within a pattern must themselvesbe representable as exhaustive 
ase expressions upon a simple variable.De�nition 2.4 The typing system for basi
 EFP expressions is that of Hindley-Milner[22℄. As in languages su
h as Miranda and Haskell, the same 
onstru
tors that appear intype de�nitions appear in the same form within expressions in the language.We use T(e) to denote the type of expression e and Unify(e1; e2) to indi
ate that thetypes of expressions e1 and e2 unify.De�nition 2.5 A s
ript, S, 
onsists of a set of fun
tion de�nitions, fi (where i is aninteger) from the synta
ti
 domain of fun
tion names, F. The indi
es of F form a set, ISf.Ea
h fun
tion fi has formal parameters labelled xi;1; xi;2 : : :.We use Ar(fi) to denote the arity of fun
tion fi. That is, the variable index set,ISfi, of a fun
tion fi 
onsists of (i; j) pairs where 0 � j � Ar(fi). FT(e) is used to indi
atethat an expression is of non-ground type.Note in the above that 0 is always in
luded in this set, even though (i; 0) does not label anyvariable in the s
ript. This, as we shall see in x 4, is be
ause we need to �nd the 
ontributionmade by 
onstant i.e. non-variable fa
tors to the semanti
 size of an expression.Additional assumptions. Pattern mat
hing over an input to a fun
tion will be takento mean the appli
ation of a 
ase expression to an input. We shall use Haskell-style syntaxfor formal parameters and patterns. Furthermore, nested patterns will be unsugared asnested 
ase expressions. We also assume that super-
ombinator abstra
tion (in
ludinglambda lifting) has been applied to the original program so that we simply have a set oftop-level de�nitions and that there are no de�nitions by partial appli
ation. This meansthat we 
an 
ope with where de�nitions in our programs. Finally, we assume that, dueto the standard isomorphism, A� B �! T � A �! B �! T , un
urried programs aretranslated into their 
urried equivalents.



10 A Hierar
hy of Languages with Strong Termination PropertiesTermination and redu
tion sequen
e. Note that we have spe
i�ed an appli
ativeorder redu
tion sequen
e in whi
h expressions are redu
ed to weak normal form [29℄, whi
his similar to the redu
tion strategy and notion of normal form used in stri
t fun
tionallanguages su
h as SML [24℄. This does not mean that ESFP programs must be evaluatedstri
tly: we simply use this redu
tion strategy for data to demonstrate that our analysis willensure termination in this 
ase, hen
e guaranteeing strong normalisation. The fa
t that weonly redu
e as far as weak normal form is also unproblemati
al sin
e we assume that lambdaabstra
tions only o

ur as part of top-level de�nitions. Thus the system we shall presentwill, in fa
t, ensure termination in a suitable subset of all 
urrent fun
tional programmingsystems su
h as Haskell and SML. We shall show in x 8 how this 
an be generalised furtherso that strong normalisation will be ensured i.e. programs will terminate even if redu
tionsunder lambda abstra
tions are allowed.2.4 EFPIn the light of the above des
ription, we are now in a position to give the de�nition of ourbasi
 language.De�nition 2.6 The elementary fun
tional programming language, written EFP,
onsists of a fun
tional programming language where1. Data and 
odata and 
onsequently re
ursive and 
o-re
ursive fun
tions are synta
ti-
ally separate, as in x 2.1.2. The syntax of types obeys that of x 2.2.3. The syntax and semanti
s of the expressions and types of expressions obeys that givenin x 2.3, in
luding Defns 2.1 { 2.5.We write A

ept(S;EFP) to denote the fa
t that a s
ript, S, meets the above 
onditionsfor EFP.3 A Semanti
 Termination ConditionWe now exhibit a termination 
ondition based upon abstra
ting the sizes of terms inthe EFP language. The termination 
ondition is based upon a semanti
, unde
idableproperty of a
tual parameter expressions. The property is, basi
ally, that there is somewell-founded des
ent upon some lexi
ographi
 ordering of the arguments for any re
ursive
all of the fun
tion. The fa
t that well-founded des
ent upon one argument will ensuretermination will mean that termination will be guaranteed in the lexi
ographi
 
ase forseveral arguments, as is dis
ussed in [2℄. We shall 
all this the monotoni
 des
ent property.The termination analysis that we shall develop in later se
tions will be a safe approximationto this 
ondition.



UKC Computing Laboratory TR 2-00 113.1 The Monotoni
 Des
ent PropertyDe�nition 3.1 The re
ursive sub-
omponents of a 
losed algebrai
 expression e, isde�ned asRe
(e) 4=� Si=ri=1UnifySub(ei; e) if e� Cj e1 : : : erfg otherwiseHere, UnifySub(e1; e2) denotes the re
ursive sub-
omponents of e1 that unify with e2:-UnifySub(ei; e2) 4=( fe1g if Unify(e1:e2)Sii=1 = sUnifySub(ei; e2) if e� Cj e1 : : : erfg otherwiseDe�nition 3.2 The size of a 
losed expression2, e, is de�ned as follows:� If e is not an algebrai
 type or if e does not have a normal form then jej = !.� If e is of algebrai
 type and normalises then,jej 4=� 0 if Re
(e) = fg1 +Pe02Re
(e) je0j otherwiseIn produ
ing a 
ondition for strong normalisation, we need to distinguish between ea
h
all of a fun
tion in the program text and, in addition, ea
h 
all within the evaluation ofa fun
tion upon some arguments.De�nition 3.3 Let P be a program i.e. a set of fun
tion de�nitions. Within P there are�nitely many 
alls of ea
h fun
tion, f , whi
h we 
an label with positive integers to getlabelled 
alls of the form fk. We 
all k a stati
 label.Similarly, there are 
ountably many re
ursive 
alls of ea
h fk that o

ur in the redu
tionpath of some initial expression, f t1 : : : tn. We label these, fk;1; fk;2 : : :The arguments of ea
h fk;i will be labelled ek;i1 : : : ek;in .The above labelling enables us to give a 
hara
terisation of the distin
t (in terms of pointsin the program text) re
ursive 
alls of a fun
tion that are en
ountered during an evaluation.De�nition 3.4 Let Calls(f t1 : : : tn) be the set of stati
 label-distin
t 
alls of f that areredexes within an appli
ative-order redu
tion of f t1 : : : tn where t1 : : : tn are 
losed terms.De�nition 3.5 The jth argument of a fun
tion f is termed monotoni
 des
ending forF � Calls(f t1 : : : tn), written MonDes
(f; j; F ), i�(8k:8i:jek;ij j � jtjj) ^ (9fm 2 F:8i:jem;ij j < jtjj)2We 
an also give the size of an open expression, when evaluating with respe
t to an environmentEnv(E), and denote this jejEnv(E)
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hy of Languages with Strong Termination PropertiesDe�nition 3.6 Let f be a fun
tion de�ned on n arguments and let F � Calls(f t1 : : : tn)(where t1 : : : tn are 
losed terms that are well-typed but otherwise arbitrary).Then f has the monotoni
 des
ent property (written MDP(f; F )) i� F � fg _(9j:MonDes
(f; j; F ) ^ MDP(f; F 0)). Here, F 0 � FnFdes
j and Fdes
j 4= ffk j fk 2 F ^8i:jek;ij j < jtjjgThe above says that there must be some argument, j, of f whi
h is both des
ending atsome re
ursive 
all point in the program and, moreover, must not be as
ending at anyother re
ursive 
all point. Furthermore, f must have the monotoni
 des
ent property atall re
ursive 
all points where j is not des
ending.3.2 Termination Theorem for MDPIn this se
tion we state and prove that the monotoni
 des
ent property, 
oupled withexhaustive 
ase expressions, ensures termination under the operational semanti
s of EFP.We �rst show that there 
annot be in�nitely many 
alls that des
end on an argumentif that argument does not as
end.Lemma 3.1 Suppose that a fun
tion f has a des
ending argument, j, on F � Calls(f t1 : : : tn)for some t1 : : : tn. Let S = maxfr2F des
j I(f r; t1 : : : tn) where F des
j is as given in the de�ni-tion of the monotoni
 des
ent property (Defn. 3.6) and I(f r; t1 : : : tn) is the ordinal numberof times that f r o

urs within the evaluation of f t1 : : : tn.Then S � jtjjProof. By indu
tion on jtjj.Base 
ase (where jtjj = 0)In this 
ase there 
annot be any 
alls of any f r 2 F des
j sin
e then by de�nition thenjer;ij < jtjj = 0, whi
h 
ontradi
ts our de�nition of size.Indu
tive 
ase (where jtjj > 0)If f t1 : : : tn � E(fr;1 er;11 : : : er;1n ) where f r 2 F des
j then, due to the des
ending argu-ment property, jer;1j j < jtjj. Thus, by the indu
tion hypothesis (for jer;1j j), there areat most jer;1j j 
alls of f r in f er;11 : : : er;1n Consequently, there are at most jtjj 
alls ofany f r.We thus obtain our termination theorem.Theorem 3.1 Suppose the following about the de�nition of a fun
tion f of arity n:� f is de�ned a

ording to the rules of EFP.� Apart from re
ursive 
alls of f (whi
h may indire
tly o

ur in fun
tions 
alled by f),the de�nition of f 
omprises only 
onstants and fun
tions whi
h terminate under theoperational semanti
s of EFP.
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 des
ent property.Then f terminates on all inputs, t1 : : : tn, following the operational semanti
s of EFP givenin Table 1.Proof. By indu
tion on the number of elements in F � Calls(f t1 : : : tn).Base 
ase (where Calls(f t1 : : : tn) = fg)In this 
ase there are no re
ursive 
alls. It follows that sin
e all other expressions areSN and 
ase expressions are exhaustive, f must also be SN .Indu
tive 
aseMDP(f; F ) implies that there exists a des
ending argument of f , j, say. By Lemma 3.1there are at most jtjj 
alls of any f r 2 F des
j . Consequently, in the redu
tion se-quen
e of f t1 : : : tn, there must be an ith 
all in of some f r 2 F des
j su
h thatCalls(f er;i1 : : : er;in ) \ F des
j = fg. Sin
e f has the monotoni
 des
ent property on anyinputs, it must have the monotoni
 des
ent property on Calls(f er;i1 : : : er;in ). Thus asthe number of elements in Calls(f er;i1 : : : er;in ) is less than the number of elements inCalls(f t1 : : : tn), it follows by indu
tion that f er;i1 : : : er;in is terminating and 
onse-quently f t1 : : : tn is terminating.3.3 Example of a fun
tion with the MDPWe now show that A
kerman's fun
tion has the MDP.Example 3.1 A
kerman's fun
tion, a
k is de�ned as follows:a
k mn def=
asemof0! n+ 1(Su

m0)!
ase nof0! a
k m0 1(Su

 n0)! a
k m0 (a
k mn0)We 
an argue that A
kerman's fun
tion has the MDP as follows: Note that if the �rstinput, m, is 0 then the MDP holds trivially. Otherwise, there are three re
ursive 
alls of a
k ,a
k m0 1, a
k m0 (a
k mn0) and a
k mn0 whi
h are labelled as a
k1, a
k2 and a
k3, respe
tively.Then, for arbitrary inputs m and n, MonDes
(a
k ; 1;Calls(a
k mn)) (where, if m > 0,Calls(a
k mn) = fa
k1; a
k2; a
k 3g) sin
e in a
k1 and a
k2, jm0j < jmj whilst in a
k3, jmj = jmj.It also follows that MonDes
(a
k ; 2; fa
k 3g) sin
e in a
k3, jn0j < jnj.Hen
e, it follows that a
k has the monotoni
 des
ent property. 3
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hy of Languages with Strong Termination Properties4 Termination Analysis By Abstra
t InterpretationIn this se
tion we de�ne an abstra
t interpretation3 to dete
t whether a re
ursive fun
tionde�nition has the monotoni
 des
ent property.We assume to start with that we do not have any nested or mutually indu
tive types.This means that where E � Cie1 : : : er,Re
(E) = fei jUnify(ei; E)gObviously, this set is de
idable. In Se
t. 6 we shall see how the analysis may be extendedto en
ompass nested indu
tive types.4.1 Stati
 semanti
sStarting from our basi
, operational semanti
s we wish to obtain a series of abstra
t ap-proximations to the idea of size of an expression and its size relative to a given parameter.Ea
h su

essive approximation will be an abstra
t semanti
s of the pre
eding 
on
retesemanti
s. Following the Cousots' approa
h [11℄, we wish to obtain an adjoint relation-ship between ea
h abstra
t and 
on
rete semanti
s. The maps, are abstra
tion, denoted�, whi
h maps from a 
on
rete to an abstra
t semanti
s, and 
on
retisation, denoted 
,mapping in the opposite dire
tion. To do so, we need to de�ne a stati
 semanti
s basedupon our operational semanti
s. This will form our initial 
on
rete semanti
s.De�nition 4.1 The set of semanti
 properties of our basi
 ESFP language, denoted Pis de�ned as P 4= }(V),The set of algebrai
 semanti
 properties of our basi
 ESFP language, denoted PAis de�ned as PA 4= }(VA ).De�nition 4.2 The stati
 semanti
s of basi
 ESFP expressions, O [[ � ℄℄ 2 E�Env(E ) 7!P is de�ned as follows: O [[ e ℄℄Env(E) 4= f� 
 if (e�Env(E) 
) ^ nf(
)? otherwise g4.2 Relative size semanti
sWe require that the sizes of expressions are in fa
t relative to some given input.De�nition 4.3 The relative size domain, R, is the 
omplete latti
e, Z[f!;�!g (where> = ! and ? = !), with lub operator max and the following additive and multipli
ativeoperations:! + s = s+ ! = ! �! � s = s � �! = �!�! + s = s+ (�!) = s s1 � s2 = s1 + s2 (s1; s2 2 Rnf�!g)s1 + s2 = s1 +Z s2 (s1; s2 2 Z) s1 � s2 = s1 + (�s2)De�nition 4.4 The relative size semanti
s of an expression, e, with respe
t to a pa-rameter x, is de�ned as: R [[ e ℄℄x 4=maxf�Env(E):jejEnv(E) � jEnv(E)(x)jg3See [8℄ for an overview of abstra
t interpretation.
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t Expression DomainDe�nition 4.5 The set of all type-
orre
t substitution instan
es of expressions, de-noted E s is de�ned as:E s 4= fe[a=x℄ j e 2 E ; 8i:ai 2 E s ;Unify(xi; ai)gDe�nition 4.6 The abstra
t expression domain, denoted E, 
onsists of the powersetof all type-
orre
t substitution instan
es of expressions i.e. E 4= }(E s) We denote the topof this 
omplete latti
e by >E.De�nition 4.7 The domain of pattern variable expression environments, M, 
on-sists of fun
tions binding pattern mat
hing variables to elements of E i.e. M 4= M 7! ENote that in the above, E is an in�nite 
omplete latti
e. In order to ensure that the
losure analysis 
al
ulation terminates we need to introdu
e approximations to the standardnotion of expression substitution. These approximations are an example of a widening, ate
hnique introdu
ed and shown to be sound by the Cousots [12℄.De�nition 4.8 The abstra
t expression substitution of an abstra
t expression, b fora variable x within an abstra
t expression a, denoted a[b =E x℄, is de�ned via standardexpression substitution thus:>E[b =E x℄ 4= >Efeg[>E =E x℄ 4= � >E if x 2 FV(e)feg otherwisefe1g[fe2 =E x℄ 4= fe1[e2 =E x℄gWe 
an de�ne a series of su
h substitutions, a[b1 =E x1 : : : br =E xr℄, also in an analogousway to that for standard substitution.In parti
ular, we need to approximate in the 
ase where we may be substituting expres-sions involving the parameters of a fun
tion for those parameters. The de�nition of ap-proximation that we introdu
e below prevents an in�nite growth in the size of substitutedexpressions.De�nition 4.9 The approximation of b with respe
t to x, where b is a ve
tor ofabstra
t expressions, is de�ned as, Apx(b;x) 4= b0 whereb0i 4=( >E if bi = >E>E if bi = feig ^ 9j:j 6= i ^ xj 2 FV(ei)feig bi = feigWe 
an use the above de�nition in order to 
onstru
t simultaneous substitutions overabstra
t expressions.
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hy of Languages with Strong Termination PropertiesDe�nition 4.10 The simultaneous substitution of a ve
tor b of abstra
t expressionsfor a ve
tor x of formal parameters within a ve
tor of abstra
t expressions, a, de�ned as,a[b =E x℄ 4= a0 where a0i = ai[b01 =E x1 : : : b0jxj =E xjxj℄ and b0 = Apx(b;x).Similarly we de�ne substitutions of abstra
t expression environments within an abstra
texpression as follows: bj[�℄ is the simultaneous E substitution, bj[�(x)=x℄x2FV(bj)^x2Dom(�).Likewise, we may substitute within an abstra
t expression environment, whi
h we denoteas �[b=xi℄4.4 Closure AnalysisWe now des
ribe an auxiliary analysis that allows us to abstra
t higher-order appli
ations.This 
losure analysis, whi
h is based on that given devised by Palsberg, Bondorf and Sesto�[18, 26℄, takes an appli
ation, F a and produ
es a set of triples of the form (fi;a; �), wherefi is a fun
tion label, a is an a
tual parameter sequen
e and � is an environment bindingexpressions to pattern mat
hing variables. We shall see that the latter is ne
essary inorder to determine whether a redu
tion in the size of an argument to a re
ursive 
all haso

urred. Furthermore, Ar(fi) � jaj, where jaj is the length of a i.e. we ensure that ea
ha
tual parameter 
an be bound to some formal parameter of a fun
tion.We �rst need to de�ne the abstra
t domains that 
omprise our 
losure analysis.De�nition 4.11 The abstra
t fun
tion label domain, denoted F, 
onsists of all possiblesingleton sets of fun
tion labels together with the empty set and the set of all fun
tion labels(whi
h is equivalent to F and whi
h we denote here >F) i.e.F 4= ffgg [ fFg [ [fi2FfffiggThe powerset of the produ
t of the above de�nitions then de�nes our abstra
t spa
e of
losures.De�nition 4.12 The abstra
t 
losure domain, C, is de�ned as follows:C 4= }(F� E� �M)where E� denotes �nite sequen
es of elements of E. The top of C is denoted >C.De�nition 4.13 The 
losure analysis semanti
 operator, C 2 E�Env(E)�M�E� 7! C,is de�ned in Table 2.De�nition 4.14 The abstra
t 
losure fun
tion of a fun
tion, fi def= �xi;1 : : : xi;n:ei, isde�ned for a given environment of non-ground expressions �, and a sequen
e of a
tualparameter expressions, a, as fmi �a 4= C [[ ei ℄℄�;fg aAn abstra
t 
losure fun
tion, fmi , produ
es a set of fun
tion, a
tual parameter sequen
epairs where the a
tual parameter expressions are in terms of the formal parameters offi. However, these a
tual parameter expressions need to be transformed into expressionsinvolving the parameters of the 
alling 
ontext.
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C [[x ℄℄�;� a 4= 8>><>>: >� if �(x) = >E _ �(x) = >Ef(fg;a; �)g if �(x) = fgC [[ e ℄℄�;� a if �(x) = feg _ �(x) = feg (1)C [[ fi ℄℄�;� a 4= ( f(ffig;a; �)g if Ar(fi) � jajf(f;e; �0) j (f;d; �) 2 fmi �0 
g otherwise (2)C [[Ct a1 : : : ar ℄℄�;� a 4= i=r[i=1f(f; b; �) j (f; b; �) 2 ei ^ TC(f; b)g (3)C [[ 
ase sof hpr; eri ℄℄�;� a 4= i=r[i=1 C [[ ei ℄℄�;�i a (4)C [[Gd ℄℄�;� a 4= C [[G ℄℄�;� (hfdgi++ a) (5)In (2), if xi are the formal parameters of fi,�0 4= f(xi;j 7! bj[�℄) j j 2 f1 : : :Ar(fi)g;FT(bj)gwhere b 4= ha1 : : : aAr(fi)i, 
 4= haAr(fi)+1 : : : ajaji, e 4= d[b =E xi℄ and �0 4= �[b =E xi℄.In (4), �i 4= (Sj=jpijj=1 BC(pi;j; s; �)) and BC(pi;j ; s; �) 4= �fpi;j := sgIn (3), TC(f; b) indi
ates that f b is a type-
orre
t appli
ation; 8b:TC(>C; b;)Table 2: De�nition of C [[E ℄℄�;� a
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hy of Languages with Strong Termination Properties4.4.1 Corre
tness.Finally, we show that our 
losure analysis is 
orre
t in the sense that it is a superset of the
losures evaluated during 
omputation of an appli
ation.Theorem 4.1 The 
losure analysis is safe in the sense that any appli
ation that would beevaluated in the standard semanti
s is 
aptured by the 
losure analysis.Proof. By indu
tion on the stru
ture of expressions. 24.5 Abstra
t interpretation of relative sizeWe now 
onstru
t an abstra
t interpretation over the expression syntax to approximatethe idea of relative size. We require an abstra
tion that 
an be used to 
ompute anapproximation of the relative size semanti
s of an expression. To do this, we 
al
ulate the
ontribution to the size of an expression made by ea
h formal parameter in the 
urrents
ope. For example, in the expression, 1 + x, the parameter x makes a 
ontribution to thesize of the result. In addition, there is a 
onstant fa
tor, due to literal parts of expressions.In the previous example, there is a 
onstant size fa
tor of 1 as a 
onsequen
e of the literal1.
Ai;j [[x ℄℄�;� 4= 8>>>>><>>>>>: 0 if x � xi;j�! if x � xi;kAi;j [[ t ℄℄�;� � 1 if �(x) = ftg ^Unify(x; t)! otherwise (6)Ai;j [[ fk ℄℄�;� 4= 8<: fak;0 fg if Ar(fk) = 0 ^ j = 0�! otherwise (7)Ai;j [[Ct a1 : : : ar ℄℄�;� 4= 
s(Re
(E); i; j; �; �) (8)Ai;j [[ 
ase sof hpr; eri ℄℄�;� 4= k=rmaxk=1 Ai;j [[ ek ℄℄�;�k (9)Ai;j [[F a ℄℄�;� 4= max fapa(f; i; j;a; �; �) j (f;a; �k) 2 C [[F ℄℄�;� hfagig (10)Table 3: De�nition of Ai;j [[E ℄℄�;�Before giving our full abstra
t interpretation, we must �rst abstra
t the idea of re-
ursive sub-
omponents, as given in Defn 3.1. To start with we shall make a simplifyingassumption, that no nested type de�nitions are allowed. We shall relax this stipulation inSe
t. 6. This means that in this 
ase, we have the following de�nition.
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ursive sub
omponents of an algebrai
 expression isde�ned for our abstra
t interpretation as follows:Re
Abs(Cie1 : : : er) 4= fei jUnify(ei; (Cie1 : : : er))gWe 
an now give a de�nition for our semanti
 operator that is going to abstra
t the ideaof relative size.De�nition 4.16 The relative size analysis operator, A 2 ISfi� E �Env(E)�M 7! R,is de�ned over the stru
ture of expressions in Table 3 with auxiliary de�nitions given inDefns 4.17{4.19. In the de�nition, � is an environment binding fun
tion type expressionsto variables, whilst � is an environment binding pattern-mat
hing variables of algebrai
types to expressions. i is a fun
tion index whilst 0 � j � Ar(fi).De�nition 4.17 We de�ne the 
onstru
tor abstra
t size fun
tion, 
s 2 }(E ) � ISfi �Env(E)�M 7! R, whi
h appears in (8) in Table 3, as follows:
s(fg; i; 0; �; �) 4= 0 (11)
s(fg; i; j; �; �) 4= �! (12)
s(R; i; 0; �; �) 4= 1 + sv (13)
s(R; i; j; �; �) 4= ( ! if 9sk1 ; sk2 2 S:(k1 6= k2) ^ (sk1 > �!) ^ (sk2 > �!)�! if sv = �!1 + sv otherwise (14)In the above,S 4= Map (Ai;j [[ � ℄℄�;�)R (15)sv 4= Xsk2S sk (16)Here Map is the mapping fun
tor, de�ned in the standard way, over sequen
es.De�nition 4.18 The A operator is lifted to the E domain as follows:Ai;j [[>E ℄℄�;� 4= ! (17)Ai;j [[ feg ℄℄�;� 4= Ai;j [[ e ℄℄�;� (18)De�nition 4.19 We de�ne the abstra
t appli
ator for size analysis, apa, whi
h isused in (10) in Table 3, as follows.apa(>F; i; j;a; �; �) 4= ! (19)apa(fg; i; j;a; �; �) 4= ! (20)apa(ffkg; i; j;a; �; �) 4= (fak � aa) + vj (21)In the above, fak 4= [fak;1 �0 : : : fak;Ar(fk) �0℄ and aa 4= [Ai;j [[ a1 ℄℄�;� : : :Ai;j [[ ajaj ℄℄�;�℄.vj 4=� fak;0 �0 if j = 0�! otherwise
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hy of Languages with Strong Termination PropertiesDe�nition 4.20 The relative size abstra
tion of a fun
tion, fi def= �xi;1 : : : xi;n:ei, rel-ative to parameter j, is de�ned for a given environment of non-ground expressions �,as: fai;j � 4= lfp(Fi;j;�)Here, Fi;j;� is the fun
tional de�ned as, Fi;j;�(fai;j �) 4=Ai;j [[ ei ℄℄�;fg. x 4.5.1 details how theleast �xpoints are 
al
ulated. Where there is no ambiguity, we shall write a fun
tionalsimply as F .Performing the abstra
t interpretation with j = 0 gives the 
onstant size fa
tor of theexpression. Ea
h expression thus has Ar(fi) + 1 interpretations under the A operator.Dis
ussion of the A operator. The key 
lauses in the de�nition given in Table 3 are(6) and 
onstru
tor expressions (8) (and Defn 4.17). In the 
ase of variables, the size resultdepends upon whether a mat
h is made with the parameter with respe
t to whi
h we areanalysing. In the 
ase of pattern-mat
hing variables, if the variable is in � it must bea re
ursive sub-
omponent of the value that it is bound to. Otherwise, its relative size
annot be determined and so this must be approximated by !. This re
e
ts the fa
t thatwe 
annot determine, in general, the sizes of data elements of stru
tures.In the 
ase of 
onstru
tors, we have to determine whi
h are the re
ursive sub
omponentsof the expression and take the abstra
t relative sizes of those (see (15) in Defn 4.17).However, if j 6= 0 and the variable xi;j 
ontributes to the abstra
t size of the 
onstru
torexpression more than on
e (through separate subtrees of the 
onstru
tor expression) then !results (see (14)). This is be
ause a multipli
ative fa
tor of relative size has been dete
ted(i.e. the size of the expression is kxi;j where k � 2) whi
h 
annot be a

epted by ouranalysis.As would be expe
ted, if we are �nding the size of an expression, e relative to a variable,xi;j then the result is �! if xi;j does not o

ur in e.Lemma 4.1 Let xi;j be a formal parameter of a fun
tion fi. Then if xi;j does not o

urwithin an expression e, Ai;j [[ e ℄℄�;� = �!.Proof. By a simple stru
tural indu
tion over e. 24.5.1 Determining least �xpoints for size analysis.We form abstra
t size fun
tions whi
h may be re
ursive. We now dis
uss how their �xpointsare 
al
ulated, in view of the fa
t that we have an in�nite 
hain as our abstra
t domain R.Lemma 4.2 The fun
tionals de�ned for the abstra
t size fun
tions are monotoni
 and
ontinuous. That is,8a1; a2 2 R:a1 � a2 ) F (a1) � F (a2)and F (max(a1; a2)) = max(F (a1); F (a2))
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tural indu
tion over fun
tionals whi
h are 
onstru
ted from the max, +, �and � operators, together with 
onstants from the R domain. 2The least �xpoint of ea
h fun
tional instan
e 
orresponding to an abstra
t size fun
tionthus exists and 
an be found by 
omputing the as
ending Kleene 
hain, F r(�!), for 0 � r,where F 0(�!)4=��!, and F r+1(�!)4=F (F r(�!)). Sin
e the abstra
t domain is in�nite,however, 
onvergen
e is not guaranteed within a �nite number of steps. The simple 
hainstru
ture of our domain however ensures the following:Lemma 4.3 Let F be a fun
tional 
orresponding to an abstra
t re
ursion equation formedfrom our abstra
t interpretation of relative sizes. Then either lfp(F ) = F 2(�!) or lfp(F ) =!:Proof. By indu
tion on the stru
ture of fun
tionals. 2Widening of the �xpoint iteration pro
ess. Consequently, we 
an modify our least�xed point iteration method so that if the se
ond iteration is not a �xpoint then ! is givenas the result. This is an example of a widening pro
ess [12℄. Here, the widening 
onsistsof a family of operations that depend upon the iteration, similar to that in [7℄.De�nition 4.21 Let L be a 
omplete latti
e4. Then a widening is a family of operators(indexed over N), 5n 2 L� L 7! L, whi
h meets the following 
onditions:1. 8x; y 2 L; r 2 N :(x v (x5r y)) ^ (y v (x5r y))2. For all in
reasing 
hains, x0 v x1 v : : :, the in
reasing 
hain de�ned by, y0 4=x0; yr+1 4= yr 5r+1 xr+1 is not stri
tly in
reasing.In the above, v is the ordering on L.De�nition 4.22 The upward iteration sequen
e with widening is de�ned as fol-lows:U0 4= ?Ur+1 4= Ur if F (Ur) v Ur4= Ur 5r F (Ur) otherwiseAs shown in [12℄, the upward iteration sequen
e with widening rea
hes a �xpoint within�nitely many steps and, furthermore, is a sound upper approximation of the least �xpointof the fun
tional.We thus de�ne the widening operator for our size analysis.4A
tually, the domain need only be a CPO.



22 A Hierar
hy of Languages with Strong Termination PropertiesDe�nition 4.23 The widening operator for relative size analysis, a5r 2 R�R 7! R,is de�ned as follows:xr a5r yr 4= ! if (r > 3) ^ xr 6= yr4= max(xr; yr) otherwiseLemma 4.4 The a5r operator is a widening operator in the sense of Defn 4.21.Proof. The proof is simply by an examination of the de�nitions. 2De�nition 4.24 The �xpoint 
omputation of the fun
tional asso
iated with ea
h rel-ative size abstra
tion of a fun
tion is de�ned by the upward iteration sequen
e given inDefn 4.22 where the widening operator used is a5r, whi
h was presented in Defn 4.23.Note that in the light of Defn 4.24 and Defn 4.22 we 
ould have shortened the last 
lauseof Defn 4.23 so that simply yr results rather than max(xr; yr).Lemma 4.5 The �xpoint 
omputation given in Defn 4.24 �nds the least �xpoint of therelevant fun
tional and 
omputes it in �nitely many steps.Proof. By Lemma 4.3, Lemma 4.4 and [12℄. 24.5.2 Combining abstra
t size 
omponents.The above has given a method of 
al
ulating the size 
omponent of an expression due toa given parameter or, in the 
ase where j = 0 in the size analysis, due to 
onstant fa
torsother than variables. We now show how we 
ombine the relative size information withrespe
t to all the parameters of a fun
tion and with respe
t to 
onstant fa
tors, to givenan abstra
tion of the total size of an expression relative to a given input.De�nition 4.25 The abstra
t size ve
tor of an expression e, with respe
t to the en-vironments of fun
tion expressions, �, and pattern mat
hing expressions, �, is de�ned asfollows:s(e; i; �; �) 4= 24 Ai;1 [[ e ℄℄�;�...Ai;Ar(fi) [[ e ℄℄�;� 35We need to aggregate the elements of an abstra
t size ve
tor so that the result is greater orequal to the size of the expression relative to one parti
ular parameter. To do this we notethat we 
annot, of 
ourse, determine the value of jEnv(E)(xi;j)j � jEnv(E)(xi;k)j for j 6= kin general. Consequently, if Ai;j [[ e ℄℄�;� is not �! for j 6= k then R [[ e ℄℄xi;k is unknown ingeneral. In su
h a situation we must safely approximate with the ! value, whi
h leads tothe following de�nitions.



UKC Computing Laboratory TR 2-00 23De�nition 4.26 The jth weighting ve
tor is a ve
tor with a 0 in the j position if xi;jis of algebrai
 type. Otherwise, where xi;j is not algebrai
, ! is in the jth position. ! is inall other positions, regardless of their types.De�nition 4.27 The abstra
t interpretation of relative sizes over expressions is de�nedby the 
omponent size semanti
s of an expression, e, with respe
t to a parameter, xi;j:R# [[ e ℄℄i;j 4= �Env(E):(wjs(e; i; fg; fg)) where juxtaposition indi
ates ve
tor produ
t.Theorem 4.2 The 
omponent size semanti
s is a safe approximation of the relative sizesemanti
s.Proof. By stru
tural indu
tion for some expression E and the de�nition of the abstra
tsize ve
tor.4.6 Dete
ting Re
ursive CallsGi[j℄ [[x ℄℄�;� 4= hi (22)Gi[j℄ [[ fk ℄℄�;� 4= 8>><>>: fgk[j℄ fg if Ar(fk) = 0 ^ k 6= jh
i if Ar(fk) = 0 ^ k = jhi otherwise (23)Gi[j℄ [[Ct a1 : : : ar ℄℄�;� 4= k=r℄k=1 ak (24)Gi[j℄ [[ 
ase sof hpr; eri ℄℄�;� 4= ℄(Gi[j℄ [[ s ℄℄�;�; (k=r℄k=1(Gi[j℄ [[ ek ℄℄�;�k))) (25)Gi[j℄ [[F a ℄℄�;� 4= ℄(f 0;a;�0)2C [[F ℄℄�;� hfagi(apg(f ; i; j;a; �0; �0)℄(i=jaj℄i=1 ai))gTable 4: De�nition of Gi[j℄ [[E ℄℄�;�For a fun
tion, fi, we need to perform an analysis of the de�nition of fi whi
h produ
esa representation of all potential re
ursive 
alls. Ea
h re
ursive 
all will be represented bya 
omponent size transformation.De�nition 4.28 The 
onstant fa
tors ve
tor and the variable fa
tors matrix fora sequen
e of expressions, e, and with respe
t to the parameters of fun
tion fi and envi-ronments, � and �, are denoted 
(i; e; �; �) and v(i; e; �; �), respe
tively, and de�ned as



24 A Hierar
hy of Languages with Strong Termination Propertiesfollows:
(i; e; �; �) 4= 24 Ai;0 [[ e1 ℄℄�;�...Ai;0 [[ ejej ℄℄�;� 35v(i; e; �; �) 4= 24 Ai;1 [[ e1 ℄℄�;� : : : Ai;Ar(fi) [[ e1 ℄℄�;�... ...Ai;1 [[ en ℄℄�;� : : : Ai;Ar(fi) [[ en ℄℄�;� 35De�nition 4.29 The 
omponent size transformation (CST) for a sequen
e of ex-pressions, e, and with respe
t to the parameters of fun
tion fi and environments, � and �,is de�ned as a pair of a variable fa
tors matrix and a 
onstant fa
tors ve
tor thus:T(i; e; �; �) 4= (v(i; e; �; �); 
(i; e; �; �))If (V1;k1); (V2;k2) are CSTs then(V1;k1) ? (V2;k2) 4= (V1V2; (V1k2 + k1))if the relevant matrix multipli
ations are de�ned.The set of CSTs is denoted T and >T is the CST with all ! 
omponents.We again use an abstra
t interpretation pro
ess to dis
over all the 
omponent size trans-formations that 
orrespond to the a
tual parameters of a re
ursive 
all of fun
tion fj thatmay be rea
hed by redu
tion from a 
all of fun
tion fi. A sequen
e of CSTs, 
orrespondingto the re
ursive 
alls will be 
omputed by the following operator.De�nition 4.30 The abstra
t 
alls operator, G 2 ISf � ISf � E � Env(E) � M 7! T�,and is de�ned over the stru
ture of expressions in Table 4. In the de�nition, U, denotesthe 
on
atenation of sequen
es of CSTs and other auxiliary de�nitions follow below.De�nition 4.31 We de�ne the abstra
t appli
ator for 
alls analysis, apg 2 F�ISf�ISf � E� �M� Env(E) 7! T� whi
h is used in (26) in Table 4, as followsapg(>F; i; j;a; �; �) 4= h>Ti (26)apg(fg; i; j;a; �; �) 4= hi (27)apg(ffkg; i; j;a; �; �) 4= 8<: hi if (jaj < Ar(fk))hT(i;a; �; �)i if fk � fjUT02fgk[j℄�k(Map (?T(i;a; �; �))T0 if fk 6� fj (28)In the above, Map is the standard mapping fun
tor from the 
ategory of sets to that ofsequen
es and (?T(i;a; �; �)) denotes right transformation multipli
ation.De�nition 4.32 For ea
h fun
tion, there is a family of abstra
t 
alls fun
tions whi
hgive the CSTs for the re
ursive 
alls of fun
tion fj within the de�nition of fun
tion fi:f gi[j℄� 4= lfp(Fi[j℄;�)Here, Fi[j℄;� is the fun
tional de�ned as, Fi[j℄;�(f gi[j℄ �) 4= Gi[j℄ [[ ei ℄℄�;fg. As before, we write Ffor Fi[j℄;� and details of the 
omputation are given in x 4.6.1.
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ussion of the G operator. In the de�nition of G, the signi�
ant 
lause is (26).There a test for a re
ursive 
all is made. Note also that mutual re
ursion is dealt with by
omposing CSTs produ
ed by the re
ursive 
all and the a
tual parameters.As with size analysis, the following holds.Lemma 4.6 Consider fun
tions fi and fj. Then if fj does not o

ur within the de�nition,E, of fi or, transitively, any fun
tion 
alled by fi then, Gi[j℄ [[E ℄℄�;� = hi.Proof. By a simple stru
tural indu
tion over E. 24.6.1 Cal
ulating �xpoints for 
alls analysis.As with size analysis, there is a potential for the 
alls analysis to spawn an in�nite as
endingKleene 
hain during the 
al
ulation of �xpoints. Indeed, sin
e ea
h CST is 
omposed ofelements of R it is a 
onsequen
e of Lemma 4.3 that the 
alls analysis must 
onverge toa �xpoint by the third iteration in the Kleene as
ending 
hain 
omputation or else the�xpoint 
ontains an element of a CST that is TopAR. We 
onsequently de�ne a wideningoperation (see x 4.5.1) to make the 
omputation �nite.De�nition 4.33 The widening operator for 
alls analysis, g5r 2 T� � T� 7! T�,is de�ned as the pointwise appli
ation of a5r a
ross 
orresponding elements in the twosequen
es of CSTs, xr and yr. Where one sequen
e is longer than the other, those CSTsare in
luded in the same positions in the resulting sequen
e.Lemma 4.7 The g5r operator is a widening operator in the sense of Defn 4.21.Proof. The proof is again simply by an examination of the de�nitions. 2De�nition 4.34 The �xpoint 
omputation of the fun
tional asso
iated with ea
h 
allsabstra
tion of a fun
tion is de�ned by the upward iteration sequen
e given in Defn 4.22where the widening operator used is g5r, whi
h was presented in Defn 4.33.Lemma 4.8 The �xpoint 
omputation given in Defn 4.34 �nds the least �xpoint of therelevant fun
tional and 
omputes it in �nitely many steps.Proof. Again, by Lemma 4.3, Lemma 4.7 and [12℄. 24.7 Abstra
t Des
ent PropertyWe are now in a position to present an abstra
t property that will guarantee the terminationof programs with EFP. The main 
on
ept is that, analogously to the monotoni
 des
entproperty, de�ned over Calls(fit1 : : : tn), we may de�ne the abstra
t des
ent propertyover a matrix that represents the sizes of arguments to the re
ursive 
alls of a fun
tion.Firstly, we de�ne a matrix that gives the relative abstra
t sizes of the arguments to allpotential re
ursive 
alls of a given fun
tion.
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hy of Languages with Strong Termination PropertiesDe�nition 4.35 The abstra
t 
alls matrix of re
ursive 
alls of fun
tion fi is de�nedthus: ACM(i) 4= fr j (v; 
) 2 f gi[i℄ fggwhere, if xi;j is an algebrai
 argument, rj 4=wjvj + 
j, wj is the jth weighting ve
tor andvj is the jth 
olumn of v. If xi;j is non-algebrai
 then rj 4= !.Lemma 4.9 Let t1 : : : tAr(fi) be arbitrary inputs to a fun
tion fi. Then there exists abije
tion between ACM(i) and Calls(fi t1 : : : tAr(fi)) where ea
h row of a stru
ture is mappedto the row with the same index in the other. Furthermore, ea
h row of ACM(i) 
orrespondsto the same program point as the 
orresponding row in Calls(fi t1 : : : tAr(fi)) .Proof. This 
an be shown by 
onsdiering program points with respe
t to the de�nitions ofCalls(fi t1 : : : tAr(fi)) and ACM(i). 2De�nition 4.36 The jth argument to fi (i.e. xi;j) is said to be an abstra
tly mono-toni
 des
ending argument, written AMD(xi;j) (or simply AMD(j) where the 
ontext is
lear), if8rk 2 ACM(i):(rk;j � 0) ^ (9d:rd;j < 0)De�nition 4.37 A fun
tion fi has the abstra
t des
ent property, denoted ADP(A),where A � ACM(i), if and only if9j:AMD(j) ^ ADP(A0)where A0 = fre j (re 2 A) ^ (re;j = 0)gLemma 4.10 Let A be the abstra
t 
alls matrix of a fun
tion fi and suppose that fi hasthe abstra
t des
ent property. Then if A0 is an matrix formed by eliminating any numberof rows from A, ADP(A0).Proof. Follows dire
tly from the de�nition. 2The above result means that if the abstra
t des
ent property holds for all re
ursive
alls of a fun
tion then it holds for a subset of those 
alls.Theorem 4.3 A fun
tion fi that has the abstra
t des
ent property has the monotoni
des
ent property.Proof. The proof follows from the safety of the previous 
omponents of the analysis. 2Corollary 4.1 Suppose the following of a fun
tion fi:� fi is de�ned a

ording to the rules of EFP.� Apart from re
ursive 
alls of fi (whi
h may indire
tly o

ur in fun
tions 
alled by fi),the de�nition of fi 
omprises only terminating 
onstants and fun
tions.� fi has the abstra
t des
ent property.Then fi terminates under the EFP redu
tion relation.Proof. By Theorems 3.1 and 4.3. 2



UKC Computing Laboratory TR 2-00 274.8 ESFP0Our analysis, whi
h 
an ensure termination, means that we 
an de�ne an ESFP languagethus:De�nition 4.38 The language ESFP0 
onsists of EFP together with a 
he
k that allde�nitions within a s
ript have the abstra
t des
ent property. That is, for a s
ript, S.A

ept(S;ESFP0) 4() A

ept(S;EFP) ^ 8i 2 ISf :ADP(ACM(fi))4.9 ExamplesWe now show that the above analysis is powerful enough to a

ept A
kerman's fun
tion(whi
h we showed in Ex 3.1 had the monotoni
 des
ent property) and also the standard(naive) de�nition of the qsort fun
tion as being terminating on all type-
orre
t and termi-nating arguments.Example 4.1 [A
kerman's Fun
tion℄ The analysis of A
kerman's fun
tion (de�ned inEx 3.1), whi
h shows that ADP(ACM(a
k)), pro
eeds as follows:We refer to the 
lauses of the outer 
ase expression as E0 and of the inner 
ase expressionas E00.We make the following de�nitions for environments of abstra
t expressions:� = fm0 := fmgg�0 = fm0 := fmg; n0 := fnggWe also need to perform 
losure analysis for the three (re
ursive) appli
ations that o

urwithin the fun
tion de�nition.C [[ a
k m0 ℄℄fg;� hf1gi = C [[ a
k ℄℄fg;� hfm0g; f1gi [By (5)℄= f(fa
kg; hfm0g; f1gi; �)g [(2)℄ (29)C [[ a
k m0 ℄℄fg;�0 hfa
k mn0gi = f(fa
kg; hfm0g; fa
k mn0gi; �0)g [Sim. to (29)℄ (30)C [[ a
k m ℄℄fg;�0 hfn0gi = f(fa
kg; hfmg; fn0gi; �0)g [Sim. to (29)℄ (31)We assume the following abstra
tions of the + operator whi
h has its standard re
ursivede�nition.+a0 fg = 0 [From base 
ase of when 2nd arg is 0℄ (32)+a1 fg = ! [As 1st arg o

urs in result and re
ursion is by 2nd arg℄ (33)+a2 fg = �! [As 2nd arg does not o

ur in the result℄ (34)



28 A Hierar
hy of Languages with Strong Termination PropertiesThe relevant appli
ations of the abstra
t size operator are as follows:Aa
k ;1 [[m0 ℄℄fg;� = Aa
k ;1 [[m ℄℄fg;� � 1 = 0� 1 = �1 [(6)℄(35)Aa
k ;2 [[m0 ℄℄fg;� = Aa
k ;2 [[m ℄℄fg;� = �! [(6)℄(36)Aa
k ;0 [[m0 ℄℄fg;� = Aa
k ;0 [[m ℄℄fg;� = �! [(6)℄(37)Aa
k ;1 [[ 1 ℄℄fg;� = �! [Lemma 4.1℄(38)Aa
k ;2 [[ 1 ℄℄fg;� = �! [Lemma 4.1℄(39)Aa
k ;0 [[ 1 ℄℄fg;� = 1 [(8)℄(40)Aa
k ;1 [[m0 ℄℄fg;�0 = �1 [As (35)℄(41)Aa
k ;2 [[m0 ℄℄fg;�0 = �! [As (36)℄(42)Aa
k ;0 [[m0 ℄℄fg;�0 = �! [As (37)℄(43)Aa
k ;1 [[ a
k mn0 ℄℄fg;�0 = apa(fa
kg; a
k ; 1; hfmg; fn0gi; fg; �0) [(10) and (31)℄= ! [(62) below℄(44)Aa
k ;2 [[ a
k mn0 ℄℄fg;�0 = ! [(63) below℄(45)Aa
k ;0 [[ a
k mn0 ℄℄fg;�0 = �! [(64) below℄(46)Aa
k ;1 [[m ℄℄fg;�0 = 0 [(6)℄(47)Aa
k ;2 [[m ℄℄fg;�0 = �! [(6)℄(48)Aa
k ;0 [[m ℄℄fg;�0 = �! [(6)℄(49)Aa
k ;1 [[n0 ℄℄fg;�0 = �! [(6)℄(50)Aa
k ;2 [[n0 ℄℄fg;�0 = �1 [Sim. to (35)℄(51)Aa
k ;0 [[n0 ℄℄fg;�0 = �! [(6)℄(52)Aa
k ;1 [[n+ 1 ℄℄fg;� = �! [Lemma 4.1℄(53)Aa
k ;2 [[n+ 1 ℄℄fg;� = ! [(33)℄(54)Aa
k ;0 [[n+ 1 ℄℄fg;�0 = 0 [(32) and (34)℄(55)Aa
k ;1 [[ a
k m0 1 ℄℄fg;� = [a
ka1 fg; a
ka2 fg℄ � [�1;�!℄ [(10), (29), (35) and (38)℄= �1 � a
ka1 fg [Mult℄(56)Aa
k ;0 [[ a
k m0 1 ℄℄fg;� = [a
ka1 fg; a
ka2 fg℄ � [�!; 1℄ + a
ka0 fg [(10), (29), (37) and (40)℄= a
ka2 � 1 fg+ a
ka0 fg [Mult℄(57)Aa
k ;0 [[ a
k mn0 ℄℄fg;�0 = [a
ka1 fg; a
ka2 fg℄ � [�!;�!℄ + a
ka0 fg [(10), (49) & (52)℄
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ka0 fg [Mult℄(58)Aa
k ;1 [[ a
k mn0 ℄℄fg;�0 = [a
ka1 fg; a
ka2 fg℄ � [0;�!℄ [(10), (47) & (50)℄= a
ka1 fg � 0 [Mult℄(59)Aa
k ;0 [[ a
k m0 (a
k mn0) ℄℄fg;�0= [a
ka1 fg; a
ka2 fg℄ � [�!; a
ka0 fg℄ [(10), (30), (31), (43), (46) & (58) ℄= a
ka2 fg � a
ka0 fg+ a
ka0 fg [Mult℄ (60)Aa
k ;1 [[ a
k m0 (a
k mn0) ℄℄fg;�0= [a
ka1 fg; a
ka2 fg℄ � [�1; a
ka1 fg � 0℄ [(10), (30), (31), (41), (44) & (59) ℄= (a
ka1 fg � �1) + (a
ka2 fg � (a
ka1 fg � 0)) [Mult℄ (61)We need to 
ompute the following instan
es of the abstra
t size operator:apa(fa
kg; a
k ; 1; hfmg; fn0gi; fg; �0)= [faa
k ;1 fg; faa
k ;2 fg℄ � [0;�!℄ [Defn 4.19, (47) & (50)℄= [faa
k ;1 fg � 0;�!℄ [Mult℄ (62)apa(fa
kg; a
k ; 2; hfmg; fn0gi; fg; �0)= [faa
k ;1 fg; faa
k ;2 fg℄ � [�!;�1℄ [Defn 4.19, (48) & (51)℄= [�!; faa
k ;2 fg � �1℄ [Mult℄ (63)apa(fa
kg; a
k ; 0; hfmg; fn0gi; fg; �0)= [faa
k ;1 fg; faa
k ;2 fg℄ � [�!;�!℄ + faa
k ;0 fg [Defn 4.19, (49) & (52)℄= faa
k ;0 fg [Mult℄ (64)We need to 
ompute the following relative size abstra
tions of the a
k fun
tion:faa
k ;2 fg = lfp(Fa
k ;2;fg) [Defn 4.20℄Fa
k ;2;fg(faa
k ;2 fg) = Aa
k ;2 [[ 
asemofE0 ℄℄fg;fg [Defn 4.20℄= max(!;Aa
k ;2 [[E00 ℄℄fg;�) [(9) and (54)℄= ! [max℄ (65)faa
k ;0 fg = lfp(Fa
k ;0;fg) [Defn 4.20℄Fa
k ;0;fg(faa
k ;0 fg) = Aa
k ;0 [[ 
asemofE0 ℄℄fg;fg [Defn 4.20℄= max(0;Aa
k ;0 [[E00 ℄℄fg;�) [(9) and (55)℄Aa
k ;0 [[E00 ℄℄fg;� = max(Aa
k ;0 [[ a
k m0 1 ℄℄fg;�; [(9)℄
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hy of Languages with Strong Termination PropertiesAa
k ;0 [[ a
k m0 (a
k mn0) ℄℄fg;�0)= max((1 � a
ka2 fg+ a
ka0 fg); [(57) and (60)℄(a
ka1 fg � 0 + a
ka0 fg))lfp(Fa
k ;0;fg) = ! [From (65)℄ (66)faa
k ;1 fg = lfp(Fa
k ;1;fg) [Defn 4.20℄Fa
k ;1;fg(faa
k ;1 fg) = Aa
k ;1 [[ 
asemofE0 ℄℄fg;fg [Defn 4.20℄= max(�!;Aa
k ;1 [[E00 ℄℄fg;�) [(9) and (53)℄Aa
k ;1 [[E00 ℄℄fg;� = max(Aa
k ;1 [[ a
k m0 1 ℄℄fg;�; [(9)℄Aa
k ;1 [[ a
k m0 (a
k mn0) ℄℄fg;�0)= max((�1 � a
ka1 fg); [(56) and (61)℄((a
ka1 fg � �1)+(a
ka2 fg � (a
ka1 fg � 0))))F 1a
k ;0;fg(�!) = �! = F 0a
k ;0;fg(�!) [Mult℄We 
onsequently generate the following CSTs:T(a
k ; a
k m0 1; fg; �) = �h �1 �!�! �! i; h �!1 i� (67)T(a
k ; a
k m0 (a
k mn0); fg; �) = �h �1 �!�! ! i; h �!! i� (68)T(a
k ; a
k mn0; fg; �) = �h 0 �!�! �1 i; h �!�! i� (69)We 
al
ulate the 
alls analysis of a
k as follows:a
kg[a
k ℄ fg = Ga
k [a
k ℄ [[ 
asemof E0 ℄℄fg;fg [Defn 4.32℄= Ga
k [a
k ℄ [[E0 ℄℄fg;fg [Lemma 4.6℄= ℄Ga
k [a
k ℄ [[ a
k m0 1 ℄℄fg;�Ga
k [a
k℄ [[ a
k m0 (a
k mn0) ℄℄fg;�0 [(25)℄= hT(a
k ; a
k m0 1; fg; �);i [(26), (29){(31) & Defn 4.31℄T(a
k ; a
k m0 (a
k mn0); fg; �);T(a
k ; a
k mn0; fg; �) (70)= h(h �1 �!�! �! i; h �!1 i)(h �1 �!�! ! i; h �!! i)(h 0 �!�! �1 i; h �!�! i)iWe �nally have the following result for ACM(a
k ) (an instan
e of Defn 4.35):ACM(a
k) = " �1 1�1 !0 �1 #
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ksort℄ The qui
ksort (qsort) fun
tion is de�ned as follows:y�[℄ ++ z def= zy�(f : r) ++ z def= f : (r ++ z)�lter pm�[℄ def= [℄�lter pm�(h : t)j p h def= h : �lter p tjotherwise def= �lter p tqsort l�[℄ def= [℄qsort l�(a : x) def= s++ [a℄ ++ bwheres def= qsort (�lter (� a)x)b def= qsort (�lter (> a)x)The analysis of qsort pro
eeds as follows: The fa
t that qsort has the abstra
t des
entproperty follows from the following:�ltera2 fp := f(� a)gg = 0�ltera2 fp := f(� a)gg = 0We get also, for the analysis for the list input and 
onstant fa
tors, respe
tively,[!; 0℄ � [�!;�1℄ = �1[!; 0℄ � [�!;�1℄ + 0 = 0Consequently, ACM(qsort) = h �1�1 i. 35 Adding SubtypingAs we have seen, the above analysis is powerful enough to show that qui
ksort terminates.However, the 
lass of fun
tions admitted is still inadequate for the purposes of ESFPsin
e we 
annot, for example, make de�nitions via a head of list fun
tion (or any similarproje
tion) sin
e su
h a fun
tion is only partial. Moreover, the operational behaviour of
ertain total fun
tions depends upon the form of the input e.g. whether the input is greaterthan zero. We would like to have a method of extending the analysis to partial fun
tionsso that there is a well-de�ned sub-domain over whi
h they are total and so that they areonly ever applied over expressions within this sub-domain.



32 A Hierar
hy of Languages with Strong Termination PropertiesTo do this we use a simple notion of subtyping, using sets of 
onstru
tors of an algebrai
type. That is, 
onstru
tor Ci is within the subtype of a if and only if a� Ci e1 : : : eAr(Ci)for some expressions ej.Note that we do not have any notion of subtyping of fun
tions: this is be
ause we arerestri
ting attention to expressions of algebrai
 type.We now pro
eed to give an overview of how the analysis is modi�ed.� Ea
h of the abstra
t semanti
 operator (and 
orrespondingly ea
h abstra
t fun
tion)has extra parameters, representing environments binding subtype sets to variablesof algebrai
 types. Thus the modi�ed operators are, A1i;j [[ i ℄℄��;�e and G1i[j;�j℄ [[ i ℄℄��;�e.In ea
h 
ase, � is an environment of subtypes, whilst in the latter 
ase, �j is theenvironment of subtypes that fj was 
alled with i.e. we no longer mat
h simply onthe fun
tion label but the subtyping environments must mat
h too.� As well as a set of CSTs, our new analyses, modi�ed for subtyping, need to indi
atewhether or not fun
tion appli
ations have been at the 
orre
t subtypes. This 
an bedone by pairing the result with a Boolean 
ag to indi
ate the subtype-
orre
tness ofea
h appli
ation or, as we have 
hosen, to return the top of the CST domain (>T asthe result if a fun
tion does not have the abstra
t des
ent property for the subtypesof the arguments to whi
h it is applied.� The main 
hange, and the point of this method, is at 
ase expressions: instead ofanalysing all possible expressions that may result we only analyse those that mat
hthe subtype of the swit
h expression s. For example,G1i[j;�j℄ [[ 
ase s of hpi; eii ℄℄��;� def= [(G1i[j;�j℄ [[ s ℄℄��;�; (k=r[k=1Gk))where Gk = � G1i[j;�j ℄ [[ ek ℄℄�k�k;� if H(pk) 2 S [[ s ℄℄�k�;�fg otherwiseHere, H(pk) is the head 
onstru
tor of the pattern pk and S [[ s ℄℄�k�;�, whi
h is alsode�ned by abstra
t interpretation, gives an approximation to the subtype of theswit
h, s. �k is formed by adding the possible subtypes of the pattern mat
hingvariables to the environment, �.� Subtype environments need to be partitioned into the possible 
ombinations of sin-gleton sets when a fun
tion is en
ountered. For example, suppose we have the envi-ronment fm :=f0; Sg; n :=fSgg (where 0 and S are the 
onstru
tors for the naturals)then this gives rise to two environments, fm:=f0g; n:=fSgg and fm:=fSg; n:=fSgg.� The weighting ve
tors 
an also be re�ned sin
e, for a base 
ase 
onstru
tor, the sizeof the expression must be 0 whilst for an indu
tive 
ase 
onstru
tor, su
h as Su

 itmust be at least 1. Thus, if a base 
onstru
tor results for a fun
tion then it representssize des
ent from an input xi;j that is assumed to redu
e to an expression with anindu
tive 
ase 
onstru
tor, su
h as Su

.
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tional Language with Expli
itly Unde-�ned ValuesWe extend the algorithms permitted in the system that we are developing by introdu
ingan expli
it unde�ned value error into our language. This is the 
ounterpart of the theerror expressions of Miranda or un
aught ex
eptions in SML whi
h produ
e a runtimeerror together with a diagnosti
. However, the point of the error 
onstru
t is that itindi
ates a 
lause that should never be rea
hed and it is up to the analyser to 
he
k thatit is impossible for the program to evaluate to that program point. In that sense, whenthe termination analysis des
ribed below has been performed to ensure that a fun
tionwill terminate, the error expressions 
orrespond to the abort 
onstru
t that appears inMartin-L�of's type theory | abort expressions only appear so as to adhere to the prin
ipleof 
omplete presentation [33℄.De�nition 5.1 For ea
h type, A, there is an errorA expression that does not have anyasso
iated redu
tion rules. The semanti
s of expressions involving errorA (whi
h we donot give here expli
itly) 
orresponds to the semanti
s of ex
eptions in a stri
t language su
has ML [24℄.Generally, we write error when the 
ontext is 
lear or irrelevant.Consequently, we de�ne a new variant of our EFP language.De�nition 5.2 The EFPe language 
onsists of the EFP language together with the ad-dition of error expressions. If a s
ript, S, meets the 
riteria of EFPe then we writeA

ept(S;EFPe).5.1.1 The abstra
t semanti
s of error.In the abstra
t analyses whi
h follow below x 5.3{5.4 we do not give the abstra
t semanti
sfor the error 
onstru
t sin
e in ea
h 
ase it is the > of the relevant domain. For sizeanalysis (see Defn 5.14), for example, A1i;j [[ error ℄℄��;� 4= !.5.2 The Abstra
t Subtyping DomainDe�nition 5.3 Let T be an algebrai
 type in our basi
 ESFP language. Then the abstra
tsubtyping domain for T , denoted ST , is de�ned as, ST 4=}(CsT ). For non-algebrai
 types,ST is ffgg.We normally write S instead of ST where the type is either 
lear from, or irrelevant to, the
ontext.The 
on
retisation of su
h abstra
t values is straightforward.De�nition 5.4 The 
on
retisation of elements of the abstra
t subtyping domain is de�nedvia the mapping 
ST 2 ST 7! PA , so that for s 2 ST
ST s 4= fv j (v � Civ1 : : : vAr(Ci)); 8j:nf(vj);Ci 2 sg [ f?g
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hy of Languages with Strong Termination PropertiesWe also write Env(S) to mean the environment where ea
h xi;j is bound to elementsof the appropriate subtyping domain. Sin
e su
h environments are used to 
onstrain thedomain over whi
h a fun
tion may terminate, we now de�ne them more fully.De�nition 5.5 A subtyping environment for a fun
tion fi is an environment, �, inwhi
h ea
h xi;j is bound to an element of ST(xi;j).A valid subtyping environment is a subtyping environment, �, in whi
h ea
h xi;jof algebrai
 type is bound to a non-empty value. We write ValidSub(�).De�nition 5.6 Let �1 and �2 be two subtyping environments of fun
tion fi. Then thejoin of �1 and �2, denoted �1 t �2, is de�ned thus:�1 t �2 4= fxi;j 7! �1(xi;j) [ �2(xi;j) j xi;j 2 Dom(�1):gSimilarly the meet, denoted �1 u �2, is de�ned,�1 u �2 4= fxi;j 7! �1(xi;j) \ �2(xi;j) j xi;j 2 Dom(�1):gSin
e we need to determine whether a re
ursive 
all of a fun
tion has been mat
hedwith the 
orre
t subtypes, we need to a
ertain whether a subtyping environment in
ludesthe one we are trying to mat
h.De�nition 5.7 A sub-subtyping environment (often written simply as sub-environmentwhere the meaning is 
lear) of a subtyping environment of a fun
tion fi, �, is a subtypingenvironment, �0, for whi
h, 8j:�0(xi;j) � �(xi;j). We denote the fa
t that � is a sub-subtyping environment by �0 v �.Conversely, we also use the term, super-subtyping environment.If we one environment does in
lude another we still need to perform an analysis on thesubtyping environment that lies outside the interse
tion.De�nition 5.8 The sub-environment di�eren
e between two environments, � and �0,where �0 v �, and denoted ���0 is de�ned as the set di�eren
e upon 
orresponding bindingsin the two environments i.e.�� �0 4= fxi;j 7! �(xi;j)� �0(xi;j)gIn our a
tual analyses we only take one 
onstru
tor per algebrai
 argument in oursubtyping environments and then join the results on ea
h of these sub-environments todetermine the subtyping environment over whi
h the fun
tion is de�ned.De�nition 5.9 Let � be a subtyping environment. Then the singleton partition of �,denoted SP(()�) 
onsists of all the sub-subtyping environments 
ontaining only singletonsets as algebrai
 subtypes.



UKC Computing Laboratory TR 2-00 35S [[x ℄℄��;� 4= ( �(x) if x 2 Dom(�)>S otherwise (71)S [[ fi ℄℄��;� 4= ( f si fg fg if Ar(fi) = 0fg otherwise (72)S [[Ct a1 : : : ar ℄℄��;� 4= fCtg (73)S [[ 
ase sof hpr; eri ℄℄��;� 4= i=n[i=1[fS [[ ei ℄℄��;�i jH(pi) 2 S [[ s ℄℄��;�g (74)S [[F a ℄℄��;� 4= [ ff sk �0 �0 j (fk;a; �0) 2 C1 [[F ℄℄��;� ���haig (75)
Table 5: De�nition of S [[E ℄℄��;�5.3 The Analysis of SubtypesWe now des
ribe an analysis whi
h safely approximates the subtype of any algebrai
 ex-pression within the language. Firstly, we need to de�ne how subtypes mat
h a pattern ina 
ase expression.De�nition 5.10 H(pi) is the head 
onstru
tor of the pattern pi and is de�ned asH(Ct a1 : : : ar) 4= Ct.De�nition 5.11 The analysis of subtypes operator, S 2 E � Env(E) � Env(S) 7! S,is presented in Table 5.5.4 Modi�ed Termination AnalysesWe now give de�nitions that are analagous to those in x 4.5.4.1 Closure analysis with subtyping.De�nition 5.12 The 
losure analysis with subtyping semanti
 operator, C1 2 E �Env(E)�M� Env(S)� E� 7! C, is de�ned in Table 6.De�nition 5.13 The abstra
t 
losure fun
tion with subtyping environment, � ofa fun
tion, fidef=�xi;1 : : : xi;n:ei, is de�ned for a given environment of non-ground expressions�, and a sequen
e of a
tual parameter expressions, a, as fm1i � �a4=S�02SP(()�) C1 [[ ei ℄℄�0�;fg aAs would be expe
ted, subtyping produ
es more pre
ise results than for the basi
 analysiswithout subtyping.
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C1 [[x ℄℄��;� a 4= 8>><>>: >C if �(x) = >E _ �(x) = >Ef(fg;a; �)g if �(x) = fgC1 [[ e ℄℄��;� a if �(x) = feg _ �(x) = feg (76)C1 [[ fi ℄℄��;� a 4= ( f(ffig;a; �)g if Ar(fi) � jajf(f;e; �00) j (f;d; �0) 2 fm1i �0 �0 
g otherwise (77)C1 [[Ct a1 : : : ar ℄℄��;� a 4= i=r[i=1f(f; b; �0) j (f; b; �0) 2 C1 [[ ei ℄℄��;� a ^ TC(f; b)g (78)C1 [[ 
ase sof hpr; eri ℄℄��;� a 4= k=r[k=1[ fC1 [[ ek ℄℄��k;� a jH(pk) 2 S [[ s ℄℄��;�g (79)C1 [[Gd ℄℄��;� a 4= C1 [[G ℄℄��;� (hfdgi++ a) (80)Auxiliary de�nitions are as in Table 2.Table 6: De�nition of C1 [[E ℄℄��;� aLemma 5.1 For any well-formed basi
 ESFP expression, e, with well-formed fun
tionenvironment �, well-formed pattern-mat
hing variable expression environment, �, well-formed subtyping environments, � and well-formed abstra
t expression ve
tor, a,C1 [[ e ℄℄��;� a � C [[ e ℄℄�;� aProof. By inspe
tion of the de�nitions, in parti
ular the 
lauses for 
ase expressions. 2Corollary 5.1 The abstra
t 
losure fun
tion with subtyping, �, is more pre
ise than theabstra
t 
losure fun
tion without subtyping.Proof. Follows from Defn 5.13. 25.4.2 Size analysis with subtyping.De�nition 5.14 The relative size analysis operator with subtyping, A1 2 ISfi �E � Env(E) � M � Env(S) 7! R, is the A operator extended with subtyping and de�nedover the stru
ture of expressions in Table 7 with auxiliary de�nitions given below. In thede�nition, � is an environment binding fun
tion type expressions to variables, � is anenvironment binding pattern-mat
hing variables of algebrai
 types to expressions, and � isan environment binding subtypes to the formal parameters. i is a fun
tion index whilst0 � j � Ar(fi).De�nition 5.15 The 
onstru
tor abstra
t size fun
tion with subtyping, 
s1 2}(E )�ISfi�Env(E)�Env(S)M 7! R, is de�ned analagously to Defn 4.17, with A1 repla
ingA.
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A1i;j [[x ℄℄��;� 4= 8>>>>><>>>>>: 0 if x � xi;j�! if x � xi;kA1i;j [[ t ℄℄��;� � 1 if �(x) = ftg ^Unify(x; t)! otherwise (81)A1i;j [[ fk ℄℄��;� 4= 8<: fak;0 fg fg if Ar(fk) = 0 ^ j = 0�! otherwise (82)A1i;j [[Ct a1 : : : ar ℄℄��;� 4= 
s1(Re
(E); i; j; �; �; �) (83)A1i;j [[ 
ase sof hpr; eri ℄℄��;� 4= max(k=r[k=1 fA1i;j [[ ek ℄℄��;�k jH(pk) 2 S [[ s ℄℄��;�g) (84)A1i;j [[F a ℄℄��;� 4= max fapa1(f; i; j;a; �; �; �) j (f;a; �k) 2 C1 [[F ℄℄��;� hfagig (85)In addition, if :ADP(k; �0), then frk;�0as 4= !.Table 7: De�nition of A1i;j [[E ℄℄��;�De�nition 5.16 The A1 operator is lifted to the E domain as follows:A1i;j [[>E ℄℄��;� 4= ! (86)A1i;j [[ feg ℄℄��;� 4= A1i;j [[ e ℄℄��;� (87)De�nition 5.17 The abstra
t appli
ator for size analysis with subtyping, apa1,is de�ned as follows.apa1(>F; i; j;a; �; �; �) 4= ! (88)apa1(fg; i; j;a; �; �; �) 4= ! (89)apa1(ffkg; i; j;a; �; �; �) 4= (fka1 � aa1) + vj (90)In the above, �0 4=fxk;1 :=S [[ a1 ℄℄��;� : : : xk;Ar(fk) :=S [[ aAr(fk) ℄℄��;�g. In addition, �0fxk;l :=>Sg,if l > jasj.fa1k 4= [fa1k;1 �0 �0 : : : fa1k;Ar(fk) �0 �0℄ and aa1 4= [A1i;j [[ a1 ℄℄��;� : : :A1i;j [[ ajaj ℄℄��;�℄.vj 4=� fa1k;0 �0 �0 if j = 0�! otherwiseDe�nition 5.18 The abstra
t size fun
tion with subtyping of a fun
tion, fi def=�xi;1 : : : xi;n:ei, relative to parameter j is de�ned for a given subtyping environment, �iand a given environment of fun
tion-type parameters, � as, fa1i;j �i � 4=max�02SP(()�i)A1i;j [[ ei ℄℄�0�;fg
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hy of Languages with Strong Termination PropertiesAgain, subtyping produ
es more pre
ise results for size analysis than for the basi
 analysiswithout subtyping.Lemma 5.2 For any well-formed basi
 ESFP expression, e, with well-formed fun
tionenvironment �, well-formed pattern-mat
hing variable expression environment, �, and well-formed subtyping environment, �,A1i;j [[ e ℄℄��;� �R Ai;j [[ e ℄℄�;�Proof. Again, by inspe
tion of the de�nitions. 2Corollary 5.2 The abstra
t size fun
tion with subtyping, �, is more pre
ise than the ab-stra
t size fun
tion without subtyping.Proof. Follows from Defn 5.18. 2De�nition 5.19 The abstra
t size ve
tor of an expression e, with respe
t to the envi-ronments of fun
tion expressions, �, pattern mat
hing expressions, �, and subtypes, �, isde�ned as follows:s(e; i; �; �; �) 4= 264 A1i;1 [[ e ℄℄��;�...A1i;Ar(fi) [[ e ℄℄��;� 375De�nition 5.20 The abstra
t interpretation of relative sizes over expressions is de�ned bythe 
omponent size semanti
s of an expression, e, with respe
t to a parameter, xi;j anda subtyping environment, �: R# [[ e ℄℄i;j 4= �Env(E):(wjs(e; i; fg; fg; �)) where juxtapositionindi
ates ve
tor produ
t.De�nition 5.21 The 
onstant fa
tors ve
tor and the variable fa
tors matrixfor a sequen
e of expressions, e, and with respe
t to the parameters of fun
tion fi andenvironments, �, � and � (an environment of subtypes) are denoted 
(i; e; �; �; �) andv(i; e; �; �; �), respe
tively, and de�ned as follows:
(i; e; �; �; �) 4= 264 A1i;0 [[ e1 ℄℄��;�...A1i;0 [[ ejej ℄℄��;� 375v(i; e; �; �; �) 4= 264 A1i;1 [[ e1 ℄℄��;� : : : A1i;Ar(fi) [[ e1 ℄℄��;�... ...A1i;1 [[ en ℄℄��;� : : : A1i;Ar(fi) [[ en ℄℄��;� 375De�nition 5.22 The 
omponent size transformation (CST) for a sequen
e of ex-pressions, e, and with respe
t to the parameters of fun
tion fi and environments, �, � and� (an environment of subtypes) is de�ned: T(i; e; �; �; �) 4= (v(i; e; �; �; �); 
(i; e; �; �; �))If (V1;k1); (V2;k2) are CSTs then, if the relevant matrix multipli
ations are de�ned,(V1;k1) ? (V2;k2) 4= (V1V2; (V1k2 + k1))



UKC Computing Laboratory TR 2-00 39G1i[j;�j ℄ [[x ℄℄��;� 4= hi (91)G1i[j;�j ℄ [[ fk ℄℄��;� 4= 8>><>>: fgk[j℄ fg fg if Ar(fk) = 0 ^ k 6= jh
i if Ar(fk) = 0 ^ k = jfg otherwise (92)G1i[j;�j ℄ [[Ct a1 : : : ar ℄℄��;� 4= G1i[j;�j ℄ [[ ak ℄℄��;� (93)G1i[j;�j ℄ [[ 
ase sof hpr; eri ℄℄��;� 4= ℄(G1i[j;�j ℄ [[ s ℄℄��;�; (k=r℄k=1Gk)) (94)G1i[j;�j ℄ [[F a ℄℄��;� 4= ℄(f ;a;�0)2C1 [[F ℄℄��;� hfagi(apg1(f ; i; j;a; �0; �; �)℄(i=jaj℄i=1 G1i[j;�j ℄ [[ ai ℄℄��;�))(95)In (94), Gk = � G1i[j;�j℄ [[ ek ℄℄��k;� if H(pk) 2 S [[ s ℄℄��;�fg otherwiseTable 8: De�nition of G1i[j;�j ℄ [[E ℄℄��;�5.4.3 Calls analysis with subtyping.De�nition 5.23 The abstra
t 
alls operator, G1 2 ISf � ISf � Env(S) � E � Env(E) �M� Env(S) 7! T�, is the G operator extended with subtyping to lo
ate 
alls of fun
tion fjwith subtype environment �j within fun
tion fi whi
h has input subtype environment �i. Itis de�ned over the stru
ture of expressions in Table 8.De�nition 5.24 The abstra
t appli
ator for 
alls analysis with subtyping, apg1 2F� ISf � ISf � E� � Env(E)�M� Env(S)� Env(S) 7! T�, is de�ned as followsapg1(>F; i; j;a; �; �; �; �j) 4= h>Ti (96)apg1(fg; i; j;a; �; �; �; �j) 4= hi (97)apg1(ffkg; i; j;a; �; �; �; �j) 4= 8>>><>>>: hi if (jaj < Ar(fk))fT(i;a; �; �; �)g [R if (fk � fj) ^ �j v �h>Ti if (fk 6� fj) _ (�j 6v �)^:ADP(fk; �0)UT02fgk[j℄ �k �k(Map (?T(i;a; �; �; �))T0) if fk 6� fj (98)In the above, if �00 = ���j is a valid subtyping environment then R � apg1(ffkg; i;a; �; �; �00; �j).Otherwise, R � hiDe�nition 5.25 For ea
h fun
tion, there is a family of abstra
t 
alls fun
tions whi
hgive the CSTs for the re
ursive 
alls of fun
tion fj with subtyping environment �j within



40 A Hierar
hy of Languages with Strong Termination Propertiesthe de�nition of fun
tion fi for subtyping environment �i and environment of fun
tion-typearguments, �:f g1i[j;�j℄ � �i 4= [�02SP(()�i)G1i[j;�j℄ [[ ei ℄℄�0�;fgNote that now it is not only ne
essary to s
an for o

urren
es of fj within the de�nitionof fi but that the o

urren
es of fj must o

ur at the stipulated subtyping environment.Furthermore, the sear
h for o

urren
es of fj is dire
ted by the subtyping environment, �ii.e. the given subtypes of the parameters of fi.Again, subtyping produ
es more pre
ise results for the 
alls operator than for the basi
analysis without subtyping.Lemma 5.3 For any well-formed basi
 ESFP expression, e, with well-formed fun
tionenvironment �, well-formed pattern-mat
hing variable expression environment, �, and well-formed subtyping environment, �,G1i[j;�j℄ [[ e ℄℄��;� �R Gi[j℄ [[ e ℄℄�;�Proof. Again, by inspe
tion of the de�nitions. 2Corollary 5.3 The abstra
t 
alls fun
tion with subtyping, �, is more pre
ise than theabstra
t 
alls fun
tion without subtyping.Proof. Follows from Defn 5.25. 25.5 Termination Criteria Using SubtypingAs mentioned at the beginning of this se
tion, we �rst need to re�ne our idea of a weightingve
tor to take a

ount of the fa
t that subtypes give information as to the size of ea
h input.De�nition 5.26 Let Ct be some 
onstru
tor. Then the minimal size of an expressionthat has Ct at its head is denoted m
s 2 C 7! R, is de�ned thus:m
s(Ct) 4= n 0 if Ct is a base 
ase 
onstru
tor1 if Ct is an indu
tive 
ase 
onstru
torDe�nition 5.27 Assume we have s 2 S. Then the minimal subtype size of s, denotedmss 2 S 7! R, is de�ned thus for non-empty s:mss(s) 4=minfm
s(Ct) jCt 2 sgFor empty s (i.e. non-algebrai
 arguments), mss(fg) 4=�!.De�nition 5.28 The jth weighting ve
tor with respe
t to a subtyping environ-ment � is a ve
tor with, in the jth position, mss(�(xi;j). ! is in all other positions.
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t 
all matrix of re
ursive 
alls of fun
tion fi is de�nedwith respe
t to a subtyping environment, �, thus:ACM(i; �) 4= fr j (v; 
) 2 f g1i[i;�℄ fg�gwhere, if xi;j is an algebrai
 argument, rj 4=wjvj+
j�mss(�(xi;j)), wj is the jth weightingve
tor with respe
t to the subtyping environment � and vj is the jth 
olumn of v.If xi;j is non-algebrai
 then rj 4= !.De�nition 5.30 The jth argument to fi (i.e. xi;j) with subtyping environment � is saidto be an abstra
tly monotoni
 des
ending argument, written AMD(xi;j; �) (or simplyAMD(j; �) where the 
ontext is 
lear), if8rk 2 ACM(i; �):(rk;j � 0) ^ (9d:rd;j < 0)The jth argument is said to be abstra
tly stri
tly des
ending, written ASD(xi;j; �) if8rk 2 ACM(i; �):(rk;j < 0)De�nition 5.31 A fun
tion fi has the abstra
t des
ent property for the subtypingenvironment �, denoted ADP(A), where A � ACM(i; �), if and only if9j:AMD(j; �) ^ ADP(A0)where A0 = fre j (re 2 A) ^ (re;j = 0)gLemma 5.4 If a fun
tion fi has the abstra
t des
ent property for the subtyping environ-ment � then it has the abstra
t des
ent property for any �0 where �0 is a proper sub-environment of �.Proof. This is a 
onsequen
e of Lemma 4.10 and Defns 5.13, 5.18 and 5.25 where we use thesingleton partition of a subtyping environment to de�ne the respe
tive abstra
t fun
tions.2 However, if we take two subtyping environments on both of whi
h fi has the abstra
tdes
ent property then it is not ne
essarily the 
ase that fi has the ADP on the join of the twoenvironments if fi has more than one argument. (There may be di�erent lexi
ographi
alorderings used to ful�ll the ADP in ea
h 
ase.) However, the following does hold.Lemma 5.5 Suppose that a fun
tion fi has the abstra
t des
ent property on subtype en-vironments �1 and �2 and that there exists a j su
h that ASD(xi;j; �1) and ASD(xi;j; �2).Then fi has the abstra
t des
ent property on �1 t �2.Proof. The de�nitions of the 
losure, size and subtyping analyses mean that in ea
h 
asetheir results are the joins of the results on the two sub-environments. This means that allentries in the abstra
t 
alls matrix for the joined subtype environment must be less than0 as the entries for �1 and �2 are less than 0. Furthermore, the number of rows in theabstra
t 
alls matrix is the sum of the rows for the matri
es pertaining to �1 and �2. 2The abstra
t des
ent property for a parti
ular subtyping environment means that ithas the monotoni
 des
ent property for those subtypes.
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hy of Languages with Strong Termination PropertiesTheorem 5.1 Suppose that a fun
tion fi has the abstra
t des
ent property for the sub-typing environment �. Then fi restri
ted to the subtypes of � has the monotoni
 des
entproperty.Proof. Similar arguments apply as for Theorem 4.3 2Corollary 5.4 Suppose that a fun
tion fi is de�ned a

ording to the rules of the basi
ESFP language and that fi has the abstra
t des
ent property for the subtyping environment�. Then fi terminates on all arguments restri
ted to the subtyping environment �.5.6 ESFP with Subtyping | ESFP1Our new analysis, whi
h is enhan
ed by subtyping, means that we 
an de�ne a moreexpressive ESFP language.De�nition 5.32 The language ESFP1 
onsists of EFPe together with a 
he
k that allde�nitions within a s
ript have the abstra
t des
ent property for some valid subtyping en-vironment. That is,A

ept(S;ESFP1) 4() A

ept(S;EFPe) ^ 8i 2 ISf :9�i 2 Envi(S):ValidSub(�i) ^ ADP(ACM(fi; �i))where ADP(ACM(fi); �i)) follows Defns 5.29{5.31.5.7 Example of the Analysis Using SubtypingAn ESFP en
oding of Eu
lid's g
d algorithm, whi
h is not de�ned for two zero inputs, isas follows:g
d mn def=
asemof 0! 
ase nof 0! error; (Su

 n0)! n(Su

m0)! 
ase 
ompare mnof EQ ! m; LT ! g
d m (n�m); GT ! g
d (m� n)n0 - b def=0; (Su

 a') - 0 def= (Su

 a'); (Su

 a') - (Su

 b') def=a' - b'The analysis of the fun
tion, showing that g
d terminates for two non-zero inputs, pro
eedsas follows: � = fm := fSg; n := fSggG1g
d [g
d;�℄ [[Eg
d ℄℄=fg;�G1g
d [g
d ;�℄ [[ 
ase 
omparemnof E0 ℄℄�0fg;��0 = �fm0 := f0; Sg; n0 := f0; Sgg;� = fm0 :=m;n0 := ng= fg [ G1g
d [g
d;�℄ [[ g
d (m� n)n ℄℄�0fg;� [ G1g
d [g
d;�℄ [[ g
d m (n�m) ℄℄�0fg;�
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d [g
d;�℄ [[ g
d (m� n)n ℄℄�0fg;� =(g
dg1[g
d ;fm:=f0g;n:=fSgg℄; " A1g
d ;m [[m� n ℄℄�0fg;� A1g
d;n [[m� n ℄℄�0fg;�A1g
d ;m [[n ℄℄�0fg;� A1g
d ;n [[n ℄℄�0fg;� #;" A1g
d;0 [[m� n ℄℄�0fg;�A1g
d ;0 [[n ℄℄�0fg;� #!)
�a11 fa := fSg; b := fSgg = �a11 fa := f0; Sg; b := f0; Sgg � �1�a11 fa := f0; Sg; b := f0; Sgg = max(�!; 0;�a11 fa := f0; Sg; b := f0; Sgg)The least �xed point of the above is 0 and thus,�a11 fa := fSg; b := fSgg = �1�a12 fa := fSg; b := fSgg = �a12 fa := f0; Sg; b := f0; Sgg � 0�a12 fa := f0; Sg; b := f0; Sgg = max(�!;�!;�a12 fa := f0; Sg; b := f0; Sgg)Thus, �a11 fa := fSg; b := fSgg = �! and G1g
d [g
d;�℄ [[ g
d (m� n)n ℄℄�0fg;� = �h 0�! i ; h �1 �!�! 0 i�Similarly, we get: G1g
d [g
d ;�℄ [[ g
d m (m� n) ℄℄�0fg;� = �h �!0 i ; h 0 �!�! �1 i�Thus the ACM for g
d with the subtyping environment � is: h �1 00 �1 iThis satis�es the abstra
t des
ent property.6 Nested Indu
tive TypesOur abstra
t interpretation operates by re
ognising synta
ti
 sub-
omponents of otherexpressions. These sub-
omponents o

ur as pattern-mat
hing variables within 
ase ex-pressions. We may 
onsequently have 
ase expressions applied to expressions involvingpattern-mat
hing variables. Some pattern-mat
hing variables will indi
ate a size des
entwithin a re
ursive stru
ture whilst others will indi
ate arbitrary data extra
ted from thestru
ture. For example, in the 
ase of lists where we may mat
h a list l against a patternof the form (h : t) for non-empty lists, jtj < jlj for all lists. However, the head, h, may be ofarbitrary size. In the 
ase of rosetrees, though, where a list of rosetrees is a sub-
omponentof an internal node, an element of su
h a list will be a subtree of the original tree and
onsequently represents size des
ent.We thus make our basi
 EFP language less restri
tive by removing two of the 
onstraintsupon the de�nition of algebrai
 types.De�nition 6.1 The language EFP+ 
onsists of EFPe with restri
tions 2 and 3 of x 2.2removed. If a s
ript, S, meets the 
riteria of EFP+ then we write A

ept(S;EFP+).
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hy of Languages with Strong Termination Properties6.1 Proje
tion Sequen
esWe 
onsequently need an extended spa
e of expressions whi
h relates pattern-mat
hingvariables to the expressions that they mat
h. We �rstly de�ne proje
tion sequen
es whi
hwill represent the sequen
e of operations required to extra
t an element from a stru
ture.These will be 
onstrained so as to enable the 
al
ulation of least �xed points within theabstra
t interpretation framework.De�nition 6.2 The set of proje
tions, �, is de�ned as follows:� 4= f�i;j j 9Ci 2 C :Ar(Ci) � jgDe�nition 6.3 The set of proje
tions from type S to type T, denoted �S!T , isde�ned as the restri
tion of � to proje
tions with domain S and range T .The proje
tions above have the following interpretation. �i;j e 7! ei;j if and only ife� Ciei;1 : : : ei;r. We shall only use su
h a proje
tion in a 
ontext where it is de�ned i.e.where e does redu
e to the appropriate pattern.We form length-
onstrained sequen
es of proje
tions as follows:De�nition 6.4 The set of proje
tion sequen
es, Pd, 
onsists of singleton subsets of the setof all sequen
es of proje
tions of length � d, �d, together with >P, the set of all possibleproje
tions and fg, the bottom of the latti
e indu
ed by the subset ordering on Pd.>P indi
ates any possible 
omposition of proje
tions from a given data stru
ture. Wherethere is no ambiguity, we represent singleton sets of sequen
es of proje
tions simply by theproje
tion sequen
e itself e.g. �. In addition, we shall assume in the rest of this se
tionthat d is 2 and thus we shall write Pd simply as P. In Se
t. 8, we shall dis
uss the e�e
t ofother possible values of d on the analysis. We shall write j�j to denote the length of thesequen
e �.De�nition 6.5 The set of proje
tion sequen
es, PdS!T , 
onsists of singleton subsets ofthe set of all sequen
es of proje
tions of length � d and of type S ! T , �dS!T , togetherwith >, the set of all possible proje
tions of the required type, and fg.De�nition 6.6 The set of types proje
table by an d length proje
tion sequen
e from atype T , denoted PdT , is de�ned as, PdT 4= fV jPdT!V 6= fgg.The proje
tion sequen
es are used to determine whether a 
omposition of proje
tionsupon a stru
ture is endomorphi
 i.e. the types of the domain and range are the same.De�nition 6.7 The 
omposition of a non->P sequen
e of proje
tions is denoted J(�)and is de�ned asJ(fg)4=Fold Æ id� where Fold is the standard fold 
atamorphism over se-quen
es. However,J(>P) is unde�ned (re
e
ting the fa
t that this represents any possible
ombination of proje
tions).
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tion sequen
e, �, is termed endomorphi
, and denoted Endo(�)if and only if 9A:J(�) :: A! AThe empty proje
tion sequen
e is endomorphi
 (as it represents the identity) whilst >Pis not endomorphi
.De�nition 6.9 A proje
tion sequen
e, �, is termed redu
ing and denoted Red(�) if itis both endomorphi
 and not the empty proje
tion sequen
e.6.2 Proje
tion ExpressionsWe 
an now 
ombine the proje
tion sequen
es de�ned above with our basi
 expressionsyntax to form new, abstra
t expressions as follows.De�nition 6.10 A proje
tion expression, denoted �de (where d indi
ates that proje
tionexpressions are 
onstru
ted from Pd sequen
es), is a pair of a sequen
e of proje
tions anda basi
 expression (as de�ned in Se
t. 2.3) or a substitution instan
e of a basi
 expression.The set of proje
tion expressions, PE, is thus de�ned, PE 4= P� EAn endomorphi
 proje
tion expression is a proje
tion expression that in
ludes anendomorphi
 proje
tion sequen
e. A redu
ing proje
tion expression is a proje
tionexpression that in
ludes a redu
ing proje
tion sequen
e.The informal 
on
rete semanti
s of a proje
tion expression is that it is the appli
ation ofthe 
omposition of the sequen
e of proje
tions to the (basi
) expression e.6.3 Binding Sets of Proje
tion ExpressionsWe bind sets of proje
tion expressions to pattern-mat
hing variables within an environ-ment, �. Sin
e, in our language, we assume that we only have single-level patterns, weshall only bind pattern-mat
hing variables to elements of P1E.We need to de�ne a new domain of environments binding proje
tion expressions topattern mat
hing variables sin
e that given in Defn 4.7 only makes bindings to abstra
texpressions.De�nition 6.11 The domain of pattern variable proje
tion expression environ-ments, MP, 
onsists of fun
tions binding pattern mat
hing variables to elements of P1E i.e.MP 4= M 7! P1EThe a
tual binding pro
ess, for a 
ase expression, is de�ned as follows.De�nition 6.12 Let � bind pattern-mat
hing variables to sets of proje
tion expressions.Then, for a 
ase expression of the form, 
ase sof hp1; e1i : : : hpr; eri the environment ofpattern-mat
hing variables pertaining to ea
h ek is de�ned as, �k 4= Sl=jpkjl=1 B(pk;l; s; �),where B(pk;l; s; �) 4= �fpk;l := (h�k;li; fsgg).
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P2;d [[ (�;>E) ℄℄��;� 4= PdE (99)P2;d [[ (�; (fg; e)) ℄℄��;� 4= f(fg; e)g (100)P2;d [[ (�; x) ℄℄��;� 4= f(�; x)g (101)P2;d [[ (�; fk) ℄℄��;� 4= fg (102)P2;d [[ (�; Ct a1 : : : ar) ℄℄��;� 4= 8>><>>: f(fg; aj)g if � � h�i;jiP2;d [[ (�0; aj) ℄℄��;� if � � �0 ++ h�i;jifg otherwise (103)P2;d [[ (�; 
ase sof hpr; eri) ℄℄��;� 4= k=r[k=1[fP2;d [[ (�; fekg) ℄℄��;�k jH(pk) 2 S [[ s ℄℄��;�g (104)P2;d [[ (�; F a) ℄℄��;� 4= [ fb[a =E xk℄j b = fp2;df �0 �00 �;(ffkg;a; �0) 2 C1 [[F ℄℄��;� hai g (105)In (105), if, for some a; �0, C1 [[F ℄℄��;� hai = (fg;a; �0) then P2;d [[ (�; F a) ℄℄��;� 4=>E.Table 9: De�nition of P2;d [[ (�; E) ℄℄��;�
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tion Appli
ationsSynta
ti
 des
ent 
an only o

ur via a 
omposition of proje
tions that is of endomorphi
type. Intermediate en
losing stru
tures (su
h as the list of subtrees in the rosetree example)
annot be added to if the re
ursion is to be well-founded. In the 
ase of rosetrees, if anarbitrary tree was added to the list of subtrees then des
ent 
ould not be guaranteed. Wethus require a method of approximating the expressions that may result from applying anon-endomorphi
 proje
tion. We need to be able to approximate the set of endomorphi
proje
tion expressions that 
orrespond to a (non-endomorphi
) proje
tion expression. Toform our approximation, we map an element of P1E into }(PlE). This mapping will redu
e aproje
tion expression to a set of proje
tion expressions in whi
h the proje
tion sequen
e iseither empty (hi) or the proje
tion expression is of the form, (�; v), where v is either fxg,where x is a variable, or v is >E.We shall 
all this mapping, proje
tion analysis whi
h approximates the set of expres-sions that may result from applying a proje
tion other than >P to an expression.Firstly, we need a method of adding a proje
tion to a proje
tion expression to deal withthe situation where we have 
ase 
onstru
ts applied to pattern mat
hing variables | wemay take the head of the tail of a list, for example. This leads to the following de�nition.De�nition 6.13 The addition of a proje
tion, �i;j, to a proje
tion expression, p 2 PlE isdenoted �i;j � p and is de�ned as follows:�i;j � (>P; e) 4= (>P; e)�i;j � (�; e) 4= � (�i;j : �; e) if j�j < l(>P; e) otherwiseHaving broadened the 
lass of types that may be permitted in the language we needto rede�ne the operator that gives the re
ursive sub-
omponents of an expression. Thisoperator will then be used in our proje
tion analysis below when 
al
ulating the set ofterms that may be proje
ted from a data stru
ture by a non-endomorphi
 proje
tion. Wewish, for example, for this to 
orrespond to all the elements of a list 
onstant.De�nition 6.14 The re
ursive sub-
omponents abstra
tion operator, Re
Abs(2)E 7!E, is de�ned as follows:Re
Abs(e) 4= f s 2 �! jTC(J(s); e;^)Unify(J(s)e; e)^:9s0 � s:Unify(J(s0)e; e) gHere, �! is the set of ordered sets of proje
tions and TC(J(s); e;) denotes a type-
orre
tappli
ation of the 
omposition of the elements of s to e. The �nal restri
tion on theelements of S ensures that there is not any proper subsequen
e that represents a type-re
ursive proje
tion.Note that C is �nite and thus �! is �nite sin
e it is the ordered 
ounterpart of }(C ).
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hy of Languages with Strong Termination PropertiesWe now de�ne the abstra
t interpretation used to approximate the set of proje
tionexpressions 
orresponding to the appli
ation of a non-endomorphi
 proje
tion. In this andthe subsequent analyses given (see x 6.6) we do not give the result for error expli
itly: asin x 5.1.1 the result is in ea
h 
ase the > of the relevant abstra
t domain.De�nition 6.15 The proje
tion analysis operator, P2;d 2 P1E�Env(E)�MP�Env(S) 7!}(PlE), is de�ned in Table 9 for proje
tion expressions where the proje
tion sequen
e is nei-ther endomorphi
 nor >P.� In the 
ase of the endomorphi
 proje
tion sequen
es, P2;d 
orresponds to the inje
tion,p 7! fpg.� In the 
ase where the proje
tion sequen
e is >P, the result is PlE, the top of }(PlE).This mapping will be parti
ularly useful in the 
ase of 
losure analysis, where we previouslyfound all possible sub
omponents that 
ould be applied as fun
tions, even though thesub
omponents would not be proje
ted from a stru
ture and then applied.In the se
ond 
lause of the de�nition we have dire
t des
ent due to the proje
tionimpli
it in the pattern mat
h. In the third 
lause, the 
omposition of proje
tions whenapplied to an expression produ
es size des
ent | this thus takes 
are of the 
ase of nested-type data stru
tures. However, in the last 
lause, where the 
omposition of two proje
tionshas not produ
ed des
ent, we approximate by using the >P proje
tion.We now show that the proje
tion analysis has the required behaviour in the followingrespe
ts:1. It redu
es non-endomorphi
 proje
tion expressions to sets of proje
tion expressionsof the form (�; feg) (in the non-pathologi
al 
ase where the result is not >PE), whi
hare either endomorphi
 or non-endomorphi
 and the expression, e is a parameter,xi;j.2. If the expression, e, 
orresponds to the proje
tion expression (�; a), then if e redu
esto e0 then there exists a p 2 P2;d(�; a), su
h that p is equivalent to e00 whi
h is
onvertible to e0.Lemma 6.1 The proje
tion analysis operator, P2;d, either redu
es p 2 P1E to >P1E or to aset S 
onsisting only of endomorphi
 proje
tion expressions or non-endomorphi
 proje
tionexpressions where the expression is a parameter, xi;j.Proof. By stru
tural indu
tion over E. 2Theorem 6.1 Our proje
tion analysis operator is 
orre
t.Proof. By stru
tural indu
tion over E. 2
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tion-Size Abstra
t DomainIn 
orresponden
e to the spa
e of proje
tion expressions we now des
ribe a new abstra
tdomain of proje
tion sizes. The point of this new domain is that it allows the dete
tion ofsynta
ti
 des
ent even when this o

urs as the 
omposition of separate proje
tions appliedto the a
tual and formal parameters of a 
alled fun
tion.De�nition 6.16 The proje
tion-size abstra
t domain, denoted RP is de�ned as the 
ar-dinal produ
t of the proje
tion domain and the relative size domain i.e. RP4=P�R. The topof this domain is denoted >RP (� (>P; !)) and the bottom is denoted ?RP (� (fg;�!)).The least upper bound operator on this 
omplete latti
e is denoted maxRP, although it willnormally be written simply max as it will be 
lear upon whi
h domain we shall be operating.maxRP is de�ned (for non-> elements) via maxR as follows:maxRP(�1; s1)(�2; s2) 4= (�1; (maxR(s1; s2))) if �1 � �24= >RP otherwise (106)As for the relative size domain, we de�ne addition and multipli
ation operators as follows:(�1; s1) + (�2; s2) 4= (�1; (s1 +R s2)) if �1 � �24= >RP otherwise (107)(�1; s1) � (fg; s2) 4= (�1; (s1 �R s2))(fg; s1) � (�2; s2) 4= (�2; (s1 �R !))(�1; s1) � (�2; s2) 4= (fg; (s1 �R s2)� 1) j�3j � l ^ Red(�3)(�1; s1) � (�2; s2) 4= (�3; (s1 �R s2)) j�3j � l(�1; s1) � (�2; s2) 4= >RP otherwise (108)
In equation (108), �3 = �1 ++ �2.6.5.1 Con
rete Semanti
s of RPWe now dis
uss the meaning of our proje
tion-size domain, RP, with respe
t to the 
on
retesemanti
s of our basi
 ESFP language and to the domain of relative sizes dis
ussed inSe
t. 4.2.Informal 
on
retisation. For an expression e, if (fg; s) is its abstra
t semanti
s in RP,relative to some parameter, xi;j then its 
on
rete semanti
s 
orresponds to that of s in AR,again relative to xi;j. If, however, the abstra
t semanti
s of e in RP is (�; s) (again relativeto some parameter xi;j), then e is 
onvertible toJ(�)e0 for some e0 and the size of e0 is s(relative to xi;j) and the relative size of e itself is unknown. Furthermore, (�; s) is only avalid proje
tion-size representation of e in the 
ase where � is an endomorphi
 proje
tionsequen
e and where e0 is a formal parameter. Our analysis whi
h we des
ribe below will
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hy of Languages with Strong Termination Propertiesenfor
e this latter requirement and we will thus also be able to show that s will thus beeither 0 or �!.Given the above informal des
ription, we have the following operator that maps pro-je
tion sizes to their 
ounterparts in R.De�nition 6.17 The proje
tion-size norm, denoted N, is a mapping from RP to Rwhi
h is de�ned as follows:N(fg; s) 4= sN(�; s) 4= !The idea here is similar to that dis
ussed in the original analysis in x 4.5 | despite knowingthat an expression e has size of s relative to xi;j, we 
annot determine the size of e0 wheree0 is equivalent to J(�)e and � is not the identity. Thus we must safely approximateusing !.6.6 Modifying the Analyses with Proje
tion ExpressionsWe now show how the analyses are modi�ed in the light of the foregoing dis
ussion onproje
tion analysis. We give de�nitions that are developed from those in x 5.6.6.1 Closure analysis with proje
tion sequen
es.De�nition 6.18 The 
losure analysis semanti
 operator with d length proje
-tion sequen
es C2;d 2 E � Env(E)�MP � Env(S)� E� 7! C, is de�ned in Table 10.De�nition 6.19 The abstra
t 
losure fun
tion using d length proje
tion se-quen
es, of a fun
tion fi, denoted fm2;di , is de�ned as in Defn 5.13, ex
ept that C2;drepla
es C1.6.6.2 Size analysis with proje
tion sequen
es.De�nition 6.20 The relative size analysis operator with d length proje
tion se-quen
es, A2;d 2 ISfi � E � Env(E) � MP � Env(S) 7! R, is the A operator extended withproje
tion expressions and subtyping and de�ned over the stru
ture of expressions in Ta-ble 11.As an auxiliary operation, we need to de�ne the size of a proje
tion expression that isprodu
ed by proje
tion analysis.De�nition 6.21 The size of a proje
tion expression, e, denoted PES(e), relativeto the environments of pattern mat
hing variables (�), fun
tions (�) and subtypes (�), isde�ned as follows:PES((>P; e0)) 4= >RPPES((�; e0)) 4= ( A2;di;j [[ e0 ℄℄��;� � 1 if Red(�)A2;di;j [[ e0 ℄℄��;� otherwise



UKC Computing Laboratory TR 2-00 51C2;d [[E ℄℄��;� a 4= fg if E is of ground type (109)C2;d [[x ℄℄��;� a 4= 8>>>>>>>>><>>>>>>>>>:
>C if �(x) = >Ef(fg;a; �)g if �(x) = fgC2;d [[ e ℄℄��;� a if �(x) = fegS(fg;feg)2P2;d [[ (�; �(x)) ℄℄��;�g C2;d [[ e ℄℄��;� a if x 2 Dom(�) ^ P2;d [[ (�; �(x)) ℄℄��;� 6= >PE ^ (6 9(�; e) 62 P2;d [[ (�; �(x)) ℄℄��;�:Red(�))>C otherwise (110)

C2;d [[ fi ℄℄��;� a 4= ( f(ffig;a; �)g if Ar(fi) � jajf(f;e; �00) j (f;d; �0) 2 fmi �0 
g otherwise (111)C2;d [[Ct a1 : : : ar ℄℄��;� a 4= i=r[i=1(f; b; �0) j (f; b; �0) 2 C2;d [[ ei ℄℄��;� a ^ TC(f; b)g (112)C2;d [[ 
ase sof hpr; eri ℄℄��;� a 4= k=r[k=1[fC2;d [[ ek ℄℄��k;�k a jH(pk) 2 S [[ s ℄℄��;�g (113)C2;d [[Gd ℄℄��;� a 4= C2;d [[G ℄℄��;� (hfdgi++ a) (114)
Table 10: De�nition of C2;d [[E ℄℄��;� a

A2;di;j [[x ℄℄��;� 4= 8>>>>>><>>>>>>: (fg; 0) if x � xi;j(fg;�!) if x � xi;kmaxp2P2;d [[ (�; �(x)) ℄℄��;�g PES(p) if x 2 Dom(�) ^ P2;d [[ (�; �(x)) ℄℄��;� 6= >PE>RP otherwise (115)A2;di;j [[ fk ℄℄��;� 4= 8<: fak;0 fg if Ar(fk) = 0(fg;�!) if Ar(fk) 6= 0 (116)A2;di;j [[Ct a1 : : : ar ℄℄��;� 4= 
s2;d(Re
Abs(E); i; j; �; �; �) (117)A2;di;j [[ 
ase sof hpr; eri ℄℄��;� 4= max(k=r[k=1fA2;dak;�k [[ � ℄℄j;H(pk) 2 S [[ s ℄℄��;�g) (118)A2;di;j [[F a ℄℄��;� 4= max fapa2;d(f; i; j;a; �0; �0; �0) j (f;a; �0) 2 C2;d [[F ℄℄��;� hfagig (119)
Table 11: De�nition of A2;di;j [[E ℄℄��;�



52 A Hierar
hy of Languages with Strong Termination PropertiesDe�nition 6.22 The abstra
t size fun
tion with d length proje
tion sequen
esof a fun
tion, fi, relative to parameter j is denoted fa2;di;j and de�ned as in Defn 5.18,ex
ept that the A2;d operator repla
es A1.6.6.3 Calls analysis with proje
tion sequen
es.G2;di[j;�j ℄ [[x ℄℄��;� 4= hi (120)G2;di[j;�j ℄ [[ fk ℄℄��;� 4= 8>><>>: fg2;dk[j;�j℄ fg fg if Ar(fk) = 0 ^ k 6= jh
i if Ar(fk) = 0 ^ k = jhi otherwise (121)G2;di[j;�j ℄ [[Ct a1 : : : ar ℄℄��;� 4= k=r℄k=1G2;di[j;�j ℄ [[ ak ℄℄��;� (122)G2;di[j;�j ℄ [[ 
ase sof hpr; eri ℄℄��;� 4= ℄(G2;di[j;�j ℄ [[ s ℄℄��;�; (k=r℄k=1Gk)) (123)G2;di[j;�j ℄ [[F a ℄℄��;� 4= ℄(f ;a; �0) 2C1 [[F ℄℄��;� hfagi (apg2;d(f ; i;a; �0; �; �; �j)℄(i=jaj℄i=1 G2;di[j;�j℄ [[ ai ℄℄��;�))(124)
In (123), Gk = � G2;di[j;�j ℄ [[ ek ℄℄�k�k ;� if H(pk) 2 S [[ s ℄℄�k�;�fg otherwise .Table 12: De�nition of G2;di[j;�j ℄ [[E ℄℄��;�De�nition 6.23 The abstra
t 
alls operator with d length proje
tion sequen
es,G2;d 2 ISf � ISf � Env(S) � E � Env(E) � MP � Env(S) 7! T�, is the G operator extendedwith proje
tion expressions and subtyping to lo
ate 
alls of fun
tion fj with subtype envi-ronment �j within fun
tion fi whi
h has input subtype environment �i. It is de�ned overthe stru
ture of expressions in Table 12.De�nition 6.24 For ea
h fun
tion, there is a family of abstra
t 
alls fun
tions withd length proje
tion sequen
es whi
h is denoted f g2;di[j;�j ℄ and de�ned as in Defn 5.25ex
ept that the G2;d operator repla
es G1.6.6.4 Other modi�ed de�nitions.The other de�nitions of the analysis and the abstra
t termination 
riteria follow analo-gously to those of Defns 5.19{5.22 and Defns 5.29{5.31.
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e again, we 
an now de�ne a more expressive ESFP language.De�nition 6.25 For some given natural number d, the language ESFP2;d 
onsists ofEFP+ together with a 
he
k that all de�nitions within a s
ript have the abstra
t des
entproperty for some valid subtyping environment and analysing with proje
tion expressionsof length d. Formally, the de�nition follows that given in Defn 5.32, with the appropriatemodi�
ations to the de�nitions of the abstra
t des
ent property and the abstra
t 
alls matrix.6.8 Example: MaptreeWe now pro
eed to show how the termination of re
ursive fun
tions over su
h nestedindu
tive types 
an be shown in the 
ase where the length of the proje
tion sequen
es is 2.Example 6.1 [Maptree℄ Suppose that we have the following de�nition of a rosetree type:data Rosetree a def= Leaf a jNode [Rosetree a℄We then de�ne a mapping fun
tion, maptree, over su
h stru
tures as follows:maptree f t def=
ase tof(Leaf a) ! (Leaf fa)(Node s) ! (Node map (maptree f)s)The de�nition of map is standard.map g l def=
ase l of[℄ ! [℄(h : t) ! (gh) :map g tThe above 
an be shown to be an ESFP2;d program for d � 2 sin
e we get:[(h�hd i; 0)℄ � [(h�Node i; 0)℄ = [(hi;�1)℄ [As Endo(h�hd ; �Nodei)℄ (125)



54 A Hierar
hy of Languages with Strong Termination Properties7 Arbitrary Pre
ision SubtypingThe method of subtyping given in Se
t. 5 may be seen to be unsatisfa
tory for the followingreasons:1. Consider the general form of the 
ase expression:
ase sofC1 v1;1 : : : v1;Ar(C1) ! e1... ... ...Cn vn;1 : : : vn;Ar(Cn) ! enWe know the subtype of the swit
h expression, s for the ith 
lause (i.e. fCig) butwhat we wish to infer is the subtype of ea
h variable, xk;j. Furthermore, it wouldbe useful if we 
ould dis
over pre
ise subtyping information for pattern mat
hingvariables. For example, if another 
ase expression was nested within ei, then itwould be desirable to �nd, the subtype pertaining to vi;l. Consequently, we wouldbe able to dedu
e the subtype of the head or tail of a list, for example. This wouldgenerally appear to be impossible, given the eviden
e from stri
tness analysis5 [19℄,if we use the approa
h given previously.2. We 
annot use partial fun
tions as arguments to fun
tors su
h as map, even if weknow, for example, that the fun
tion is de�ned on all elements of a given list. Thisis be
ause the subtyping me
hanism is not strong enough to 
onvey the subtypes ofelements of data stru
tures.3. Dependen
ies in the subtyping information are lost when using the subtype environ-ments with the other analyses su
h as the size analysis. This is be
ause the environ-ments only 
ontain subtype 
onstants and the relationship between the subtypes ofthe various parameters is lost. However, 
onsider an ESFP language expression su
has: take (length x div 2) xIn the above, subtype 
onstants will be bound to ea
h of the parameters of take butthe information that ea
h subtype depends on the subtype of x will be lost.4. We need to analyse every fun
tion with respe
t to every possible permutation ofsubtypes of the algebrai
 arguments. This pro
ess is naturally akin to the satis�a-bility problem and thus is of exponential 
omplexity. This is despite the fa
t that5Stri
tness analysis, used to optimise lazy fun
tional languages by eliminating 
losure formation, de-termines whether for a fun
tion f that f ? = ?, where ? is the unde�ned value. In su
h a 
ase, f is saidto be stri
t in its argument.
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 argument. This
omputational 
omplexity 
annot be improved without a 
onsdierable weaking of thepre
ision of the analysis, as shown in [13℄.7.1 Arbitrary Pre
ision Subtype DomainsWe pro
eed to de�ne a domain, the arbitrary pre
ision subtyping domain, that allows usto assign subtypes to elements whi
h may be proje
ted from an algebrai
 stru
ture.De�nition 7.1 A proje
tion subtype, denoted �iS (where i indi
ates that proje
tionsubtypes are 
onstru
ted from Pi sequen
es | see Defn 6.4), is a mapping from sequen
esof proje
tions (from some type S to a type T ) to a basi
 subtype of type T as de�ned inx 5.2.The set of proje
tion subtypes, PiS;(S!T ), is thus de�ned, PiS;(S!T )4=((PiS!T ) 7! ST ).De�nition 7.2 The arbitrary pre
ision subtyping domain for type T of order d,denoted SdT , is de�ned as, SdT 4=SV 2PiT PiS;(T!V ) The ordering on this set is given in Defn 7.7and ensures that the set forms a 
omplete latti
e.We shall normally write this domain as Sd where T is either 
lear from the 
ontext orapplies universally to all algebrai
 types and the top is denoted >Sd . We shall also employthe 
onvention of writing elements of Sd as a union of a mapping between the empty (rep-resenting the identity) proje
tion sequen
e and ST and a partial mapping from non-emptyproje
tion sequen
es to SV for some type V . The proje
tion sequen
es not in
luded in thedomain of the resulting map will thus impli
itly be mapped to >SV for the appropriate V .We need to be able to extra
t the relevant 
omponents from an element of our arbitrarypre
ision subtyping domain.De�nition 7.3 Let S be an arbitrary pre
ision subtype for the type T of order d. The partof S pre�xed by � (where � is a valid proje
tion sequen
e on T ), denoted pp(S;�) 2SW2PlV PlS;(V!W ) (where T(J(�)) = T ! V and l = d� j�j) and de�ned as follows:pp(S;�) 4= f(�0; s) j (�0 ++ �; s) 2 S ^ �0 6= fggDe�nition 7.4 The atomi
 part of an arbitrary pre
ision subtype, S, denoted at(S) 2 Sis de�ned as follows:at(S) 4=[fa j (fg; a) 2 pp(S; fg)gThe subsidiary part of an arbitrary pre
ision subtype, S, denoted sp(S) 2 SV 2PdT PdS;(T!V )is de�ned as follows:sp(S) 4= fr j r 2 S � pp(S; fg)g
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hy of Languages with Strong Termination PropertiesAs a 
onsequen
e of the above de�nitions, we shall normally write our arbitrary pre
isionsubtypes as sets 
ontaining pairs of the atomi
 and subsidiary parts rather than as a setof pairs of proje
tion sequen
es and basi
 subtypes. An example of this form of notationis given in the following paragraph.Ea
h element, (�; s) of the subsidiary part indi
ates that the subtype of the sub
om-ponent, 
, proje
ted by � from the en
losing stru
ture, e, is s. However, s is, of 
ourse,an element of S and not an arbitrary pre
ision subtype. However, other elements of thesubsidiary part may indi
ate the subtypes of 
. These will be those elements that have � asa suÆx in the proje
tion sequen
e. For example, 
onsider the following possible subtype,S, for a list of naturals:f(f:g; f(htaili; f:g); (hhdi; f0;Su

g); (hhd ; taili; fSu

g)g)gThe above indi
ates that we have a non-empty list and, in fa
t, a list of at least twoelements sin
e the tail is non-empty. Elements of the list may be any natural number butelements of the tail must be non-zero. Consider now what the full, arbitrary pre
isionsubtype of the tail of this list should be, given the above subtype. The (htaili; f:g) elementof the subsidiary part of S indi
ates that the atomi
 part of the subtype of the tail shouldbe f:g. Now we examine the subsidiary part of the subtype of the tail of the list. In Swe have, (hhd ; taili; fSu

g). This means that (hhdi; fSu

g) should be in
luded in thesubsidiary part of the subtype of the tail of the list. Thus, given S, the full subtype of thetail of the list should bef(f:g; f(hhdi; fSu

g); g)gConsequently, we have the following de�nition.De�nition 7.5 Let S be an arbitrary pre
ision subtype for the type T of order d. Then thearbitrary pre
ision subtype of type V and order d indexed by the proje
tion sequen
e� (where � 2 Pd(T!V ) for some V ) is denoted ist(S;�) and de�ned as follows:ist(S;�) 4= f(a; r) j (�; a) 2 sp(S) ^ r 2 pp(S;�)gIn the opposite dire
tion, we wish to add a proje
tion sequen
e to ea
h 
omponent ofan arbitrary pre
ision subtype. This is required when we determine the subtype of asub-stru
ture and then wish to integrate that subtype within the subtype for the entirestru
ture.De�nition 7.6 Let S be an arbitrary pre
ision subtype of order d and let l be a natural� d. Then S lifted by � (where � is a valid proje
tion sequen
e) is an arbitrary pre
isionsubtype of order l, denoted by lst(S;�) is de�ned as follows:lst(S;�) 4= f(�0 ++l �; S 0) j (�0; S 0) 2 SgWe now pro
eed to de�ne the latti
e operations over arbitrary pre
ision subtypes.
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 parts of arbitrarypre
ision subtypes is as for S i.e. \ and [, respe
tively. Similarly, the ordering, v is justsubset in
lusion.Over subsidiary parts the ordering v is de�ned as follows:r1 v r2 4= 8(�; s) 2 r1:(9(�; s0) 2 r2 ) s v s0)The join and meet over subsidiary parts are de�ned as follows:r1 t r2 4= f(p; t1 [ t2) j (p; t1) 2 r1 ^ (p; t2) 2 r2gr1 u r2 4= f(p; t1 \ t2) j (p; t1) 2 r1 ^ (p; t2) 2 r2g[f(p; t1) j (p; t1) 2 r1 ^ (6 9t2:(p; t2) 2 r2g[f(p; t2) j (p; t2) 2 r2 ^ (6 9t1:(p; t1) 2 r1gThe de�nitions of t and u given above may be seen to be almost dual to that whi
h mightbe expe
ted. This is be
ause if a proje
tion sequen
e, � does not o

ur within a subsidiarypart it is impli
it that (�;>) is in
luded within the subsidiary part. Con
omitant withthis, note that the de�nition of v is su
h that (�; s) may be in r1 and not in r2 but thatr1 v r2. Indeed, for all S and d, the empty set is the top of PdS;(S!T ).De�nition 7.8 The join operation on arbitrary pre
ision subtypes, s1 and s2, denoteds1 t s2, is de�ned as follows (using the representation of subtypes as pairs of the atomi
and subsidiary parts):s1 t s2 4= f(a; r t r0) j (a; r1) 2 s1; (a; r2) 2 s2g[f(a1; r1) j (a1; r1) 2 s1 ^ (6 9r2:(a1:r2) 2 s2gf[(a2; r2) j (a2; r2) 2 s2 ^ (6 9r1:(a2:r1) 2 s1gThe meet operation on arbitrary pre
ision subtypes, s1 and s2, denoted s1us2 is de�nedas follows:s1 u s2 4= f(a; r1 u r2) j (a; r1) 2 s1; (a; r2) 2 s2g7.2 Arbitrary Pre
ision Subtype EnvironmentsSubtyping environments need to 
apture a ri
her set of program properties than before and,furthermore, need to both assign subtypes to variables and to give subtypes to expressions.The latter is ne
essary sin
e, for example, we still need to determine the subtypes withwhi
h ea
h fun
tion is 
alled.
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hy of Languages with Strong Termination Properties7.2.1 Environments used to determine the subtypes of expressions.Our subtyping environments thus 
ome in two forms. The �rst, whi
h is used to determinethe subtypes of expressions, is the analogue of Defn 5.5, whi
h assigns subtypes to theformal parameters. Thus we modify Defns 5.5{5.6.De�nition 7.9 A subtyping environment of order d for a fun
tion fi is an environ-ment in whi
h ea
h xi;j is bound to an element of SdT(xi;j) d is �xed for all elements of theenvironment.A valid subtyping environment of order d for a fun
tion fi is a subtyping envi-ronment of order d in whi
h ea
h xi;j is not bound to a subtype with atomi
 part fg. If �is a valid subtyping environment we write ValidSub(�).De�nition 7.10 Let �1 and �2 be two subtyping environments (of order d) of fun
tion fi.Then the join of �1 and �2, denoted �1 t �2, is de�ned thus:�1 t �2 4= fxi;j 7! �1(xi;j) t �2(xi;j) j xi;j 2 Dom(�1):gSimilarly the meet, denoted �1 u �2,�1 t �2 4= fxi;j 7! �1(xi;j) u �2(xi;j) j xi;j 2 Dom(�1):gAs before, in order to re
ognise when a subtyping environment we need to determinewhether a subtyping environment is in
luded within another, as for the simple subtypingenvironment given in x 5.De�nition 7.11 A sub-subtyping environment of order d (often written simply assub-environment where there is no ambiguity) of a subtyping environment of order d of afun
tion fi, �, is a subtyping environment, �0, for whi
h, 8j:�0(xi;j) � �(xi;j). We denotethe fa
t that � is a sub-subtyping environment by �0 v �.Analagously, we speak of sub-subtyping environments relative to xi;j and 
on-versely, we also speak of super-subtyping environments.De�nition 7.12 The di�eren
e between two (arbitrary pre
ision) subtype envi-ronments �1 and �2, denoted �1 � �2, is de�ned thus:fxi;j := �1(xi;j)� �2(xi;j) j xi;j 2 Dom(�1)gHowever, as stated in 3 at the beginning to this se
tion, we also wish to in
lude infor-mation about the dependen
ies of the subtypes of parameters to fun
tions. To do this, weuse the standard te
hnique of lazy evaluation, using the formation of 
losures to en
odesubtyping information that is used to give the subtypes of expressions. We will thus useenvironment 
losures rather than simple environments as parameters to our analyses.
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ision subtype environment transformer (whi
hwe shorten to environment transformer) is a fun
tion from arbitrary pre
ision subtype en-vironments (for the variables of some fun
tion fi) of order d to arbitrary pre
ision subtypesof order d.We write su
h environment transformers in the form, ��:E(�) and denote the set ofenvironment transformers for fi as �di 4= Envi(Sd) 7! Sd.We normally use the shorthand form, �d where i is 
lear from the 
ontext.De�nition 7.14 An arbitrary pre
ision subtype 
losure environment (written sim-ply as subtype 
losure environments) 
onsists of a pair of an environment (binding to theparameters of a fun
tion fi) of environment transformers (where the environments bind theparameters to some fun
tion fj) and a subtyping environment (again binding to variables ofthe same fj). That is, the set of subtype 
losure environments for a fun
tion fi with respe
tto the variables of some fj is denoted as 	di and de�ned as 	di 4=�fj2F(Envi(�dj)�Envj(Sd))Again, we normally use the shorthand form, 	d where i is 
lear from the 
ontext.We 
an assign identity environment transformers to ea
h parameter to shadow a givensubtyping environment.De�nition 7.15 Let � be a subtyping environment of order d for some fun
tion fi. Thenthe simple subtype 
losure environment formed from � is denoted  � and de�ned, � 4= (T; �) where T 4= fxi;j := ��:�(xi;j) j xi;j 2 FP(fi)g.We shall need to evaluate su
h subtype 
losure environments to produ
e a subtype envi-ronment.De�nition 7.16 Let  be a subtype 
losure environment. Then the subtype environ-ment evaluated from  , denoted E( ) 2 Envi(Sd), is de�ned thus:E( ) 4= fxi;j := (Fst )(xi;j) (Snd ) j xi;j 2 Dom(Fst )gAs with subtyping environments, we need to de�ne the ordering on subtype 
losure envi-ronments and the di�eren
e between two su
h environments.De�nition 7.17 Let  1 and  2 be subtype 
losure environments.Then  1 v  2 if and only if, on the subtype environment ordering (Defn 7.11), E( 1) vE( 2).Analagously to subtyping environments, we refer to  1 as a sub-subtype environ-ment 
losure of  2.The ordering indu
es an equality, =, over subtype environment 
losures.De�nition 7.18 The di�eren
e between subtype 
losure environments  1 and  2,denoted  1 �  2 2 	d, is de�ned as  1 �  2 4=  3, whereFst( 3) = fxi;j := ��:�(xi;j) j xi;j 2 Dom(Fst 1)g and Snd( 3) = E( 1)� E( 2)
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hy of Languages with Strong Termination PropertiesWe 
an use the equality predi
ate over subtype 
losure environments to determine when are
ursive invo
ation of one of our abstra
t operators has been rea
hed.De�nition 7.19 Two subtype 
losure environments,  1;  2,mat
h, denotedMat
h( 1;  2)if and only if  1 =  2 where the equality predi
ate is that given in Defn 7.17.7.2.2 Environments used to determine the subtypes of variables.We now de�ne the environments used to 
ompute the subtype of a parti
ular parameter,xi;j. When analysing ba
kwards to determine the subtype of a parti
ular variable, we
annot, naturally, start with an environment of subtypes but rather with an environment
ontaining values whi
h will produ
e a new subtype given an input subtype.De�nition 7.20 A subtype transformer, t, is a fun
tion of type SdT 7! SdT (for sometype T and order d) with the additional property that t fg = fg. The set of subtype trans-formers (for arbitrary T and d is denoted Sd7!.Subtype transformer terms are written in the form, �s:E(s), where E(s) is an expressioninvolving s, elements of SdT , the t and u operators and appli
ations of subtype transformers.De�nition 7.21 A ba
kwards subtyping environment of order d relative to xi;j(where xi;j is a formal parameter of the fun
tion fi) is an environment, �xi;j , in whi
h ea
hformal parameter xi;l and xi;j itself is bound to an element of SdT(x) 7! SdT(x). d is �xed forall elements of the environment.An initial ba
kwards subtyping environment relative to xi;j is a subtypingenvironment, �Ixi;j , of order d relative to xi;j where xi;j is bound to �
:
 and all formalparameters apart from xi;j are bound to �
:>SdT(xi;j ) .7.2.3 Analyses to determine subtypes.We now present the abstra
t interpretations whi
h give more pre
ise subtypes as a result.In these and the subsequent analyses, the result for error is always the > of the relevantdomain.De�nition 7.22 Sdf 2 E � Env(PE) � Env(E) � 	d 7! Sd, the forwards subtypingabstra
t semanti
 operator, is de�ned in Table 13.De�nition 7.23 Sdb 2 E � Env(PE) � Env(E) � Env(Sd7!) � Sd 7! Sd, the ba
kwardssubtyping abstra
t semanti
 operator, is de�ned in Table 14.7.2.4 Subtyping environments indu
ed by 
ase 
lauses.The above subtyping regime has been introdu
ed purely so that we 
an infer a more pre
isesubtyping environment on
e we en
ounter a 
ase expression. In order to obtain a morepre
ise environment we need to:
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Sdf [[x ℄℄ �;� 4= 8>><>>: (E( ))(x) if x 2 Dom(E( ))pp(Sdf [[ e ℄℄ �;�;�) if �(x) � (�; feg)>Sd otherwise (126)Sdf [[ fi ℄℄ �;� 4= ( f sf ;3;di fg (fg; fg) if Ar(fi) = 0fg otherwise (127)Sdf [[Ct a1 : : : ar ℄℄ �;� 4= f(hi; Ct)g [ j=r[j=1 lst(Sd�1f [[ aj ℄℄ �;�; h�t;ji) (128)Sdf [[ 
ase sof hpr; eri ℄℄ �;� 4= GH(pi)2Sdf [[ s ℄℄ �;�(Sdf [[ ei ℄℄ �;�i) (129)Sdf [[F a ℄℄ �;� 4= [ff sf ;3;dk �0  00 j (fk;a; �0;  0) 2 C3;d [[F ℄℄ �;� haig (130)Table 13: De�nition of Sdf [[E ℄℄ �;�
Sdb [[x ℄℄��;� s 4= 8>><>>: �(x) s if x 2 Dom(�)pp(Sdb [[ e ℄℄��;� s;�) if �(x) � (�; feg)>Sd otherwise (131)Sdb [[ fi ℄℄��;� s 4= ( f sb;3;di fg fg if Ar(fi) = 0fg otherwise (132)Sdb [[Ct a1 : : : ar ℄℄��;� s 4= i=rGi=1Sdb [[ ai ℄℄��;� s (133)Sdb [[ 
ase sof hpr; eri ℄℄��;� s 4= (Sdb [[ s ℄℄��;� s) u i=nGi=1(Sdb [[ ei ℄℄��;�i s) (134)Sdb [[F a ℄℄��;� s 4= [ff sb;3;dk �0 �0 s j (fk;a; �0;  ) 2 C3;d [[F ℄℄ �;� haig (135)Table 14: De�nition of Sdb [[E ℄℄��;� s
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hy of Languages with Strong Termination Properties1. Obtain the subtype inferred for ea
h formal parameter, xi;j of the en
losing fun
tion.We thus get a new subtype environment, �i for the ith 
lause of the 
ase expression.2. Note that we shall already have a subtyping environment, �0 (represented, in fa
t, bya subtype 
losure environment,  0) and that the subtyping environment, �i, inferredfrom the ith 
lause of the 
ase expression, should be a re�nement (in the sense ofbeing a sub-environment) of the original environment, �0. Consequently, we shalltake the meet of the two environments, �0 u �i to be the environment �0i inferred forthe ith 
lause of the 
ase expression.Consequently, we have the following series of de�nitions.De�nition 7.24 Let Ci be a 
onstru
tor of some algebrai
 type T . Then the subtype oforder d indu
ed by the 
onstru
tor, Ci, denoted I(Ci; d), is the subtype of order dde�ned thus:I(Ci; d) 4= f(fg; fCigg [ f(p;>S) j p 2 Pd; p 6= fggDe�nition 7.25 Let fi be a fun
tion with formal parameters xi;1 : : : xi;Ar(fi). Considerthe 
ase expression, 
ase sof hpn; eni. Then the subtyping environment of orderd indu
ed by the nth 
lause of the 
ase expression, denoted �n, is the followingsubtyping environment of order d:�n 4= fxi;j := Sdb [[ s ℄℄��;� (I(Cn; d)) j xi;j 2 FP(fi)gDe�nition 7.26 Suppose we have a fun
tion fi and a 
ase expression as in Defn 7.25,above. In addition, assume that we have a subtype 
losure environment,  . Then thesubtype 
losure environment re�nement of  with respe
t to the nth 
lause ofthe 
ase expression, denoted  n, is de�ned as a simple subtyping environment, thus: n 4=  �0 where �0 4= �n u E( )7.3 Modifying the AnalysesWe 
onsequently produ
e new versions of our analyses. The 
hanges are relatively minimalsin
e the subtyping me
hanism is in general separated from our analyses. The 
hanges tobe made to the analyses are as follows:� We require a new subtyping environment to be 
al
ulated for ea
h 
lause of a 
aseexpression in the 
alls analysis. The 
ow of information is from the head 
onstru
torof the pattern to a parameter of the fun
tion fi that forms the 
urrent 
ontext. Thisidea is en
apsulated in Defn 7.26 above.



UKC Computing Laboratory TR 2-00 63� However, the environment must not be re�ned during size analysis. The reason forthis is that otherwise ea
h argument to a re
ursive 
all 
ould then potentially begiven a di�erent subtyping environment, whi
h would be unsound. Nevertheless,we need to attempt to maintain dependen
y information between the abstra
t sub-types of various parameters. This is why we use subtype 
losure environments (seeDefn 7.15) rather than subtyping environments.� Calls analysis must now produ
e a sequen
e of pairs, ea
h 
onsisting of a CST and asubtyping environment.7.3.1 Closure analysis with arbitrary pre
ision subtyping.C3;d [[E ℄℄ �;� a 4= fg if E is of ground type (136)C3;d [[x ℄℄ �;� a 4= 8>>>>>>>>><>>>>>>>>>:
>C if �(x) = >Ef(fg;a; �;  )g if �(x) = fgC3;d [[ e ℄℄ �;� a if �(x) = fegS(fg;feg)2P3;d [[ (�; �(x)) ℄℄ �;�g C3;d [[ e ℄℄ �;� a if x 2 Dom(�) ^ P3;d [[ (�; �(x)) ℄℄ �;� 6= >PE ^ (6 9(�; e) 62 P3;d [[ (�; �(x)) ℄℄ �;�:Red(�))>C otherwise (137)

C3;d [[ fi ℄℄ �;� a 4= 8>><>>: f(ffig;a; �;  )g if Ar(fi) � jajf(f;e; �00;  0)j (f;d; �0;  0) 2 fmi �0 
g otherwise (138)C3;d [[Ct a1 : : : ar ℄℄ �;� a 4= i=r[i=1 f(f; b; �0;  0)j (f; b; �0;  0) 2 C3;d [[ ei ℄℄ �;� a ^ TC(f; b)g (139)C3;d [[ 
ase sof hpr; eri ℄℄ �;� a 4= k=r[k=1[fC3;d [[ ek ℄℄ k�k;�k a jH(pk) 2 S [[ s ℄℄��;�g (140)C3;d [[Gd ℄℄ �;� a 4= C3;d [[G ℄℄ �;� (hfdgi++ a) (141)
Table 15: De�nition of C3;d [[E ℄℄ �;� aDe�nition 7.27 The 
losure analysis operator with dth order subtyping, C3;d 2E � Env(E)�MP �	d � E� 7! C, is de�ned in Table 15.
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hy of Languages with Strong Termination PropertiesDe�nition 7.28 The abstra
t 
losure fun
tion with subtype 
losure environ-ment,  of a fun
tion, fi def= �xi;1 : : : xi;n:ei, is de�ned for a given environment of non-ground expressions �, and a sequen
e of a
tual parameter expressions, a, as fm3;dfi  �a 4=S�02SP(()�) C3;d [[ ei ℄℄�0�;fg a7.3.2 Proje
tion analysis with arbitrary pre
ision subtyping.P3;d [[ (�;>E) ℄℄ �;� 4= �le (142)P3;d [[ (�; (fg; e)) ℄℄ �;� 4= f(fg; e)g (143)P3;d [[ (�; x) ℄℄ �;� 4= f(�; x)g (144)P3;d [[ (�; fk) ℄℄ �;� 4= fg (145)P3;d [[ (�; Ct a1 : : : ar) ℄℄ �;� 4= 8>><>>: fajg if � � h�i;jiP3;d [[ (�0; aj) ℄℄ �;� if � � �0 ++ h�i;jifg otherwise (146)P3;d [[ (�; 
ase sof hpr; eri) ℄℄ �;� 4= k=r[k=1[fP3;d [[ (�; fekg) ℄℄ �;�k jH(pk) 2 S [[ s ℄℄��;�g (147)P3;d [[ (�; F a) ℄℄ �;� 4= [ fb[a =E xk℄j b = fp2;df �0  00 �;(ffkg;a; �0;  0) 2 C1 [[F ℄℄ �;� hai g (148)In (148), if, for some a; �0;  0, C1 [[F ℄℄ �;� hai = (fg;a; �0;  0) thenP3;d [[ (�; F a) ℄℄ �;� 4=>ETable 16: De�nition of P3;d [[ (�; E) ℄℄ �;�De�nition 7.29 The proje
tion analysis operator with dth order subtyping, P3;d 2P1E�Env(E)�M�	d 7! }(PlE), is de�ned in Table 16 for proje
tion expressions where theproje
tion sequen
e is neither endomorphi
 nor >P.In the 
ase of the endomorphi
 proje
tion sequen
es, P 
orresponds to the inje
tion,p 7! fpg.In the 
ase where the proje
tion sequen
e is >P, the result is PlE, the top of }(PlE).
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A3;di;j [[x ℄℄ �;� 4= 8>>>>>><>>>>>>: (fg; 0) if x � xi;j(fg;�!) if x � xi;kmaxp2P3;d [[ (�; �(x)) ℄℄ �;�g PES(p) if x 2 Dom(�) ^ P3;d [[ (�; �(x)) ℄℄ �;� 6= >PE>RP otherwise (149)A3;di;j [[ fk ℄℄ �;� 4= 8<: fak;0 fg if Ar(fk) = 0(fg;�!) if Ar(fk) 6= 0 (150)A3;di;j [[Ct a1 : : : ar ℄℄ �;� 4= 
s3;d(Re
(E); i; j; �; �;  ) (151)A3;di;j [[ 
ase sof hpr; eri ℄℄ �;� 4= max(k=r[k=1fA3;di;j [[ ek ℄℄ �;�k jH(pk) 2 S [[ s ℄℄��;�g) (152)A3;di;j [[F a ℄℄ �;� 4= maxfapa3;d(f; i; j;a; �0; �;  ) j (f;a; �0;  0) 2 C1 [[F ℄℄ �;� hfagig (153)

Table 17: De�nition of A3;di;j [[E ℄℄ �;�7.3.3 Size analysis with arbitrary pre
ision subtyping.De�nition 7.30 The relative size analysis operator with dth order subtyping,A3;d 2 ISfi � E � Env(E) � MP � 	d 7! RP, is the extension of A with arbitrary pre
isionsubtyping of order d, and de�ned over the stru
ture of expressions in Table 17. In thede�nition, � is an environment binding fun
tion type expressions to variables, � is anenvironment binding pattern-mat
hing variables of algebrai
 types to expressions, and  is a subtype 
losure environment binding subtypes and environment transformers to theformal parameters. i is a fun
tion index whilst 0 � j � Ar(fi).De�nition 7.31 The 
onstru
tor abstra
t size fun
tion with arbitrary pre
isionsubtyping, 
s3;d 2 }(E )�ISfi�Env(E)�	d�MP 7! RP, is de�ned analagously to Defn 5.15,with A3;d repla
ing A1.De�nition 7.32 The A1 operator is lifted to the E domain as follows:A3;di;j [[>E ℄℄ �;� 4= >RP (154)A3;di;j [[ feg ℄℄ �;� 4= A3;di;j [[ e ℄℄ �;� (155)De�nition 7.33 The abstra
t appli
ator for size analysis with arbitrary pre
i-sion subtyping of order d, apa3;d , is de�ned as follows.apa3;d(>F; i; j;a; �; �;  ) 4= ! (156)apa3;d(fg; i; j;a; �; �;  ) 4= ! (157)
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hy of Languages with Strong Termination Propertiesapa3;d(ffkg; i; j;a; �; �;  ) 4= (fka3;d � aa3;d) + vj (158)In the above, �0 4=fxk;1:=S [[ a1 ℄℄��;� : : : xk;Ar(fk) :=S [[ aAr(fk) ℄℄��;�g. In addition, �0fxk;l:=>Sdg,if l > jasj.fa3;dk 4= [fa3;dk;1 �0 �0 : : : fa3;dk;Ar(fk) �0 �0℄ and aa3;d 4= [A3;di;j [[ a1 ℄℄ �;� : : :A3;di;j [[ ajaj ℄℄ �;�℄.vj 4=� fa3;dk;0 �0 �0 if j = 0(fg;�!) otherwiseDe�nition 7.34 The abstra
t size fun
tion with arbitrary pre
ision subtypingof order d of a fun
tion, fi def= �xi;1 : : : xi;n:ei, relative to parameter j is de�ned for agiven subtype 
losure environment,  and a given environment of fun
tion-type parameters,� as, fa3;di;j  � 4=max�02SP(()�i)A3;di;j [[ ei ℄℄�0�;fg7.3.4 Calls analysis with arbitrary pre
ision subtyping.G3;di[j;�j ℄ [[x ℄℄ �;� 4= hi (159)G3;di[j;�j ℄ [[ fk ℄℄ �;� 4= 8>><>>: fg3;dk[j℄ fg fg if Ar(fk) = 0 ^ k 6= jh(
;E )i if Ar(fk) = 0 ^ k = jhi otherwise (160)G3;di[j;�j ℄ [[Ct a1 : : : ar ℄℄ �;� 4= k=r℄k=1 G3;di[j;�j ℄ [[ ak ℄℄ �;� (161)G3;di[j;�j ℄ [[ 
ase sof hpr; eri ℄℄ �;� 4= ℄(G3;di[j;�j ℄ [[ s ℄℄ �;�; (k=r℄k=1Gk)) (162)G3;di[j;�j ℄ [[F a ℄℄ �;� 4= ℄(f ;a; �0;  0) 2C1 [[F ℄℄ �;� hfagi (apg3;d(f ; i; j;a; �0; �0;  0)℄(i=jaj℄i=1 G3;di[j;�j℄ [[ ai ℄℄ �;�))(163)
In (162),Gk = � G3;di[j;�j℄ [[ ek ℄℄ k�k;� if H(pk) 2 S [[ s ℄℄ k�;�fg otherwiseTable 18: De�nition of G3;di[j;�j ℄ [[E ℄℄ �;�De�nition 7.35 The abstra
t 
alls operator with dth order subtyping, G3;d 2 ISf�ISf � E � Env(E)�MP � 	d 7! (T� Env(S))�, (the extension of G with arbitrary pre
ision
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ates 
alls of fun
tion fj within fun
tion fi (whi
h has input subtype
losure environment,  ), and is de�ned over the stru
ture of expressions in Table 18.Note that, in 
ontrast to previous members of the hiera
hy of abstra
t 
alls operatorswhi
h ea
h produ
ed a sequen
e of CSTs, G3;d produ
es a sequen
e of CST, subtypingenvironment pairs.De�nition 7.36 The abstra
t appli
ator for 
alls analysis with arbitrary pre
i-sion subtyping, apg3;d 2 F � ISf � ISf � E� �MP � Env(E) � Env(S) 7! (T � Env(S))�, isde�ned as followsapg3;d(>F; i; j;a; �; �; �) 4= h>Ti (164)apg3;d(fg; i; j;a; �; �; �) 4= hi (165)apg3;d(ffkg; i; j;a; �; �; �) 4= 8>>><>>>: hi if (jaj < Ar(fk))f(T(i;a; �; �; �); �)g [R if (fk � fj)h(>T; �)i if (fk 6� fj)^:ADP(fk; �0)U(T0;�0)2fg3;dk[j℄ �0  0(Map (?T(i;a; �; �; �); �0)T0) if fk 6� fj (166)In the above, if �00 = ���j is a valid subtyping environment then R � apg3;d(ffkg; i;a; �; �; �00).Otherwise, R � hiDe�nition 7.37 For ea
h fun
tion, there is a family of abstra
t 
alls fun
tions whi
hgive the CSTs for the re
ursive 
alls of fun
tion fj within the de�nition of fun
tion fi withsubtype 
losure environment,  and environment of fun
tion-type arguments, �.f g3;di[j℄ �  4= [�02SP(()�i)G3;di[j;�j℄ [[ ei ℄℄�0�;fg7.4 Termination Criteria Using Arbitrary Pre
ision SubtypingWe now pro
eed, in the light of our arbitrary pre
ision subtyping 
onstru
tions, to rede�neour abstra
t semanti
 
riteria that assure termination.Firstly, as the subtypes have be
ome more sophisti
ated, so their minimal size 
an beother than a binary value.De�nition 7.38 Assume we have s 2 S. Then the minimal subtype size of s, denotedmss 2 S 7! RP, is de�ned thus:mss(s) 4=minfm
s(Ct) jCt 2 sgDe�nition 7.39 The jth weighting ve
tor with respe
t to an arbitrary pre
isionenvironment � is a ve
tor with, in the jth position, mss3;d(�(xi;j) >RP is in all otherpositions, regardless of their types.



68 A Hierar
hy of Languages with Strong Termination PropertiesDe�nition 7.40 The abstra
t subtyped 
alls set of a fun
tion fi, is denoted, for theorder d, ASC(i; d) 2 T� Env(Sd) and is de�ned as, ASC(i; d) 4= f g3;di[i℄ fg.De�nition 7.41 The abstra
t 
all matrix of re
ursive 
alls of fun
tion fi is de�nedwith respe
t to a dth-order subtyping environment, �, thus:ACM(i; d; �) 4= fr j ((v; 
); �0) 2 ASC(i; d);�0 v �gwhere, if xi;j is an algebrai
 argument, rj 4= N(wjvj + 
j � mss3;d(�(xi;j))), wj is the jthweighting ve
tor with respe
t to the subtyping environment � and vj is the jth 
olumn ofv. If xi;j is non-algebrai
 then rj 4= !.De�nition 7.42 The jth argument to fi (i.e. xi;j) with subtyping environment � is saidto be an abstra
tly monotoni
 des
ending argument, written AMD(xi;j; d; �) (orsimply AMD(j; �) where the fun
tion and subtyping 
ontexts are 
lear), if8rl 2 ACM(i; d; �):(rl;j � 0) ^ (9d:rd;j < 0)The jth argument is said to be abstra
tly stri
tly des
ending, written ASD(xi;j; d; �)if 8rl 2 ACM(i; d; �):(rl;j < 0)De�nition 7.43 A fun
tion fi has the abstra
t des
ent property for the subtypingenvironment �, denoted ADP(A), where A � ACM(i; �), if and only if9j:AMD(j; �) ^ ADP(A0)where A0 = fre j (re 2 A) ^ (re;j = 0)gTheorem 7.1 If a fun
tion has the abstra
t des
ent property for a subtyping environment,�, then it has the monotoni
 des
ent property on the same set of subtyping assumptions,where the subtypes are of order d for some �xed d.Proof. The proof follows the same stru
ture as previously. 27.5 ESFP3;dThe modi�ed analysis above produ
es the �nal version of our ESFP language.De�nition 7.44 For some given natural number d, the language ESFP3;d 
onsists ofEFP+ together with a 
he
k that all de�nitions within a s
ript have the abstra
t des
entproperty for some valid subtyping environment with arbitrary pre
ision subtypes of order dand analysing with proje
tion expressions of length d.
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ision SubtypingWe now give, as an example of the ba
kwards subtyping termination analysis, an a

ountof the analysis of mergeSort .Example 7.1 [Mergesort℄ The de�nition of the fun
tion, whi
h is that used in [34℄, is asfollows:mergeSort merge xj length x < 2 def= xjotherwise def= merge (mergeSort merge �rst)(mergeSort merge se
ond )where�rst def= take half xse
ond def= drop half xhalf def= (length x) div 2The analysis 
an show that mergeSort is in ESFP3;d for d � 2 sin
e the information that thesize of the list x is at least 2 is propagated throughout the part of the analysis 
orresponding tothe se
ond 
lause. Thus the analysis is 
apable of dete
ting that both take half x and drop half xprodu
e a redu
tion in the length of their arguments.8 Strong Normalisation and Analysis FrameworksWe 
an generalise our analysis further to allow di�erent notions of redu
tion and to developa generalised framework for our analysis. As dis
ussed in x 2, our operational semanti
s onlyredu
es to weak normal form. Consequently, our analysis only assures termination underthe given redu
tion order. This is suÆ
ient with respe
t to languages su
h as Haskell orML, sin
e both do not have a stronger notion of normal form. Conversely, Miranda, Haskelland other so-
alled lazy languages only redu
e to weak head normal form (WHNF). Bothfor pedagogi
al reasons and the desire to have sound program transformations, we believethat strong normalisation is worth pursuing. With regard to the former, the assuran
ethat a program is strongly normalising will, we believe, help students to 
onstru
t betterprograms. With regard to the latter, program transformations may fail in the 
ase wherewe expand the expressions bound by lambda abstra
tions.8.1 Analyses Parameterised By The Operational Semanti
sIt has been proposed by Cousot that stri
tness analyses 
an be parameterised by theirsemanti
s [9℄. We take a similar approa
h here in sket
hing out how our analyses 
an begeneralised to take a

ount of weaker (�a la Haskell) or stronger notions of normal form.For ea
h operational semanti
s (and 
onsequent de�nition of normal form) the mainpoint of departure is for fun
tion appli
ations. In that 
ase we 
an use the operational
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hy of Languages with Strong Termination Propertiessemanti
s to determine whether parameters or, indeed, fun
tion bodies should be rea
hedby the analysis. This 
an be a
hieved by adding a rea
hability predi
ate (whi
h woulddepend on the operational semanti
s) to the apa and A2;d operators. With WHNF, forinstan
e, we would not s
an an a
tual parameter of a fun
tion for re
ursive 
alls if thefun
tion did not use that argument.9 Related WorkThe general area of term rewriting has 
overed many aspe
ts of general termination prob-lems with work by Zantema of parti
ular note (e.g. [39℄). Most of this work does not addressthe issue of fully automated termination 
he
ks for programs, with [14℄ being an ex
eption.In more spe
i�
 programming areas, Giesl has worked on automated termination proofs fornested, mutually re
ursive and partial fun
tional programs [16, 4℄. Closely related to this,Brauburger has produ
ed an automated termination analysis for partial fun
tions [3℄ usingGiesl's synthesising te
hniques for polynomial orderings [15℄. Closely related is the work ofSlind on TFL [30℄, and like the previous work is based on automati
ally generating termorderings and termination predi
ates within a theorem-proving environment. A de
idabletest for a broader 
lass of de�nitions than primitive re
ursion has also been established forWalther re
ursion [38, 21℄. However, whilst ours is higher-order and polymorphi
, theirs is�rst-order and monomorphi
. Moreover, the dis
ipline requires a programmer to providedi�erent versions of fun
tions for ea
h algebrai
 subtype: our subtyping me
hanism doesthis automati
ally. The TEA system [27℄ has used N�o
ker's abstra
t redu
tion te
hnique(whereby the standard evaluation of a program is repli
ated with abstra
t values; [25℄) as atermination analyser. Their method dete
ts whether a program terminates under a normalorder evaluation s
heme | it would have to be adapted for stri
t evaluation so as to dete
tstrong normalisation. TEA does not deal with error expressions as we have done in ourstrongly normalising dis
ipline in that it \usually treats errors as termination". Abel hasalso re
ently produ
ed a termination 
he
ker, the Foetus system based on analysing 
allgraphs [1℄. This system only deals with simple synta
ti
 des
ent at present.10 Con
lusions and Future WorkWe have demonstrated that abstra
t interpretation 
an be used as an e�e
tive methodfor determining whether re
ursive fun
tions terminate. The analysis is derived from thesemanti
s of the language and, for the basi
 
ase uses the same domain of values employedto analyse the dual, 
ore
ursive 
ase. We have then developed the abstra
t interpretationso that partial fun
tions may be admitted due to a subtyping me
hanism. Furthermore,by using representations of proje
tions we have been able to add fun
tions that re
urseover nested data stru
tures. This methodology was then used to develop a more sophis-ti
ated subtyping me
hanism whi
h meant that more 
omplex des
ent me
hanisms 
ouldbe re
ognised.
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ould be in
orporated within a 
ompiler for anelementary strong fun
tional programming language. Indeed, we are 
urrently working onthe implementation of our basi
 methodology for the EFP language. We suggest also thatthis method 
ould be used to extend the 
urrent algorithm within systems su
h as Coq [5℄.An advantage of our abstra
t interpretation approa
h is that it may be possible tointegrate our algorithm with Cousot's abstra
t interpretation rendering of Hindley-Milnertype inferen
e [10℄. Thus we would have a single system whi
h would ensure that type
orre
tness meant that the program would have to be strongly normalising. Furthermore,analyses used for optimisation, su
h as binding-time analysis [18℄, may be integrated intothis me
hanism. In 
on
lusion, we believe that this work gives an extensible and modularframework for broadening the 
lass of algorithms that 
an be admitted by a synta
ti
analysis.
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