UKC Computing Laboratory TR 2-00

A Hierarchy of Languages with Strong Termination Properties1

Alastair Telford
David Turner

The Computing Laboratory, The University, Canterbury, Kent, CT2 7NF, UK
E-Mail: A.J.Telford@ukc.ac.uk
Tel: +44 1227 827590 Foz: +44 1227 762811
http://www.cs.ukc.ac.uk/people/staff/ajt/ESFP/

February 2000

'This work was supported by the UK Engineering and Physical Sciences Research Council
grant number GR/L03279.

Abstract

In previous papers we have proposed an elementary discipline of strong functional pro-
gramming (ESFP), in which all computations terminate. A key feature of the discipline is
that we introduce a type distinction between data which is known to be finite, and codata
which is (potentially) infinite. To ensure termination, recursion over data must be well-
founded, and corecursion (the definition schema for codata) must be productive, and both
of these restrictions must be enforced automatically by the compiler. In our previous work
we used abstract interpretation to establish the productivity of corecursive definitions in
an elementary strong functional language. We show here that similar ideas can be applied
in the dual case to check whether recursive function definitions are strongly normalising.
We thus exhibit a powerful termination analysis technique which we demonstrate can be
extended to partial functions.

Contents

1 Introduction 5
2 An ESFP Language 6
2.1 Dataand Codata 7
2.2 Types . .o e 7
2.3 EXpressions 7
24 EFP . . e 10

3 A Semantic Termination Condition 10
3.1 The Monotonic Descent Property 11
3.2 Termination Theorem for MDP 12
3.3 Example of a function with the MDP 13

4 Termination Analysis By Abstract Interpretation 14
4.1 Static semantics L e e e 14
4.2 Relative size semantics 0o 14
4.3 Abstract Expression Domain L L., 15
4.4 Closure Analysis 16
4.4.1 Correctness. 18

4.5 Abstract interpretation of relative size 18
4.5.1 Determining least fixpoints for size analysis. 20

4.5.2 Combining abstract size components. 22

4.6 Detecting Recursive Calls 000 23
4.6.1 Calculating fixpoints for calls analysis. 25

4.7 Abstract Descent Property L 25
4.8 ESFPY . . 27
4.9 Examples 27

5 Adding Subtyping 31
5.1 An Elementary Functional Language with Explicitly Undefined Values . . 33
5.1.1 The abstract semantics of error. 33

5.2 The Abstract Subtyping Domain 33
5.3 The Analysis of Subtypes 35
5.4 Modified Termination Analyses 35
5.4.1 Closure analysis with subtyping. 35

5.4.2 Size analysis with subtyping. o000 36

5.4.3 Calls analysis with subtyping. 39

5.5 Termination Criteria Using Subtyping 40
5.6 ESFP with Subtyping ESFP' 42

5.7 Example of the Analysis Using Subtyping 42

UKC Computing Laboratory TR 2-00

6 Nested Inductive Types
6.1 Projection Sequenceso
6.2 Projection Expressions 0oL
6.3 Binding Sets of Projection Expressions
6.4 Approximating Projection Applications
6.5 The Projection-Size Abstract Domain
6.5.1 Concrete Semanticsof Rp
6.6 Modifying the Analyses with Projection Expressions
6.6.1 Closure analysis with projection sequences.
6.6.2 Size analysis with projection sequences.
6.6.3 Calls analysis with projection sequences.
6.6.4 Other modified definitions.
6.7 BExtending ESFP — ESFP>?
6.8 Example: Maptree

7 Arbitrary Precision Subtyping
7.1 Arbitrary Precision Subtype Domains00 L.
7.2 Arbitrary Precision Subtype Environments
7.2.1 Environments used to determine the subtypes of expressions.
7.2.2 Environments used to determine the subtypes of variables.
7.2.3 Analyses to determine subtypes. L
7.2.4 Subtyping environments induced by case clauses.
7.3 Modifying the Analyses L
7.3.1 Closure analysis with arbitrary precision subtyping.
7.3.2 Projection analysis with arbitrary precision subtyping.
7.3.3 Size analysis with arbitrary precision subtyping.
7.3.4 Calls analysis with arbitrary precision subtyping.
7.4 Termination Criteria Using Arbitrary Precision Subtyping
7.5 ESFPY
7.6 Example Using Arbitrary Precision Subtyping

8 Strong Normalisation and Analysis Frameworks
8.1 Analyses Parameterised By The Operational Semantics

9 Related Work
10 Conclusions and Future Work

References

List of Tables

1 The Syntax and Semantics of Datain EFP

43
44
45
45
47
49
49
20
20
20
52
52
23
53

54
29
57
o8
60
60
60
62
63
64
65
66
67
68
69

69
69

70

70

72

© 00 ~1 O Ot = W N

e e e e e e
o ~J O Ot i W N = O

A Hierarchy of Languages with Strong Termination Properties

Definition of C[E] ,a.o oo 17
Definition of A;;[E],, - - - 18
Definition of Gy [E'],, - - - -« oo 23
Definition of S| E]]“b, 35
Definition of C' [[E]]Z”U G o 36
Definition of A; [[E]]ig 37
Definition of gv[] o LBy - 39
Definition of P> [(m, E)]]fﬁ 46
Definition of C>? [E]]fig A . 51
Definition of A7/ [E]0, 51
Definition of gm 5] [[E]]Z),U 52
Definition of S¢ [E MU 61
Definition of SE[E]Y so 61
Definition of C*¢ [E MU G 63
Definition of P [(m, E)]]f}a 64
Definition of AT [EY, 65

Definition of glw [E]]w,g 66

UKC Computing Laboratory TR 2-00 5}

1 Introduction

We are interested in the development of an FElementary Strong Functional Programming
(ESFP) system. That is, we wish to exhibit a language that has the strong normalization
(every program terminates) and Church-Rosser (all reduction strategies converge) proper-
ties whilst avoiding the complexities (such as dependent types, computationally irrelevant
proof objects) of Martin-Lo6f’s type theory [20]. We would like our language to have a type
system straightforwardly based on that of Hindley-Milner [22] and to be similar in usage
to a language such as Miranda' [35]. The full case for such a language is set out in [36]
but we recap its main potential benefits here:

e Such a language will allow both direct equational reasoning and simple induction
principles we do not have to worry about undefined elements when verifying
properties.

e There is no dichotomy between lazy and strict evaluation as we shall have the Church-
Rosser property and strong normalisation. This means that we have evaluation trans-
parency, or what may be termed true referential transparency. We believe that this
has the added benefits of making program optimisation, debugging and parallelisa-
tion easier to achieve.

e Since it does not have the complexities of type theory it is sufficiently elementary to
be used for programming at the undergraduate level. Moreover, it is more satisfactory
from the pedagogical point of view: typically undergraduates are given step-by-step
evaluations to perform which are done strictly in the recursive case, even in a lazy
language such as Haskell (see [28]). Then, infinite structures, with the same syntaz
and types, are evaluated lazily.

In ESFP we make a clear distinction between data (finite structures — initial algebras)
and codata (infinite structures — final coalgebras). We have described the characteristics
of the latter in [31] and have extended syntactic checks devised by Coquand [6] in Type
Theory, and Giménez [17], in the Calculus of (Inductive) Constructions, to check whether
corecursive definitions are well-formed. Our analysis, used the idea of guardedness (i.e.
that corecursive occurrences only occur beneath constructors), first proposed by Milner in
the area of process algebras [23].

In this paper we apply the dual ideas to the dual structures, data. This extends
the Giménez work [17] in the area of recursion. In particular, our analysis allows some
non-primitive recursive algorithms which has been achieved by formulating a size descent
detection algorithm as an abstract interpretation. The key point of using the abstract
interpretation method is that it allows us to determine the level of destruction of an actual
parameter when a function is applied within a recursive call.

We also extend our analysis to cope with partial functions using a simple subtyping
mechanism. Furthermore, this extension allows a wider class of total algorithms to be

"Miranda is a trademark of Research Software Limited.

6 A Hierarchy of Languages with Strong Termination Properties

accepted. As an illustration of the power of our analysis, we show how it can accept
Euclid’s ged algorithm, which is undefined for two zero inputs.

This subtyping mechanism is itself extended using projection sequences so that we can
show that the standard definition of mergeSort terminates. The projection sequence mech-
anism also enables us to accept programs that are defined recursively on nested inductive
types. Whilst it is naturally undecidable whether a recursive function is well-defined, the
extension to guardedness that we present here makes programming more straightforward
in a strongly normalizing functional language. We also suggest that our work may be
suitable as an enhancement to the algorithm for recognising strongly normalising recursive
forms in the Coq system [5].

Overview of this Paper. In § 2 we define our EFP language which may be seen as
the rudimentary heart of any functional programming system. We then present a semantic
property, constructed from standard termination theory, that guarantees termination of an
EFP program in § 3. This termination condition then serves as the basis for the abstract
interpretation-based analysis that we develop in § 4. This analysis is strong enough to
show that both Ackerman’s function and the standard, naive definition of quicksort both
terminate. We then, in § 5, seek to broaden the class of algorithms permitted within the
language by introducing a simple subtyping mechanism that allows certain partial functions
provided that they are applied to terms of the correct subtypes. To cope with nested
inductive types and the associated schemes of recursion we develop the analysis given in
§ 6. This method, using projection sequences, is then developed further in § 7 to produce
a more sophisticated subtyping mechanism which allows the subtypes of substructures to
be captured, thus widening further the class of ESFP programs. In § 8 we discuss how
the analysis developed can be placed within a general analysis framework which may be
parameterised by the reduction semantics of the language and hence the idea of normal
form. This means that our analysis can be extended to show not only the termination of
programs to weak normal form (the standard for strict functional languages) but also can
show termination to (strong) normal form, including reductions under lambdas. Finally,
in § 9 we discuss related work and in § 10 we conclude.

2 An ESFP Language

We now present the characteristics of types and terms in an ESFP language. We shall refer
to the language that we describe below, which consists of the core of languages such as
Miranda or Haskell together with some basic syntactic restrictions, as our basic elementary
functional programming language which we shall call EFP. Our full ESFP language will
consist of this basic language together with an augmentation to the type-checking system
which ensures that a program will terminate.

UKC Computing Laboratory TR 2-00 7

2.1 Data and Codata

Firstly, in our basic EFP language, we make a distinction between data (finite structures of
inductive types) and codata (infinite structures of coinductive types). The reason for doing
this is that functions acting upon data should perform a computation whilst recursively
descending through a structure whilst those producing codata will be building a structure,
possibly using some inputs. The semantic issues for infinite data structures, in which
we explain what it means for codata functions to be productive and Church-Rosser, are
explored further in [32].

2.2 Types

Algebraic data type definitions are basically as they appear in Haskell and each type
constructor should occur only once in all the type definitions. In our abstract syntax, each
type constructor is labelled C;, where 7 is a natural number. There are the following added
restrictions on algebraic type definitions:

1. Only strictly positive occurrences are allowed in the inductive definition of types.
This means that in the definition of a type, T, say, T may not occur within the
domain of any function space in the definition of 7. For example, the following
would not be allowed:

data ilist L C (ilist —s Int)

2. T may not be defined via polymorphic type U where T occurs as an instantiation
of U. For example, we would not allow rosetrees which can be given the following
definition:

data Rosetree a Leaf a | Node [Rosetree al

3. T may not be defined via a type U which is transitively defined using 7.

4. T must have a base case i.e. one with no recursive occurrences of T

We use the standard notion of ground types i.e. types which do not contain in their defi-
nition any function types.

2.3 Expressions

Definition 2.1 The syntactic domains of our EFP language are as follows:

Definitions

Function names

Function parameter names
Constructors

Pattern variables

Patterns

Ezxpressions

HaZAE=-g

8 A Hierarchy of Languages with Strong Termination Properties

Syntax

deD fiel

z;; € H e, €K

C;eC piEG
Ui’TEM

d :f'd:ef)\x71 - Tjn- €

en=u1; |C’ er...e.|ereq| caseeg; of (pr,e1) ... (pr, er)

P :C’v“ iy

Operational Semantics

C

z; ; € Dom(Env(E)) Env(E)(x; ;) ~Env(m)
(Vars)

Tij 7 Env(r) ©

Vie{l...(j —1)}.nf(e;) e ~Env(m) & (nf(c;))

Constr
C’iel . (7% _»Env C i€1...€-1Cj€541...6€p ()
by @ ~ Envis A . £(c))
fz)\Tz - T n-Ez €1 Env Z.€; €2 Enve ¢ (Il ¢
)1\ 7 (Func)) (Appl)
fi _»EFIV(E) Tia .. Typ Ly €1€2 _»Env [(‘/T]

(Fri.eq ~Env(r C’ €1 €in) (Di=Civir... vip);
VJ Pz J Envm) G (f(cig))

casee; of (py,e1) ... (pr,e) ~Env(z) eilcin/vit .- Cin/Vin]

(Case)

Table 1: The Syntax and Semantics of Data in EFP

UKC Computing Laboratory TR 2-00 9

Definition 2.2 The abstract syntax and applicative order operational semantics
of data within our language is given in Table 1.

Normal forms within the language are either lambda abstractions or constructor ex-
pressions of the form Ciciq . ..c;, where all the c;;j are in normal form. The fact that an
expression ¢ is in normal form is denoted nf(c).

The set of normal forms of expressions of the language (i.e. the values of the system)
1 denoted V. This set includes, 1, the undefined value.

The set of algebraic values of the basic EFP language is denoted Vy and consists
of the subset of V that are of algebraic type. This includes L, the undefined value.

The reduction relation, ~Env(n)’ is a “big-step” one, relative to the environment Env(FE)
which binds closed expressions to free variables.

In order to help ensure termination, we stipulate that case expressions must be ex-
haustive over the patterns of the type:

Definition 2.3 A case expression, of the form, casesof(pi,e1) ... (p,, e,) is exhaustive
over the patterns (of the type of s) iff for every constructor of the type of s occurs within at
the head of the patterns, p;. Furthermore, patterns nested within a pattern must themselves
be representable as exhaustive case expressions upon a simple variable.

Definition 2.4 The typing system for basic EFP expressions is that of Hindley-Milner
[22]. As in languages such as Miranda and Haskell, the same constructors that appear in
type definitions appear in the same form within expressions in the language.

We use T(e) to denote the type of expression e and Unify(eq,eq) to indicate that the
types of expressions e; and ey unify.

Definition 2.5 A script, S, consists of a set of function definitions, f; (where i is an
integer) from the syntactic domain of function names, F. The indices of F form a set,]I?.
Each function f; has formal parameters labelled z; 1, x;o

We use Ar(f;) to denote the arity of function f;. That is, the variable index set,
]I?i, of a function f; consists of (i,j) pairs where 0 < j < Ar(f;). FT(e) is used to indicate
that an expression is of non-ground type.

Note in the above that 0 is always included in this set, even though (i, 0) does not label any
variable in the script. This, as we shall see in § 4, is because we need to find the contribution
made by constant i.e. non-variable factors to the semantic size of an expression.

Additional assumptions. Pattern matching over an input to a function will be taken
to mean the application of a case expression to an input. We shall use Haskell-style syntax
for formal parameters and patterns. Furthermore, nested patterns will be unsugared as
nested case expressions. We also assume that super-combinator abstraction (including
lambda lifting) has been applied to the original program so that we simply have a set of
top-level definitions and that there are no definitions by partial application. This means
that we can cope with where definitions in our programs. Finally, we assume that, due
to the standard isomorphism, A x B — T ~ A — B — T, uncurried programs are
translated into their curried equivalents.

10 A Hierarchy of Languages with Strong Termination Properties

Termination and reduction sequence. Note that we have specified an applicative
order reduction sequence in which expressions are reduced to weak normal form [29], which
is similar to the reduction strategy and notion of normal form used in strict functional
languages such as SML [24]. This does not mean that ESFP programs must be evaluated
strictly: we simply use this reduction strategy for data to demonstrate that our analysis will
ensure termination in this case, hence guaranteeing strong normalisation. The fact that we
only reduce as far as weak normal form is also unproblematical since we assume that lambda
abstractions only occur as part of top-level definitions. Thus the system we shall present
will, in fact, ensure termination in a suitable subset of all current functional programming
systems such as Haskell and SML. We shall show in § 8 how this can be generalised further
so that strong normalisation will be ensured i.e. programs will terminate even if reductions
under lambda abstractions are allowed.

2.4 EFP

In the light of the above description, we are now in a position to give the definition of our
basic language.

Definition 2.6 The elementary functional programmaing language, written EFP,
consists of a functional programming language where

1. Data and codata and consequently recursive and co-recursive functions are syntacti-
cally separate, as in § 2.1.

2. The syntazx of types obeys that of § 2.2.

3. The syntax and semantics of the expressions and types of expressions obeys that given
i § 2.3, including Defns 2.1 2.5,

We write Accept(S, EFP) to denote the fact that a script, S, meets the above conditions
for EFP.

3 A Semantic Termination Condition

We now exhibit a termination condition based upon abstracting the sizes of terms in
the EFP language. The termination condition is based upon a semantic, undecidable
property of actual parameter expressions. The property is, basically, that there is some
well-founded descent upon some lexicographic ordering of the arguments for any recursive
call of the function. The fact that well-founded descent upon one argument will ensure
termination will mean that termination will be guaranteed in the lexicographic case for
several arguments, as is discussed in [2]. We shall call this the monotonic descent property.
The termination analysis that we shall develop in later sections will be a safe approximation
to this condition.

UKC Computing Laboratory TR 2-00 11

3.1 The Monotonic Descent Property

Definition 3.1 The recursive sub-components of a closed algebraic expression e, is
defined as

Rec(e) 2 { Uj UnifySub(e;,e) ife — Cje;...e,

2
{ }l otherwise

Here, UnifySub(eq, ey) denotes the recursive sub-components of ey that unify with e, :-

A {ei} if Unify(e;.e3)
UnifySub(e;, e2) = ¢ J;_, = sUnifySub(e;, e2) ife — Cjer...¢,
{} otherwise

Definition 3.2 The size of a closed expression?®, e, is defined as follows:
e If e is not an algebraic type or if e does not have a normal form then |e| = w.

e Ife is of algebraic type and normalises then,

A0 if Rec(e) = {}
le| = 1+, e'| otherwise
e'€Rec(e)

In producing a condition for strong normalisation, we need to distinguish between each
call of a function in the program text and, in addition, each call within the evaluation of
a function upon some arguments.

Definition 3.3 Let P be a program i.e. a set of function definitions. Within P there are
finitely many calls of each function, f, which we can label with positive integers to get
labelled calls of the form f*. We call k a static label.

Similarly, there are countably many recursive calls of each f* that occur in the reduction
path of some initial expression, ft,...t,. We label these, f*¥', f&2

The arguments of each %' will be labelled e’f’i ekt

The above labelling enables us to give a characterisation of the distinct (in terms of points
in the program text) recursive calls of a function that are encountered during an evaluation.

Definition 3.4 Let Calls(fty...t,) be the set of static label-distinct calls of f that are
redexes within an applicative-order reduction of ft,...t, where ty...t, are closed terms.

Definition 3.5 The jth arqgument of a function f is termed monotonic descending for
F =Calls(ft...t,), written MonDesc(f, j, F'), iff

(VEVi el < Jt;)) A (3f™ € FVile™| < |t;])

2We can also give the size of an open expression, when evaluating with respect to an environment
Env(E), and denote this |e|Env(E)

12 A Hierarchy of Languages with Strong Termination Properties

Definition 3.6 Let f be a function defined on n arguments and let F' = Calls(ft;...t,)
(where ty .. .t, are closed terms that are well-typed but otherwise arbitrary).
Then f has the monotonic descent property (written MDP(f, F)) iff F = {} Vv

(3j.MonDesc(f, j, F) A MDP(f, F")). Here, I’ = F\F1€5¢ qng pdesc 2 (pk| ph ¢ p A
Vi el | < It}

The above says that there must be some argument, j, of f which is both descending at
some recursive call point in the program and, moreover, must not be ascending at any
other recursive call point. Furthermore, f must have the monotonic descent property at
all recursive call points where j is not descending.

3.2 Termination Theorem for MDP

In this section we state and prove that the monotonic descent property, coupled with
exhaustive case expressions, ensures termination under the operational semantics of EFP.

We first show that there cannot be infinitely many calls that descend on an argument
if that argument does not ascend.

Lemma 3.1 Suppose that a function f has a descending argument, j, on F = Calls(f t;...t,)
for some ty...t,. Let S = maxXy ¢ jodese I(f" ty...t,) where Fjdesc s as given in the defini-
7

tion of the monotonic descent property (Defn. 3.6) and I(f7,t,...t,) is the ordinal number
of times that f" occurs within the evaluation of ft,...t,.
Then S < |t}

Proof. By induction on [¢;|.

Base case (where |t;| = 0)
In this case there cannot be any calls of any " € Ff““ since then by definition then

|e§-’i < |t;| = 0, which contradicts our definition of size.

Inductive case (where |t;| > 0)
If fti...t, = E(fi el ell) where [T € Fj“{“sC then, due to the descending argu-

< |tj]. Thus, by the induction hypothesis (for |e_7;-’1
calls of f"in fe]' ... e5" Consequently, there are at most |t;| calls of

1

ment property, \e;), there are
, :

at most [}

any f".

We thus obtain our termination theorem.
Theorem 3.1 Suppose the following about the definition of a function f of arity n:

e f is defined according to the rules of EFP.

e Apart from recursive calls of f (which may indirectly occur in functions called by f),
the definition of f comprises only constants and functions which terminate under the
operational semantics of EFP.

UKC Computing Laboratory TR 2-00 13

e f has the monotonic descent property.

Then f terminates on all inputs, t1 .. .t,, following the operational semantics of EFP given
wn Table 1.

Proof. By induction on the number of elements in F' = Calls(f t;...t,).

Base case (where Calls(fty...t,) ={})
In this case there are no recursive calls. It follows that since all other expressions are
SN and case expressions are exhaustive, f must also be SN.

Inductive case
MDP(f, F') implies that there exists a descending argument of f, j, say. By Lemma 3.1
there are at most |¢;| calls of any f" € Fjde“. Consequently, in the reduction se-
quence of fty...t,, there must be an ith call in of some f" € Ffe“ such that

Calls(f ey .. .em) N Ffes = {}. Since f has the monotonic descent property on any

inputs, it must have the monotonic descent property on Calls(f e’ ...e"). Thus as
the number of elements in Calls(f e}”...e}") is less than the number of elements in
Calls(f t;...t,), it follows by induction that fe]"...e"" is terminating and conse-

n
quently ft;...t, is terminating.

3.3 Example of a function with the MDP

We now show that Ackerman’s function has the MDP.

Example 3.1 Ackerman’s function, ack is defined as follows:

de,
ackmn tef

case m of
0—-n+1
(Sucem') —
casen of
0— ackm'1
(Succn') — ackm' (ackmn')

We can argue that Ackerman’s function has the MDP as follows: Note that if the first
input, m, is 0 then the MDP holds trivially. Otherwise, there are three recursive calls of ack,
ackm' 1, ackm’ (ack mn') and ack mn' which are labelled as acky, acky and acks, respectively.

Then, for arbitrary inputs m and n, MonDesc(ack, 1, Calls(ack mn)) (where, if m > 0,
Calls(ack mn) = {acky, acks, acks}) since in acky and acks, |m'| < |m| whilst in acks, |m| = |m].

It also follows that MonDesc(ack, 2, {acks}) since in acks, |n'| < |n|.

Hence, it follows that ack has the monotonic descent property.

14 A Hierarchy of Languages with Strong Termination Properties

4 Termination Analysis By Abstract Interpretation

definition has the monotonic descent property.
We assume to start with that we do not have any nested or mutually inductive types.
This means that where £ = Cie; .. . e,,

Rec(E) = {e; | Unify(e;,)}

Obviously, this set is decidable. In Sect. 6 we shall see how the analysis may be extended
to encompass nested inductive types.

4.1 Static semantics

Starting from our basic, operational semantics we wish to obtain a series of abstract ap-
proximations to the idea of size of an expression and its size relative to a given parameter.
Each successive approximation will be an abstract semantics of the preceding concrete
semantics. Following the Cousots’ approach [11], we wish to obtain an adjoint relation-
ship between each abstract and concrete semantics. The maps, are abstraction, denoted
«, which maps from a concrete to an abstract semantics, and concretisation, denoted -+,
mapping in the opposite direction. To do so, we need to define a static semantics based
upon our operational semantics. This will form our initial concrete semantics.

Definition 4.1 The set of semantic properties of our basic ESFP language, denoted P

is defined as P 2 o(V),
The set of algebraic semantic properties of our basic ESFP language, denoted Py

is defined as Py 2 o(Vy).
Definition 4.2 The static semantics of basic ESFP expressions, O o] € Ex Env(E) —
P is defined as follows: O[e] Env(E) 2 {{ ¢ if(e " Env(r) ¢) Anf(c) 1

1 otherunise

4.2 Relative size semantics

We require that the sizes of expressions are in fact relative to some given input.

Definition 4.3 The relative size domain, R, is the complete lattice, ZU{w, —w} (where
T =w and L = w), with lub operator max and the following additive and multiplicative
operations:

wH+s=s+w=w —W*kS=8%x —WwW=—Ww
—wH+s=s+(—w)=s 51 % 89 = 51 + 82 (s1,82 € R\{-w})
S1 + SS9 = 81 +7 S9 (81,82 EZ) 51—82251+(_52)

Definition 4.4 The relative size semantics of an expression, e, with respect to a pa-

rameter x, is defined as: R[e], 2 max{)\Env(E).|e\Env(E) — |Env(E)(x)|}

3See [8] for an overview of abstract interpretation.

UKC Computing Laboratory TR 2-00 15

4.3 Abstract Expression Domain

Definition 4.5 The set of all type-correct substitution instances of expressions, de-
noted E° 1s defined as:

E* £ {e[a/x] | e € E, Vi.a; € E*, Unify(z;, a;)}

Definition 4.6 The abstract expression domain, denoted E, consists of the powerset

of all type-correct substitution instances of expressions i.e. E 2 o(E*) We denote the top
of this complete lattice by TEg.

Definition 4.7 The domain of pattern variable expression environments, M, con-

‘ . o ‘ ‘ . A
sists of functions binding pattern matching variables to elements of E i.e. M=M — E

Note that in the above, E is an infinite complete lattice. In order to ensure that the
closure analysis calculation terminates we need to introduce approximations to the standard
notion of expression substitution. These approximations are an example of a widening, a
technique introduced and shown to be sound by the Cousots [12].

Definition 4.8 The abstract expression substitution of an abstract expression, b for
a variable x within an abstract expression a, denoted alb [g x|, is defined via standard
expression substitution thus:

TE[b /E x] é TE

{e}[Te fea] = {TE iz € FV(c)

{e} otherwise

{eit{es fea] = {erles [e 2]}

We can define a series of such substitutions, alby /g x1...b, /g z,], also in an analogous
way to that for standard substitution.

In particular, we need to approximate in the case where we may be substituting expres-
sions involving the parameters of a function for those parameters. The definition of ap-
proximation that we introduce below prevents an infinite growth in the size of substituted
expressions.

Definition 4.9 The approximation of b with respect to x, where b is a vector of
abstract expressions, is defined as, Apx(b, x) 2 where

A Te obi=Te

{ei} bi = {ei}

We can use the above definition in order to construct simultaneous substitutions over
abstract expressions.

16 A Hierarchy of Languages with Strong Termination Properties

Definition 4.10 The simultaneous substitution of a vector b of abstract expressions
for a vector x of formal parameters within a vector of abstract expressions, a, defined as,
alb /g x| 2 o' where a; = a;[b} [e x1... b, [e w)] and b = Apz(b,).
Similarly we define substitutions of abstract expression environments within an abstract
expression as follows: bj|p] is the simultaneous E substitution, b;[p(x)/T]serv(v;)rcenom(p)-
Likewise, we may substitute within an abstract expression environment, which we denote
as o|b/x;)

4.4 Closure Analysis

We now describe an auxiliary analysis that allows us to abstract higher-order applications.
This closure analysis, which is based on that given devised by Palsberg, Bondorf and Sestoff
[18, 26], takes an application, F a and produces a set of triples of the form (f;, a, o), where
fi is a function label, a is an actual parameter sequence and o is an environment binding
expressions to pattern matching variables. We shall see that the latter is necessary in
order to determine whether a reduction in the size of an argument to a recursive call has
occurred. Furthermore, Ar(f;) > |a|, where |a| is the length of @ i.e. we ensure that each
actual parameter can be bound to some formal parameter of a function.
We first need to define the abstract domains that comprise our closure analysis.

Definition 4.11 The abstract function label domain, denoted F, consists of all possible
singleton sets of function labels together with the empty set and the set of all function labels
(which is equivalent to F and which we denote here Tg) i.e.

A
FE{{ufruJ{rn
fi€F
The powerset of the product of the above definitions then defines our abstract space of

closures.

Definition 4.12 The abstract closure domain, C, is defined as follows:
C2 o(F x E* x M)

where E* denotes finite sequences of elements of E. The top of C is denoted Tc.

Definition 4.13 The closure analysis semantic operator, C € Ex Env(E) x M x E* — C,
is defined in Table 2.

oys . . def .
Definition 4.14 The abstract closure function of a function, fi = Axi1...%;n.€;, 18
defined for a given environment of non-ground expressions p, and a sequence of actual

. A
parameter expressions, a, as f" pa=CJe; ﬂp 0a

An abstract closure function, f, produces a set of function, actual parameter sequence
pairs where the actual parameter expressions are in terms of the formal parameters of
fi. However, these actual parameter expressions need to be transformed into expressions
involving the parameters of the calling context.

UKC Computing Laboratory TR 2-00

Ta ifp(x):TE\/U(.’I)):TE
AN
Clz],,a =\ {({ta,0)} ifp(z) ={}
Clel,pa ifpa) = {e} Vo) = {e}
ClAl,,a 5 { (£} a.0)) it Ax(f;) > lal
L {(f,e,d") | (f,d,o) € f"p' e} otherwise
ClCrar...a],,a 2 UL(f.b.0) | (f.b,0) € ¢; ATC(f,b)}
i=1
A 1=r
Clcasesof (p;.e;)],,a = UC[[ei]]Pan a
crGdl,, e £ CIGl,, (({d}) + a)

In (2), if &; are the formal parameters of f;,

¢ = {(@ig = bileD) |5 € {1 Ax(f)}, FT (b))

where b2 (a1 ... ap(s) €2 (@ar(s)s1 - Gja)s € 2 dlb [g @3] and o £ o[b /¢ @3],
In (4), o; 2 (U?jp" BC(p; j,s,0)) and B¢(p; ;,s,0) 2 o{pij:=s}

In (3), TC(f,b) indicates that f b is a type-correct application; Vb.TC(T¢,b,)

Table 2: Definition of C[E] _a

P00

18 A Hierarchy of Languages with Strong Termination Properties

4.4.1 Correctness.

Finally, we show that our closure analysis is correct in the sense that it is a superset of the
closures evaluated during computation of an application.

Theorem 4.1 The closure analysis is safe in the sense that any application that would be
evaluated in the standard semantics is captured by the closure analysis.

Proof. By induction on the structure of expressions. O

4.5 Abstract interpretation of relative size

We now construct an abstract interpretation over the expression syntax to approximate
the idea of relative size. We require an abstraction that can be used to compute an
approximation of the relative size semantics of an expression. To do this, we calculate the
contribution to the size of an expression made by each formal parameter in the current
scope. For example, in the expression, 1+ z, the parameter z makes a contribution to the
size of the result. In addition, there is a constant factor, due to literal parts of expressions.
In the previous example, there is a constant size factor of 1 as a consequence of the literal
1.

0 ifx = T j
A —w if z = z;
Aijlz],, = . i _ (6)
Aijlt],, =1 if o(z) = {t} A Unify(z.1)
w otherwise
A Jore 0 iEAY() =0A5 =0
—w otherwise
AN ..
Aij[Crai...a,]]p,g = cs(Rec(E),i,7,p,0) (8)
N k=r
A; j [case s of (p,,e,)]]p’g = max Aijlex]]p,ﬂk (9)
AN ..
Aij[Fal,, = max {ap®(f,i,J,a,p,0)|(f.a,0r) EC[F], ,({a})} (10)

Table 3: Definition of A; ;[F]

0,0

Before giving our full abstract interpretation, we must first abstract the idea of re-
cursive sub-components, as given in Defn 3.1. To start with we shall make a simplifying
assumption, that no nested type definitions are allowed. We shall relax this stipulation in
Sect. 6. This means that in this case, we have the following definition.

UKC Computing Laboratory TR 2-00 19

Definition 4.15 The set of recursive subcomponents of an algebraic expression is
defined for our abstract interpretation as follows:

RecAbs(Cie .. . e;) 2 {e; | Unify(e;, (Cieq .. .e.))}

We can now give a definition for our semantic operator that is going to abstract the idea
of relative size.

Definition 4.16 The relative size analysis operator, A €]I?i x Ex Env(E) x M — R,
i1s defined over the structure of expressions in Table 3 with auziliary definitions given in
Defns 4.17-4.19. In the definition, p is an environment binding function type expressions
to variables, whilst o is an environment binding pattern-matching variables of algebraic
types to expressions. i is a function index whilst 0 < j < Ar(f;).

Definition 4.17 We define the constructor abstract size function, cs € p(E) x]I?i X
Env(E) x M — R, which appears in (8) in Table 3, as follows:

es({},i,0,p,0) 2 0 (11)
. A
CS({},Z,],[J, U) z W (12)
cs(R,4,0,p,0) = 1+sv (13)
A [w if Sk, Sk, € S-(k1 # ko) A (Sg, > —w) A (Sg, > —w)
cs(R,i,j,p,0) = { —w ifsv = —w (14)
1+ sv otherwise
In the above,
A
S = Map(A;;[e],,) R (15)
SV é Z Sk (16)

sLES

Here Map is the mapping functor, defined in the standard way, over sequences.
Definition 4.18 The A operator is lifted to the E domain as follows:

AiilTel,,
Aijl{e}],,

Definition 4.19 We define the abstract applicator for size analysis, ap®, which is
used in (10) in Table 3, as follows.

W (17)
Aijlel (18)

> I

p,0

apa(TFaiaja a,o, p) é w (19)
o o A
ap’({}.0.7.8.0,p) = w (20)
ap"({fi}. 4. J,a@,0,p) = (fg *a®) +v; (21)
a A a a a A
In the above, fit = [fi1 0 - fiacsy P) and a® =[A;;[ar],, ... Aij[aja ﬂpﬂ}.

A { feon ifj=0

Vi =)
J —W otherwise

20 A Hierarchy of Languages with Strong Termination Properties

o def
Definition 4.20 The relative size abstraction of a function, f; = Ax;1 ... ,.€;, rel-
ative to parameter j, is defined for a given environment of non-ground expressions p,
as:

e A
fz] p=1p(Fi;,)

Here, F;;, is the functional defined as, Fj;,(f{; p) 2 A j [[e,;]]p’{}. § 4.5.1 details how the
least fixpoints are calculated. Where there is no ambiguity, we shall write a functional
simply as F'.

Performing the abstract interpretation with j = 0 gives the constant size factor of the
expression. Each expression thus has Ar(f;) + 1 interpretations under the A operator.

Discussion of the A operator. The key clauses in the definition given in Table 3 are
(6) and constructor expressions (8) (and Defn 4.17). In the case of variables, the size result
depends upon whether a match is made with the parameter with respect to which we are
analysing. In the case of pattern-matching variables, if the variable is in o it must be
a recursive sub-component of the value that it is bound to. Otherwise, its relative size
cannot be determined and so this must be approximated by w. This reflects the fact that
we cannot determine, in general, the sizes of data elements of structures.

In the case of constructors, we have to determine which are the recursive subcomponents
of the expression and take the abstract relative sizes of those (see (15) in Defn 4.17).
However, if 7 # 0 and the variable z; ; contributes to the abstract size of the constructor
expression more than once (through separate subtrees of the constructor expression) then w
results (see (14)). This is because a multiplicative factor of relative size has been detected
(i.e. the size of the expression is kx;; where £ > 2) which cannot be accepted by our
analysis.

As would be expected, if we are finding the size of an expression, e relative to a variable,
x;; then the result is —w if z; ; does not occur in e.

Lemma 4.1 Let x;; be a formal parameter of a function f;. Then if x;; does not occur

within an expression e, Ai’j [[e]]p , = —w.

Proof. By a simple structural induction over e. O

4.5.1 Determining least fixpoints for size analysis.

We form abstract size functions which may be recursive. We now discuss how their fixpoints
are calculated, in view of the fact that we have an infinite chain as our abstract domain R.

Lemma 4.2 The functionals defined for the abstract size functions are monotonic and
continuous. That s,

‘v’al,aQ € Ra <ay = F(al) < F(CLQ)
and

F(max(ay, as)) = max(F(a;), F(ay))

UKC Computing Laboratory TR 2-00 21

Proof. By structural induction over functionals which are constructed from the max, +, —
and x operators, together with constants from the R domain. O

The least fixpoint of each functional instance corresponding to an abstract size function
thus exists and can be found by computing the ascending Kleene chain, F"(—w), for 0 < r,
where FO(—w)2 — —w, and F™*+!(—w)2 F(F"(~w)). Since the abstract domain is infinite,
however, convergence is not guaranteed within a finite number of steps. The simple chain
structure of our domain however ensures the following:

Lemma 4.3 Let F' be a functional corresponding to an abstract recursion equation formed
from our abstract interpretation of relative sizes. Then either Ifp(F) = F*(—w) or lfp(F) =
w.

Proof. By induction on the structure of functionals. O

Widening of the fixpoint iteration process. Consequently, we can modify our least
fixed point iteration method so that if the second iteration is not a fixpoint then w is given
as the result. This is an example of a widening process [12|. Here, the widening consists
of a family of operations that depend upon the iteration, similar to that in [7].

Definition 4.21 Let L be a complete lattice*. Then a widening is a family of operators
(indezed over N), 7, € L x L — L, which meets the following conditions:

1. Ve,ye LreN(z E (2 v, y) AW E (v, ¥))

(1>

2. For all increasing chains, 2° T z' T ..., the increasing chain defined by, y°

A
%y =yt g, 7T s not strictly increasing.

In the above, C is the ordering on L.

Definition 4.22 The upward iteration sequence with widening is defined as fol-

lows:

O

Ut 2 if F(U) C U
AN

U" v, F(U") otherwise

As shown in [12], the upward iteration sequence with widening reaches a fixpoint within
finitely many steps and, furthermore, is a sound upper approximation of the least fixpoint
of the functional.

We thus define the widening operator for our size analysis.

4 Actually, the domain need only be a CPO.

22 A Hierarchy of Languages with Strong Termination Properties

Definition 4.23 The widening operator for relative size analysis, v/, € RxR— R,
1s defined as follows:

w if (r >3)Ax, #y,

max(z,, yr) otherwise

a
'II"T VT‘ yT

> >

a
Lemma 4.4 The 7, operator is a widening operator in the sense of Defn 4.21.
Proof. The proof is simply by an examination of the definitions. O

Definition 4.24 The fixpoint computation of the functional associated with each rel-
ative size abstraction of a function is defined by the upward iteration sequence given in
a

Defn 4.22 where the widening operator used is \/,, which was presented in Defn 4.23.

Note that in the light of Defn 4.24 and Defn 4.22 we could have shortened the last clause
of Defn 4.23 so that simply y, results rather than max(z,,y,).

Lemma 4.5 The fizpoint computation given in Defn 4.24 finds the least fixpoint of the
relevant functional and computes it in finitely many steps.

Proof. By Lemma 4.3, Lemma 4.4 and [12]. O

4.5.2 Combining abstract size components.

The above has given a method of calculating the size component of an expression due to
a given parameter or, in the case where 57 = 0 in the size analysis, due to constant factors
other than variables. We now show how we combine the relative size information with
respect to all the parameters of a function and with respect to constant factors, to given
an abstraction of the total size of an expression relative to a given input.

Definition 4.25 The abstract size vector of an expression e, with respect to the en-
vironments of function expressions, p, and pattern matching expressions, o, is defined as
follows:

. A
S(ea 1,0, p) =

[A [['e]]p,a '|

| Aoy Iel,,]

We need to aggregate the elements of an abstract size vector so that the result is greater or
equal to the size of the expression relative to one particular parameter. To do this we note
that we cannot, of course, determine the value of |Env(E)(z; ;)| — |Env(E)(z;)| for j # k
in general. Consequently, if A;;[e], is not —w for j # k then R [[e]]wi’k is unknown in
general. In such a situation we must safely approximate with the w value, which leads to
the following definitions.

UKC Computing Laboratory TR 2-00 23

Definition 4.26 The jth weighting vector is a vector with a 0 in the j position if x;
is of algebraic type. Otherwise, where x;; is not algebraic, w is in the jth position. w is in
all other positions, regardless of their types.

Definition 4.27 The abstract interpretation of relative sizes over expressions is defined
by the component size semantics of an expression, e, with respect to a parameter, x; ;:

R*[e],, 2 AEnv(E).(wjs(e,i,{}, {})) where justaposition indicates vector product.

Theorem 4.2 The component size semantics is a safe approrimation of the relative size
semantics.

Proof. By structural induction for some expression E and the definition of the abstract
size vector.

4.6 Detecting Recursive Calls

Gij [#1,., £ (22)
f,f[_ﬂ {} ifAr(fe) =0Ak #
Gitg) [k].0 = (@) ifANf) =0k = (23)
() otherwise
k=r
glm [[Ct aq ...a,n]]pﬂ é Lﬂ QA (24)
k=1
k=r
Gijj [case sof (pr,e;)], , = L"_'J(gi[j} [s],0 (L‘*j Gig lex],) (25)
k=1
i=|al
Gy [Fal,, s + (ap(fi,5.a,0".) () a)}
(faoec[F],, (ah) =1

P

Table 4: Definition of Gy [E'],,

For a function, f;, we need to perform an analysis of the definition of f; which produces
a representation of all potential recursive calls. Each recursive call will be represented by
a component size transformation.

Definition 4.28 The constant factors vector and the variable factors matrix for
a sequence of expressions, e, and with respect to the parameters of function f; and envi-
ronments, p and o, are denoted c(i,e,o,p) and v(i,e,o,p), respectively, and defined as

24 A Hierarchy of Languages with Strong Termination Properties

follows:

. [Ai,o[[.el]]p,g]

C(i, e,o, p) = [A [Ai’l [[61]]p’” T Ai’Ar(fi).[[el]]p,r; -‘

v(i,e,o,p) =
|

Aio [[e\e\]]M Aiq[en]]p’(, T -Ai,Ar(fi) [en]]p’(, J

Definition 4.29 The component size transformation (CST) for a sequence of ex-
pressions, e, and with respect to the parameters of function f; and environments, p and o,
15 defined as a pair of a variable factors matriz and a constant factors vector thus:

T(i,e.p.0) = (v(i.e.p.0).cli. e, p,0))
If (Vi,k1),(Va, ko) are CSTs then

(V1,k1) x (Va, k) L (ViVy, (Vike + k1))

if the relevant matriz multiplications are defined.
The set of CSTs is denoted T and Tt is the CST with all w components.

We again use an abstract interpretation process to discover all the component size trans-
formations that correspond to the actual parameters of a recursive call of function f; that
may be reached by reduction from a call of function f;. A sequence of CSTs, corresponding
to the recursive calls will be computed by the following operator.

Definition 4.30 The abstract calls operator, G €]I? X]I? x E x Env(E) x M — T%,
and is defined over the structure of expressions in Table 4. In the definition, |4, denotes
the concatenation of sequences of CSTs and other auziliary definitions follow below.

Definition 4.31 We define the abstract applicator for calls analysis, ap? € F x Hjsc X
H? X E* x M x Env(E) — T* which is used in (26) in Table 4, as follows

(Tr) (26)
0 | (27)

()
<T(7a a,p, U))) lf fk = fj (28)
LﬂT’Gf,?[j]pk (Map (*T(Za a, p, U)) T if Ik # fj

apg(TF: ia.ja a, p, 0)
ap’({},i,7,a, p, 0)

> 1>

apg({fk}a 7:’ ja a,p, U)
In the above, Map 1is the standard mapping functor from the category of sets to that of
sequences and (xT(i,a, p,0)) denotes right transformation multiplication.

Definition 4.32 For each function, there is a family of abstract calls functions which
give the CSTs for the recursive calls of function f; within the definition of function f;:

A
félJ[,j}p = Ip(Figj1,0)

Here, Fy;, is the functional defined as, E[ﬂﬁﬂ(.fi(fj} p) 2 Giiji [i ﬂp,{}' As before, we write F
for Fij1., and details of the computation are given in § 4.6.1.

UKC Computing Laboratory TR 2-00 25

Discussion of the G operator. In the definition of G, the significant clause is (26).
There a test for a recursive call is made. Note also that mutual recursion is dealt with by
composing CSTs produced by the recursive call and the actual parameters.

As with size analysis, the following holds.

Lemma 4.6 Consider functions f; and f;. Then if f; does not occur within the definition,
E, of fi or, transitively, any function called by f; then, G [[E]]pg = ().

Proof. By a simple structural induction over F. 0O

4.6.1 Calculating fixpoints for calls analysis.

As with size analysis, there is a potential for the calls analysis to spawn an infinite ascending
Kleene chain during the calculation of fixpoints. Indeed, since each CST is composed of
elements of R it is a consequence of Lemma 4.3 that the calls analysis must converge to
a fixpoint by the third iteration in the Kleene ascending chain computation or else the
fixpoint contains an element of a CST that is TopAR. We consequently define a widening
operation (see § 4.5.1) to make the computation finite.

Definition 4.33 The widening operator for calls analysis, vr e T xT"— T7,

18 defined as the pointwise application of vr across corresponding elements in the two
sequences of CSTs, x, and y,.. Where one sequence is longer than the other, those CSTs
are included in the same positions in the resulting sequence.

9

Lemma 4.7 The \/, operator is a widening operator in the sense of Defn 4.21.

Proof. The proof is again simply by an examination of the definitions. O

Definition 4.34 The fixpoint computation of the functional associated with each calls

abstraction of a function is defined by the upward iteration sequence given in Defn 4.22
9

where the widening operator used is \/,, which was presented in Defn 4.33.

Lemma 4.8 The fizpoint computation given in Defn 4.34 finds the least fixpoint of the
relevant functional and computes it in finitely many steps.

Proof. Again, by Lemma 4.3, Lemma 4.7 and [12]. O

4.7 Abstract Descent Property

We are now in a position to present an abstract property that will guarantee the termination
of programs with EFP. The main concept is that, analogously to the monotonic descent
property, defined over Calls(fit;...%,), we may define the abstract descent property
over a matrix that represents the sizes of arguments to the recursive calls of a function.

Firstly, we define a matrix that gives the relative abstract sizes of the arguments to all
potential recursive calls of a given function.

26 A Hierarchy of Languages with Strong Termination Properties

Definition 4.35 The abstract calls matrix of recursive calls of function f; is defined
thus:

ACM(i) = {r|(v.c) € f; {}}

. . . A ‘ . I
where, if z; ; is an algebraic argument, r; = w;v; + ¢, w; is the jth weighting vector and

. . . . A
v; is the jth column of v. If z; ; is non-algebraic then r; = w.

Lemma 4.9 Let ty...tawy,) be arbitrary inputs to a function f;. Then there erists a
bijection between ACMI(i) and Calls(fity ... tawys,)) where each row of a structure is mapped
to the row with the same index in the other. Furthermore, each row of ACM(i) corresponds
to the same program point as the corresponding row in Calls(f;t1 ... taxy)) -

Proof. This can be shown by consdiering program points with respect to the definitions of
Calls(fit1 ... taxy,)) and ACM(i). O

Definition 4.36 The jth argument to f; (i.e. x;;) is said to be an abstractly mono-
tonic descending argument, written AMD(z; ;) (or simply AMD(j) where the context is
clear), if

Vry, € ACM(i).(rp; < 0) A (Id.rg; < 0)

Definition 4.37 A function f; has the abstract descent property, denoted ADP(A),
where A = ACM(i), if and only if

3. AMD(j) A ADP(A")
where A' = {re|(re € A) A (1e; =0)}

Lemma 4.10 Let A be the abstract calls matriz of a function f; and suppose that f; has
the abstract descent property. Then if A" is an matriz formed by eliminating any number

of rows from A, ADP(A’).

Proof. Follows directly from the definition. O
The above result means that if the abstract descent property holds for all recursive
calls of a function then it holds for a subset of those calls.

Theorem 4.3 A function f; that has the abstract descent property has the monotonic
descent property.

Proof. The proof follows from the safety of the previous components of the analysis. O
Corollary 4.1 Suppose the following of a function f;:
e f; is defined according to the rules of EFP.

e Apart from recursive calls of f; (which may indirectly occur in functions called by f;),
the definition of f; comprises only terminating constants and functions.

e f; has the abstract descent property.
Then f; terminates under the EFP reduction relation.

Proof. By Theorems 3.1 and 4.3. O

UKC Computing Laboratory TR 2-00 27

4.8 ESFPY

Our analysis, which can ensure termination, means that we can define an ESFP language
thus:

Definition 4.38 The language ESFP° consists of EFP together with a check that all
definitions within a script have the abstract descent property. That s, for a script, S.

Accept(S, ESFP?) <= Accept(S, EFP) A Vi € I$.ADP(ACM(/;))

4.9 Examples

We now show that the above analysis is powerful enough to accept Ackerman’s function
(which we showed in Ex 3.1 had the monotonic descent property) and also the standard
(naive) definition of the gsort function as being terminating on all type-correct and termi-
nating arguments.

Example 4.1 [Ackerman’s Function| The analysis of Ackerman’s function (defined in
Ex 3.1), which shows that ADP(ACM(ack)), proceeds as follows:

We refer to the clauses of the outer case expression as E’ and of the inner case expression
as E".

We make the following definitions for environments of abstract expressions:

o) = {m!:={m}}

o = {m':={m},n" :={n}}

We also need to perform closure analysis for the three (recursive) applications that occur
within the function definition.

Clackm'] , ({1}) = Clack]gy, ({m'}{1}) [By (5)]

= {({ack}, ({m'}. {1}),0)} [(2)] (29)
Clackm']y . ({ack mn'}) = {({ack}, ({m'}, {ackmn'}),0")} [Sim. to (29)] (30)
Clackm]gy 0 ({n'}) = {({ack}, ({m}. {n'}),0")} [Sim. to (29)] (31)

We assume the following abstractions of the + operator which has its standard recursive
definition.

+5{} =0 [From base case of when 2nd arg is 0] (32)
+9{} = w [As Ist arg occurs in result and recursion is by 2nd arg] (33)

+5{} = —w [As 2nd arg does not occur in the result] (34)

28

A Hierarchy of Languages with Strong Termination Properties

The relevant applications of the abstract size operator are as follows:

-Aack,l [I:m,j[‘{}70'
Aack,? [[ml]]{}70
-Aack,O [[ml]]{}yo'

Aack,l [[1]]{},0
Aack,Q [[1]]{}’()'
-Aack,O [[1]]{}’()'

-Aack,l [I:m,j[‘{}va'l
-Aack,Q [I:m,j[‘{}va'l
-Aack,O [I:m,j[l{}yo"

Aack [ack mnl]]{},u" =

Aqgck 2 [ack mn/]]{}’U, =
Aqgcko [ack mn/]]{}’U, =

-Aack,] [[m]]{},gl
Aack,? [[m]]{},gl
-Aack,O [[m]]{}’g’
-Aack,] [[n’]]{},gl
Aack,? [[n’]]{},gl
-Aack,O [[n’]]{}’o"
-Aack,] [[n + 1]]{}70_
Aack72 [[n + 1]]{}70_
-Aack,O [[7? + 1]]{}70/

Agera [ack m' 1]]{}7”

Aack o [ack m' 1]]{}70_

Aogcko [ack mn/]]{}’O,,

Aack,l [[m]]{},rr - 1=0-1=-1

Aack,? [[m]]{},g = —w
-Aack,O [[m]]{}’g = —w

= [acki {}, acky {}] *[=1, =]

—1xack$ {}

— [ack§ {}, acks {}] * [~w, 1] + ackg {}

ack$ * 1{} + ackg {}

= [ack${}, ack§ {}] * [~w, —w] + ack§ {}

[Lemma 4.1](38)
[Lemma 4.1](39)

[Lemma 4.1](53)

[(33)](54)
[(32) and (34)](55)

[(10), (29). (35) and (38)
[Mult
[(10), (29), (37) and (40)
[Mult](

(56)

]
(56
]

1(57)

[(10), (49) & (52)]

UKC Computing Laboratory TR 2-00 29

= ackg{} [Mult](58)
Aack1 [ackmn']g 0 = [ack] {}, acks {}] * [0, —w] [(10), (47) & (50)]
= ack{{} 0 [Mult](59)

Aqgcko [ack m' (ack mn’)]]{}70_,
= [acki{}, acky {}] [-w, ackp {}] [(10), (30), (31), (43), (46) & (58)]
= ack§ {} * ack}{} + ack{ {} [Mult] (60)

Aack,1 [ackm’ (ackmn')]

= [acki {}, acky {}] * [=1, ack{ {} % 0] [(10), (30), (31), (41), (44) & (59) |
= (ack{{}* —1) + (ack {} * (ack$ {} 0)) [Mult] (61)

We need to compute the following instances of the abstract size operator:

ap®({ack}, ack, 1, ({m},{n'}),{},o')

= [fack1 {3 fack2 {3+ [0, —w] [Defn 4.19, (47) & (50)]

= [facka {3 # 0, =] [Mult] (62)
ap®({ack}, ack, 2, ({m},{n'}),{},o')

= [fack1 {} faen2 {3 ¥ [-w, —1] [Defn 4.19, (48) & (51)]

= [Fw fack2 {3+ 1] [Mult] (63)
ap®({ack}, ack, 0, ({m},{n'}),{},o')

= [facka i fack 2 {3 # [0, —wl + faep o {3 [Defn 4.19, (49) & (52)]

= facko {} [Mult] (64)

We need to compute the following relative size abstractions of the ack function:

fack2 {} = Up(Fuck,2,(3) [Defn 4.20]
Fock 2,y (fack21}) = Aack2[casem of E']]{},{} [Defn 4.20]
= max(w, Aack2 [E"]13,,) [(9) and (54)]

= w [max] (65)
facko {} = Up(Fuck,0,(3) [Defn 4.20]
Fack,O,{}(fgck,O {}) = Aqcko[casem of E']]{},{} [Defn 4.20]
= max(0, Agcko [E" [1,,) [(9) and (55)]
Awcko [E" 1y, = max(Agero[ackm' 1], [(9)]

30 A Hierarchy of Languages with Strong Termination Properties

Aack,o [ack m' (ackmn')]]{}7(,,)

— max((1 % ack? {} + ack® {}), [(57) and (60)]
(ack {} = 0+ ack§ (1)
Up(Fock,0,}) = w [From (65)] (66)
facka {3} = p(Fack,1,43) [Defn 4.20]
Foek 1y (facka 1) = Aack1 [casemof E'] [Defn 4.20]
— max(—w Aua [B"]5,) (9) and (53
Aok [E"]y, = max(Ager,1 [ackm 1]y o, [(9)]
Aack [ackm' (ackmn')] 1)
— max((=1 % ack? {}), ((56) and (61)]

((ack? {} x 1)+
(ack$ {} * (ack? {} 0)))

F(:ck,O,{}(iw) = W= Fockyo,{}(*w) [Mlllt]

a

We consequently generate the following CST's:

T(ack, ack m'1,{},0) = ([25 5[] w
/ / [—1 —w] [—w]
T(ack, ackm’ (ackmn’),{},0) = (o w bl ow) (68)
T(ack,ack mn',{},0) = (_Ow :Lf, - :z> (69)
We calculate the calls analysis of ack as follows:

ackfack} {} = Gucklack) [casemof E'], [Defn 4.32]
= Gucklack] [F' [1.0 [Lemma 4.6]
= L'*j gack[ack} [[ackm'1 ﬂ{},ggack[ack} [[ack m/ (aCk m nl)]]{},U’ [(25)}
= (T(ack,ackm’1,{},0),) [(26), (29)—(31) & Defn 4.31]

T(ack, ack m' (ackmn'),{},0),
T (ack, ackmn', {},0)

=« 210D
L E)
% 5114
We finally have the following result for ACM(ack) (an instance of Defn 4.35):

(70)

-1 1
ACM(ack) = [—Ol w1]

UKC Computing Laboratory TR 2-00 31

Example 4.2 [Quicksort] The quicksort (gsort) function is defined as follows:

ya(f:r) ez Lz
fitter pmaf] 2]
filter pm@(h : t)
‘ph @h:ﬁlterpt
| otherwise) filter pt
gsort [Q]] i (]
gsort 1Q(a : 1) Yo [a] H b
where

s gsort (filter (< a) x)
p gsort (filter (> a) x)

The analysis of gsort proceeds as follows: The fact that gsort has the abstract descent
property follows from the following;:

filters {p:={(< a)}}
filters {p:={(< a)}}

0
0

We get also, for the analysis for the list input and constant factors, respectively,

[w,0] * [~w, —1]
|w,0] * [~w,—1]4+0

-1
0

Consequently, ACM (gsort) = [:% }

5 Adding Subtyping

As we have seen, the above analysis is powerful enough to show that quicksort terminates.
However, the class of functions admitted is still inadequate for the purposes of ESFP
since we cannot, for example, make definitions via a head of list function (or any similar
projection) since such a function is only partial. Moreover, the operational behaviour of
certain total functions depends upon the form of the input e.g. whether the input is greater
than zero. We would like to have a method of extending the analysis to partial functions
so that there is a well-defined sub-domain over which they are total and so that they are
only ever applied over expressions within this sub-domain.

32 A Hierarchy of Languages with Strong Termination Properties

To do this we use a simple notion of subtyping, using sets of constructors of an algebraic
type. That is, constructor Cj is within the subtype of a if and only if a — Cie; ... earc
for some expressions e;.

Note that we do not have any notion of subtyping of functions: this is because we are
restricting attention to expressions of algebraic type.

We now proceed to give an overview of how the analysis is modified.

e Each of the abstract semantic operator (and correspondingly each abstract function)
has extra parameters, representing environments binding subtype sets to variables
of algebraic types. Thus the modified operators are, A} ; [[i]]fﬁe and g;[jm [[i]]fiﬂe.
In each case, ¢ is an environment of subtypes, whilst in the latter case, ¢; is the
environment of subtypes that f; was called with i.e. we no longer match simply on

the function label but the subtyping environments must match too.

e As well as a set of CSTs, our new analyses, modified for subtyping, need to indicate
whether or not function applications have been at the correct subtypes. This can be
done by pairing the result with a Boolean flag to indicate the subtype-correctness of
each application or, as we have chosen, to return the top of the CST domain (T as
the result if a function does not have the abstract descent property for the subtypes
of the arguments to which it is applied.

e The main change, and the point of this method, is at case expressions: instead of
analysing all possible expressions that may result we only analyse those that match
the subtype of the switch expression s. For example,

k=r
def
Gitjon Lease s of (pi,e) 1, = (Gl 515, ([Gr))
k=1

where G}, = gil[j,@} [ex ﬂi:,p if H(pe) € S [[“”]]if&
{} otherwise

k

Here, H(p;) is the head constructor of the pattern p, and S [[s]]pyg, which is also
defined by abstract interpretation, gives an approximation to the subtype of the
switch, s. ¢ is formed by adding the possible subtypes of the pattern matching
variables to the environment, ¢.

e Subtype environments need to be partitioned into the possible combinations of sin-
gleton sets when a function is encountered. For example, suppose we have the envi-
ronment {m:={0,S5},n:={S}} (where 0 and S are the constructors for the naturals)
then this gives rise to two environments, {m:={0}, n:={S}} and {m:={S}, n:={S}}.

e The weighting vectors can also be refined since, for a base case constructor, the size
of the expression must be 0 whilst for an inductive case constructor, such as Succ it
must be at least 1. Thus, if a base constructor results for a function then it represents
size descent from an input z;; that is assumed to reduce to an expression with an
inductive case constructor, such as Succ.

UKC Computing Laboratory TR 2-00 33

5.1 An Elementary Functional Language with Explicitly Unde-
fined Values

We extend the algorithms permitted in the system that we are developing by introducing
an explicit undefined value error into our language. This is the counterpart of the the
error expressions of Miranda or uncaught exceptions in SML which produce a runtime
error together with a diagnostic. However, the point of the error construct is that it
indicates a clause that should never be reached and it is up to the analyser to check that
it is impossible for the program to evaluate to that program point. In that sense, when
the termination analysis described below has been performed to ensure that a function
will terminate, the error expressions correspond to the abort construct that appears in
Martin-Lof’s type theory — abort expressions only appear so as to adhere to the principle
of complete presentation [33].

Definition 5.1 For each type, A, there is an error, expression that does not have any
associated reduction rules. The semantics of expressions involving error, (which we do
not give here explicitly) corresponds to the semantics of exceptions in a strict language such
as ML [24].

Generally, we write error when the context is clear or irrelevant.

Consequently, we define a new variant of our EFP language.

Definition 5.2 The EFP® language consists of the EF P language together with the ad-
dition of error expressions. If a script, S, meets the criteria of EFP® then we write
Accept (S, EFP?).

5.1.1 The abstract semantics of error.

In the abstract analyses which follow below § 5.3-5.4 we do not give the abstract semantics

for the error construct since in each case it is the T of the relevant domain. For size

analysis (see Defn 5.14), for example, Aj ; [error]]fia 2.

5.2 The Abstract Subtyping Domain

Definition 5.3 Let T be an algebraic type in our basic ESFP language. Then the abstract
subtyping domain for'T', denoted St, is defined as, STép(CST). For non-algebraic types,

Sris {{}}-

We normally write S instead of Sy where the type is either clear from, or irrelevant to, the
context.
The concretisation of such abstract values is straightforward.

Definition 5.4 The concretisation of elements of the abstract subtyping domain is defined
via the mapping s, € Sy — Py, so that for s € Sy

A :
Ysps ={v| (v = Cvr ... varey)); Vinf(v;); C; € spU{L}

34 A Hierarchy of Languages with Strong Termination Properties

We also write Env(S) to mean the environment where each z;; is bound to elements
of the appropriate subtyping domain. Since such environments are used to constrain the
domain over which a function may terminate, we now define them more fully.

Definition 5.5 A subtyping environment for a function f; is an environment, ¢, in
which each x; j is bound to an element of Sy, -

A valid subtyping environment is a subtyping environment, ¢, in which each x;;
of algebraic type is bound to a non-empty value. We write ValidSub(¢).

Definition 5.6 Let ¢ and ¢5 be two subtyping environments of function f;. Then the
join of ¢1 and ¢o, denoted ¢y Ll pq, is defined thus:

61 Uy = {0y — 1 (215) U do(w5) | 25 € Dom(gy).}

Similarly the meet, denoted ¢ M ¢, is defined,
A
¢1 M Gy = {235 — d1(wij) N da(wij) | 2i; € Dom(gy).}

Since we need to determine whether a recursive call of a function has been matched
with the correct subtypes, we need to acertain whether a subtyping environment includes
the one we are trying to match.

Definition 5.7 A sub-subtyping environment (often written simply as sub-environment
where the meaning is clear) of a subtyping environment of a function f;, ¢, is a subtyping
environment, ¢, for which, ¥j.¢'(x;;) C ¢(x;;). We denote the fact that ¢ is a sub-
subtyping environment by ¢' C ¢.

Conversely, we also use the term, super-subtyping environment.

If we one environment does include another we still need to perform an analysis on the
subtyping environment that lies outside the intersection.

Definition 5.8 The sub-environment difference between two environments, ¢ and ¢',
where ¢' T ¢, and denoted ¢p—¢' is defined as the set difference upon corresponding bindings
in the two environments i.e.

¢ — ¢ = {xi; = D) — & (2i,))

In our actual analyses we only take one constructor per algebraic argument in our
subtyping environments and then join the results on each of these sub-environments to
determine the subtyping environment over which the function is defined.

Definition 5.9 Let ¢ be a subtyping environment. Then the singleton partition of ¢,
denoted SP(()¢) consists of all the sub-subtyping environments containing only singleton
sets as algebraic subtypes.

UKC Computing Laboratory TR 2-00 35

S[=]” A { ¢(z) if z € Dom(o) (71)
e Ts otherwise
S[AT? 2 { £ AL(f) = 0)
e {} otherwise
S[Car...a]?, 2 {Ci} (73)
S[casesof (p.e)]2, = \JUSTeil,, [Hp) € S[s10,} (74)
i=1
S[Faly, = J1r 0 | (frra,0') €C'[FIS, opdla)} (75)

Table 5: Definition of S[E]?

0,0
5.3 The Analysis of Subtypes

We now describe an analysis which safely approximates the subtype of any algebraic ex-
pression within the language. Firstly, we need to define how subtypes match a pattern in
a case expression.

Definition 5.10 H(p;) is the head constructor of the pattern p; and is defined as

H(Ctal...ar)éct.

Definition 5.11 The analysis of subtypes operator, S € E x Env(E) x Env(S) — S,
15 presented in Table 5.

5.4 Modified Termination Analyses

We now give definitions that are analagous to those in § 4.

5.4.1 Closure analysis with subtyping.

Definition 5.12 The closure analysis with subtyping semantic operator, C' € E x
Env(E) x M x Env(S) x E* — C, is defined in Table 6.

Definition 5.13 The abstract closure function with subtyping environment, ¢ of

. def
a function, fi = Az ... %;,.€;, 15 defined for a given environment of non-ground expressions

p, and a sequence of actual parameter expressions, a, as f;"* p ¢ aéU¢,egp(()¢) C'le; ﬂf{} a

As would be expected, subtyping produces more precise results than for the basic analysis
without subtyping.

36 A Hierarchy of Languages with Strong Termination Properties

N Tc ifp(x) =TeVo(z) =T
C'[=]),a = { {{}.a.0)} ifpla) = {} (76)
C'[el), a if p(z) = {e} Vo(z) = {e}
O LT a A { {({£:}a.0)} ifAK(f) 2 [al
" U{(f.e,0")(f.d.o") € f" p/ ¢/ e} otherwise
C'[Ciar...a]l a = UL(:6.0)1(£:6.0') € C' [e:] , a A TC(f,B)} (78)
pas
C' [case s of (p,.e,)]%, a 2 U Ui el ,al Hpi) € S[s15,} (79)
k=1
c'[Gd]%,a = C'[G1S, (({d}) +a) (80)
Auxiliary definitions are as in Table 2.

Table 6: Definition of C' [[E]]fi‘7 a

Lemma 5.1 For any well-formed basic ESFP expression, e, with well-formed function
environment p, well-formed pattern-matching variable expression environment, o, well-
formed subtyping environments, ¢ and well-formed abstract expression vector, a,

¢'[elj,acClel,,a

Proof. By inspection of the definitions, in particular the clauses for case expressions. O

Corollary 5.1 The abstract closure function with subtyping, ¢, is more precise than the
abstract closure function without subtyping.

Proof. Follows from Defn 5.13. O

5.4.2 Size analysis with subtyping.

Definition 5.14 The relative size analysis operator with subtyping, A' c]I?i X
E x Env(E) x M x Env(S) — R, is the A operator estended with subtyping and defined
over the structure of expressions in Table 7 with auziliary definitions given below. In the
definition, p is an environment binding function type erpressions to wvariables, o is an
environment binding pattern-matching variables of algebraic types to expressions, and ¢ is

an environment binding subtypes to the formal parameters. 1 is a function index whilst
0 <j < Ar(fi).

Definition 5.15 The constructor abstract size function with subtyping, cs' €
o(E) x I$ x Env(E) x Env(S)M = R, is defined analagously to Defn 4.17, with A' replacing
A.

UKC Computing Laboratory TR 2-00 37

0 ifrx =m;
A —w if x = x;
Al [=15, eyw o Be=me o (31)
Aii[t]5, — 1 ifo(z) = {t} A Unify(z,?)
w otherwise
A a if A =0A3=0
AL LRI, 2 { ot} i Ax(f) =04 o
—w otherwise
Al [Car a2, £ o' (Rec(B). i, p, 0, ¢) (83)
k=r
A
A} ;[case sof (p,,en) 5, = max(|J{A];[ex]),, | H(pr) € S[s]5,}) (84)
k=1
A -
AL [Falp, = max {ap™ (f,i,j.a,p,0,9)| (f,a,0%) €C'[F], ({a})} (85)
In addition, if ~ADP(k, ¢'), then £}, ,.a* =
Table 7: Definition of Al [E]%,
Definition 5.16 The A' operator is lifted to the E domain as follows:
A
A Telp, = w (86)
1 o L n ¢
A?,] [[{e}]]p,O' - A’I,] [[e]]p,g' (87)

Definition 5.17 The abstract applicator for size analysis with subtyping, ap™,
15 defined as follows.

a - A
ap (TFJZJJJO’J g, p, ¢) = W (88)
gy s
ap ({}17fajaa’a 07 p7 ¢) Z w (89)
apal({fk}aiajaaao—a P, ¢) = (.fk(“ * a’m) +7)j (90)

In the above, qﬁ'é{xk,l::S [a ﬂiﬂ T Ar(f) =S [aar(sy) ﬂin}. In addition, ¢'{xy,;:=Ts},

if 1 > |a®|.
A A
;:1 = [];1’11 p/ ¢/ . Ig,lAr(fk) pl ¢/] and a® = [_AZIJ [[(1,1 ﬂig N Ailyj [[(I,‘a‘ ﬂia}.

b A { fior' @ ifj=0

J —w otherwise

Definition 5.18 The abstract size function with subtyping of a function, f; el

ATjq ...T;n.€;, relative to parameter j is defined for a given subtyping environment, ¢;

. . . A /
and a given environment of function-type parameters, p as, ff; Gi p=MmaxXy esp(()¢:) A},j [e]]f{}

38 A Hierarchy of Languages with Strong Termination Properties

Again, subtyping produces more precise results for size analysis than for the basic analysis
without subtyping.

Lemma 5.2 For any well-formed basic ESFP expression, e, with well-formed function
environment p, well-formed pattern-matching variable expression environment, o, and well-
formed subtyping environment, ¢,

1]
Aijlely, <r Aijlel,,
Proof. Again, by inspection of the definitions. 0

Corollary 5.2 The abstract size function with subtyping, ¢, is more precise than the ab-
stract size function without subtyping.

Proof. Follows from Defn 5.18. O

Definition 5.19 The abstract size vector of an expression e, with respect to the envi-
ronments of function expressions, p, pattern matching expressions, o, and subtypes, ¢, s

defined as follows:
712,1 [[€ Hﬁ,rf -‘

[Ail,Ar(f,;) [[6]]?,0 J

Definition 5.20 The abstract interpretation of relative sizes over expressions is defined by
the component size semantics of an expression, e, with respect to a parameter, x; ; and

S(e’ 7:70—’ p’ ¢) é

a subtyping environment, ¢: R¥* [e], ; 2 AEnv(E).(wjs(e, i, {},{}, ¢)) where jurtaposition
indicates vector product.

Definition 5.21 The constant factors wvector and the variable factors matriz
for a sequence of expressions, e, and with respect to the parameters of function f; and
environments, p, o and ¢ (an environment of subtypes) are denoted c(i,e,o,p,p) and
v(i,e, o, p,), respectively, and defined as follows:

A Ail,O [[6]]]Z),o' A 1]:,1 [[61]]Z),(T tot z]‘,Ar(f,-) [[61]]Z),(T
c(i,e,a, P ¢) = V(iaea o, p, ¢) =

¢
A}Z,U [[6\6\]]p,g 1]1 [en ﬂf,g e z]‘,Ar(f,-) [en]]f,a

Definition 5.22 The component size transformation (CST) for a sequence of ex-
pressions, e, and with respect to the parameters of function f; and environments, p, o and

¢ (an environment of subtypes) is defined: T (i, e, o, p,d) 2 (v(i,e,o,p,0),cli,e o,p,¢))
If (Vi,k1),(Va, ko) are CSTs then, if the relevant matriz multiplications are defined,

(Vi, k1) x (Va, ks) L (ViVa, (Viko + k1))

UKC Computing Laboratory TR 2-00 39

A
i][j,¢j] [[m]]fig = () 91)
f/gm {H} ifAr(fe) = 0Nk #
1 ¢ =2
Giljgs) Lk 1o =1 () ifAT(fy) = 0Nk = j 92)
{} otherwise
A
Gy [Crar-ar 1], = Gisnlaclys) 93)
A =r
Gilj0;) [case s of (prren 10, = 1.65] [s1%,. (1 Gr) 94)
k=1
i=|al
A -
i][j,qﬁ]-} [[F(I,]]Z),U = Lﬂ (apgl (fa %] a, U,a P d)) Lﬂ(Lﬂ gi][j,qﬁj} [[(17 ﬂﬁ,ogﬁ)
(facect [F1° ({a}) =
1 ¢ ; ¢
In (94), Gy, = { Gitjgy Lok oo 1 Hipr) € S5y,
otherwise
Table 8: Definition of G}, , [E]),
5.4.3 Calls analysis with subtyping.
Definition 5.23 The abstract calls operator, G' € 17 x I3 x Env(S) x E x Env(E) x
M x Env(S) — T*, is the G operator extended with subtyping to locate calls of function f;
with subtype environment ¢; within function f; which has input subtype environment ¢;. It
1s defined over the structure of expressions in Table 8.
Definition 5.24 The abstract applicator for calls analysis with subtyping, ap9' €
F x]I? X]I? x E* x Env(E) x M x Env(S) x Env(S) — T*, is defined as follows
o A
apgl (TFalajaa’a p, 0, ¢7 ¢7) - <TT> (96)
o A
ap-‘“({},z,],a, p, 0, ¢7 ¢7) - . (97)
0 if (ja| < Ar(fy))
{E(Z,G,P,U,@}UR llf((}{k;}[j))/\fj E?@)E;
apgl f aiajaaapao—aqsaqs' = T L \Jk JJ v J

HT’ef;jm Pk Ok (Map (*T(ZJ a,p,o, ¢)) T,) if f 7_é fj

In the above, if " = ¢—¢; is a valid subtyping environment then R = ap? ({fi}. 1, a, 0, p, ¢", ¢;).

Otherwise, R = ()

Definition 5.25 For each function, there is a family of abstract calls functions which
give the CSTs for the recursive calls of function f; with subtyping environment ¢; within

40 A Hierarchy of Languages with Strong Termination Properties

the definition of function f; for subtyping environment ¢; and environment of function-type
arguments, p:

9 A 1 o
’ i[;,aﬁﬂ poi = U gi[j,¢j} [ei]]p,{}
#'€SP(():)

Note that now it is not only necessary to scan for occurrences of f; within the definition
of f; but that the occurrences of f; must occur at the stipulated subtyping environment.
Furthermore, the search for occurrences of f; is directed by the subtyping environment, ¢i
i.e. the given subtypes of the parameters of f;.

Again, subtyping produces more precise results for the calls operator than for the basic
analysis without subtyping.

Lemma 5.3 For any well-formed basic ESFP expression, e, with well-formed function
environment p, well-formed pattern-matching variable expression environment, o, and well-
formed subtyping environment, ¢,

1:][j,¢j} [e]]Z),U <r G lel,,

Proof. Again, by inspection of the definitions. O

Corollary 5.3 The abstract calls function with subtyping, ¢, is more precise than the
abstract calls function without subtyping.

Proof. Follows from Defn 5.25. O

5.5 Termination Criteria Using Subtyping

As mentioned at the beginning of this section, we first need to refine our idea of a weighting
vector to take account of the fact that subtypes give information as to the size of each input.

Definition 5.26 Let C; be some constructor. Then the minimal size of an expression
that has C; at its head is denoted mcs € C — R, is defined thus:

mes(C)) A [0 of Cy is a base case constructor
U1 if Cy is an inductive case constructor

Definition 5.27 Assume we have s € S. Then the minimal subtype size of s, denoted
mss € S — R, is defined thus for non-empty s:

mss(s) 2 min {mes(C,) | C, € s}
For empty s (i.e. non-algebraic arguments), mss({}) Sy

Definition 5.28 The jth weighting vector with respect to a subtyping environ-
ment ¢ is a vector with, in the jth position, mss(¢(z; ;). w is in all other positions.

UKC Computing Laboratory TR 2-00 41

Definition 5.29 The abstract call matrix of recursive calls of function f; is defined
with respect to a subtyping environment, ¢, thus:

ACM(i,¢) = {r|(v,c) € 1, {} o}

where, if x; ; is an algebraic argument, Tjé’w]'Vj—l-Cj —mss(P(x;;)), w; is the jth weighting
vector with respect to the subtyping environment ¢ and v; is the jth column of v.

. . A
If z; ; is non-algebraic then r; = w.

Definition 5.30 The jth argument to f; (i.e. ;) with subtyping environment ¢ is said
to be an abstractly monotonic descending argument, written AMD(z; j,) (or simply
AMDV(j, ¢) where the context is clear), if

Vry € ACM(i, ¢).(r,; < 0) A (3d.rg; <0)
The jth argument is said to be abstractly strictly descending, written ASD(z; ;, ¢) if
Vry € ACM(’L, (ﬁ).(TkJ' < 0)

Definition 5.31 A function f; has the abstract descent property for the subtyping
environment ¢, denoted ADP(A), where A = ACM(i, ¢), if and only if

3. AMD(j,) A ADP(A)
where A" = {re|(re € A) A (1e; =0)}

Lemma 5.4 If a function f; has the abstract descent property for the subtyping environ-
ment ¢ then it has the abstract descent property for any ¢ where ¢' is a proper sub-
environment of ¢.

Proof. This is a consequence of Lemma 4.10 and Defns 5.13, 5.18 and 5.25 where we use the
singleton partition of a subtyping environment to define the respective abstract functions.
(I

However, if we take two subtyping environments on both of which f; has the abstract
descent property then it is not necessarily the case that f; has the ADP on the join of the two
environments if f; has more than one argument. (There may be different lexicographical
orderings used to fulfill the ADP in each case.) However, the following does hold.

Lemma 5.5 Suppose that a function f; has the abstract descent property on subtype en-
vironments ¢, and ¢ and that there exists a j such that ASD(z; ;, ¢1) and ASD(x; ;, ¢2).
Then f; has the abstract descent property on ¢ Ll ¢s.

Proof. The definitions of the closure, size and subtyping analyses mean that in each case
their results are the joins of the results on the two sub-environments. This means that all
entries in the abstract calls matrix for the joined subtype environment must be less than
0 as the entries for ¢; and ¢y are less than 0. Furthermore, the number of rows in the
abstract calls matrix is the sum of the rows for the matrices pertaining to ¢; and ¢,. O

The abstract descent property for a particular subtyping environment means that it
has the monotonic descent property for those subtypes.

42 A Hierarchy of Languages with Strong Termination Properties

Theorem 5.1 Suppose that a function f; has the abstract descent property for the sub-
typing environment ¢. Then f; restricted to the subtypes of ¢ has the monotonic descent
property.

Proof. Similar arguments apply as for Theorem 4.3 O

Corollary 5.4 Suppose that a function f; is defined according to the rules of the basic
ESFP language and that f; has the abstract descent property for the subtyping environment
¢. Then f; terminates on all arguments restricted to the subtyping environment ¢.

5.6 ESFP with Subtyping — ESFP'

Our new analysis, which is enhanced by subtyping, means that we can define a more
expressive ESFP language.

Definition 5.32 The language ESFP' consists of EFP® together with a check that all
definitions within a script have the abstract descent property for some valid subtyping en-
vironment. That 1s,

Accept(S, ESFP') <= Accept(S, EFP?) AVi € 1$.3¢i € Env;(S).ValidSub(¢i) A ADP(ACM(f;, ¢

where ADP(ACM(f;), ¢;)) follows Defns 5.29 5.31.

5.7 Example of the Analysis Using Subtyping

An ESFP encoding of Euclid’s ged algorithm, which is not defined for two zero inputs, is
as follows:

gcdmnd:ef

casem of 0 — casen of 0 — error;(Succn') = n
(Sucem') — case compare mnof EQ — m; LT — gedm (n —m); GT — ged (m —n)n

0-b @0; (Succ a’) - 0 d:ef(Succ a’); (Succ a’) - (Succ b’) o b

The analysis of the function, showing that ged terminates for two non-zero inputs, proceeds
as follows: ¢ = {m:={S},n:={S}}

g;cd[gcm [Egea ﬂ{:}y(bg;m[gcm [case compare mn of E' ﬂ({b}ﬂ
¢ = d){m’ = {0, S}anl :={0,S}t}0 = {ml =m,n = n}

= {}U g;cd[gcd,qﬂ [ged (m —n) ”]]?},r, U g;cd[gcd,qﬂ [gedm (n —m)]]({b},(,

UKC Computing Laboratory TR 2-00 43

g;cd[gcd,dﬂ Hng (m a n) n]]({b}v” -

1
ged?! ‘chd,m[[n]]{}rr chn[[m]]{}rr cho[[m ”]]{}a
[ged. {m:={0},n:={S}}]’ ; [n]?
g(’d 0 {},o

grdm[[]]{}U g(’dn[[]]{}g'

—0{a:={S},b:={S}} = ~'{a:={0,5},b:= {0,5}} » -1

0= 1{0,8},b:={0,S}} = max(-w,0, ¢ {a:={0,5},b:={0,S}})
The least fixed point of the above is 0 and thus,

“0fai={S},bi={S}} = 1

—41{a:={S},b:={S}} = ~§'{a:={0,5},b:= {0,5}} + 0

—5'{a:={0,8},b:={0,S}} = max(—w, —w, —5'{a:={0,S},b:={0,S}})

Thus, —{'{a:={S},b:={S}} = —w and ggrd lged.] [ged (m — n)n]]?;a ([—Ow } 7 [:i) —Ow D
Similarly, we get: G101 [9edm (m —n) 17, , = ([0 } ’ [S Y D
0

Thus the ACM for ged with the subtyping environment ¢ is: [_01
This satisfies the abstract descent property.

6 Nested Inductive Types

Our abstract interpretation operates by recognising syntactic sub-components of other
expressions. These sub-components occur as pattern-matching variables within case ex-
pressions. We may consequently have case expressions applied to expressions involving
pattern-matching variables. Some pattern-matching variables will indicate a size descent
within a recursive structure whilst others will indicate arbitrary data extracted from the
structure. For example, in the case of lists where we may match a list [against a pattern
of the form (A : ¢) for non-empty lists, |¢| < |/| for all lists. However, the head, h, may be of
arbitrary size. In the case of rosetrees, though, where a list of rosetrees is a sub-component
of an internal node, an element of such a list will be a subtree of the original tree and
consequently represents size descent.

We thus make our basic EFP language less restrictive by removing two of the constraints
upon the definition of algebraic types.

Definition 6.1 The language EFP™ consists of EFP® with restrictions 2 and 3 of § 2.2
removed. If a script, S, meets the criteria of EFPY then we write Accept(S, EFPT).

)}

44 A Hierarchy of Languages with Strong Termination Properties

6.1 Projection Sequences

We consequently need an extended space of expressions which relates pattern-matching

will represent the sequence of operations required to extract an element from a structure.
These will be constrained so as to enable the calculation of least fixed points within the
abstract interpretation framework.

Definition 6.2 The set of projections, 11, is defined as follows:
2 {m,|3C; € CAr(C,) > j}

Definition 6.3 The set of projections from type S to type T, denoted llg_.r, is
defined as the restriction of 11 to projections with domain S and range T'.

The projections above have the following interpretation. m; ;e — e;; if and only if
e — Ciej1...e;,. We shall only use such a projection in a context where it is defined i.e.
where e does reduce to the appropriate pattern.

We form length-constrained sequences of projections as follows:

Definition 6.4 The set of projection sequences, P, consists of singleton subsets of the set
of all sequences of projections of length < d, I1¢, together with Tp, the set of all possible
projections and {}, the bottom of the lattice induced by the subset ordering on P,

Tp indicates any possible composition of projections from a given data structure. Where
there is no ambiguity, we represent singleton sets of sequences of projections simply by the
projection sequence itself e.g. 7v. In addition, we shall assume in the rest of this section
that d is 2 and thus we shall write P4 simply as P. In Sect. 8, we shall discuss the effect of
other possible values of d on the analysis. We shall write |7| to denote the length of the
sequence .

Definition 6.5 The set of projection sequences, P% .., consists of singleton subsets of
the set of all sequences of projections of length < d and of type S — T, 1% ., together
with T, the set of all possible projections of the required type, and {}.

Definition 6.6 The set of types projectable by an d length projection sequence from a
type T, denoted P, is defined as, P2 2 {VIPL . #{}}.

The projection sequences are used to determine whether a composition of projections
upon a structure is endomorphic i.e. the types of the domain and range are the same.

Definition 6.7 The composition of a non-Tp sequence of projections is denoted (-)(r)

and is defined as () ({}) 2Fold o idm where Fold is the standard fold catamorphism over se-
quences. However, (:)(Tp) is undefined (reflecting the fact that this represents any possible
combination of projections).

UKC Computing Laboratory TR 2-00 45

Definition 6.8 A projection sequence, , is termed endomorphic, and denoted Endo(r)
if and only if JA.O(mw) = A — A

The empty projection sequence is endomorphic (as it represents the identity) whilst Tp
1s not endomorphic.

Definition 6.9 A projection sequence, m, is termed reducing and denoted Red () if it
18 both endomorphic and not the empty projection sequence.

6.2 Projection Expressions

We can now combine the projection sequences defined above with our basic expression
syntax to form new, abstract expressions as follows.

Definition 6.10 A projection expression, denoted t¢ (where d indicates that projection

a basic expression (as defined in Sect. 2.3) or a substitution instance of a basic expression.

The set of projection expressions, Pg, is thus defined, Pg SPXE

An endomorphic projection expression is a projection expression that includes an
endomorphic projection sequence. A reducing projection expression is a projection
expression that includes a reducing projection sequence.

The informal concrete semantics of a projection expression is that it is the application of
the composition of the sequence of projections to the (basic) expression e.

6.3 Binding Sets of Projection Expressions

We bind sets of projection expressions to pattern-matching variables within an environ-
ment, o. Since, in our language, we assume that we only have single-level patterns, we
shall only bind pattern-matching variables to elements of P{.

We need to define a new domain of environments binding projection expressions to
pattern matching variables since that given in Defn 4.7 only makes bindings to abstract
expressions.

Definition 6.11 The domain of pattern variable projection expression environ-
ments, Mp, consists of functions binding pattern matching variables to elements of PL i.e.

A
Mp =M — Pé
The actual binding process, for a case expression, is defined as follows.

Definition 6.12 Let o bind pattern-matching variables to sets of projection expressions.

Then, for a case expression of the form, casesof(pi,ei)...(p.,e,) the environment of

. . . . Ay =
pattern-matching variables pertaining to each ey is defined as, o = Uiz‘]p’“‘ B(pk, s,0),

where B(pg,, s,0) 2 o{prs:= ((mr1), {s}})-

46 A Hierarchy of Languages with Strong Termination Properties

P

P (m, ({},e)]5,
P (m,2)]2,

P (x,)12,

, TE)]]Za,o-

P2 (x,Cray...a,)]°

p,0

P22 (, case s of (p,,e,))]]Z),a

P2 (n, Fa)]?,

In (105), if, for some a,o’, C' [F

Pt
{({})}
{(m,)}
{}

(ha)) i = (my)
P2 (n',a;)]0, it m=n" + (mi)
{} otherwise

= U UP* Tm A D15, | Hpr) € S[515,}
R {bla /e zk]

:U ‘b_fpzd/qs//

({fi}a.0") €C'[F], (a)

> e > 1>

1>

>

19, (@) = ({}. a,0") then P4 [(m

AN
Fa)]l, =Te.

(104)

(105)

Table 9: Definition of P24 [(, E)]?

p,0

UKC Computing Laboratory TR 2-00 47

6.4 Approximating Projection Applications

Syntactic descent can only occur via a composition of projections that is of endomorphic
type. Intermediate enclosing structures (such as the list of subtrees in the rosetree example)
cannot be added to if the recursion is to be well-founded. In the case of rosetrees, if an
arbitrary tree was added to the list of subtrees then descent could not be guaranteed. We
thus require a method of approximating the expressions that may result from applying a
non-endomorphic projection. We need to be able to approximate the set of endomorphic
projection expressions that correspond to a (non-endomorphic) projection expression. To
form our approximation, we map an element of PL into p(PﬁE) This mapping will reduce a
projection expression to a set of projection expressions in which the projection sequence is
either empty (()) or the projection expression is of the form, (7, v), where v is either {z},
where x is a variable, or v is TE.

We shall call this mapping, projection analysis which approximates the set of expres-
sions that may result from applying a projection other than Tp to an expression.

Firstly, we need a method of adding a projection to a projection expression to deal with
the situation where we have case constructs applied to pattern matching variables — we
may take the head of the tail of a list, for example. This leads to the following definition.

Definition 6.13 The addition of a projection, , ;, to a projection expression, p € Pk is
denoted m; ; & p and is defined as follows:

mig @ (Te.e) = (Te.c)
A { (mijm,e) if |mw| <l

mij © (m,¢) (Tp,e€) otherwise

Having broadened the class of types that may be permitted in the language we need
to redefine the operator that gives the recursive sub-components of an expression. This
operator will then be used in our projection analysis below when calculating the set of
terms that may be projected from a data structure by a non-endomorphic projection. We
wish, for example, for this to correspond to all the elements of a list constant.

Definition 6.14 The recursive sub-components abstraction operator, RecAbs(€)E —
E, is defined as follows:

sell'|

RecAbs(e) = { TC(((s), e, A)Unify(O(s)e.)
A=3s" C s.Unify((D(s')e, e)

Here, TT' is the set of ordered sets of projections and TC(()(s),e,) denotes a type-correct
application of the composition of the elements of s to e. The final restriction on the
elements of S ensures that there is not any proper subsequence that represents a type-
Tecursive projection.

Note that C is finite and thus I1' is finite since it is the ordered counterpart of p(C).

48 A Hierarchy of Languages with Strong Termination Properties

We now define the abstract interpretation used to approximate the set of projection
expressions corresponding to the application of a non-endomorphic projection. In this and
the subsequent analyses given (see § 6.6) we do not give the result for error explicitly: as
in § 5.1.1 the result is in each case the T of the relevant abstract domain.

Definition 6.15 The projection analysis operator, P*¢ € PLx Env(E)xMp x Env(S) —
©(PL), is defined in Table 9 for projection expressions where the projection sequence is nei-
ther endomorphic nor Tp.

e In the case of the endomorphic projection sequences, P*® corresponds to the injection,
p—{p}.

e In the case where the projection sequence is Tp, the result is PL, the top of p(PL).

This mapping will be particularly useful in the case of closure analysis, where we previously
found all possible subcomponents that could be applied as functions, even though the
subcomponents would not be projected from a structure and then applied.

In the second clause of the definition we have direct descent due to the projection
implicit in the pattern match. In the third clause, the composition of projections when
applied to an expression produces size descent — this thus takes care of the case of nested-
type data structures. However, in the last clause, where the composition of two projections
has not produced descent, we approximate by using the Tp projection.

We now show that the projection analysis has the required behaviour in the following
respects:

1. It reduces non-endomorphic projection expressions to sets of projection expressions
of the form (7, {e}) (in the non-pathological case where the result is not Tp.), which
are either endomorphic or non-endomorphic and the expression, e is a parameter,

2. If the expression, e, corresponds to the projection expression (7, a), then if e reduces

to €' then there exists a p € P?%(m,a), such that p is equivalent to ¢” which is
convertible to €'

Lemma 6.1 The projection analysis operator, P*%, either reduces p € Pt to TP1E or to a
set S consisting only of endomorphic projection expressions or non-endomorphic projection
expressions where the expression 1s a parameter, x; ;.

Proof. By structural induction over E. O

Theorem 6.1 Qur projection analysis operator is correct.

Proof. By structural induction over E. O

UKC Computing Laboratory TR 2-00 49

6.5 The Projection-Size Abstract Domain

In correspondence to the space of projection expressions we now describe a new abstract
domain of projection sizes. The point of this new domain is that it allows the detection of
syntactic descent even when this occurs as the composition of separate projections applied
to the actual and formal parameters of a called function.

Definition 6.16 The projection-size abstract domain, denoted Rp is defined as the car-

dinal product of the projection domain and the relative size domain i.e. RpéP x R. The top
of this domain is denoted Tr, (= (Tp,w)) and the bottom is denoted Lg, (= ({}, —w)).
The least upper bound operator on this complete lattice is denoted maxg,, although it will
normally be written simply max as it will be clear upon which domain we shall be operating.
maxg, s defined (for non-T elements) via maxg as follows:

maxg, (71, 51) (72, 52) (71, (maxg(s1, 52))) i ™ = m (106)

TR otherwise

> 1>

As for the relative size domain, we define addition and multiplication operators as follows:

(71, 51) + (72, 52) 2 (11, (51 +r S2)) if m =7 (107)
2 TRe otherwise

(1 1) % ({Fs2) = (ma, (51 % 52))

({3 51) * (2, 8) = (ma, (51 47 @)

(71, 51) * (72, 59) 2 ({}, (s1 *r s2) — 1) |mw3| <1 A Red(ms) (108)

(71, 51) % (2, 95) = (s, (51 %R 52)) iws| <1

(71, 51) * (T2, 52) £ TRp otherwise

In equation (108), wg = w1 + 2.

6.5.1 Concrete Semantics of Rp

We now discuss the meaning of our projection-size domain, Rp, with respect to the concrete
semantics of our basic ESFP language and to the domain of relative sizes discussed in
Sect. 4.2.

Informal concretisation. For an expression e, if ({}, s) is its abstract semantics in Rp,
relative to some parameter, z; ; then its concrete semantics corresponds to that of s in AR,
again relative to x; ;. If, however, the abstract semantics of e in Rp is (7, s) (again relative
to some parameter x; ;), then e is convertible to ()()e’ for some e’ and the size of €' is s
(relative to z; ;) and the relative size of e itself is unknown. Furthermore, (7, s) is only a
valid projection-size representation of e in the case where 7t is an endomorphic projection
sequence and where ¢’ is a formal parameter. Our analysis which we describe below will

50 A Hierarchy of Languages with Strong Termination Properties

enforce this latter requirement and we will thus also be able to show that s will thus be
either 0 or —w.

Given the above informal description, we have the following operator that maps pro-
jection sizes to their counterparts in R.

Definition 6.17 The projection-size norm, denoted N, is a mapping from Rp to R
which s defined as follows:
A
N({}.s) = s
A
N(m,s) =
The idea here is similar to that discussed in the original analysis in § 4.5 despite knowing
that an expression e has size of s relative to z; ;, we cannot determine the size of e’ where
e’ is equivalent to ()(m)e and 7 is not the identity. Thus we must safely approximate
using w.

w

6.6 Modifying the Analyses with Projection Expressions

We now show how the analyses are modified in the light of the foregoing discussion on
projection analysis. We give definitions that are developed from those in § 5.

6.6.1 Closure analysis with projection sequences.

Definition 6.18 The closure analysis semantic operator with d length projec-
tion sequences C*? € E x Env(E) x Mp x Env(S) x E* — C, is defined in Table 10.

Definition 6.19 The abstract closure function wusing d length projection se-
quences, of a function f;, denoted f/">*, is defined as in Defn 5.13, except that C*?
replaces C'.

6.6.2 Size analysis with projection sequences.

Definition 6.20 The relative size analysis operator with d length projection se-
quences, A € 13 x E x Env(E) x Mp x Env(S) — R, is the A operator extended with
projection expressions and subtyping and defined over the structure of expressions in Ta-
ble 11.

As an auxiliary operation, we need to define the size of a projection expression that is
produced by projection analysis.

Definition 6.21 The size of a projection expression, e, denoted PES(e), relative
to the environments of pattern matching variables (o), functions (p) and subtypes (¢), is

defined as follows:
PES((Tp,¢')) 2 Tr

AZ4]2 —1 if Red()
PES((m,¢')) = { By e
A Te']

o otherwise

UKC Computing Laboratory TR 2-00

ol

c*[E],a

¢4 [[m]]?,g a

c>* [[fiﬂﬁ’o'a

C*Cya ...arﬂﬁﬂa

c*4[case s of (p,,e,)]]?U

2 {} if E is of ground type
r TC 1fp(x) = TE
{{}.a,0)} if p(z) = {}
28 ce]?,a if p(z) = {e}
2,d ¢ 4
Uirtenersa [(m.o(@) 2 4 € [eloo @ ifx € Dom(o) AP
L Tc otherwise
s { {({f:}.a.0)} if Ar(f;) > ||
U{(f.e,0")|(f.d.0") € f" p'c} otherwise
£ Ub.o)(f:b.0') € C* 1%, a ATC(f,b)}
1:1

1>

U > [ex]? o, al H(pr) € S[s]S,}

A
c*[Gd]f, a = c”[[Gﬂp,U«{d}) + a)
Table 10: Definition of C*¢ [[E]]fig a
[({1.0) it 2 = 2
AL []¢ a) W) if o = i
I P MAX o[(v, 0 () [}PES(p) if z € Dom(c) A P24 (7, 0z
L TRp otherwise
AQ i fk]] A) fio{t ifAr(fr) =0
({}, —w) if Ar(fi) # 0
A Crar...a,]?, 2 Qd(RecAbs(),4, 5, p, 0y B)

_A2 [case s of (p,,e,)]?

2.d
A [Faly,

p,0

1>

max U{Aﬁ;ﬁ,k H(py) € S[s]5,})

(o 5,0) | (o) € €2 [FI2, ({a})}

Table 11: Definition of A?]d [[E]]fﬂ

A (m,0(x))]2,

(116)

(117)

(118)

(119)

52 A Hierarchy of Languages with Strong Termination Properties

Definition 6.22 The abstract size function with d length projection sequences
of a function, f;, relative to parameter j is denoted f"° @ and defined as i Defn 5.18,
except that the A>? operator replaces A'.

6.6.3 Calls analysis with projection sequences.

Gt L= 10, £) (1
Fufig M AFAT(fe) =0 Ak #]
1[]¢ [[fk]]pﬁ - <ﬂ> lfAI'(fk):O/\k‘:] (:
() otherwise
1[7 [[Ct a -]]?7‘7 = U gz[7¢ ak]] (13
G, | Leasesof (p,en) 15, = WG, 1510, U Gr)) (19
i=|al
z[)d)] [[F(J]] é L—}j (QQd(f’y’a g ,p,¢ ¢J)U(L‘d ng[f(b]] [[(17]@;
i=1
(f,a,0') €
C'[FI5, ({a})
n (123), Gy, = { gf[f¢ 2 if H(pg) € S[s1p
otherwise

)

Table 12: Definition of gyw [E]]“b

p,o

Definition 6.23 The abstract calls operator with d length projection sequences,
G>* e 1% x 13 x Env(S) x E x Env(E) x Mp x Env(S) — T*, is the G operator extended
with projection expressions and subtyping to locate calls of function f; with subtype envi-
ronment ¢; within function f; which has input subtype environment ¢;. It is defined over
the structure of expressions in Table 12.

Definition 6.24 For each function, there is a family of abstract calls functions with
d length projection sequences which is denoted fq”‘ and defined as in Defn 5.25

except that the G>® operator replaces G.

6.6.4 Other modified definitions.

The other definitions of the analysis and the abstract termination criteria follow analo-
gously to those of Defns 5.19 5.22 and Defns 5.29 5.31.

UKC Computing Laboratory TR 2-00 53

6.7 Extending ESFP — ESFP?¢

Once again, we can now define a more expressive ESFP language.

Definition 6.25 For some given natural number d, the language ESFP?? consists of
EFPT together with a check that all definitions within a script have the abstract descent
property for some valid subtyping environment and analysing with projection expressions
of length d. Formally, the definition follows that given in Defn 5.32, with the appropriate
modifications to the definitions of the abstract descent property and the abstract calls matrix.

6.8 Example: Maptree

We now proceed to show how the termination of recursive functions over such nested
inductive types can be shown in the case where the length of the projection sequences is 2.

Example 6.1 [Maptree] Suppose that we have the following definition of a rosetree type:

data Rosetree a L Leaf a | Node [Rosetree a]

We then define a mapping function, maptree, over such structures as follows:

d
maptree ft ko
caset of

(Leaf a) — (Leaf fa)
(Node s) — (Node map (maptree f)s)

The definition of map is standard.

def
map gl =
casel of
[-
(h:t) — (gh) :map gt

The above can be shown to be an ESFP?¢ program for d > 2 since we get:

[({(7hd), O)] % [({(TNode); 0)] = [((), —1)] [As Endo({7hd, T Node))] (125)

54 A Hierarchy of Languages with Strong Termination Properties

7 Arbitrary Precision Subtyping

The method of subtyping given in Sect. 5 may be seen to be unsatisfactory for the following
reasons:

1. Consider the general form of the case expression:

case s of
Crvig- Viac) — e1
Cnvni- - Uparc,) — en

We know the subtype of the switch expression, s for the ith clause (i.e. {C;}) but
what we wish to infer is the subtype of each variable, x; ;. Furthermore, it would
be useful if we could discover precise subtyping information for pattern matching
variables. For example, if another case expression was nested within e;, then it
would be desirable to find, the subtype pertaining to v;;. Consequently, we would
be able to deduce the subtype of the head or tail of a list, for example. This would
generally appear to be impossible, given the evidence from strictness analysis® [19],
if we use the approach given previously.

2. We cannot use partial functions as arguments to functors such as map, even if we
know, for example, that the function is defined on all elements of a given list. This
is because the subtyping mechanism is not strong enough to convey the subtypes of
elements of data structures.

3. Dependencies in the subtyping information are lost when using the subtype environ-
ments with the other analyses such as the size analysis. This is because the environ-
ments only contain subtype constants and the relationship between the subtypes of
the various parameters is lost. However, consider an ESFP language expression such
as:

take (length x div 2) x

In the above, subtype constants will be bound to each of the parameters of take but
the information that each subtype depends on the subtype of x will be lost.

4. We need to analyse every function with respect to every possible permutation of
subtypes of the algebraic arguments. This process is naturally akin to the satisfia-
bility problem and thus is of exponential complexity. This is despite the fact that

5Strictness analysis, used to optimise lazy functional languages by eliminating closure formation, de-
termines whether for a function f that f L = 1, where L is the undefined value. In such a case, f is said
to be strict in its argument.

UKC Computing Laboratory TR 2-00 95

subtyping information is not normally required for every algebraic argument. This
computational complexity cannot be improved without a consdierable weaking of the
precision of the analysis, as shown in [13].

7.1 Arbitrary Precision Subtype Domains

We proceed to define a domain, the arbitrary precision subtyping domain, that allows us
to assign subtypes to elements which may be projected from an algebraic structure.

Definition 7.1 A projection subtype, denoted 7% (where i indicates that projection

of projections (from some type S to a type T) to a basic subtype of type T as defined in
§ 5.2

The set of projection subtypes, Pg’(SHT), is thus defined, ng(sﬁﬂ

>

((P§p) = St).

Definition 7.2 The arbitrary precision subtyping domain for type T of order d,
denoted S%, is defined as, S%éUVGPiT Pg’(Tﬂv) The ordering on this set is given in Defn 7.7
and ensures that the set forms a complete lattice.

We shall normally write this domain as S where T is either clear from the context or
applies universally to all algebraic types and the top is denoted Tg«. We shall also employ
the convention of writing elements of S as a union of a mapping between the empty (rep-
resenting the identity) projection sequence and Sy and a partial mapping from non-empty
projection sequences to Sy for some type V. The projection sequences not included in the
domain of the resulting map will thus implicitly be mapped to Ts, for the appropriate V.

We need to be able to extract the relevant components from an element of our arbitrary
precision subtyping domain.

Definition 7.3 Let S be an arbitrary precision subtype for the type T of order d. The part
of S prefixed by m (where w is a valid projection sequence on T), denoted pp(S,) €
UWePlV Pls,(v—wv) (where T(()(m)) =T =V and l = d — |x|) and defined as follows:

pp(S,) = {(n',5) | (n' 4+ 7,5) € SAT #{}}

Definition 7.4 The atomic part of an arbitrary precision subtype, S, denoted at(S) € S
15 defined as follows:

at(S) = | J{a| ({}. a) € pp(5.{})}

The subsidiary part of an arbitrary precision subtype, S, denoted sp(S) € UVePdT Pe (T V)
1s defined as follows:

sp(S) = {r|res— pp(S.{})}

56 A Hierarchy of Languages with Strong Termination Properties

As a consequence of the above definitions, we shall normally write our arbitrary precision
subtypes as sets containing pairs of the atomic and subsidiary parts rather than as a set
of pairs of projection sequences and basic subtypes. An example of this form of notation
is given in the following paragraph.

Each element, (7, s) of the subsidiary part indicates that the subtype of the subcom-
ponent, ¢, projected by 7 from the enclosing structure, e, is s. However, s is, of course,
an element of S and not an arbitrary precision subtype. However, other elements of the
subsidiary part may indicate the subtypes of ¢. These will be those elements that have 7 as
a suffix in the projection sequence. For example, consider the following possible subtype,
S, for a list of naturals:

[} A ((tail), £:}), ((hd), {0, Suce}), (hd, tail), {Succ})})}

The above indicates that we have a non-empty list and, in fact, a list of at least two
elements since the tail is non-empty. Elements of the list may be any natural number but
elements of the tail must be non-zero. Consider now what the full, arbitrary precision
subtype of the tail of this list should be, given the above subtype. The ({tail), {:}) element
of the subsidiary part of S indicates that the atomic part of the subtype of the tail should
be {:}. Now we examine the subsidiary part of the subtype of the tail of the list. In S
we have, ((hd, tail),{Succ}). This means that ((hd),{Succ}) should be included in the
subsidiary part of the subtype of the tail of the list. Thus, given S, the full subtype of the
tail of the list should be

{({:},{({hd), {Succ}), })}

Consequently, we have the following definition.

Definition 7.5 Let S be an arbitrary precision subtype for the type T of order d. Then the
arbitrary precision subtype of type V' and order d indexed by the projection sequence

7 (where w € PE”T_W) for some V') is denoted ist(S, 7) and defined as follows:

ist(S,) £ {(a,r) | (m,a) € sp(S) AT € pp(S,)}

In the opposite direction, we wish to add a projection sequence to each component of
an arbitrary precision subtype. This is required when we determine the subtype of a
sub-structure and then wish to integrate that subtype within the subtype for the entire
structure.

Definition 7.6 Let S be an arbitrary precision subtype of order d and let | be a natural
> d. Then S lifted by m (where 7 is a valid projection sequence) is an arbitrary precision
subtype of order 1, denoted by Ist(S,) is defined as follows:

Ist(S, m) £ {(n' 4 7. S) | (', S') € S}

We now proceed to define the lattice operations over arbitrary precision subtypes.

UKC Computing Laboratory TR 2-00 o7

Definition 7.7 The join (denoted 1) and meet (denoted M) over atomic parts of arbitrary
precision subtypes is as for S i.e. N and U, respectively. Similarly, the ordering, T is just
subset inclusion.

QOver subsidiary parts the ordering T is defined as follows:

r £y éV(ﬂ', s)er.(3(m,s)ery=sCs)

The join and meet over subsidiary parts are defined as follows:

riUry = {(p,t1 Uta) | (p,t1) € 11 A (p, t2) € 13}

rilry 2 {(p,tiNta) | (1) € 11 A (p,t2) € 12}
U{(p.t1) | (p,t1) € 11 A (Bla.(p,t2) € 12}
U{(p.t2) | (p,t2) € Ta A (Bti.(p,t1) € 11}

The definitions of LI and M given above may be seen to be almost dual to that which might
be expected. This is because if a projection sequence, 7w does not occur within a subsidiary
part it is implicit that (7, T) is included within the subsidiary part. Concomitant with
this, note that the definition of C is such that (s, s) may be in r; and not in ry but that
r1 C ry. Indeed, for all S and d, the empty set is the top of P(Si,(S‘—>T)‘

Definition 7.8 The join operation on arbitrary precision subtypes, si and s9, denoted
s1 U s9, is defined as follows (using the representation of subtypes as pairs of the atomic
and subsidiary parts):

silsy 2 {(a,7Ur")| (a,r1) € s1,(a,12) € s2}
U{(al,rl) ‘ (al,rl) € s1 N\ (ZITQ.(al.TQ) € 52}
{U(ag,12) | (ag,r9) € s9 A (Ari.(az.r1) € 51}

The meet operation on arbitrary precision subtypes, s and s9, denoted s1Msq is defined
as follows:

A
s1M sy ={(a,r1 Mry)|(a,r1) € 51,(a,m2) € 52}

7.2 Arbitrary Precision Subtype Environments

Subtyping environments need to capture a richer set of program properties than before and,
furthermore, need to both assign subtypes to variables and to give subtypes to expressions.
The latter is necessary since, for example, we still need to determine the subtypes with
which each function is called.

58 A Hierarchy of Languages with Strong Termination Properties

7.2.1 Environments used to determine the subtypes of expressions.

Our subtyping environments thus come in two forms. The first, which is used to determine
the subtypes of expressions, is the analogue of Defn 5.5, which assigns subtypes to the
formal parameters. Thus we modify Defns 5.5 5.6.

Definition 7.9 A subtyping environment of order d for a function f; is an environ-
ment in which each x;; is bound to an element of Sgr(m,-,j) d is fized for all elements of the
environment.

A valid subtyping environment of order d for a function f; is a subtyping envi-
ronment of order d in which each x; ; is not bound to a subtype with atomic part {}. If ¢
is a valid subtyping environment we write ValidSub(¢).

Definition 7.10 Let ¢ and ¢o be two subtyping environments (of order d) of function f;.
Then the goin of ¢1 and ¢o, denoted ¢1 Ll o, is defined thus:

61 Uy = {0y — 1 (25) U do(ws5) | 25 € Dom(gy).}

Similarly the meet, denoted ¢1 1 ¢g,
A
b1 U o = {xij = d1(i5) M pa(wiy) | w55 € Dom(gy).}

As before, in order to recognise when a subtyping environment we need to determine
whether a subtyping environment is included within another, as for the simple subtyping
environment given in § 5.

Definition 7.11 A sub-subtyping environment of order d (often written simply as
sub-environment where there is no ambiguity) of a subtyping environment of order d of a
function f;, ¢, is a subtyping environment, ¢, for which, ¥j.¢'(z; ;) C ¢(x; ;). We denote
the fact that ¢ is a sub-subtyping environment by ¢' C ¢.

Analagously, we speak of sub-subtyping environments relative to z;; and con-
versely, we also speak of super-subtyping environments.

Definition 7.12 The difference between two (arbitrary precision) subtype envi-
ronments ¢, and ¢o, denoted ¢1 — ¢o, is defined thus:

{wij = d1(riy) — dalwiy) i € Dom(¢n)}

However, as stated in 3 at the beginning to this section, we also wish to include infor-
mation about the dependencies of the subtypes of parameters to functions. To do this, we
use the standard technique of lazy evaluation, using the formation of closures to encode
subtyping information that is used to give the subtypes of expressions. We will thus use
environment closures rather than simple environments as parameters to our analyses.

UKC Computing Laboratory TR 2-00 59

Definition 7.13 An arbitrary precision subtype environment transformer (which
we shorten to environment transformer) is a function from arbitrary precision subtype en-
vironments (for the variables of some function f;) of order d to arbitrary precision subtypes

of order d.
We write such environment transformers in the form, A¢.E(¢) and denote the set of

. A
environment transformers for fi as ®¢ = Env;(S%) — S
We normally use the shorthand form, ®* where i is clear from the context.

Definition 7.14 An arbitrary precision subtype closure environment (written sim-
ply as subtype closure environments) consists of a pair of an environment (binding to the
parameters of a function f;) of environment transformers (where the environments bind the
parameters to some function f;) and a subtyping environment (again binding to variables of
the same f;). That is, the set of subtype closure environments for a function f; with respect

A
- ; d d (&4 (<d
to the variables of some f; is denoted as U§ and defined as V§=X cx(Env;(®5) x Env;(S7))
Again, we normally use the shorthand form, W% where i is clear from the context.

We can assign identity environment transformers to each parameter to shadow a given
subtyping environment.

Definition 7.15 Let ¢ be a subtyping environment of order d for some function f;. Then
the simple subtype closure environment formed from ¢ is denoted 1y and defined,

(I 2 (T, ¢) where T 2 {zi; == Xp.0(zi ;) | wij € FP(fi)}.

We shall need to evaluate such subtype closure environments to produce a subtype envi-
ronment.

Definition 7.16 Let v be a subtype closure environment. Then the subtype environ-
ment evaluated from 1, denoted E(1)) € Env;(S?), is defined thus:

E(¥) = {2:, = (Fst) (2:) (Snd) | 2;; € Dom(Fst 1))}

As with subtyping environments, we need to define the ordering on subtype closure envi-
ronments and the difference between two such environments.

Definition 7.17 Let 1, and 1 be subtype closure environments.
Then 1y T)y if and only if, on the subtype environment ordering (Defn 7.11), E(¢1) C

E(ts).

Analagously to subtyping environments, we refer to 1, as a sub-subtype environ-
ment closure of 1.

The ordering induces an equality, =, over subtype environment closures.

Definition 7.18 The difference between subtype closure environments i, and 1),
denoted 1, — 1)y € U, is defined as 1, — 1, 2 V3, where

FSt(’l/)q) = {ZL‘,;J' = A¢¢($7J) ‘ZL‘,;J' € DOHl(FSt'(/)l)} and Snd(wg) = E(wl) — E(wg)

60 A Hierarchy of Languages with Strong Termination Properties

We can use the equality predicate over subtype closure environments to determine when a
recursive invocation of one of our abstract operators has been reached.

Definition 7.19 Two subtype closure environments, 11,1y, match, denoted Match(1)y, 1)
if and only if Y1 = Yy where the equality predicate is that given in Defn 7.17.

7.2.2 Environments used to determine the subtypes of variables.

We now define the environments used to compute the subtype of a particular parameter,
x; ;. When analysing backwards to determine the subtype of a particular variable, we
cannot, naturally, start with an environment of subtypes but rather with an environment
containing values which will produce a new subtype given an input subtype.

Definition 7.20 A subtype transformer, t, is a function of type S% — S (for some
type T and order d) with the additional property that t {} = {}. The set of subtype trans-
formers (for arbitrary T and d is denoted S%,.

Subtype transformer terms are written in the form, Xs.E(s), where E(s) is an expression
involving s, elements of S, the LI and M operators and applications of subtype transformers.

Definition 7.21 A backwards subtyping environment of order d relative to x;
(where x; j is a formal parameter of the function f;) is an environment, ¢, ;, in which each
formal parameter x;; and x; ; itself is bound to an element of S%(m) — S%(m). d is fixed for
all elements of the environment.

An anitial backwards subtyping environment relative to z,; is a subtyping

environment I__ of order d relative to X 4 where Tij 18 bound to Ac.c and all formal
(R TR P »J »J .

parameters apart fmm T;; are bound to Ac. sd

3 T

(i)

7.2.3 Analyses to determine subtypes.

We now present the abstract interpretations which give more precise subtypes as a result.
In these and the subsequent analyses, the result for error is always the T of the relevant
domain.

Definition 7.22 S¢ € E x Env(Pg) x Env(E) x ¥4 — S¢ the forwards subtyping
abstract semantic operator, is defined in Table 15.

Definition 7.23 S € E x Env(Pg) x Env(E) x Env(S%,) x S¢ — S¢ the backwards
subtyping abstract semantic operator, is defined in Table 14.

7.2.4 Subtyping environments induced by case clauses.

The above subtyping regime has been introduced purely so that we can infer a more precise
subtyping environment once we encounter a case expression. In order to obtain a more
precise environment we need to:

UKC Computing Laboratory TR 2-00

61

N (E))(z) if z € Dom(E(¢))
S¢ [[T]]fa = 4 pp(S¢ [[e]]gya,w) if o(z) = (m,{e}) (126)
Tga otherwise
SELATY A { AU D) A =0 (127)
7 {} ‘ otherwise
1=
St[Ciar...a]}, = {(0.0)yuU U tst(S¢ " [a;12 . (mes)) (128)
j=1
S[casesof (pr.ell, = || (S}, (129)
Hpest[s]),
S{IFall, S JUE 0" | (fra. 0 ') € CHALFTY, ()} (130)
Table 13: Definition of S¢ [E]]M
N x(z)s if x € Dom(x)
Solzl}qs =\ pp(SELeT}, 8 m) ifo(x) = (m,{e}) (131)
Tga otherwise
SELATE, A {ff"’g‘d{}{} if Ar(f;) = 0 (132)
{} otherwise
StlCiar...a]%, s 2 |;|Sﬁ[[ai>p(s (133)
i=1 .
St [casesof (p.e,)[X,s = (Shls]X,s) 1| |(Sklel,,s) (134)
=1
SolFaly,s S U 0 X sl (a0) € CHLFIY, (a)} (135)

Table 14: Definition of S{ [E

]]pg's

62 A Hierarchy of Languages with Strong Termination Properties

1. Obtain the subtype inferred for each formal parameter, x; ; of the enclosing function.
We thus get a new subtype environment, ¢; for the ith clause of the case expression.

2. Note that we shall already have a subtyping environment, ¢, (represented, in fact, by
a subtype closure environment, 1) and that the subtyping environment, ¢;, inferred
from the ith clause of the case expression, should be a refinement (in the sense of
being a sub-environment) of the original environment, ¢q. Consequently, we shall
take the meet of the two environments, ¢¢ M ¢; to be the environment ¢ inferred for
the 7th clause of the case expression.

Consequently, we have the following series of definitions.

Definition 7.24 Let C; be a constructor of some algebraic type T'. Then the subtype of
order d induced by the constructor, C;, denoted 1(C;,d), is the subtype of order d
defined thus:

I(Ciyd) = {({}{CH U {(p. Ts) [p € PLp # {}}

Definition 7.25 Let f; be a function with formal parameters ;... T;avy)- Consider
the case expression, casesof (p,,e,). Then the subtyping environment of order
d induced by the nth clause of the case expression, denoted ¢,, is the following
subtyping environment of order d:

6n = {15 = SE[s]X, ((Cn,) | 2:; € FP(f)}

Definition 7.26 Suppose we have a function f; and a case expression as in Defn 7.25,
above. In addition, assume that we have a subtype closure environment, 1. Then the
subtype closure environment refinement of | with respect to the nth clause of
the case expression, denoted), is defined as a simple subtyping environment, thus:

Un e Yy where ¢ 2 ¢n ME(Y)

7.3 Modifying the Analyses

We consequently produce new versions of our analyses. The changes are relatively minimal
since the subtyping mechanism is in general separated from our analyses. The changes to
be made to the analyses are as follows:

e We require a new subtyping environment to be calculated for each clause of a case
expression in the calls analysis. The flow of information is from the head constructor
of the pattern to a parameter of the function f; that forms the current context. This
idea is encapsulated in Defn 7.26 above.

UKC Computing Laboratory TR 2-00 63

e However, the environment must not be refined during size analysis. The reason for
this is that otherwise each argument to a recursive call could then potentially be
given a different subtyping environment, which would be unsound. Nevertheless,
we need to attempt to maintain dependency information between the abstract sub-
types of various parameters. This is why we use subtype closure environments (see
Defn 7.15) rather than subtyping environments.

e (Calls analysis must now produce a sequence of pairs, each consisting of a CST and a
subtyping environment.

7.3.1 Closure analysis with arbitrary precision subtyping.

c3d [[E]]K(T a 2 {} if E is of ground type
[Tc if () = Te
{({}.a,0.9)} if p(z) = {}
o3 [[x]]ia a 2] ¢3d [[e]]ff’g a if p(z) = {e}
P , v
Utienersa [(m,a(e) 17 € [elno @ i 2 € Dom(@) APH[(m, 0 (@),
[Tc otherwise
. [tdrr e if Ar(f;) > |al
c [[fi]]p,aa = {(fie, 0", 9 otherwise
U oy enmoe
C3’d’[[Cta] ---arﬂﬁga é {(fabao—’aw,)
’ i=1 ‘ (f7 b7 O-qul//) € C37d[[ei]]%,rfaATC(f’ b)}
k=r
C34[case s of (p,,e,) Mo a = U{CM [ex]]g:”k al|H(pg) €S [[S]]Zﬁ"’}
k=1
cHGd]Y, a £ CMIGTY, (H{d}) + a)

Table 15: Definition of C*4 [[E]]Z)"7 a

Definition 7.27 The closure analysis operator with dth order subtyping, C*% c
E x Env(E) x Mp x W x E* s C, is defined in Table 15.

64 A Hierarchy of Languages with Strong Termination Properties

Definition 7.28 The abstract closure function with subtype closure environ-
ment,) of a function, f; e AZi1 ... Tin-€;, 15 defined for a given environment of non-

. . ms d AN
ground expressions p, and a sequence of actual parameter expressions, a, as [Y pa =

3,47, 19
Usespon € L],y @

7.3.2 Projection analysis with arbitrary precision subtyping.

P (m, Te) IY, 2 gl (142)
PR (. ({1 e)]Y, 2 {({e) (143)
PHA (m,2) [V, £ {(m,2)} (144)
P (e, 1)1V, ! (145)
A {(I,j} 1f1r = <7l'7;7j>
PH[(m,Cror-..ar)]}, =\ P ay)], i w = (i) (146)
{} otherwise
k=r
PH4 (x, case s of (p,e,))1Y, = |J P [(m {ex)]s, | Hpr) € S[s1%,) (147)
k=1
{bla [z4]
P [(m, Fa)]}, = U ‘ b=y m, : (148)
({fi}.a.0" 9" €CL[F]Y, (a)
In (148), if, for some a,o’,7)’, C' [[F]]f,g (a)y = ({},a,0',4') then
P (, Fa)]V, = Te

Table 16: Definition of P*¢[(m, F)]]fﬂ

Definition 7.29 The projection analysis operator with dth order subtyping, P>? ¢
PL x Env(E) x M x U — o(PL), is defined in Table 16 for projection expressions where the
projection sequence is neither endomorphic nor Tp.

In the case of the endomorphic projection sequences, P corresponds to the injection,
p+— {p}.

In the case where the projection sequence is Tp, the result is P, the top of p(PL).

UKC Computing Laboratory TR 2-00 65

[(11,0 if 7=
, — W ifz =ux;
A Lolp - o PES(p) if D’k A P3d v 129
maxpePf*sd[[(W,a(x))]]fﬁa} (p) if z € Dom(o) [(m.o(z)],, Pe
\ TRp otherwise
Ai}d [£]]ﬁo_ A) Teofd i Ar(fk) =0 (150)
({}, —w) if Ar(fx) #0
A Crar.. a1l = s*(Rec(E),i,j,p,0,9)) (151)
k=r
A [case sof (py,er)]V, = max(|J{AM [ex]%,, | H(p) € S[s10,}) (152)
k=1
3,d P A as 4 .. / o 1 ¥
A?,j [[Fa]]p,rf - max{ap ’ (f,Z,],a,p,U,iﬁ)|(f,a,0,¢) eC [[F]]r;’p <{a}>} (153)

Table 17: Definition of A>¢[E 1Y
i,j

p,0
7.3.3 Size analysis with arbitrary precision subtyping.

Definition 7.30 The relative size analysis operator with dth order subtyping,
A3l ¢]Ijséi x B x Env(E) x Mp x We — Rp, is the extension of A with arbitrary precision
subtyping of order d, and defined over the structure of erpressions in Table 17. In the
definition, p is an environment binding function type erpressions to wvariables, o is an
environment binding pattern-matching variables of algebraic types to expressions, and 1)
15 a subtype closure environment binding subtypes and environment transformers to the
formal parameters. i is a function index whilst 0 < j < Ar(f;).

Definition 7.31 The constructor abstract size function with arbitrary precision
subtyping, cs® € p(E) <13 x Env(E) x ¥*xMp — Rp, is defined analagously to Defn 5.15,
with A>¢ replacing A'.

Definition 7.32 The A' operator is lifted to the E domain as follows:

A
A TelY, = Tr, (154)
d A .
A e, = Alflel), (155)

Definition 7.33 The abstract applicator for size analysis with arbitrary preci-
ston subtyping of order d, ap®, is defined as follows.

w (156)
w (157)

apa&d (TFa 7:’ ja a,o,p, w)
apas’d ({}7 7:7 j: a,o,p, 1/))

> >

66 A Hierarchy of Languages with Strong Termination Properties

A" ({fi i a0 p.) = (Fi x a®) + o] (158)

In the above, qﬁ’é{mk’] =S a]]fg T Ar(f) =S [aar(y) ﬂ J}. Inaddition, ¢'{7y;:=Tsa},
if 1 > |a®|.
A a, a,
ZS’dZ[Y P) and @t S (A [0 10, AN [aw]Y,)
o fety d)’ ifj =0
i ({},—w) otherwise
Definition 7.34 The abstract size function with arbitrary precision subtyping

. def . ..
of order d of a function, f; = Az, ...%;in.€;, relative to parameter j is defined for a
given subtype closure environment, 1 and a given environment of function-type parameters,

A /
p as, f wp—maXWesmomA [[]]f,){}

(131

7.3.4 Calls analysis with arbitrary precision subtyping.

gf[]dw[[z]y, 2) (159)
Fai G0} i A(fi) =0k #
Gitpon Lkl = QEq/; iEAT(fy) = OAk = j (160)
otherwise
zw [Cran .. La Y, = U (161)
Gyl Lcase s of (p,,e) 10, 2 @i, 1518, UGk (162)
i=|al
1[]¢ [[Fa]] é Lﬂ (a’pg&d(faiujaaaplualaw U U g,[]¢ z)l))a)
(f,a,0',9") €
C'[F1Y, ({a})
n (162),
= { Sty T1w) €STOT
O otherwise

Table 18: Definition of g iTisd5) [[]]¢U

P

Definition 7.35 The abstract calls operator with dth order subtyping, G €]IJS; X
H? x B x Env(E) x Mp x W — (T x Env(S))*, (the extension of G with arbitrary precision

UKC Computing Laboratory TR 2-00 67

subtyping of order d), locates calls of function f; within function f; (which has input subtype
closure environment, 1), and is defined over the structure of expressions in Table 18.

Note that, in contrast to previous members of the hierachy of abstract calls operators
which each produced a sequence of CSTs, G*? produces a sequence of CST, subtyping
environment pairs.

Definition 7.36 The abstract applicator for calls analysis with arbitrary preci-
sion subtyping, ap%< € F x I3 x I$ x E* x Mp x Env(E) x Env(S) — (T x Env(S))*, is
defined as follows

apgg’d(TFa 7:’ ja a,p,o, ¢)
apgg’d({}a 7:7 j: a,p,o, ¢)

> >

Y if (|a| < Ar(fy)
y [Ty 7 R g
ap®({fx}, 4,4, @, p,0,0) = T A'EADﬁ<fk,(¢

&

(T’,dJ’)Ef:E-’]dp’ o' (Map (*T(7a a,p,o, ¢)a ¢’) TI) if fk 7_é fj

In the above, if ¢" = ¢p—¢; is a valid subtyping environment then R = ap%<({f¢},7, a, 0, p, ¢").
Otherwise, R = ()

Definition 7.37 For each function, there is a family of abstract calls functions which
give the CSTs for the recursive calls of function f; within the definition of function f; with
subtype closure environment, 1 and environment of function-type arguments, p.

3.d A
f;[j} P = U gv[J¢ [e]]p{}

¢ €SP((

7.4 Termination Criteria Using Arbitrary Precision Subtyping

We now proceed, in the light of our arbitrary precision subtyping constructions, to redefine
our abstract semantic criteria that assure termination.

Firstly, as the subtypes have become more sophisticated, so their minimal size can be
other than a binary value.

Definition 7.38 Assume we have s € S. Then the minimal subtype size of s, denoted
mss € S — Rp, is defined thus:

mss(s) 2 min {mes(Cy) | Cy € s}
Definition 7.39 The jth weighting vector with respect to an arbitrary precision

environment ¢ is a vector with, in the jth position, mss**(¢(z; ;) Tr, s in all other
positions, regardless of their types.

68 A Hierarchy of Languages with Strong Termination Properties

Definition 7.40 The abstract subtyped calls set of a function f;, is denoted, for the
order d, ASC(i,d) € T x Env(S?) and is defined as, ASC(i, d) 2 ff[%’d {}.

Definition 7.41 The abstract call matrix of recursive calls of function f; is defined
with respect to a dth-order subtyping environment, ¢, thus:

ACM(i,d, ¢) 2 {r|((v.c),d') € ASC(i,d); ¢’ C ¢}

where, if x; j is an algebraic argument, T, 2 N(wj;v; + ¢; — mss*(¢(x;5))), w; is the jth
weighting vector with respect to the subtyping environment ¢ and v; is the jth column of
V.

If z; j is non-algebraic then r; 2.

Definition 7.42 The jth argument to f; (i.e. ;) with subtyping environment ¢ is said
to be an abstractly monotonic descending argument, written AMD(z; ;,d. ¢) (or
simply AMD(j, ¢) where the function and subtyping contexts are clear), if

Vr, € ACM(?, d, ¢)-(Tl,j < 0) N (Hd.Td,j < 0)

The jth argument is said to be abstractly strictly descending, written ASD(x; ;, d, ¢)
if

Vr, € ACM(Z, d, (ﬁ).(Tl’j < 0)

Definition 7.43 A function f; has the abstract descent property for the subtyping
environment ¢, denoted ADP(A), where A = ACM(i, @), if and only if

2j.AMD(j,) A ADP(A')
where A' = {re| (re € A) A (re; =0)}

Theorem 7.1 If a function has the abstract descent property for a subtyping environment,
@, then it has the monotonic descent property on the same set of subtyping assumptions,
where the subtypes are of order d for some fixed d.

Proof. The proof follows the same structure as previously. O

7.5 ESFp3

The modified analysis above produces the final version of our ESFP language.

Definition 7.44 For some given natural number d, the language ESFP*? consists of
EFPT together with a check that all definitions within a script have the abstract descent
property for some valid subtyping environment with arbitrary precision subtypes of order d
and analysing with projection expressions of length d.

UKC Computing Laboratory TR 2-00 69

7.6 Example Using Arbitrary Precision Subtyping

We now give, as an example of the backwards subtyping termination analysis, an account
of the analysis of mergeSort.

Example 7.1 [Mergesort] The definition of the function, which is that used in [34], is as
follows:

mergeSort merge x

|length x < 2 “ oy

. de
| otherwise e/ merge (mergeSort merge first)

(mergeSort merge second)
where

first o take half
second) drop half x
half) (length x) div 2

The analysis can show that mergeSort is in ESFP*? for d > 2 since the information that the
size of the list z is at least 2 is propagated throughout the part of the analysis corresponding to
the second clause. Thus the analysis is capable of detecting that both take half x and drop half x
produce a reduction in the length of their arguments.

8 Strong Normalisation and Analysis Frameworks

We can generalise our analysis further to allow different notions of reduction and to develop
a generalised framework for our analysis. As discussed in § 2, our operational semantics only
reduces to weak normal form. Consequently, our analysis only assures termination under
the given reduction order. This is sufficient with respect to languages such as Haskell or
ML, since both do not have a stronger notion of normal form. Conversely, Miranda, Haskell
and other so-called lazy languages only reduce to weak head normal form (WHNF). Both
for pedagogical reasons and the desire to have sound program transformations, we believe
that strong normalisation is worth pursuing. With regard to the former, the assurance
that a program is strongly normalising will, we believe, help students to construct better
programs. With regard to the latter, program transformations may fail in the case where
we expand the expressions bound by lambda abstractions.

8.1 Analyses Parameterised By The Operational Semantics

It has been proposed by Cousot that strictness analyses can be parameterised by their
semantics [9]. We take a similar approach here in sketching out how our analyses can be
generalised to take account of weaker (a la Haskell) or stronger notions of normal form.
For each operational semantics (and consequent definition of normal form) the main
point of departure is for function applications. In that case we can use the operational

70 A Hierarchy of Languages with Strong Termination Properties

semantics to determine whether parameters or, indeed, function bodies should be reached
by the analysis. This can be achieved by adding a reachability predicate (which would
depend on the operational semantics) to the ap® and A*? operators. With WHNF, for
instance, we would not scan an actual parameter of a function for recursive calls if the
function did not use that argument.

9 Related Work

The general area of term rewriting has covered many aspects of general termination prob-
lems with work by Zantema of particular note (e.g. [39]). Most of this work does not address
the issue of fully automated termination checks for programs, with [14] being an exception.
In more specific programming areas, Giesl has worked on automated termination proofs for
nested, mutually recursive and partial functional programs [16, 4]. Closely related to this,
Brauburger has produced an automated termination analysis for partial functions [3] using
Giesl’s synthesising techniques for polynomial orderings [15]. Closely related is the work of
Slind on TFL [30], and like the previous work is based on automatically generating term
orderings and termination predicates within a theorem-proving environment. A decidable
test for a broader class of definitions than primitive recursion has also been established for
Walther recursion [38, 21]. However, whilst ours is higher-order and polymorphic, theirs is
first-order and monomorphic. Moreover, the discipline requires a programmer to provide
different versions of functions for each algebraic subtype: our subtyping mechanism does
this automatically. The TEA system [27] has used Nocker’s abstract reduction technique
(whereby the standard evaluation of a program is replicated with abstract values; [25]) as a
termination analyser. Their method detects whether a program terminates under a normal
order evaluation scheme — it would have to be adapted for strict evaluation so as to detect
strong normalisation. TEA does not deal with error expressions as we have done in our
strongly normalising discipline in that it “usually treats errors as termination”. Abel has
also recently produced a termination checker, the Foetus system based on analysing call
graphs [1]. This system only deals with simple syntactic descent at present.

10 Conclusions and Future Work

We have demonstrated that abstract interpretation can be used as an effective method
for determining whether recursive functions terminate. The analysis is derived from the
semantics of the language and, for the basic case uses the same domain of values employed
to analyse the dual, corecursive case. We have then developed the abstract interpretation
so that partial functions may be admitted due to a subtyping mechanism. Furthermore,
by using representations of projections we have been able to add functions that recurse
over nested data structures. This methodology was then used to develop a more sophis-
ticated subtyping mechanism which meant that more complex descent mechanisms could
be recognised.

UKC Computing Laboratory TR 2-00 71

The methods that we have developed could be incorporated within a compiler for an
elementary strong functional programming language. Indeed, we are currently working on
the implementation of our basic methodology for the EFP language. We suggest also that
this method could be used to extend the current algorithm within systems such as Coq [5].

An advantage of our abstract interpretation approach is that it may be possible to
integrate our algorithm with Cousot’s abstract interpretation rendering of Hindley-Milner
type inference [10]. Thus we would have a single system which would ensure that type
correctness meant that the program would have to be strongly normalising. Furthermore,
analyses used for optimisation, such as binding-time analysis [18], may be integrated into
this mechanism. In conclusion, we believe that this work gives an extensible and modular
framework for broadening the class of algorithms that can be admitted by a syntactic
analysis.

72

A Hierarchy of Languages with Strong Termination Properties

References

1]

[10]

[11]

[13]

[14]

A. Abel. Foetus - termination checker for simple functional programs. World Wide Web
page, 1998. http://www.informatik.uni-muenchen.de/~abel/publications/foetus/.

F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.

J. Brauburger. Automatic termination analysis for partial functions using polynomial order-
ings. In Van Hentenryck [37].

J. Brauburger and J. Giesl. Termination analysis by inductive evaluation. In C. Kirchner
and H. Kirchner, editors, CADE 15, volume 1421 of Lecture Notes in Artificial Intelligence.
Springer-Verlag, 1998.

The Coq project. WWW page by INRIA and CNRS, France, 1996. http://pauillac.
inria.fr/"coq/cog-eng.html.

T. Coquand. Infinite objects in type theory. In H. Barendregt and T. Nipkow, editors, Types
for Proofs and Programs (TYPES ’93), volume 806 of Lecture Notes in Computer Science,
pages 62 78. Springer-Verlag, 1993.

P. Cousot. Semantic foundations of program analysis. In S.S. Mucknick and N.D. Jones, edi-
tors, Program Flow Analysis: Theory and Applications, chapter 10, pages 303 342. Prentice-
Hall, 1981.

P. Cousot. Abstract interpretation. ACM Computing Surveys, 28(2):324 328, June 1996.

P. Cousot. Abstract interpretation based static analysis parameterized by semantics (invited
paper). In Van Hentenryck [37].

P. Cousot. Types as abstract interpretations. In 2/th ACM Symposium on Principles of
Programming Languages, pages 316 331, Paris, France, January 1997. ACM Press.

P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Proceedings
Sixth ACM Symposium on Principles of Programming Languages, San Antonio, Texas. ACM,
1979.

P. Cousot and R. Cousot. Comparing the Galois connection and widening/narrowing ap-
proaches to abstract interpretation. In PLILP’92: Programming Language Implementation
and Logic Programming, volume 631 of Lecture Notes in Computer Science, pages 269 295.
Springer-Verlag, 1992. Proceedings of the Fourth International Symposium, Leuven, Bel-
gium, 13 17 August 1992.

K. Davis and P. Wadler. Strictness analysis in 4D. In S. L. Peyton Jones et al., editors,
Functional Programming, Glasgow 1990, pages 23 43. Springer-Verlag, 1991.

M. C. F. Ferreira and H. Zantema. Syntactical analysis of total termination. In G. Levi and
M. Rodrigues-Artalejo, editors, ALP ’9/, volume 850 of Lecture Notes in Computer Science,
pages 204-222. Springer-Verlag, 1994.

UKC Computing Laboratory TR 2-00 73

[15]

[16]

[24]

[25]

J. Giesl. Termination analysis for functional programs using term orderings. In A. Mycroft,
editor, SAS ’95, volume 983 of Lecture Notes in Computer Science. Springer-Verlag, 1995.

J. Giesl. Termination of nested and mutually recursive algorithms. Journal of Automated
Reasoning, 19:1-29, August 1997.

E. Giménez. Codifying guarded definitions with recursive schemes. In P. Dybjer, B. Nord-
strom, and J. Smith, editors, Types for Proofs and Programs (TYPES ’94), volume 996
of Lecture Notes in Computer Science, pages 39-59. Springer-Verlag, 1995. International
workshop, TYPES ’94 held in June 1994.

Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Fvaluation and Automatic
Program Generation. Prentice Hall, 1993.

S. Kamin. Head-strictness is not a monotonic abstract property. Information Processing
Letters, 41(4):195-198, 1992.

P. Martin-Lo6f. An intuitionistic theory of types: predicative part. In H.E. Rose and J.C.
Shepherdson, editors, Proceedings of the Logic Colloquium, Bristol, July 1973. North Hol-
land, 1975.

D. McAllester and K. Arkoudas. Walther recursion. In M.A. Robbie and J.K. Slaney, editors,
CADE 13, volume 1104 of Lecture Notes in Computer Science, pages 643 657. Springer-
Verlag, 1996.

A.J.R.G. Milner. Theory of type polymorphism in programming. Journal of Computer and
System Sciences, 17(3):348 375, 1978.

A.JR.G. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in
Computer Science. Springer-Verlag, 1980.

R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard ML —
Revised. MIT Press, 1997.

Eric G.J.M.H. Nocker. Strictness analysis using abstract reduction. In Proceedings of Con-

ference on Functional Programming Languages and Computer Architectures. ACM Press,
1993.

J. Palsberg. Closure analysis in constraint form. ACM TOPLAS, 17(1):47 62, January 1995.

S. Panitz and M. Schmidt-Shaufl. TEA: Automatically proving termination of programs in
a non-strict higher-order functional language. In Van Hentenryck [37].

S.L. Peyton Jones, R.J.M. Hughes, et al. Haskell 98: A non-strict, purely functional language.
WWW page, February 1999. http://haskell.org/definition.

C. Reade. Elements of Functional Programming. Addison-Wesley, 1989.

K. Slind. TFL: An environment for terminating functional programs. WWW page, 1998.
http://www.cl.cam.ac.uk/users/kxs/tfl.html.

74

[31]

32]

33]
[34]

[37]

[38]

[39]

A Hierarchy of Languages with Strong Termination Properties

A.J. Telford and D.A. Turner. Ensuring Streams Flow. In Michael Johnson, editor, Algebraic
Methodology and Software Technology, 6th Int. Conference, AMAST 97, Sydney Australia,
December 1997, pages 509-523. AMAST, December 1997.

A.J. Telford and D.A. Turner. Ensuring the productivity of infinite structures. Technical
Report 14-97, University of Kent at Canterbury, 1997.

S.J. Thompson. Type Theory and Functional Programming. Addison-Wesley, 1991.
S.J. Thompson. Haskell: The Craft of Functional Programming. Addison-Wesley, 1996.

D.A. Turner. Miranda: A non-strict functional language with polymorphic types. In J.P.
Jouannaud, editor, Proceedings IFIP International Conference on Functional Programming
Languages and Computer Architecture, volume 201 of Lecture Notes in Computer Science.
Springer-Verlag, September 1985.

D.A. Turner. Elementary strong functional programming. In P. Hartel and R. Plasmeijer,
editors, FPLE 95, volume 1022 of Lecture Notes in Computer Science. Springer-Verlag,
1995. 1st International Symposium on Functional Programming Languages in Education.
Nijmegen, Netherlands, December 4-6, 1995.

P. Van Hentenryck, editor. Static Analysis, 4th International Symposium, SAS ’97. Paris,
France, September 1997, volume 1302 of Lecture Notes in Computer Science. Springer-Verlag,
1997.

C. Walther. On proving termination of algorithms by machine. Artificial Intelligence,
71(1):101-157, 1994.

H. Zantema. Termination of context-sensitive rewriting. In H. Comon, editor, RTA 97,
volume 1232 of Lecture Notes in Computer Science, pages 172 186. Springer-Verlag, 1997.

