University of

"1l Kent Academic Repository

Poll, Erik (1998) Behavioural Subtyping for a Type-Theoretic Model of Objects.
In: FOOLS5: Fifth International Workshop on Foundations of Object-Oriented
Languages. .

Downloaded from
https://kar.kent.ac.uk/21687/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21687/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Behavioural Subtyping
for a Type-Theoretic Model of Objects

Erik Poll
E.Poll@Qukc.ac.uk

Computing Laboratory, University of Kent, Canterbury, UK

Abstract

We present a refinement of the existential object model of
Pierce and Turner [PT94]. In addition to signatures (or
interfaces) as the types of objects, we also provide classes as
the types of objects. These class types not only specify an
interface, but also a particular implementation.

We show that class types can be interpreted in the stan-
dard PER model. Our main result is that the standard
interpretation of subtyping in PER models — i.e. subtypes
are subpers — is then behavioural subtyping in the sense of
Leavens [Lea90].

1 Introduction

Like most descriptions of objects in typed lambda calculus or
typed object calculus, the existential object model of Pierce
and Turner [PT94] provides signatures or interfaces as the
types of objects, and provides the usual syntactic notion
of subtyping on these types. We consider a more refined
notion of class type as the type of an object. A class type
is a subtype of an interface type, specified by a particular
implementation and initial state.

The existential object encoding can be carried out in FZ¢,
but the class types we want to consider are not encodable in
FZ. Therefore we will define a simple object-oriented func-
tional language A\°©, that is essentially just some syntactic
sugar for the existential object encoding, but extended with
a notion of class type.

The standard model of F¢ is a PER model, which inter-
prets types as partial equivalence relations (pers), and inter-
prets subtyping as subset inclusion between pers [BL90]. We
show that class types can be interpreted in the PER model.
For these interpretations of class types the subset relation
turns out to be equivalent to the notion of behavioural sub-
typing as defined by Leavens [Lea90].

It is important to note that class types can be behavioural
subtypes even though they give completely unrelated imple-
mentations. Although class types correspond to particular
implementations, behavioural subtyping between class types

To appear in the proceedings of the Fifth International
Workshop on the Foundations of Object-Oriented Lan-
guages (FOOL5), January 1998, San Diego, USA.

only concerns the observable behaviour of these implemen-
tations.

The interpretation of class types can also be viewed from
the categorical perspective used in [Rei95] and [HP95]: class
types are interpreted as sub-coalgebras of final coalgebras in
the PER model.

We briefly review the different notions of (sub)typing for
objects, and fix the terminology used for them in this paper.

Interface Types vs Class Types

There are at least two kinds of types that can be used for
objects, which we will call interface types and class types.
An interface type just specifies an interface (or signature),
i.e. it lists the methods with their input and output types. A
class type not only specifies the signatures of the methods,
but also an implementation of the methods and an initial
state. An important consequence of this is that the objects
of a class type can be guaranteed to have some behaviour in
common. The objects of an interface type on the other hand
cannot be guaranteed to have any behaviour in common.

Most object-oriented languages provide classes as types.
Most type-theoretical work on OO on the other hand con-
cerns interface types (e.g. [Car88], many of the papers in
[GM94], [Bru94], [FM94], [AC96]). A notable exception is
[FM97], which gives an extensive comparison of interface
types and class types.

Signature Subtyping vs Behavioural Subtyping

There are at least two notions of subtyping for object types,
which we will call signature subtyping and behavioural sub-
typing.

Signature subtyping is a purely syntactic notion, defined
by the usual contra/covariant rules (e.g. [Car88]). It con-
cerns just the interfaces of objects: a signature subtype pro-
vides (at least) all the methods of the supertype with com-
patible signatures. Signature subtyping prevents type errors
(?message not understood”) from occurring at run-time: if
A is a signature subtype of B then substituting A’s for B’s
will not cause any type errors.

Behavioural subtyping is a more semantic notion, and
concerns more than just signatures. It also tries to cap-
ture the intuition that objects in the subtype ”behave like”
objects in the supertype. It can informally be defined as
follows: A is a behavioural subtype of B iff using objects of

type A in place of objects of type B does not cause any un-
expected behaviour. Or, A is a behavioural subtype of B iff
any property that holds for all objects of type B also holds
for all objects of type A. Another formulation is known as
Liskov’s substitution principle [Lis88]: ” A is a behavioural
subtype of B iff for every object a of type A there is an
object b of type B such that for all programs p that use b,
the behaviour of p is unchanged when b is replaced with a”.

Behavioural subtyping is clearly a useful property for
reasoning about programs. Behavioural subtyping is in gen-
eral not decidable, unlike signature behavioural subtyping,
which can be statically enforced by a typechecker.

There are different ways to give formal definitions of be-
havioural subtyping.

One way to define behavioural subtyping is to require
there exists a simulation relation between states of objects
in the subtype and states of objects in the supertype such
that for every object in the behavioural subtype there is an
object in the supertype with a related state. This character-
isation is the one we will use. It was introduce by Leavens
in [Lea90], and is also used in [LW95] [Mau95].

Another — more common — way to define behavioural
subtyping is in terms of pre- and post-conditions of meth-
ods, and require that methods in a behavioural subtype have
weaker pre-conditions and stronger post-conditions than the
corresponding methods in the supertypes, so that behavioural
subtypes correspond to stronger specifications. This is sup-
ported to a certain extent in the programming language
Eiffel [Mey88], and is widely used in the literature, e.g.
[Ame89] [Lea90] [LW95] [LW94] [PHIT7] [AL97]. This sec-
ond approach can combined with the first in order to cope
with pre- and postconditions that refer to the abstract val-
ues of objects. For example, suppose objects of type Lista
are specified in terms of the sequences in A* they represent,
and objects of type Sets in terms of the sets in P(A) they
represent. Then a (simulation) relation R C Sets4 x P(A)
could be used to relate these specifications. This approach
is used in [Lea90]. It is also used in [Ame89][LW94], where
simulation relations are restricted to functions.

The rest of this paper is organised as follows. Section 2
gives some examples to illustrate the notions mentioned
above. Section 3 then gives a formal definition of A°. Sec-
tion 4 discusses the PER model for F< of [PAC94], which
provides a PER model for A°° without class types. This
PER model is then used in Section 5 as the basis of a PER
model for A°© including the class types, and we show that
subtyping between class types in this model is behavioural
subtyping. We conclude in Section 6.

2 Informal Introduction to \°°

We give some simple examples to introduce A% and the
existential object model, and to explain the notions of inter-
face types, class types, signature subtyping, and behavioural
subtyping in more detail.

2.1 Objects and Interface Types
The interface type
Counter = Sig (X){getcount : Nat,count : X'}

is the type of objects with methods getcount and count,
where getcount returns a natural number and count a new

object of the same type. We write o+l for the invoca-
tion of method [of object 0. So, if o : Counter then
o¢<—getcount : Nat and o¢—count : Counter.

An object of type Counter — a counter — can be con-
structed from a state s of some type Rep and a method table
m : Rep—CounterI(Rep) that gives the implementation of
the methods, where

CounterI(X) = {getcount : Nat,count : X}.

This object is written as object (s, m).

For example, we could use the type {z : Nat} — the type
of records with an z-field of type Nat — to represent the
state of counter, and use the following function as method
table

m = As:{xz: Nat}. {get = s.x,count = {x = s.o +1}}
{z : Nat}—=CounterI({z : Nat})

E.g. object ({x = 5}, m) is the counter-object with {z = 5}
as state and m as method table.

A simple operational semantics for method invocation
can be given as follows

(object (s, m))«getcount = (m s).getcount

(object (s, m))«count object ((m s).count, m)
For example, if o = object ({z = 5}, m), then o< getcount =
5 and o¢count = object ({x = 6}, m). Note that the
methods count and getcount are treated differently, because
count returns an object of the same class and getcount just
returns a natural number. We will call a method such as
count a mutator and a method such as getcount an observer.
In general, to invoke a method ! we apply the method table
to the state and select [component, and, if the method is
mutator, we wrap up the new state with the old method
table to produce an object.

Everything described so far is just syntactic sugar for
the existential object encoding of [PT94]. We have written
Sig Counterl for

JRep.Rep x (Rep—CounterI(Rep))
and object (s, m) for
pack (Rep, (s,m)) to ARep.Rep x (Rep—CounterI(Rep))

where Rep is the type of s.

Existential types model abstract types [MP88]. The ex-
istential type above hides the type Rep that used to repre-
sent the state of an object, so that the state s of an object
object (s, m) can only be observed indirectly by invoking
the methods getcount and count.

In certain models — including the PER model we will use
— the existential type above is interpreted as a final coalge-
bra [PA93]|[Has94]. Then equality of objects is bisimulation:
object (s1,m1) and object (s2, m2) of type Counter are
equal if their states are related by some simulation relation
~, L.e. if s1 ~ s2 for some relation ~ such that

(m1 z1).getcount =naqt (M2 2).getcount

TL~ T2 = { (m2 z1).count ~ (m2 x2).count

2.2 Subtyping on Interface Types

An example of a signature subtype of Counter is

RCounter Sig RCounterl,

where

RCounterI(X)

RCounter is type of counters that in addition to methods
count and getcount also have a method count.

The PER model does indeed interpret RCounter and
Counter as subsets: [RCounter] C [Counter]. We can
think of the partial equivalence relations [RCounter] and
[Counter] as the notion of equality for counters and re-

{getcount : Nat, count : X,reset : X}.

setable counters, respectively. Then [RCounter] C [Counter]

means that [Counter] is a coarser notion of equality than
[RCounter]. This can be understood as follows. Suppose
we have two objects that can not be distinguished by invok-
ing just the methods count and getcount, but that can be
distinguished by invoking the methods count, getcount and
reset. These objects would then be identified by [Counter],
but would not be identified by [RCounter].

The subtyping between RCounter and Counter is a de-
generated instance of behavioural subtyping. For interface
types such as RCounter and Counter the notions of sig-
nature subtyping and behavioural subtyping are identical,
because these types do not make any behavioural guaran-
tees.

2.3 Class Types

The class types we consider not only specify an interface,
but also fix the type used for the representation, the imple-
mentation of the methods, and an initial state. An example
of a class type is

CounterClass = (Class Counterl with init, m)
where
mit = {x =1}
m = As:{z: Nat}. {get = s.x,count = {x = s.o + 1}}

Intuitively, CounterClass is the following inductively de-
fined set:

e object (init,m) : CounterClass,
o if ¢: CounterClass then c<count : CounterClass.

i.e. CounterClass can be understood as the smallest sub-
set of Counter that contains object (init, m) and is closed
under method invocation.

CounterClass is like a class definition in a standard OO
language, in that it introduces a type together with an im-
plementation and initialisation for the objects of that type.
In a programming language we might write something like
"new.CounterClass” for object (init, m).

Because the objects in CounterClass all have m as their
method table and all have a hidden state of type {z : Nat}
that is "reachable” from the initial state s by method invo-
cations, they have some behaviour in common. For example,

os—getcount > 1

and
(0¢—count)«getcount = o<—getcount + 1

for all o : CounterClass.

Interpreting class types in the PER model is not a prob-
lem, and we get the expected relation between the pers in-
terpreting CounterClass and Counter: [CounterClass] C
[Counter]. The pers [CounterClass] and [Counter] pro-
vide the same notion of equality, i.e. all [CounterClass]
equivalence classes are also [Counter]equivalence classes,
but there are fewer [CounterClass] equivalence classes than
there are [Counter]equivalence classes.

2.4 Subtyping on Class Types

Assume there is a type natlist of lists of natural numbers,
with the usual constructors nil and cons. The class type
below uses a state of type {y : natlist} to represent the
state of a resetable counter:

RCounterClass = (Class RCounterl with initg, mg)

where
initr = {y = cons 0 (cons 0 nil)}
mr = As:{y: natlist}.

{getcount = length(s.y)
,count = {y = cons 0 s.y}
,reset = {y = cons 2 (cons 2 nil) } }

RCounterClass can be understood as the smallest subset of
RCounter that contains object (initg, mg) and is closed
under method invocation.

RCounterClass can be viewed as a behavioural sub-
type of CounterClass, because, despite their different im-
plementations, the objects in RCounterClass behave just
like objects in CounterClass. By invoking only the meth-
ods count and getcount, it is not possible to distinguish
the objects in RCounterClass from those in CounterClass,
since for every object o' : RCounterClass there is a o :
CounterClass that is indistinguishable from o'. More for-
mally, we can say that RCounterClass is a behavioural
subtype of CounterClass because there exists a relation
~C {z: Nat} x {y : natlist} such that

s~s'=>{

and

(m s).getcount =nqt (Mg s').getcount
(m s).count ~ (mg s').count

(i)

Vo' :RCounterClass.
Jo:CounterClass.
the states of o and o' are related by ~.

This relation ~ is of course
s~ s < s.x =length(s'y) .

Together conditions (i) and (ii) guarantee that for every o' :
RCounterClass there is a o' : CounterClass such that o'
is indistinguishable from o, if we are only allowed to invoke
their getcount and count methods.

Intuitively, the conditions above guarantee that objects
in RCounterClass have the properties that all objects in
CounterClass have, and maybe more. For instance, note
that o¢<—getcount > 2 for all o : RCounterClass.

Examples of classes that are not behavioural subtypes of
CounterClass are

CounterClassl
RCounterClassl

(Class CounterI with init, m')

(Class CounterI with initgr, m'y)

with
m' = Asi{z:Nat}.{get = s.x,count = {x = s.x + 2}}
my = As:{y:natlist}.

{getcount = length(s.y)
,count = {y = cons 0 s.y}
,reset = {y = nil}}

These classes are not behavioural subtypes of CounterClass,
for slightly different reasons. For CounterClassl we cannot
find a suitable simulation relation. For RCounterClassl
there is an obvious simulation relation, namely the same
one we used for RCounterClass. However, there is a ob-
ject in RCounterClassl for which there is no related object
in CounterClass: resetting a counter in RCounterClassl
produces an object o = object ({y = nil}, m) for which
o<—getcount = 0, and this object cannot be related to any
object in CounterClass, since all counters in CounterClass
have a getcount greater then 0.

For class types, the interpretation of subtyping in the
PER model - subtypes are subpers — turns out to be equiv-
alent to the informal notion of behavioural subtyping intro-
duced here, i.e. given by properties such as (i) and (ii). So
in the PER model

[RCounterClass] C [Counterclass]
[CounterClassl] & [Counterclass]
[RCounterClassl] ¢ [Counterclass]

The fact that the PER model already provides bisimulation
as the notion of equality plays a vital role here.

3 Definition of \°°

The raw syntax of the terms a, types A and signatures I of

M99 is given by the following grammar
a = z|AwA.alaal{li=aqa,...,ln=a}]al]|
a<l(a) | object; (A, a,a)
A = X|A-A | {li:A, .. LAY
Sig I | Class I with A,a,a
I = (X){li:A—A,... [, A>A}

Here = ranges over term wvariables, X ranges over type vari-
ables, and [over a countable set L of labels. The type vari-
able X is bound in (X)A, and if I = (X)A we write I(B)
for [B/X]A, where [B/X]A denotes the capture-free substi-
tution of B for X in A. Expressions equal up to the names
of bound variables and permutation of fields are identified
as usual, and we assume that the same label never occurs
twice in a record (type) or interface.

For simplicity, we divide £ into a set Lo of labels that
can be used as names for observer methods and a set L,u¢
of labels that can be used as names for mutator methods,
and we insist that

Lie€eLlops = X ¢ FV(AI—)Bl)
Li€Lmue = X¢ FV(AI) ANX =B;

for any signature (X){li:A1—Bi,,...,ln:An—Bn}.

The contexts of A°C are given by
I == ¢|laz:A

with no variable occurring twice.

The subtyping and typing rules of A°? are given in ta-
bles 1 and 3. The rules for well-formedness of contexts and
types are given in Table 2. These are needed because there
are types with terms as subexpressions, namely the class
types. Only the well-formedness rule for class types is given,
for the other are trivial. (E.g., A—B is well-formed in I if
A and B are well-formed in I, etc.)

The reduction relation > on terms is given by the rules

(Az:A.b)a > [a/x]b

{l1=a1,...,ln=an}.li > a;
(object; (s,m))«l(a) > (ms).la
if 1 € Lowvs
(object; (s, m))«l(a) > object; ((ms).la,m)

where [a/z]b denotes the capture-free substitution of a for
x in b.

We write ~ for the reflexive, transitive, and symmetric
closure of >, and ' +a ~a' : Afor 'Fa: AANT Fad :
ANa=~ad'.

4 PER Model for \°© without Class Types

As we mentioned earlier, with the exception of the class
types, A9 just introduces some syntactical sugar for the
existential object encoding of objects in F< given in [PT94].
In fact, we only need the subsystem F< of FY as target
system.! So any model of F< can be used as model for A0
without classes.

The model we use is the PER model of [PAC94]. This
model combines the PER models of [BL90] and [BFAS90]: it
is essentially just the model of [BL90] — and interprets sub-
types as subpers — but it uses the interpretation of poly-
morphic types given in [BFAS90] — rather than the more
standard one used in [BL90] — to ensure parametricity. The
vital property of this model that we are interested in is that
the existential types 3X. X x (X—I(X)) are interpreted as
final coalgebras, as is proved in [Has94] and [PA93].

First we make precise how A°? without class types can
be regarded as syntactic sugar for F<.

As far as types are concerned the types, interface types
abbreviate existential types:

Sigl = 3X.X x (X—=I(X)).

Remark 4.1 Here x and 3 stand for the usual F< encod-
ings. The record types we have in A°© are not part of Fe,
but these can be encoded in F< using the trick of [Car92]:
We assume there is some enumeration of the labels and we
represent the record type {li:Ai,...,ln:An} by the prod-
uct B1 X ... By, where m is the greatest index of the /; and
B; = A; if j is the index of I; and B = Top if j is not
the index of any of the /;. Product types can of course be
encoded in F< in the usual way.

The encodings of existential types, product types and
record types will be left implicit, so we use the normal nota-
tion for existentials, products, and records as abbreviation
for their F<-encodings.

'In [PT94] F¥ rather than F< is needed to type generic method
invocations, i.e. method invocations not yet applied to a particular
object, which in our syntax would be written as ”<-[”. We don’t have
these in A\9©.

ASA, AISAH

A1§B1...AnSBn mZn

<-refl
> <-t <-record
ASA ASA” =Thrans {lltAl,...,anAm} S {lliBl,...,lntBn}
’ !
A'<A B<B] A<B < sig . — —— <-class
AsB< A'SB Sig (X)A < Sig (X)B ~ (Class I with meth, init) < Sig I
Table 1. Subtyping
I'ok 'k Aok I'ok I'kinit: Rep I'Fm: Rep—I(Rep)
empty-ok weaken-ok class-ok
€k ok I'c: AF ok I' + (Class I with s, m) ok
Table 2. Well-formedness
Lx: AT Fok I'a:A A<B Iz:A+Fb:B I'Ff:A=»B TItka:A
" var sub —- —-E
Ne:AI'be: A I'a:B I'FXx:Ab: A—B I'-fa:B
I'ka: A I'ka,: A, 'ka:{li:A, ..., lx:A} Le{l,...,ln
record-I record-E
I'k {l1 =ai,.. .,ln = an} : {lllAl,. . .,ln:An} I'k+ a.li : A;
I'ts:Rep I'tm: Rep—I(Rep) I'ts:Rep I'm: Rep—I(Rep)
object-I1 object-12
I' - object, (s,m) : Sig I I' - object, (s,m) : (Class I with s, m)
For SC = Sig I or SC = (Class I with meth,init) with I(X) ={...,l: A—»B,...}:
I'Fo0:8C I'ta:A € Lys I'Fo:SC I'kFa:A € Lput
object-E-obs object-E-mut
I'+o«l(a): B I't o«l(a): SC
Table 3. Typing
The A99 syntax for object formation and method invo- method invocations by their F<-counterparts:
cation can be interpreted by the following F<-terms: [Sig I]]g — [3X.X x (X—)I(X))]|§
object; (s,m) = pack (Rep,(s,m))to -Sig 1 [object; (s,m)], = [pack (Rep, (s, m))to SigI],
o+=l(a) = openoas(X,(s,m))in(ms)la) [o«I(a)], = [openoas(X,(s,m))in(ms).la)]
lfl S Eobs n ifl = l:obs
o<l(a) = openoas (X, (s,m))in _

(pack (X, (m s).la,m)) to Sig I)
Note that some type information is missing in the A\°°-
terms, namely the type Rep of s in the first clause and Sig/
in the last clause. However, type information in terms does
not play a role in the interpretation of terms in the PER
model that we are interested in, so we can safely ignore this.

We now consider the PER model of [PAC94]. Here types
are interpreted as partial equivalence relations (pers) on IN,
and terms are interpreted as natural numbers, using some
enumeration of the partial recursive functions.

The per interpreting a type A is written as [A], where £
is a type environment that maps from type variables to pers.
The natural number interpreting a term a is written as [[a]]n,
where 7 is a term environment that maps terms to natural
numbers. Another way of looking at the PER model is to
interpret a type A as the set of [A].-equivalence classes, and
to interpret a term a : A as the [[A]]g-equivalence class that
contains [a], .

A9 without class types can be interpreted in this PER
model for F< by interpreting interface types, objects, and

[o<1(a)] [openoas (X, (s,m)) in
pack (X, (m s).l a, m)) to Sig I],
if Il € Loput
A pair (n, &) satisfies a context I" — written (n,£) = I" —
iff (n(z),n(z)) € [A], for all declarations z : A in I'. Given

that the PER model is a sound model for Fc, it is also a
A\09:

n

sound model for

Theorem 4.2
IfI'ta~ad : A in X°° without class types,

then ([a], , [[a']]n) € [A], ¢ for all (n,§) E T

We will now look at the interpretations of objects and
interface types in more detail. Some properties of these
interpretations will be used to interpret class types in the
next section.

First a few definitions. We write n-m for the n® partial
recursive function applied to m, and Az. E(z) for the index
of a partial recursive function for which Az. E(z)-n = E(n),
where E(x) is a partial recursive description of a natural
number depending on z.

We write [n], for the R-equivalence containing n, and
IN/R for the set of R-equivalence classes. For pers R and S,
the per R — S is defined as

R—S={(ff)€NxIN|V(a,a") € A (f-a,f -da’) € B}.

n

We write n £ R as abbreviation for (n,n) € R.

The category PER is defined as in [BFAS90] and [Has94]
as the category with as objects pers on IN and as the arrows
from R to S total functions from IN/R to IN/S named by a
partial recursive functions in R — S.

4.1 Interpretation of objects

We define obj{(_,-) and - <; _ as the interpretations of
object (_,_) and _¢<-I(_) in the PER model. So

obj([s],, , [m],)

[object; (s,m)],

and

[o+l(a)], [o], < [a],, -

Looking at the interpretations of the F<-terms that object ()
and <[denote, we find that

(m s).l-
obj{(m - s

if I € Lops

(obj(s,m)) ~=ia = { ifl e Emut

).l-a,m)

Note that we abuse our notation for field selection here and
write ”.1” for the selection of the [-field, when we should
really use the interpretation of the [-projection under the
encoding of records as products discussed in Remark 4.1.

4.2 Interpretation of interface types

The interesting property of the PER model is that the exis-
tential types of the form 3X. X x (X—I(X)) —i.e. interface
types — are interpreted as final coalgebras, as is proved in
[Has94] and [PA93].

We define SIG(.) as the interpretation of Sig (_) in the
PER model. So

[SigIl, = [3X.X x (X—I(X))]
SIG([11,)

Let Z : PER—PER be the functor interpreting some in-
terface I in some environment , i.e. 7 = [I],. We define
outr as

3

outz Ao. Z(As. obj(s,snd(0))) - (snd(o) - fst(0)) .
Another way of defining outz is as the interpretation of out; :
Sig I — I(SigI), defined as follows

outr Xo:Sig I.openoas (X, (s, m)) in
I, (Az:X. object; (x,m)) (m s)

SigI — I(SigI)

Here I,,, is the action of I on functions, with I, (f) : I(A)—I(B)

for any f: A— B, defined in the usual way by induction on
I
The pair (SIG(Z), outz) is a final coalgebra [Has94][PA93].
So
outz E SIG(Z) —» Z(SIG(2)),

and we have the following properties;

Property 4.3 Let s; E Rep; and m; E Rep; —» Z(Rep;)
for certain pers Rep;, i =1, 2.

Then
(obj(s1,m1), 0bj(s2,m2)) € SIG(Z)
—
d~€IN xIN. ~= Repi;~; Rep> A
S1 ~ S92 A

(m1,m2) E~v—% Z(~)
Here ; denotes composition of relations.
Property 4.4 For any relation ~C IN x IN
outz E~—» I(~) = ~C SIG(Z).
In other words, SIG(Z) is the mazimum bisimulation.

These properties are particular cases of Theorems 7 and 11
in [PA93]. A direct consequence (take ~= Rep; = Rep) of
Property 4.3 is:

Corollary 4.5 Let (s1,s2) € Rep and (m1,mz) € Rep —»
I(Rep) for some per Rep.
Then (obj(s1, m1),0bj(s2, m2)) € SIG(Z).

The mapping outz is related to the interpretation of
method invocations _ <; _ as follows:

Property 4.6 Let Z = [I], for some {, with I an interface
that contains a method . Then

o< a (outz -0).l-a

As before, we abuse our notation for field selection here.

5 Model for A\°C with Class Types

We now extend the interpretation of A°? without class types
in the PER model of [PAC94] to an interpretation of the full
99 including the class types.

Definition 5.1 The relation T on pers is defined by
RCS <= IN/RCIN/S.
An equivalent definition is
RCS < RCSAR=S;R;S.

The relation C is used to define the interpretation of a class
types:

Definition 5.2 ForZ : PER—PER and m,n € IN we define
CLASS(Z, s, m) as follows

CLASS(Z, s, m)
({X CSIG(Z) | obj(s,m) E X Aoutz E X —» Z(X)}.

This defines IN/CLASS(Z, s, m) as the smallest subset of
IN/SIG(Z) that contains [obj(s, m)]gg 7, and is closed under
method invocations.

Lemma 5.3 Let Z : PER—PER. Suppose that Z s con-
tinuous — i.e. Z((), X;) = (), Z(X:) — and suppose that
Z(R);Z(S) CZ(R;S) for all pers R and S. Then

1. CLASS(Z, s, m) C SIG(Z)

2. obj(s,m) = CLASS(Z, s, m)
3. outr £ CLASS(Z, s, m) — I(CLASS(Z, s, m))
4. Let (s1,52) € Rep and (m1, m2) € Rep — Z(Rep).

Then CLASS(Z, s1,m1)

= CLASS(I, 52, mg).

Proof. These properties easily follow from the definition of
CLASS and the assumptions on Z. For 4. use Corollary 4.5

to deduce that
(s,m) EX<(s',m) E

X for any X C SIG(I)

from the assumptions on s; and m;. O

It is easy to verify that any Z that is the interpretation
of a \9%-signature will satisfy the conditions of the lemma

above.
CLASS will now be used

to extend the PER model of

A99 without class types to a model for the full A°C. The
definition of this model is given below.

As far as terms is concerned nothing changes.

In \9°

without class types we have the same terms as in A°C with

class type, so the terms can

be interpreted as in the PER

model discussed in the previous section:

Definition 5.4 The interpretation [a], € N of a OO term
M in term environment 1 is defined as

[a], = [Erase(a)],,,

where
Erase(object; (s,m)) = object (Erase(s), Erase(m))
Erase(o<l(a)) = Erase(o)«I(Erase(a))
Erase(Ax:A.b) = Mz. Erase(b)
Erase(fa) = Erase(f)Erase(a)
Erase(a.l) = Erase(a).l
Erase({l1 = a1,...,ln, =an}) =

{ly = Erase(a1),...,ln = Erase(an)}

and he interpretation of erased terms is defined by

[], =

[Az.b], =
[fal,

[object; (s,m)], =

[o<l(a)], =

ol = an}]]n =

[a.1],

[[{ll =ai,..-

n(z)

An. [b];,,,
[11,-[al,
obj([s], , [m],,)
[0], < [a],
{h=[a],,- -
[a], 1

z]n

I = [an],}

Here we again abuse our notation for records and field se-
lection as shorthand for their interpretations under the en-
coding discussed in Remark 4.1.

Because class types contain terms as subexpressions, the
interpretation of types now has to be given w.r.t. a term
environment 1 as well as a type environment ¢ :

Definition 5.5 The interpretation [A], . of a type A in en-

vironment (n,&) is given by
[[X]]r,,g =
[A—B], . =
.,ln:zﬁln}]]",5 =
[Sig1], . =
[Class I with init, m], .

[{lltAl, .

£(X)

[Al, . — [B], ¢
{h=[A], ¢
SIG([1],)

yln = [[An]]n,,g}

= CLASS([1], ¢ , [init], , [m],)

Again, the notation for record types is abused as shorthand
for their interpretations under the encoding discussed in Re-
mark 4.1.

Theorem 5.6
IfI'+a~ad :Ain\°°
then ([al, ,[a’],) € [A], ¢ for all (n,§) E T

Proof. Soundness of type assignment, i.e.
F'_a : A A ("77&) ': F:> Ha]]n E [[A]]',],§7

can be proved in the usual way. Lemma 5.3.1 is needed for
soundness of the subtyping rule for classes, 5.3.2 for sound-
ness of the introduction rule for classes, and 5.3.3 — together
with Lemma 4.6 — for soundness of the elimination rules for
classes.

No extra work is needed to prove soundness of reduction:
we can reuse the following property of the PER-interpretation
of F<: if [a], and [[a']]?7 are defined, then

a=ga = [a], =[],

Since the mapping from A9 to F< preserves reduction, we
immediately have the property that if [a], and [a'], are
defined, then

a~d = [a], =[], O

5.1 Subtyping is behavioural subtyping

We now show that in the PER model subtyping between
class types corresponds with the notion of behavioral sub-
typing as we informally explained it in Section 2.

Definition 5.7 Forinit E Rep and m £ Rep —» (Rep) the
per REACH(Z, Rep, init,m) is defined as follows:

REACH(Z, Rep, init, m)
({XCRep|initEX AN mE X - I(X)}.

IN/REACH(Z, Rep, init, m) is the set of those Rep-equivalence
classes reachable from the state init using the method im-
plementations m. Note the similarity between the definition
of REACH and the definition of CLASS. There is close rela-
tionship between the two:

Lemma 5.8 Let Z : PER—PER. Suppose that Z is contin-
wous — i.e. ([, Xi) = (), Z(Xi) — and that Z(R);Z(S) C
Z(R; S) for all pers R and S. Then

IN/CLASS(Z, init, m)

{lobj(s, m)]gig(z) | s E REACH(Z, Rep, init, m)}
Proof. (Sketch) First we consider (C). Define the per X as

X = Rep N (f; CLASS(Z, init, m);),
where f C IN x IN is the relation {(s,obj(s,m)) | s € IN}
and f% its inverse. We can prove the following properties
of X:
o X C Rep,

o it E X,

e mE X —» I(X).
It then follows by the definition of REACH that
REACH(Z, Rep,init,m) C X ,

I
B
o,
)
(]

f7; REACH(Z, Rep, init, m); f

X f

f75 (Rep N f; CLASS(Z, init,m); f7) ; f
(f7;Rep; f) 0 (f7; f; CLASS(Z, init, m); £ f)
(f; Rep; f) N CLASS(Z,init, m)

CLASS(Z, init, m)

NN N

and (C) follows directly from the inclusion above.
Now to prove (D). Define

Y = SIG(Z); f; REACH(Z, Rep, init,m); f; SIG(Z)
For Y we can prove the following properties:
e Y CSIG(Z),
e (init,m)EY,
e outzr EY —-» Z(Y).
It then follows by the definition of CLASS that
CLASS(Z,init,m) C Y ,

from which we can prove (2). a

The relation below defines subtyping between interpreta-
tions of signatures:

Definition 5.9 The relation < on PER—PER is defined as
follows:

L <I

<~
T1(X) C Zx(X) for all pers X and
both Z; are continuous with
Zi(R); Z;(S) for all pers R and S.

We can now state our main result, namely that, for in-
terpretations of class types, the subset relation on pers is
equivalent with the notion of behavioural subtyping that we
described in Section 2.

Theorem 5.10 (Subtyping is Behavioural Subtyping)

Suppose init; E Rep; and m; E Rep; — Z;(Rep;), for cer-
tain pers Rep; for i =1,2. If T, < Z» then

CLASS(Il, i'nitl, ml) g CLASS(Iz, Z"nitz, mz)
<~
d~C IN xIN. ~= Repi;~;Rep> A
('ml, mz) E~—» Iz(N) A
Vs1 E REACH(Il, Rep1,inity, ml).
dss E REACH(Iz, Repz, initz,mg). S1 ~ S2

The second part of this theorem is a formal definition of the
notion of behavioural subtyping discussed in Section 2: The
condition

(ml, m2) E~v—» 1o (N)

corresponds to condition (i) on page 3, and the condition

Vs1 E REACH(Il, Repl, inity, ml).
dss E REACH(Iz, Repz, initz,mg). S1 ~ So

corresponds to condition (ii) on page 3.

Proof. (Sketch) Define C; = CLASS(Z;, init;, m;) and R; =
REACH(Z;, Rep;, init;, m;).

(:>) Let C1 C Cs.
Define ~C IN x IN as follows

~= Repy; f1;SIG(Z); f5 ; Repz,

where f; = {(s,0bj(s,m;)) | s € IN}. For this relation
~ the required properties can be proven.

(<) Let ~C IN x IN be such that

(i) ~= Rep;~; Rep»,
(11) (m17 m2) E~—» I2(N)7
(iii) Vs1 E Ry.3ds2 E Ra. 51 ~ s2.

Suppose that 01 E C1. Then by Lemma 5.8(C) there
is an s1 E Ry such that (o, (s1,m1)) € SIG(Z1). Then
by (iii) there is an s» E R» such that s1 ~ s2. By Prop-
erty 4.3 it now follows that (obj(si, m1), obj(s2, m2)) €
SIG(Z:), and then (s2,m2) E C> by Lemma 5.8(D).
Moreover, by SIG(Z;) C SIG(Z3) and the transitivity
of pers: (01, 0bj(s2,m2)) € SIG(Z>).

This proves
o1 EC: = Joz E Cs. (01,02) € SlG(Iz)

From this property we can now deduce C; C C> using
C; C SIG(Z;) and some basic properties of C. O

6 Conclusions and directions for future work

This paper establishes a link between three different strands
of research on object-oriented languages, namely

e the type-theoretic approach to objects of [PT94],
e the work on behavioural subtyping of [Lea90],
e the categorical approach to objects of [Rei95].

For an extension of the type-theoretic encoding of object of
Pierce and Turner [PT94] we have shown that the standard
interpretation of subtyping in PER models — subtypes are
subpers — provides exactly the notion of behavioural sub-
typing defined by Leavens [Lea90]. The crucial property is
that object types are interpreted as final co-algebras. The
correspondence between the existential object encoding and
final coalgebras noted in [HP95] extends to our class types
and sub-coalgebras of the final coalgebra. Sub-coalgebras
are used in [Rei95] and [Jac96] as specifications of objects;
our class types can of course be regarded as specifications,
where we specify objects by giving a particular implemen-
tation.

The usefulness of the coalgebraic view of objects suggests
that it might be better to use a primitive notion of coin-
ductive type to present the existential object model, rather
than an encoding of such types using existential types. The
existential object model could for instance be carried out
using Hagino’s categorical datatypes [Hag87] extended with
subtyping. (The interface types of A9 are essentially coal-
gebraic types in the sense of [Hag87].) An advantage would
be that coinductive types only require a first-order type sys-
tem, whereas existential types require a second-order type
system.

One subject for future work is a more general description
of a model for A°? in categorical terms, in which interface

types are interpreted as final coalgebras, class types as sub-
coalgebras, and subtyping as coercions between them. We
hope this will streamline much of the theory, and allow a
presentation giving more than just sketches of proofs. (Note
that I-coalgebras are only defined up to isomorphism, but
the PER model here relies on the construction of a particular
one of these as the interpretation of an interface type.)

We have not mentioned inheritance here. Inheritance
for the existential model encoding is described in [PT94].
Now that we have a notion of behavioural subtyping, the
interesting problem to look at is: ”When does inheritance
produce behavioural subtypes 7”. Ideally we would want to
formulate general conditions that are sufficient to guarantee
that a class defined by inheritance is a behavioural subtype
of the class it inherits from.

A99 could be extended with subtyping between class

types, where this subtyping between class types is declared
by the programmer. It would have to be the responsibility
of the programmer that such declared subtyping is sound, as
this is not something that can be decided by a typechecker.
We would then really want a logic for reasoning about pro-
grams in which soundness of subtyping between class types
can be expressed and (dis)proved. Such a logic would be
an major topic for further investigation. Here it might be
possible to use existing work on behavioural subtyping.

Finally, it would be interesting to see if the PER mod-
els of the other object encodings, e.g. those discussed in
[BCP97], can also provide a notion of behavioural subtyp-
ing for class types. This would be more difficult: these other
object encodings are in type systems with unrestricted re-
cursion, and it is not clear what the effect of recursion would
be. Also, the method updates allowed by some of these en-
codings would cause complications. These would have to be
ruled out if we want to statically guarantee that all objects
of a class type have the same method table.

References

[AC96] Martin Abadi and Luca Cardelli. A Theory of Ob-
jects. Monographs in Computer Science. Springer,

1996.

Martin Abadi and K. Rustan M. Leino. A logic
of object-oriented programs. In TAPSOFT ’97:
Theory and Practice of Software Development,
pages 682-696. Springer-Verlag, 1997.

[ALOT]

[Ame89] Pierre America. A Behavioural Approach to Sub-
typing in Object-Oriented Languages. Technical
Report Technical Report 443, Philips Research

Laboratories, 1989.

[BCP97] Kim B. Bruce, Luca Cardelli, and Benjamin C.
Pierce. Comparing object encodings. In Theo-
retical Aspects of Computer Software (TACS’97),
Sendai, Japan, volume 1281, pages 415-438.

Springer LNCS, September 1997.

E.S. Bainbridge, P.J. Freyd, A.Scedrov, and P.J.
Scott. Functorial polymorphism. Theoretical
Computer Science, 70(1):35-64, 1990.

[BFAS90]

[BL90] Kim B. Bruce and Giuseppe Longo. A modest
model of records, inheritance, and bounded quan-
tification. Information and Computation, 87:196—

240, 1990. Also in [GM94].

[Bru94]

[Car88|

[Car92]

[FM94]

[FMO7]

[GM94]

[Hag87]

[Has94]

[HP95]

[Jac96]

[Lea90]

[Lis88]

[LW94]

[LW95]

[Mau95]

Kim B. Bruce. A paradigmatic object-oriented
programming language: Design, static typing and
semantics. Journal of Functional Programming,
4(2), April 1994.

Luca Cardelli. A semantics of multiple inher-
itance. Information and Computation, 76:138—
164, 1988.

Luca Cardelli. Extensible records in a pure calcu-
lus of subtyping. Research report 81, DEC Sys-
tems Research Center, 1992. Also in [GM94].

Kathleen Fisher and John C. Mitchell. Notes on
typed object-oriented programming. In Proceed-
ings of Theoretical Aspects of Computer Software
(TACS94) , Sendai, Japan, volume 789 of LNCS,
pages 844-886. Springer, 1994.

K. Fisher and J.C. Mitchell. On the relation-
ship between classes, objects, and data abstrac-
tion. In Proceedings of the International Sum-
mer School on Mathematics of Program, LNCS.
Springer, 1997.

Carl A. Gunter and John C. Mitchell. Theo-
retical Aspects of Object-Oriented Programming:
Types, Semantics, and Language Design. The
MIT Press, 1994.

Tatsuya Hagino. A typed lambda calculus with
categorical type constructors. In D.H. Pitt,
A Poigné, and D.E. Rydeheard, editors, Category
and Computer Science, pages 140-157. Springer,
September 1987.

Tyu Hasegawa. Categorical data types in para-
metric polymorphism. Mathematical Structures
in Computer Science, 4:71-109, 1994.

Martin Hofmann and Benjamin C. Pierce. A uni-
fying type-theoretic framework for objects. Jour-
nal of Functional Programming, 5(4):593-635,
1995.

Bart Jacobs. Objects and classes, co-
algebraically. In Object-Orientation with Par-
allelism and Persistence, pages 83-103. Kluwer
Academic Publishers, 1996. ISBN 0-7923-9770-3.

Gary T. Leavens. Modular verification of object-
oriented programs with subtypes. Technical Re-
port 90-09, Department of Computer Science,
Towa State University, Ames, Towa, 50011, July
1990.

Barbara H. Liskov. Data abstraction and hierar-
chy. SIGPLAN Notices, 23(3), 1988.

Barbara H. Liskov and Jeannette M. Wing.
A behavioral notion of subtyping. TOPLAS,
16(6):1811-1841, November 1994.

Gary T. Leavens and William E. Weihl. Specifica-
tion and verification of object-oriented programs
using supertype abstraction. Acta Informatica,
32(8):705-778, November 1995.

JTan Maung. On simulation, subtyping and sub-
stitutability in sequential object systems. Formal
Aspects of Computing, 7(6):620-651, 1995.

[Mey88] Bertrand Meyer. Object-oriented software con-
struction. Prentice Hall, 1988.

[MP88] John C. Mitchell and Gordon D. Plotkin. Ab-
stract types have existential type. ACM Trans.
on Prog. Lang. and Syst., 10(3):470-502, 1988.

[PA93] Gordon Plotkin and Martin Abadi. A logic
for parametric polymorphism. In Typed Lambda
Calculi and Applications, volume 664 of Lecture
Notes in Computer Science, pages 361-375, 1993.

[PAC94] Gordon Plotkin, Martin Abadi, and Luca
Cardelli. Subtyping and parametricity. In Pro-
ceedings of the Ninth IEEE Symposium on Logic
in Computer Science, pages 310-319, 1994.

[PH97] A. Poetzsch-Heffter. Specification and Verifica-
tion of Object-Oriented Programs. PhD thesis,
Technische Universitdt Miinchen, 1997.

[PT94] Benjamin C. Pierce and David N. Turner. Sim-
ple type-theoretic foundations for object-oriented
programming. Journal of Functional Program-
ming, 4(2):207-247, April 1994.

[Rei95] Horst Reichel. An approach to object seman-
tics based on terminal co-algebras. Mathematical
Structures in Computer Science, 5:129-152, 1995.

2-10

