
Poll, Erik (1998) Behavioural Subtyping for a Type-Theoretic Model of Objects.
 In: FOOL5: Fifth International Workshop on Foundations of Object-Oriented
Languages. .

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21687/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21687/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Behavioural Subtypingfor a Type-Theoretic Model of ObjectsErik PollE.Poll@ukc.ac.ukComputing Laboratory, University of Kent, Canterbury, UK
AbstractWe present a re�nement of the existential object model ofPierce and Turner [PT94]. In addition to signatures (orinterfaces) as the types of objects, we also provide classes asthe types of objects. These class types not only specify aninterface, but also a particular implementation.We show that class types can be interpreted in the stan-dard PER model. Our main result is that the standardinterpretation of subtyping in PER models { i.e. subtypesare subpers { is then behavioural subtyping in the sense ofLeavens [Lea90].1 IntroductionLike most descriptions of objects in typed lambda calculus ortyped object calculus, the existential object model of Pierceand Turner [PT94] provides signatures or interfaces as thetypes of objects, and provides the usual syntactic notionof subtyping on these types. We consider a more re�nednotion of class type as the type of an object. A class typeis a subtype of an interface type, speci�ed by a particularimplementation and initial state.The existential object encoding can be carried out in F!� ,but the class types we want to consider are not encodable inF!� . Therefore we will de�ne a simple object-oriented func-tional language �OO, that is essentially just some syntacticsugar for the existential object encoding, but extended witha notion of class type.The standard model of F!� is a PER model, which inter-prets types as partial equivalence relations (pers), and inter-prets subtyping as subset inclusion between pers [BL90]. Weshow that class types can be interpreted in the PER model.For these interpretations of class types the subset relationturns out to be equivalent to the notion of behavioural sub-typing as de�ned by Leavens [Lea90].It is important to note that class types can be behaviouralsubtypes even though they give completely unrelated imple-mentations. Although class types correspond to particularimplementations, behavioural subtyping between class typesTo appear in the proceedings of the Fifth InternationalWorkshop on the Foundations of Object-Oriented Lan-guages (FOOL5), January 1998, San Diego, USA.

only concerns the observable behaviour of these implemen-tations.The interpretation of class types can also be viewed fromthe categorical perspective used in [Rei95] and [HP95]: classtypes are interpreted as sub-coalgebras of �nal coalgebras inthe PER model.We brie
y review the di�erent notions of (sub)typing forobjects, and �x the terminology used for them in this paper.Interface Types vs Class TypesThere are at least two kinds of types that can be used forobjects, which we will call interface types and class types.An interface type just speci�es an interface (or signature),i.e. it lists the methods with their input and output types. Aclass type not only speci�es the signatures of the methods,but also an implementation of the methods and an initialstate. An important consequence of this is that the objectsof a class type can be guaranteed to have some behaviour incommon. The objects of an interface type on the other handcannot be guaranteed to have any behaviour in common.Most object-oriented languages provide classes as types.Most type-theoretical work on OO on the other hand con-cerns interface types (e.g. [Car88], many of the papers in[GM94], [Bru94], [FM94], [AC96]). A notable exception is[FM97], which gives an extensive comparison of interfacetypes and class types.Signature Subtyping vs Behavioural SubtypingThere are at least two notions of subtyping for object types,which we will call signature subtyping and behavioural sub-typing.Signature subtyping is a purely syntactic notion, de�nedby the usual contra/covariant rules (e.g. [Car88]). It con-cerns just the interfaces of objects: a signature subtype pro-vides (at least) all the methods of the supertype with com-patible signatures. Signature subtyping prevents type errors("message not understood") from occurring at run-time: ifA is a signature subtype of B then substituting A's for B'swill not cause any type errors.Behavioural subtyping is a more semantic notion, andconcerns more than just signatures. It also tries to cap-ture the intuition that objects in the subtype "behave like"objects in the supertype. It can informally be de�ned asfollows: A is a behavioural subtype of B i� using objects of2 - 1

type A in place of objects of type B does not cause any un-expected behaviour. Or, A is a behavioural subtype of B i�any property that holds for all objects of type B also holdsfor all objects of type A. Another formulation is known asLiskov's substitution principle [Lis88]: "A is a behaviouralsubtype of B i� for every object a of type A there is anobject b of type B such that for all programs p that use b,the behaviour of p is unchanged when b is replaced with a".Behavioural subtyping is clearly a useful property forreasoning about programs. Behavioural subtyping is in gen-eral not decidable, unlike signature behavioural subtyping,which can be statically enforced by a typechecker.There are di�erent ways to give formal de�nitions of be-havioural subtyping.One way to de�ne behavioural subtyping is to requirethere exists a simulation relation between states of objectsin the subtype and states of objects in the supertype suchthat for every object in the behavioural subtype there is anobject in the supertype with a related state. This character-isation is the one we will use. It was introduce by Leavensin [Lea90], and is also used in [LW95] [Mau95].Another { more common { way to de�ne behaviouralsubtyping is in terms of pre- and post-conditions of meth-ods, and require that methods in a behavioural subtype haveweaker pre-conditions and stronger post-conditions than thecorresponding methods in the supertypes, so that behaviouralsubtypes correspond to stronger speci�cations. This is sup-ported to a certain extent in the programming languageEi�el [Mey88], and is widely used in the literature, e.g.[Ame89] [Lea90] [LW95] [LW94] [PH97] [AL97]. This sec-ond approach can combined with the �rst in order to copewith pre- and postconditions that refer to the abstract val-ues of objects. For example, suppose objects of type ListAare speci�ed in terms of the sequences in A� they represent,and objects of type SetA in terms of the sets in P(A) theyrepresent. Then a (simulation) relation R � SetA � P(A)could be used to relate these speci�cations. This approachis used in [Lea90]. It is also used in [Ame89][LW94], wheresimulation relations are restricted to functions.The rest of this paper is organised as follows. Section 2gives some examples to illustrate the notions mentionedabove. Section 3 then gives a formal de�nition of �OO. Sec-tion 4 discusses the PER model for F� of [PAC94], whichprovides a PER model for �OO without class types. ThisPER model is then used in Section 5 as the basis of a PERmodel for �OO including the class types, and we show thatsubtyping between class types in this model is behaviouralsubtyping. We conclude in Section 6.2 Informal Introduction to �OOWe give some simple examples to introduce �OO and theexistential object model, and to explain the notions of inter-face types, class types, signature subtyping, and behaviouralsubtyping in more detail.2.1 Objects and Interface TypesThe interface typeCounter = Sig (X)fgetcount : Nat; count : Xgis the type of objects with methods getcount and count,where getcount returns a natural number and count a new

object of the same type. We write o l for the invoca-tion of method l of object o. So, if o : Counter theno getcount : Nat and o count : Counter.An object of type Counter { a counter { can be con-structed from a state s of some type Rep and a method tablem : Rep!CounterI(Rep) that gives the implementation ofthe methods, whereCounterI(X) = fgetcount : Nat; count : Xg:This object is written as object hs;mi.For example, we could use the type fx : Natg { the typeof records with an x-�eld of type Nat { to represent thestate of counter, and use the following function as methodtablem = �s : fx : Natg: fget = s:x; count = fx = s:x+ 1gg: fx : Natg!CounterI(fx : Natg)E.g. object hfx = 5g; mi is the counter-object with fx = 5gas state and m as method table.A simple operational semantics for method invocationcan be given as follows(object hs;mi) getcount = (m s):getcount(object hs;mi) count = object h(m s):count;miFor example, if o � objecthfx = 5g; mi, then o getcount =5 and o count = object hfx = 6g; mi. Note that themethods count and getcount are treated di�erently, becausecount returns an object of the same class and getcount justreturns a natural number. We will call a method such ascount a mutator and a method such as getcount an observer.In general, to invoke a method l we apply the method tableto the state and select l component, and, if the method ismutator, we wrap up the new state with the old methodtable to produce an object.Everything described so far is just syntactic sugar forthe existential object encoding of [PT94]. We have writtenSig CounterI for9Rep:Rep� (Rep!CounterI(Rep))and object hs;mi forpack hRep; (s;m)i to 9Rep:Rep� (Rep!CounterI(Rep))where Rep is the type of s.Existential types model abstract types [MP88]. The ex-istential type above hides the type Rep that used to repre-sent the state of an object, so that the state s of an objectobject hs;mi can only be observed indirectly by invokingthe methods getcount and count.In certain models { including the PER model we will use{ the existential type above is interpreted as a �nal coalge-bra [PA93][Has94]. Then equality of objects is bisimulation:object hs1;m1i and object hs2;m2i of type Counter areequal if their states are related by some simulation relation�, i.e. if s1 � s2 for some relation � such thatx1 � x2) � (m1 x1):getcount =Nat (m2 x2):getcount(m2 x1):count � (m2 x2):count
2 - 2

2.2 Subtyping on Interface TypesAn example of a signature subtype of Counter isRCounter = Sig RCounterI;whereRCounterI(X) = fgetcount : Nat; count : X; reset : Xg:RCounter is type of counters that in addition to methodscount and getcount also have a method count.The PER model does indeed interpret RCounter andCounter as subsets: [[RCounter]] � [[Counter]]. We canthink of the partial equivalence relations [[RCounter]] and[[Counter]] as the notion of equality for counters and re-setable counters, respectively. Then [[RCounter]] � [[Counter]]means that [[Counter]] is a coarser notion of equality than[[RCounter]]. This can be understood as follows. Supposewe have two objects that can not be distinguished by invok-ing just the methods count and getcount, but that can bedistinguished by invoking the methods count, getcount andreset. These objects would then be identi�ed by [[Counter]],but would not be identi�ed by [[RCounter]].The subtyping between RCounter and Counter is a de-generated instance of behavioural subtyping. For interfacetypes such as RCounter and Counter the notions of sig-nature subtyping and behavioural subtyping are identical,because these types do not make any behavioural guaran-tees.2.3 Class TypesThe class types we consider not only specify an interface,but also �x the type used for the representation, the imple-mentation of the methods, and an initial state. An exampleof a class type isCounterClass = (Class CounterI with init; m)whereinit = fx = 1gm = �s:fx : Natg: fget = s:x; count = fx = s:x+ 1ggIntuitively, CounterClass is the following inductively de-�ned set:� object hinit;mi : CounterClass,� if c : CounterClass then c count : CounterClass.i.e. CounterClass can be understood as the smallest sub-set of Counter that contains object hinit; mi and is closedunder method invocation.CounterClass is like a class de�nition in a standard OOlanguage, in that it introduces a type together with an im-plementation and initialisation for the objects of that type.In a programming language we might write something like"new:CounterClass" for object hinit; mi.Because the objects in CounterClass all have m as theirmethod table and all have a hidden state of type fx : Natgthat is "reachable" from the initial state s by method invo-cations, they have some behaviour in common. For example,o getcount � 1and (o count) getcount = o getcount+ 1

for all o : CounterClass.Interpreting class types in the PER model is not a prob-lem, and we get the expected relation between the pers in-terpreting CounterClass and Counter: [[CounterClass]] �[[Counter]]. The pers [[CounterClass]] and [[Counter]] pro-vide the same notion of equality, i.e. all [[CounterClass]]equivalence classes are also [[Counter]]equivalence classes,but there are fewer [[CounterClass]] equivalence classes thanthere are [[Counter]]equivalence classes.2.4 Subtyping on Class TypesAssume there is a type natlist of lists of natural numbers,with the usual constructors nil and cons. The class typebelow uses a state of type fy : natlistg to represent thestate of a resetable counter:RCounterClass = (ClassRCounterI with initR;mR)whereinitR = fy = cons 0 (cons 0 nil)gmR = �s:fy : natlistg:fgetcount = length(s:y); count = fy = cons 0 s:yg; reset = fy = cons 2 (cons 2 nil)ggRCounterClass can be understood as the smallest subset ofRCounter that contains object hinitR; mRi and is closedunder method invocation.RCounterClass can be viewed as a behavioural sub-type of CounterClass, because, despite their di�erent im-plementations, the objects in RCounterClass behave justlike objects in CounterClass. By invoking only the meth-ods count and getcount, it is not possible to distinguishthe objects in RCounterClass from those in CounterClass,since for every object o0 : RCounterClass there is a o :CounterClass that is indistinguishable from o0. More for-mally, we can say that RCounterClass is a behaviouralsubtype of CounterClass because there exists a relation�� fx : Natg � fy : natlistg such thats � s0) � (m s):getcount =Nat (mR s0):getcount(m s):count � (mR s0):count (i)and 8o0:RCounterClass:9o:CounterClass:the states of o and o0 are related by �. (ii)This relation � is of courses � s0 () s:x = length(s0:y) :Together conditions (i) and (ii) guarantee that for every o0 :RCounterClass there is a o0 : CounterClass such that o0is indistinguishable from o, if we are only allowed to invoketheir getcount and count methods.Intuitively, the conditions above guarantee that objectsin RCounterClass have the properties that all objects inCounterClass have, and maybe more. For instance, notethat o getcount � 2 for all o : RCounterClass.Examples of classes that are not behavioural subtypes ofCounterClass areCounterClass1 = (Class CounterI with init; m0)RCounterClass1 = (Class CounterI with initR;m0R)2 - 3

withm0 = �s:fx : Natg: fget = s:x; count = fx = s:x+ 2ggm0R = �s:fy : natlistg:fgetcount = length(s:y); count = fy = cons 0 s:yg; reset = fy = nilggThese classes are not behavioural subtypes of CounterClass,for slightly di�erent reasons. For CounterClass1 we cannot�nd a suitable simulation relation. For RCounterClass1there is an obvious simulation relation, namely the sameone we used for RCounterClass. However, there is a ob-ject in RCounterClass1 for which there is no related objectin CounterClass: resetting a counter in RCounterClass1produces an object o � object hfy = nilg; mi for whicho getcount = 0, and this object cannot be related to anyobject in CounterClass, since all counters in CounterClasshave a getcount greater then 0.For class types, the interpretation of subtyping in thePER model { subtypes are subpers { turns out to be equiv-alent to the informal notion of behavioural subtyping intro-duced here, i.e. given by properties such as (i) and (ii). Soin the PER model[[RCounterClass]] � [[Counterclass]][[CounterClass1]] 6� [[Counterclass]][[RCounterClass1]] 6� [[Counterclass]]The fact that the PER model already provides bisimulationas the notion of equality plays a vital role here.3 De�nition of �OOThe raw syntax of the terms a, types A and signatures I of�OO is given by the following grammara ::= x j �x:A: a j aa j fl1 = a; : : : ; ln = ag j a:l ja l(a) j objectI hA; a; aiA ::= X j A!A0 j fl1:A; : : : ; ln:Ag jSig I j Class I with A;a; aI ::= (X)fl1:A!A; : : : ; ln:A!AgHere x ranges over term variables, X ranges over type vari-ables, and l over a countable set L of labels. The type vari-able X is bound in (X)A, and if I � (X)A we write I(B)for [B=X]A, where [B=X]A denotes the capture-free substi-tution of B for X in A. Expressions equal up to the namesof bound variables and permutation of �elds are identi�edas usual, and we assume that the same label never occurstwice in a record (type) or interface.For simplicity, we divide L into a set Lobs of labels thatcan be used as names for observer methods and a set Lmutof labels that can be used as names for mutator methods,and we insist thatli 2 Lobs) X 62 FV(Ai!Bi)li 2 Lmut) X 62 FV(Ai) ^X � Bifor any signature (X)fl1:A1!B1; ; : : : ; ln:An!Bng.The contexts of �OO are given by� ::= � j �; x : Awith no variable occurring twice.

The subtyping and typing rules of �OO are given in ta-bles 1 and 3. The rules for well-formedness of contexts andtypes are given in Table 2. These are needed because thereare types with terms as subexpressions, namely the classtypes. Only the well-formedness rule for class types is given,for the other are trivial. (E.g., A!B is well-formed in � ifA and B are well-formed in � , etc.)The reduction relation � on terms is given by the rules(�x:A: b)a � [a=x]bfl1 = a1; : : : ; ln = ang:li � ai(objectI hs;mi) l(a) � (m s):l aif l 2 Lobs(objectI hs;mi) l(a) � objectI h(m s):l a;miif l 2 Lmutwhere [a=x]b denotes the capture-free substitution of a forx in b.We write ' for the re
exive, transitive, and symmetricclosure of �, and � ` a ' a0 : A for � ` a : A ^ � ` a0 :A ^ a ' a0.4 PER Model for �OO without Class TypesAs we mentioned earlier, with the exception of the classtypes, �OO just introduces some syntactical sugar for theexistential object encoding of objects in F!� given in [PT94].In fact, we only need the subsystem F� of F!� as targetsystem.1 So any model of F� can be used as model for �OOwithout classes.The model we use is the PER model of [PAC94]. Thismodel combines the PER models of [BL90] and [BFAS90]: itis essentially just the model of [BL90] { and interprets sub-types as subpers {, but it uses the interpretation of poly-morphic types given in [BFAS90] { rather than the morestandard one used in [BL90] { to ensure parametricity. Thevital property of this model that we are interested in is thatthe existential types 9X:X � (X!I(X)) are interpreted as�nal coalgebras, as is proved in [Has94] and [PA93].First we make precise how �OO without class types canbe regarded as syntactic sugar for F�.As far as types are concerned the types, interface typesabbreviate existential types:Sig I = 9X: X � (X!I(X)):Remark 4.1 Here � and 9 stand for the usual F� encod-ings. The record types we have in �OO are not part of F�,but these can be encoded in F� using the trick of [Car92]:We assume there is some enumeration of the labels and werepresent the record type fl1 :A1; : : : ; ln :Ang by the prod-uct B1 � : : : Bm where m is the greatest index of the li andBj = Ai if j is the index of li and B = Top if j is notthe index of any of the li. Product types can of course beencoded in F� in the usual way.The encodings of existential types, product types andrecord types will be left implicit, so we use the normal nota-tion for existentials, products, and records as abbreviationfor their F�-encodings.1In [PT94] F!� rather than F� is needed to type generic methodinvocations, i.e. method invocations not yet applied to a particularobject, which in our syntax would be written as " l". We don't havethese in �OO .2 - 4

�-re
A � A A � A0 A0 � A00 �-transA � A00 A1 � B1 : : : An � Bn m � n �-recordfl1:A1; : : : ; ln:Amg � fl1:B1; : : : ; ln:BngA0 � A B � B0 �-!A!B � A0!B0 A � B �-sigSig (X)A � Sig (X)B �-class(Class I withmeth; init) � Sig ITable 1. Subtypingempty-ok� ` ok � ` ok � ` A ok weaken-ok�; x : A ` ok �ok � ` init : Rep � ` m : Rep!I(Rep) class-ok� ` (Class I with s;m) okTable 2. Well-formedness�; x : A; � 0 ` ok var�; x : A; � 0 ` x : A � ` a : A A � B sub� ` a : B �; x : A ` b : B !-I� ` �x:A: b : A!B � ` f : A!B � ` a : A!-E� ` fa : B� ` a1 : A1 : : : � ` an : An record-I� ` fl1 = a1; : : : ; ln = ang : fl1:A1; : : : ; ln:Ang � ` a : fl1:A1; : : : ; ln:Ang li 2 fl1; : : : ; lng record-E� ` a:li : Ai� ` s : Rep � ` m : Rep!I(Rep) object-I1� ` objectI hs;mi : Sig I � ` s : Rep � ` m : Rep!I(Rep) object-I2� ` objectI hs;mi : (Class I with s;m)For SC � Sig I or SC � (Class I withmeth; init) with I(X) = f: : : ; l : A!B; : : :g:� ` o : SC � ` a : A l 2 Lobs object-E-obs� ` o l(a) : B � ` o : SC � ` a : A l 2 Lmut object-E-mut� ` o l(a) : SCTable 3. TypingThe �OO syntax for object formation and method invo-cation can be interpreted by the following F�-terms:objectI hs;mi = pack hRep; (s;m)i to Sig Io l(a) = open o as hX; (s;m)i in (m s):l a)if l 2 Lobso l(a) = open o as hX; (s;m)i in(pack hX; (m s):l a;m)i to Sig I)if l 2 LmutNote that some type information is missing in the �OO-terms, namely the type Rep of s in the �rst clause and SigIin the last clause. However, type information in terms doesnot play a role in the interpretation of terms in the PERmodel that we are interested in, so we can safely ignore this.We now consider the PER model of [PAC94]. Here typesare interpreted as partial equivalence relations (pers) on IN,and terms are interpreted as natural numbers, using someenumeration of the partial recursive functions.The per interpreting a type A is written as [[A]]�, where �is a type environment that maps from type variables to pers.The natural number interpreting a term a is written as [[a]]� ,where � is a term environment that maps terms to naturalnumbers. Another way of looking at the PER model is tointerpret a type A as the set of [[A]]�-equivalence classes, andto interpret a term a : A as the [[A]]�-equivalence class thatcontains [[a]]�.�OO without class types can be interpreted in this PERmodel for F� by interpreting interface types, objects, and

method invocations by their F�-counterparts:[[Sig I]]� = [[9X: X � (X!I(X))]]�[[objectI hs;mi]]� = [[pack hRep; (s;m)i to Sig I]]�[[o l(a)]]� = [[open o as hX; (s;m)i in (m s):l a)]]�if l 2 Lobs[[o l(a)]]� = [[open o as hX; (s;m)i inpack hX; (m s):l a;m)i to Sig I]]�if l 2 LmutA pair (�; �) satis�es a context � { written (�; �) j= � {i� (�(x); �(x)) 2 [[A]]� for all declarations x : A in � . Giventhat the PER model is a sound model for F�, it is also asound model for �OO:Theorem 4.2If � ` a ' a0 : A in �OO without class types,then ([[a]]� ; [[a0]]�) 2 [[A]]�;� for all (�; �) j= � .We will now look at the interpretations of objects andinterface types in more detail. Some properties of theseinterpretations will be used to interpret class types in thenext section.First a few de�nitions. We write n �m for the nth partialrecursive function applied to m, and ��x: E(x) for the indexof a partial recursive function for which ��x: E(x)�n = E(n),where E(x) is a partial recursive description of a naturalnumber depending on x.We write [n]R for the R-equivalence containing n, andIN=R for the set of R-equivalence classes. For pers R and S,the per R!! S is de�ned asR!! S = f(f; f 0) 2 IN�IN j 8(a; a0) 2 A: (f �a; f 0 �a0) 2 Bg:2 - 5

We write n <� R as abbreviation for (n; n) 2 R.The category PER is de�ned as in [BFAS90] and [Has94]as the category with as objects pers on IN and as the arrowsfrom R to S total functions from IN=R to IN=S named by apartial recursive functions in R!! S.4.1 Interpretation of objectsWe de�ne objh ; i and (l as the interpretations ofobject h ; i and l() in the PER model. So[[objectI hs;mi]]� = objh[[s]]� ; [[m]]�iand [[o l(a)]]� = [[o]]� (l [[a]]� :Looking at the interpretations of the F�-terms that objecthiand l denote, we �nd that(objhs;mi)(l a = � (m � s):l � a if l 2 Lobsobjh(m � s):l � a;mi if l 2 LmutNote that we abuse our notation for �eld selection here andwrite ".l" for the selection of the l-�eld, when we shouldreally use the interpretation of the l-projection under theencoding of records as products discussed in Remark 4.1.4.2 Interpretation of interface typesThe interesting property of the PER model is that the exis-tential types of the form 9X:X� (X!I(X)) { i.e. interfacetypes { are interpreted as �nal coalgebras, as is proved in[Has94] and [PA93].We de�ne SIG() as the interpretation of Sig () in thePER model. So[[Sig I]]� = [[9X:X � (X!I(X))]]�= SIG([[I]]�)Let I : PER!PER be the functor interpreting some in-terface I in some environment �, i.e. I = [[I]]�. We de�neoutI asoutI = ��o: I(��s: objhs; snd(o)i) � (snd(o) � fst(o)) :Another way of de�ning outI is as the interpretation of outI :Sig I ! I(Sig I), de�ned as followsoutI = �o:Sig I: open o as hX; (s;m)i inIm(�x:X: objectI hx;mi) (m s): Sig I ! I(Sig I)Here Im is the action of I on functions, with Im(f) : I(A)!I(B)for any f : A!B, de�ned in the usual way by induction onI. The pair (SIG(I); outI) is a �nal coalgebra [Has94][PA93].So outI <� SIG(I)!! I(SIG(I));and we have the following properties;Property 4.3 Let si <� Repi and mi <� Repi !! I(Repi)for certain pers Repi, i = 1; 2.

Then (objhs1; m1i; objhs2;m2i) 2 SIG(I)() 9 �2 IN� IN: �= Rep1;�;Rep2 ^s1 � s2 ^(m1; m2) 2�!! I(�)Here ; denotes composition of relations.Property 4.4 For any relation �� IN� INoutI <��!! I(�)) �� SIG(I):In other words, SIG(I) is the maximum bisimulation.These properties are particular cases of Theorems 7 and 11in [PA93]. A direct consequence (take �= Repi = Rep) ofProperty 4.3 is:Corollary 4.5 Let (s1; s2) 2 Rep and (m1;m2) 2 Rep !!I(Rep) for some per Rep.Then (objhs1;m1i; objhs2;m2i) 2 SIG(I).The mapping outI is related to the interpretation ofmethod invocations (l as follows:Property 4.6 Let I = [[I]]� for some �, with I an interfacethat contains a method l. Theno(l a = (outI � o):l � aAs before, we abuse our notation for �eld selection here.5 Model for �OO with Class TypesWe now extend the interpretation of �OO without class typesin the PER model of [PAC94] to an interpretation of the full�OO including the class types.De�nition 5.1 The relation v on pers is de�ned byR v S () IN=R � IN=S:An equivalent de�nition isR v S () R � S ^R = S;R;S :The relation v is used to de�ne the interpretation of a classtypes:De�nition 5.2 For I : PER!PER and m;n 2 IN we de�neCLASS(I; s;m) as followsCLASS(I; s;m)= TfX v SIG(I) j objhs;mi <� X ^ outI <� X !! I(X)g:This de�nes IN=CLASS(I; s;m) as the smallest subset ofIN=SIG(I) that contains [objhs;mi]SIG(I) and is closed undermethod invocations.Lemma 5.3 Let I : PER!PER. Suppose that I is con-tinuous { i.e. I(TiXi) = Ti I(Xi) { and suppose thatI(R); I(S) � I(R;S) for all pers R and S. Then1. CLASS(I; s;m) v SIG(I)2 - 6

2. objhs;mi <� CLASS(I; s;m)3. outI <� CLASS(I; s;m)!! I(CLASS(I; s;m))4. Let (s1; s2) 2 Rep and (m1; m2) 2 Rep!! I(Rep).Then CLASS(I; s1;m1) = CLASS(I; s2;m2).Proof. These properties easily follow from the de�nition ofCLASS and the assumptions on I. For 4. use Corollary 4.5to deduce that(s;m) <� X()(s0; m0) <� X for any X v SIG(I)from the assumptions on si and mi. utIt is easy to verify that any I that is the interpretationof a �OO-signature will satisfy the conditions of the lemmaabove.CLASS will now be used to extend the PER model of�OO without class types to a model for the full �OO. Thede�nition of this model is given below.As far as terms is concerned nothing changes. In �OOwithout class types we have the same terms as in �OO withclass type, so the terms can be interpreted as in the PERmodel discussed in the previous section:De�nition 5.4 The interpretation [[a]]� 2 IN of a �OO-termM in term environment � is de�ned as[[a]]� = [[Erase(a)]]� ;whereErase(objectI hs;mi) = object hErase(s);Erase(m)iErase(o l(a)) = Erase(o) l(Erase(a))Erase(�x:A: b) = �x:Erase(b)Erase(fa) = Erase(f)Erase(a)Erase(a:l) = Erase(a):lErase(fl1 = a1; : : : ; ln = ang) =fl1 = Erase(a1); : : : ; ln = Erase(an)gand he interpretation of erased terms is de�ned by[[x]]� = �(x)[[�x: b]]� = ��n: [[b]][n=x]�[[fa]]� = [[f]]� �[[a]]�[[objectI hs;mi]]� = objh[[s]]� ; [[m]]�i[[o l(a)]]� = [[o]]� (l [[a]]�[[fl1 = a1; : : : ; ln = ang]]� = fl1 = [[a1]]� ; : : : ; ln = [[an]]�g[[a:l]]� = [[a]]� :lHere we again abuse our notation for records and �eld se-lection as shorthand for their interpretations under the en-coding discussed in Remark 4.1.Because class types contain terms as subexpressions, theinterpretation of types now has to be given w.r.t. a termenvironment � as well as a type environment � :De�nition 5.5 The interpretation [[A]]�;� of a type A in en-vironment (�; �) is given by[[X]]�;� = �(X)[[A!B]]�;� = [[A]]�;� !! [[B]]�;�[[fl1:A1; : : : ; ln:Ang]]�;� = fl1 = [[A1]]�;� ; : : : ; ln = [[An]]�;�g[[Sig I]]�;� = SIG([[I]]�;�)[[Class I with init; m]]�;� = CLASS([[I]]�;� ; [[init]]� ; [[m]]�)

Again, the notation for record types is abused as shorthandfor their interpretations under the encoding discussed in Re-mark 4.1.Theorem 5.6If � ` a ' a0 : A in �OOthen ([[a]]� ; [[a0]]�) 2 [[A]]�;� for all (�; �) j= � .Proof. Soundness of type assignment, i.e.� ` a : A ^ (�; �) j= �) [[a]]� <� [[A]]�;�;can be proved in the usual way. Lemma 5.3.1 is needed forsoundness of the subtyping rule for classes, 5.3.2 for sound-ness of the introduction rule for classes, and 5.3.3 { togetherwith Lemma 4.6 { for soundness of the elimination rules forclasses.No extra work is needed to prove soundness of reduction:we can reuse the following property of the PER-interpretationof F�: if [[a]]� and [[a0]]� are de�ned, thena =� a0) [[a]]� = [[a0]]�:Since the mapping from �OO to F� preserves reduction, weimmediately have the property that if [[a]]� and [[a0]]� arede�ned, then a ' a0) [[a]]� = [[a0]]�: ut5.1 Subtyping is behavioural subtypingWe now show that in the PER model subtyping betweenclass types corresponds with the notion of behavioral sub-typing as we informally explained it in Section 2.De�nition 5.7 For init <� Rep and m <� Rep!! (Rep) theper REACH(I; Rep; init;m) is de�ned as follows:REACH(I; Rep; init;m)= TfX v Rep j init <� X ^ m <� X !! I(X)g:IN=REACH(I; Rep; init;m) is the set of thoseRep-equivalenceclasses reachable from the state init using the method im-plementations m. Note the similarity between the de�nitionof REACH and the de�nition of CLASS. There is close rela-tionship between the two:Lemma 5.8 Let I : PER!PER. Suppose that I is contin-uous { i.e. I(TiXi) = Ti I(Xi) { and that I(R); I(S) �I(R;S) for all pers R and S. ThenIN=CLASS(I; init; m)= f[objhs;mi]SIG(I) j s <� REACH(I; Rep; init;m)gProof. (Sketch) First we consider (�). De�ne the per X asX = Rep \ (f ;CLASS(I; init; m); f);where f � IN � IN is the relation f(s; objhs;mi) j s 2 INgand f its inverse. We can prove the following propertiesof X:� X v Rep,� init <� X,2 - 7

� m <� X !! I(X).It then follows by the de�nition of REACH thatREACH(I; Rep; init;m) � X ;and so f ;REACH(I; Rep; init;m); f� f ;X; f= f ; (Rep \ f ;CLASS(I; init; m); f) ; f� (f ;Rep; f) \ (f ; f ;CLASS(I; init; m); f ; f)= (f ;Rep; f) \ CLASS(I; init; m)� CLASS(I; init; m)and (�) follows directly from the inclusion above.Now to prove (�). De�neY = SIG(I); f ;REACH(I; Rep; init;m); f ; SIG(I)For Y we can prove the following properties:� Y v SIG(I),� (init; m) <� Y ,� outI <� Y !! I(Y).It then follows by the de�nition of CLASS thatCLASS(I; init; m) � Y ;from which we can prove (�). utThe relation below de�nes subtyping between interpreta-tions of signatures:De�nition 5.9 The relation � on PER!PER is de�ned asfollows: I1 � I2() I1(X) � I2(X) for all pers X andboth Ii are continuous withIi(R); Ii(S) for all pers R and S.We can now state our main result, namely that, for in-terpretations of class types, the subset relation on pers isequivalent with the notion of behavioural subtyping that wedescribed in Section 2.Theorem 5.10 (Subtyping is Behavioural Subtyping)Suppose initi <� Repi and mi <� Repi !! Ii(Repi), for cer-tain pers Repi for i = 1; 2. If I1 � I2 thenCLASS(I1; init1;m1) � CLASS(I2; init2;m2)()9 �� IN� IN: �= Rep1;�;Rep2 ^(m1;m2) 2�!! I2(�) ^8s1 <� REACH(I1; Rep1; init1;m1):9s2 <� REACH(I2; Rep2; init2;m2): s1 � s2The second part of this theorem is a formal de�nition of thenotion of behavioural subtyping discussed in Section 2: Thecondition (m1;m2) 2�!! I2(�)corresponds to condition (i) on page 3, and the condition8s1 <� REACH(I1; Rep1; init1;m1):9s2 <� REACH(I2; Rep2; init2;m2): s1 � s2corresponds to condition (ii) on page 3.Proof. (Sketch) De�ne Ci = CLASS(Ii; initi; mi) and Ri =REACH(Ii; Repi; initi; mi).

()) Let C1 � C2.De�ne �� IN� IN as follows�= Rep1; f1; SIG(I); f 2 ;Rep2;where fi = f(s; objhs;mii) j s 2 INg. For this relation� the required properties can be proven.(() Let �� IN� IN be such that(i) �= Rep1;�;Rep2,(ii) (m1; m2) 2�!! I2(�),(iii) 8s1 <� R1: 9s2 <� R2: s1 � s2.Suppose that o1 <� C1. Then by Lemma 5.8(�) thereis an s1 <� R1 such that (o; (s1;m1)) 2 SIG(I1). Thenby (iii) there is an s2 <� R2 such that s1 � s2. By Prop-erty 4.3 it now follows that (objhs1;m1i; objhs2;m2i) 2SIG(I2), and then (s2; m2) <� C2 by Lemma 5.8(�).Moreover, by SIG(I1) � SIG(I2) and the transitivityof pers: (o1; objhs2;m2i) 2 SIG(I2).This proveso1 <� C1) 9o2 <� C2: (o1; o2) 2 SIG(I2):From this property we can now deduce C1 � C2 usingCi v SIG(Ii) and some basic properties of v. ut6 Conclusions and directions for future workThis paper establishes a link between three di�erent strandsof research on object-oriented languages, namely� the type-theoretic approach to objects of [PT94],� the work on behavioural subtyping of [Lea90],� the categorical approach to objects of [Rei95].For an extension of the type-theoretic encoding of object ofPierce and Turner [PT94] we have shown that the standardinterpretation of subtyping in PER models { subtypes aresubpers { provides exactly the notion of behavioural sub-typing de�ned by Leavens [Lea90]. The crucial property isthat object types are interpreted as �nal co-algebras. Thecorrespondence between the existential object encoding and�nal coalgebras noted in [HP95] extends to our class typesand sub-coalgebras of the �nal coalgebra. Sub-coalgebrasare used in [Rei95] and [Jac96] as speci�cations of objects;our class types can of course be regarded as speci�cations,where we specify objects by giving a particular implemen-tation.The usefulness of the coalgebraic view of objects suggeststhat it might be better to use a primitive notion of coin-ductive type to present the existential object model, ratherthan an encoding of such types using existential types. Theexistential object model could for instance be carried outusing Hagino's categorical datatypes [Hag87] extended withsubtyping. (The interface types of �OO are essentially coal-gebraic types in the sense of [Hag87].) An advantage wouldbe that coinductive types only require a �rst-order type sys-tem, whereas existential types require a second-order typesystem.One subject for future work is a more general descriptionof a model for �OO in categorical terms, in which interface2 - 8

types are interpreted as �nal coalgebras, class types as sub-coalgebras, and subtyping as coercions between them. Wehope this will streamline much of the theory, and allow apresentation giving more than just sketches of proofs. (Notethat I-coalgebras are only de�ned up to isomorphism, butthe PER model here relies on the construction of a particularone of these as the interpretation of an interface type.)We have not mentioned inheritance here. Inheritancefor the existential model encoding is described in [PT94].Now that we have a notion of behavioural subtyping, theinteresting problem to look at is: "When does inheritanceproduce behavioural subtypes ?". Ideally we would want toformulate general conditions that are su�cient to guaranteethat a class de�ned by inheritance is a behavioural subtypeof the class it inherits from.�OO could be extended with subtyping between classtypes, where this subtyping between class types is declaredby the programmer. It would have to be the responsibilityof the programmer that such declared subtyping is sound, asthis is not something that can be decided by a typechecker.We would then really want a logic for reasoning about pro-grams in which soundness of subtyping between class typescan be expressed and (dis)proved. Such a logic would bean major topic for further investigation. Here it might bepossible to use existing work on behavioural subtyping.Finally, it would be interesting to see if the PER mod-els of the other object encodings, e.g. those discussed in[BCP97], can also provide a notion of behavioural subtyp-ing for class types. This would be more di�cult: these otherobject encodings are in type systems with unrestricted re-cursion, and it is not clear what the e�ect of recursion wouldbe. Also, the method updates allowed by some of these en-codings would cause complications. These would have to beruled out if we want to statically guarantee that all objectsof a class type have the same method table.References[AC96] Mart��n Abadi and Luca Cardelli. A Theory of Ob-jects. Monographs in Computer Science. Springer,1996.[AL97] Mart��n Abadi and K. Rustan M. Leino. A logicof object-oriented programs. In TAPSOFT '97:Theory and Practice of Software Development,pages 682{696. Springer-Verlag, 1997.[Ame89] Pierre America. A Behavioural Approach to Sub-typing in Object-Oriented Languages. TechnicalReport Technical Report 443, Philips ResearchLaboratories, 1989.[BCP97] Kim B. Bruce, Luca Cardelli, and Benjamin C.Pierce. Comparing object encodings. In Theo-retical Aspects of Computer Software (TACS'97),Sendai, Japan, volume 1281, pages 415{438.Springer LNCS, September 1997.[BFAS90] E.S. Bainbridge, P.J. Freyd, A.Scedrov, and P.J.Scott. Functorial polymorphism. TheoreticalComputer Science, 70(1):35{64, 1990.[BL90] Kim B. Bruce and Giuseppe Longo. A modestmodel of records, inheritance, and bounded quan-ti�cation. Information and Computation, 87:196{240, 1990. Also in [GM94].

[Bru94] Kim B. Bruce. A paradigmatic object-orientedprogramming language: Design, static typing andsemantics. Journal of Functional Programming,4(2), April 1994.[Car88] Luca Cardelli. A semantics of multiple inher-itance. Information and Computation, 76:138{164, 1988.[Car92] Luca Cardelli. Extensible records in a pure calcu-lus of subtyping. Research report 81, DEC Sys-tems Research Center, 1992. Also in [GM94].[FM94] Kathleen Fisher and John C. Mitchell. Notes ontyped object-oriented programming. In Proceed-ings of Theoretical Aspects of Computer Software(TACS`94) , Sendai, Japan, volume 789 of LNCS,pages 844{886. Springer, 1994.[FM97] K. Fisher and J.C. Mitchell. On the relation-ship between classes, objects, and data abstrac-tion. In Proceedings of the International Sum-mer School on Mathematics of Program, LNCS.Springer, 1997.[GM94] Carl A. Gunter and John C. Mitchell. Theo-retical Aspects of Object-Oriented Programming:Types, Semantics, and Language Design. TheMIT Press, 1994.[Hag87] Tatsuya Hagino. A typed lambda calculus withcategorical type constructors. In D.H. Pitt,A Poign�e, and D.E. Rydeheard, editors, Categoryand Computer Science, pages 140{157. Springer,September 1987.[Has94] Tyu Hasegawa. Categorical data types in para-metric polymorphism. Mathematical Structuresin Computer Science, 4:71{109, 1994.[HP95] Martin Hofmann and Benjamin C. Pierce. A uni-fying type-theoretic framework for objects. Jour-nal of Functional Programming, 5(4):593{635,1995.[Jac96] Bart Jacobs. Objects and classes, co-algebraically. In Object-Orientation with Par-allelism and Persistence, pages 83{103. KluwerAcademic Publishers, 1996. ISBN 0-7923-9770-3.[Lea90] Gary T. Leavens. Modular veri�cation of object-oriented programs with subtypes. Technical Re-port 90-09, Department of Computer Science,Iowa State University, Ames, Iowa, 50011, July1990.[Lis88] Barbara H. Liskov. Data abstraction and hierar-chy. SIGPLAN Notices, 23(3), 1988.[LW94] Barbara H. Liskov and Jeannette M. Wing.A behavioral notion of subtyping. TOPLAS,16(6):1811{1841, November 1994.[LW95] Gary T. Leavens andWilliam E. Weihl. Speci�ca-tion and veri�cation of object-oriented programsusing supertype abstraction. Acta Informatica,32(8):705{778, November 1995.[Mau95] Ian Maung. On simulation, subtyping and sub-stitutability in sequential object systems. FormalAspects of Computing, 7(6):620{651, 1995.2 - 9

[Mey88] Bertrand Meyer. Object-oriented software con-struction. Prentice Hall, 1988.[MP88] John C. Mitchell and Gordon D. Plotkin. Ab-stract types have existential type. ACM Trans.on Prog. Lang. and Syst., 10(3):470{502, 1988.[PA93] Gordon Plotkin and Martin Abadi. A logicfor parametric polymorphism. In Typed LambdaCalculi and Applications, volume 664 of LectureNotes in Computer Science, pages 361{375, 1993.[PAC94] Gordon Plotkin, Mart��n Abadi, and LucaCardelli. Subtyping and parametricity. In Pro-ceedings of the Ninth IEEE Symposium on Logicin Computer Science, pages 310{319, 1994.[PH97] A. Poetzsch-He�ter. Speci�cation and Veri�ca-tion of Object-Oriented Programs. PhD thesis,Technische Universit�at M�unchen, 1997.[PT94] Benjamin C. Pierce and David N. Turner. Sim-ple type-theoretic foundations for object-orientedprogramming. Journal of Functional Program-ming, 4(2):207{247, April 1994.[Rei95] Horst Reichel. An approach to object seman-tics based on terminal co-algebras. MathematicalStructures in Computer Science, 5:129{152, 1995.

2 - 10

