
Poll, Erik (1998) Subtyping and Inheritance for Categorical Datatypes. In:
Theories of Types and Proofs (TTP) - Kyoto. RIMS Lecture Notes 1023 .

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21686/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21686/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Subtyping and Inheritance for Categorical DatatypesPreliminary ReportErik PollUniversity of Kent, Canterbury, UKE.Poll@ukc.ac.ukAbstractWe extend Hagino's categorical datatypes with subtyping and a lim-ited form of inheritance. The view of objects as coalgebras provides theinspiration for subtyping and inheritance for coalgebraic (or coinductive)types. Exploiting the duality between coalgebras and algebras then yieldsnotions of subtyping and inheritance for algebraic (or inductive) types.1 IntroductionCategory theory is a very convenient formalism for describing datatypes. Inparticular, the dual notions of initial algebra and �nal coalgebra provide aninteresting class of datatypes. This possibility was �rst exploited by Haginoin [Hag87a][Hag87b], and the categorical datatypes introduced there have sincebeen used as the basis of the functional programming language Charity [CS92].Initial algebras { or term algebras { provide algebraic or inductive datatypes,such as natural numbers, lists and trees. Final coalgebras provide coalgebraicor coinductive types containing (possibly) in�nite data, such as in�nite lists (orstreams) and in�nite trees. Final coalgebras can also be used as object types,as is described in [Rei95]. This observation is also made in [HP95], where itis noted that the encoding of object types given in [PT94] uses (weakly) �nalcoalgebras. Here we use the word "object" in the OO sense, not the categoricalsense, and by an "object type" we mean the type of all objects that provide agiven set of methods, or, in other words, the type of all objects with a giveninterface.This view of �nal coalgebras as object types provides the starting point forthis paper. Two important features of object-oriented languages are subtypingand inheritance. If coalgebras can be used to model objects, an obvious questionto ask is then:Can we explain subtyping and inheritance in the coalgebraic setting?And, given that initial algebras are the duals of �nal coalgebras, another obviousquestion to ask is:What are the duals of subtyping and inheritance ?

This paper tries to answer these questions. We show how subtyping can beexplained in terms of coalgebras, and that this notion has an interesting dualfor algebras. The dual of subtyping turns out to be supertyping, which is relatedto subtyping in the obvious way: A is a subtype of B i� B is a supertype of A.We also show that a limited form a inheritance can be explained in terms ofcoalgebras, and that this has an interesting dual for algebras, providing a formof code reuse for functions on algebraic datatypes. (In [Pol97] we described thesenotions of subtyping and inheritance for algebraic datatypes in the setting of afunctional programming language, without any reference to category theory orcoalgebras.)We begin Section 2 by de�ning initial algebras and �nal coalgebras. We thenintroduce some syntax for categorical datatypes that denote initial algebras and�nal coalgebras, and illustrate how �nal coalgebras can be used to model objects.Section 3 introduces a notion of subtyping for categorical datatypes and itsinterpretation as coercions between (co)algebras. Section 4 introduces a simpleform notion of inheritance for categorical datatypes. Inspiration for subtypingand inheritance for coalgebras are subtyping and inheritance as found in object-oriented languages. Dualising these produces the corresponding notions foralgebras.2 Categorical DatatypesIn 2.1 we brie
y review the notion of initial algebra and �nal coalgebra with(co)iteration. For a gentle introduction to algebras and coalgebras see [JR97]. In2.2 we then introduce a syntax for declaring algebraic and coalgebraic datatypesthat denote initial algebras and �nal coalgebras, and for de�ning iterative andcoiterative functions We use this syntax to explain the coalgebraic view of ob-jects in 2.3.2.1 Algebras and CoalgebrasLet C be a category with products and coproducts, and a terminal object 11.Definition 2.1 ((Initial) Algebra) Let F be a functor on C. Then� An F -algebra is a pair (A; f) consisting of an object A and an arrowf : FA! A.� If (A; f) and (B; g) are F -algebras, then an F -algebra homomorphismfrom (A; f) to (B; g) is an arrow h : A ! B such that the followingdiagram commutes FA f - AFBFh? g - B?h� An F -algebra (�F; in�F) is initial if for every F -algebra (B; g) there is aunique F -algebra homomorphism from (�F; in�F) to (B; g).

The initial F -algebra, if it exists, is unique up to isomorphism.Typically, we are interested in F -algebras where the functor F is of the formF (X) = F1(X) + : : :+ Fn(X). F -algebras are then of the form (A; [f1; : : : ; fn])with each fi : Fi(A)! A, and the unique algebra homomorphism from the ini-tial algebra (�F; [in1; : : : ; inn]) to another algebra (B; [g1; : : : ; gn]) is the uniqueh : �F ! B such that Fi�F ini - �FFiBFh? gi - B?hcommutes for all i.Example 2.2 (Natural Numbers)Let NatF be the functor NatF (X) = 11 + X . Then the initial NatF -algebra(Nat ; [zero; succ]) is a natural numbers object. The arrows zero : 11! Nat andsucc : Nat ! Nat are called the constructors of Nat . Initiality guarantees thatfor every NatF -algebra (B; [b; g]), i.e. for every b : 11! B and g : B ! B, thereexist a unique h : Nat ! B such thath � zero = bh � succ = g � hThis recursion scheme above is known as iteration. utExample 2.3 (Lists)Let ListF be the functor ListF (X) = 1 + Nat �X . The initial ListF -algebra(List ; [nil ; cons]), with nil : 11! List and cons : Nat � List ! List , is a objectof �nite lists of natural numbers. Initiality of guarantees that for every ListF -algebra (B; [b; g]), i.e. for every b : 11! B and g : Nat � B ! B, there exists aunique h : List ! B such thath � nil = bh � cons = g � (idA � h)An example of such an arrow is length : List ! Nat that satis�eslength � nil = zerolength � cons = succ � �2 � (idA � length) utDualising the de�nition of (initial) algebra yields the de�nition of (�nal)coalgebra:Definition 2.4 ((Final) Coalgebra) Let F be a functor on C. Then� An F -coalgebra is a pair (A; f) consisting of an object A and an arrowf : A! F (A).

� If (A; f) and (B; g) are F -coalgebras, then an F -coalgebra homomorphismfrom (B; g) to (A; f) is an arrow h : B ! A such that the followingdiagram commutes FA � f AFBFih6� g B6h� An F -coalgebra (�F; out�F) is �nal or terminal if for every F -coalgebra(B; g) there is a unique morphism to (�F; out�F) from (B; g).Typically, we are interested in F -coalgebras where F is a functor of the formF (X) = F1(X)�: : :�Fn(X). F -coalgebras are then of the form (A; hf1; : : : ; fni)with each fi : A ! Fi(A)A, and the unique coalgebra homomorphism from acoalgebra (B; hg1; : : : ; gni) to the �nal coalgebra (�F; hin1; : : : ; inni) is then theunique h : �F ! B such that Fi�F �outi �FFiBFh6� gi B6hcommutes for all i.Standard examples of �nal coalgebras are in�nite data structures, such asin�nite lists:Example 2.5 (Streams)Let StreamF be the functor StreamF (X) = Nat � X . A �nal StreamF -coalgebra (Stream; hhead ; taili) is an object of in�nite lists or streams of naturalnumbers. The arrows head:Stream !Nat and tail:Stream !Stream are calleddestructors.Let (B; [ghead; gtail]) be another StreamF -algebra, i.e. ghead : B ! Natand gtail : B ! B. Terminality guarantees then that there exists a uniqueh : B ! Stream such that head � t = gheadtail � h = h � gtailThis scheme is known as co-iteration. For any b : 11 ! B we can think ofh � b : 11 ! Stream as the in�nite list of natural numbers with b as its "seed"and with ghead and gtail telling us how to compute the head and (the seed of)the tail for a given seed.An example of an coiterative arrow is from : Nat ! List de�ned byhead � from = idNattail � from = from � succFor any n : 11 ! Nat , the arrow from � n : 11 ! Stream then represents thein�nite list n; succ � n; succ2 � n; : : :. ut

2.2 Syntax for Categorical DatatypesWe introduce some syntax for declaring categorical datatypes that denote initialalgebras and �nal coalgebras. An algebraic (or inductive) type is declared bylisting its constructors and their types, e.g.data Nat =zero : Natsucc : Nat -> Natdata List =nil : Listcons : Nat � List -> Listand a coalgebraic (or coinductive) type is declared by listing its destructors andtheir types, e.g.codata Stream =head : Stream -> Nattail : Stream -> StreamIterative functions on algebraic types are de�ned in the pattern-matchingstyle used in functional programming, e.g.length : List -> Natlength nil = zerolength (cons (a,l)) = succ (length l)and co-iterative functions to coalgebraic types are de�ned in the dual way, e.g.from : Nat -> Streamhead (from n) = ntail (from n) = from (succ n)The interpretation of this syntax in the category C should be obvious, pro-vided the required initial algebras and �nal coalgebras exist in C. We will notgive a formal de�nition of the syntax and its interpretation. Our only reasonfor introducing a syntax at all is that it introduces names for constructors anddestructors, which will be needed for subtyping.Coalgebraic datatypes can be seen as recursive labelled products or records,for example Stream = Recordfhead : Nat; tail : Streamg:Dually, algebraic datatypes can be seen as recursive labelled sums or variants,for example List = Variantfnil : List; cons : A� Listg:2.3 Coalgebraic Types as Object TypesAs noted in [Rei95] and [HP95], a coalgebra can be viewed as an object type,the type of all objects with a certain interface. The only di�erence betweenobject types and in�nite datatypes is in the interpretation: we now think of thedestructors as methods. For example, we can think of a stream as an objectwith methods head and tail. Another example of an object type is given below:

Example 2.6 (Counters)The typecodata Counter withgetcount : Counter -> Natcount : Counter -> Countercan be regarded as the type of all counter objects that have methods countand getcount. Applying the destructor getcount or count to a counter is thenregarded as invoking getcount- or count-method of that counter. Counter doesnot specify anything about the way in which counters might be implemented,but only speci�es their interface, i.e. lists the methods they should provide.(Note that we are in a functional setting, so invoking count does not in-crease the count as side-e�ect, but produces a new counter. Of course, the typeCounter is just the type Stream in disguise: head is called getcount and tailis called count.)Suppose getcountimp:B->Nat and countimp:B->Nat for some type B. Theseprovide a way to implement counters. De�neh : B -> Streamgetcount (h b) = getcountimp bcount (h b) = h (countimp b)Intuitively, h b is the counter object with a hidden state b:B and a method ta-ble containing getcountimp and countimp as implementations of the methodsgetcount and count. The �rst equation above says that invoking the methodgetcount of (h b) results in the application of getcountimp { the implementa-tion of getcount given by the method table { to the hidden state b. The secondequation says that the result of invoking the method count of (h b) is obtainedby �rst applying the implementation of count{ i.e. countimp { to the hiddenstate to produce a new state (countimp b) and then applying newCounter toproduce a new counter object with this new state (countimp b) as its state.The obvious implementation of counters is of course to have a state of typeNatand implementing getcount and count as the identity and succ, respec-tively:newCounter : Nat -> Streamgetcount (newCounter n) = ncount (newCounter n) = newCounter (succ n)The coiterative function above is a class de�nition in the sense of [PT94]. Coit-eration allows only a very limited form of class de�nition, because methodscannot call other methods. (A more general form of class de�nition is providedin [PT94].)Note that if in the de�nition above the type Nat is replaced with a one-�eldrecord type Recordfx:Natg, i.e.newCounter' : Recordfx:Natg -> Streamgetcount (newCounter n) = n.xcount (newCounter n) = newCounter fx=succ n.xgthen the �eld x can be regarded as an instance variable. ut

3 SubtypingWe now consider a subtyping relation on algebraic and coalgebraic types, andshow how this subtyping can be understood as coercions between the corre-sponding initial algebras and �nal coalgebras.Subtyping tries to capture a natural inclusion relation between types. Recordtypes provide the standard example: there is an natural inclusion between therecord types Recordfx:Nat,y:Natg and Recordfx:Natg, since any record withan x- and a y-�eld of type Nat is also a record an x-�eld of type Nat. This isusually written asRecordfx : Nat; y : Natg � Recordfx : Natg:By the so-called subsumption rule any term of type Recordfx:Nat,y:Natg thenalso has type Recordfx:Natg. Sometimes subtyping can be understood as a set-theoretic inclusion between two types. But a more general way to understandsubtyping is as an implicit coercion, i.e. A � B means that there is a coercionfunction from A to B which is left implicit. For example, the coercion fromRecordfx:Nat,y:Natg to Recordfx:Natg should of course be the function thatmaps a record fx=N,y=Mg to the record fx=Ng.Not any function will do as a coercion: coercions need to satisfy some prop-erties to guarantee that leaving them implicit does not cause any ambiguity. Forexample, the coercion coerce:Recordfx:Nat,y:Natg->Recordfx:Natg shouldbe such that r:x = (coerce r):x (i). If this does not hold, e.g. if coerce mapsthe record fx=N,y=Mg to the record fx=Mg, then leaving the coercion implicitwould introduce ambiguities. The absence of ambiguity in the presence of im-plicit coercions is known as coherence, and properties such as (i) are known ascoherence conditions. Coherence conditions are naturally expressed as commut-ing diagrams, e.g. Recordfx : Nat; y : Natg :x - NatRecordfx : Natgcoerce? :x - Nat?idWe now consider subtyping for (co)algebraic and coherence conditions forthe coercions between (co)algebraic that provide the interpretation for this sub-typing. We will not give complete proofs of coherence here. (Doing so wouldrequire a formal de�nition of a syntax and type system.) A formal de�nitionof a type system providing algebraic and coalgebraic datatypes with subtyping,and the coherence of its categorical interpretation is left as future work.3.1 Subtyping for CoalgebrasThe subtyping found in object-oriented languages suggests how we can de�ne anotion of subtyping for �nal coalgebras. In an object-oriented language a sub-class typically has more methods than its superclass. In our setting, this corre-sponds to a coalgebra having more destructors. As an example, we will consider

the type of "resetable" counters, that in addition to count and getcount alsohave a destructor reset:codata RCounter =count : RCounter -> RCountergetcount : RCounter -> Natreset : RCounter -> RCounterWe would like RCounter to be a subtype of Counter:RCounter � Counter:Informally, this subtyping may be justi�ed by the observation that a RCounter-object is also a Counter-object, since it provides all the methods that anCounter-object does. Or, viewing coalgebraic types as record types, we cansee that this subtyping is a special case of the usual subtyping on record typesRCounter = Recordfcount : RCounter; getcount : Nat; reset : RCounterg� Recordfcount : Counter; getcount : Natg= CounterIt is a special case of subtyping on record types because these are recursiverecord types.To interpret the subtyping between RCounter and Counter we need an im-plicit coercion between the �nal coalgebras they denote. This coercion is infact de�nable in the syntax as a function coerce:RCounter->Counter. Thede�nition of the coercion is suggested by the properties { coherence conditions{ it has to satisfy for there is to be no ambiguity. We now consider what thesecoherence conditions are.If o:RCounter then there are two ways to interpret (count o):Counter,namely� the application of the coercion, yielding o:Counter, followed by the ap-plication of the Counter destructor count, or� the application of the RCounter destructor count, giving as result (counto):Counter, followed by the application of the coercion to get a Counter.Similarly, there are two ways to interpret (getcount o):Nat for o:RCounter,namely� the application of the coercion, yielding o:Counter, followed by the ap-plication of the Counter destructor getcount, or� the application of the Counter destructor getcount.These two scenarios suggest the following coherence conditions for the coercioncoerce:RCounter->Counter:Nat �getcount RCounterNatid?�getcount Countercoerce? RCounter �count RCounterCountercoerce? �count Countercoerce?But these two coherence conditions provide a de�nition of coerce, namely

coerce : RCounter -> Countercount (coerce o) = count ogetcount (coerce o) = coerce (getcount o)This is a co-iterative de�nition of an function to Counter like the ones we haveseen before. It uses count:Counter->Counter and getcount:Counter->Nat inthe right-hand sides, and in the left-hand sides it uses getcount:RCounter->Natand count:RCounter->RCounter.In [BCGS89] it is observed that coercion functions needed to interpret sub-typing in Fun, a second-order lambda calculus with records, are already de�n-able in the syntax. Here we see that this extends to coalgebraic datatypes withcoiteration.The fact that the coherence conditions completely determine the coercion isnot really surprising: it can even be regarded as an essential requirement. Ifwould be unsatisfactory if there were several coercions satisfying the coherenceconditions and we chose a particular one. Indeed, we would no longer be justi�edin leaving such a coercion implicit. The whole justi�cation for leaving coercionsimplicit is that "no information is lost".The coalgebraic types Counter and RCounter denote two di�erent �nalcoalgebras and coerce:RCounter->Counter above denotes a mapping betweenthese two �nal coalgebras. This mapping can of course also be de�ned in thesemantics directly:Lemma 3.1 Let (�F; out�F) is the �nal F -coalgebra and (�G; out�G) the �nalG-coalgebra. Then given a natural transformation � : G �! F there is a uniquearrow coerce : �G! �F such thatF (�G) ���G G(�G) �out�G �GF (�F)F (coerce)? � out�F �F?coercecommutes.Proof Follows directly by terminality of (�F; out�F).We now verify that instantiating this lemma does indeed produce the coer-cion denoted by coerce:Counter->Counter. Let CounterF and RCounterFbe the functors CounterF (X) = Nat �XRCounterF (X) = Nat �X �XLet (C ; hgetcount; counti) be the �nal CounterF -coalgebra, giving the interpre-tation of Counter and its constructors. Let (C ; hgetcount0; count0; reset0i) bethe �nal RCounterF -coalgebra. giving the interpretation of RCounter and itsconstructors. There is a natural transformation between these functors, namelyh�1; �2i : RCounterF �! CounterF:

This natural transformation provides the coercion corresponding toRecordfgetcount : Nat; count : X; reset : Xg� Recordfgetcount : Nat; count : Xgfor any X. By the lemma above there then is a unique coerce : RCounter !Counter such thatNat �RC �h�1; �2i Nat �RC �RC �[getcount0; count0; reset0] RCNat � C?id� coerce� [getcount; count] Ccoerce?commutes, i.e. such that the following two diagrams commuteNat �getcount0 RCNatid?�getcount C?coerce RC �count0 RCCcoerce?� count C?coerceThese are indeed the coherence conditions we came up with earlier.3.2 Subtyping for AlgebrasThe subtype relation on coalgebraic types immediately suggests a subtype rela-tion for their duals:Consider the type CSList of Cons-Snoc lists that not only provides an opera-tion cons to add an element at the front of a list, but also provides an operationsnoc to add an element at the end of a list:data CSList withnil : 1 -> CSListcons : A � CSList -> CSListsnoc : CSList � A -> CSListClearly CSList can be regarded as a subtype of List, i.e.List � CSList:Intuitively, all the elements of List can be constructed using nil and cons,which means that they are also elements of CSList. Indeed, in the category Setit is not hard to give interpretations of List and CSList that are subsets.Note the duality between algebraic and coalgebraic datatypes here: addingthe destructor reset to Counter produced a subtype RCounter, adding theconstructor snoc to List produces a supertype CSList. By supertyping wehere just mean the inverse of subtyping: B is a supertype of A { written B � A{i� A is a subtype of B.

Just like RCounter �Counter can be regarded as a special case of subtypingbetween labelled products, CSList �List can be regarded as a special case ofsubtyping between labelled sums:CSList = Variantfnil : CSList; cons : A� CSList; snoc : CSList � Ag� Variantfnil : List; cons : A� Listg= ListThe coercion from List to CSList that we want is of courselistcoerce : List -> CSListlistcoerce nil = nillistcoerce (cons (a,l)) = cons (a,(listcoerce l))Dualising Lemma 3.1 yieldsLemma 3.2 Let (�F; out�F) be the initial F -algebra and (�G; out�G) the initialG-algebra. Then given a natural transformation � : F �! G there is a uniquearrow coerce : �F ! �G such thatF (�G) ��G- G(�G) in�G- �GF (�F)F (coerce)6 in�F - �F6coercecommutes. utInstantiating this lemma for the initial algebras denoted by List and CSListdoes indeed provide the expected coercion. Recall that (List ; [nil ; cons]) was aninitial ListF -algebra. Let (CSList ; [nil 0; cons 0; snoc0]) be an initial CSListF -algebra, where CSListF (X) = A+ A�X +X � A. There is a natural trans-formation between these two functors:[in1; in2] : ListF �! CSListF:By the lemma above there is then a unique arrow listcoerce : List ! CSListsuch that1 +A� CSList [in1; in2]- CSListF (CSList) [nil 0; cons 0; snoc0]- CSList1 +A� List6id1 + idA � listcoerce [nil ; cons] - Listlistcoerce6commutes, i.e. such that the following two diagrams commute11 nil - List11id1? nil 0- CSList?listcoerce A� List cons - ListA� ListidA � listcoerce? cons 0- CSListlistcoerce?

which are the obvious coherence conditions for an implicit coercion from List toCSList.As we said earlier, in Set we can chose List and CSList such that List �CSList and listcoerce:List!CSList is the associated injection. In this way thequestion of the coherence can be be avoided subtyping on algebraic types. How-ever, the coherence problem for coalgebraic types can not be avoided in this sameway, as the coercions between coalgebraic datatypes are not injective and cannotbe given by inclusions between sets.4 InheritanceIn object-oriented languages, inheritance allows class de�nitions to be re-used:new (sub)classes can be de�ned by modifying and/or extending existing classde�nitions. For example, an implementation of resetable counters could bede�ned by inheriting an implementation a class of counters.We have seen how class de�nitions in the sense of [PT94] correspond to thecoiterative functions in our setting. It turns out that there is an obvious way inwhich de�nitions of coiterative functions can be re-used:Example 4.1The obvious way to implement resetable counters is given bynewRCounter : Nat ! RCountergetcount (newRCounter n) = ncount (newRCounter n) = newRCounter (succ n)reset (newRCounter n) = newRCounter zeroThis implementation extends the implementation of counters given earlier bythe function newCounter. The de�nition above just adds a single line to thede�nition of newCounter, namely the last one. We could introduce some syntaxabbreviate the de�nition of newRCounter, for example as followsnewRCounter : Nat ! RCounterinherits newCounter : Nat ! Counterreset (newRCounter n) = newCounter zeroThe de�nition of newRCounter above would be the same as the one obtained bycopying the two de�ning clauses of newCounter and replacing all occurrences ofnewCounter by newRCounter. utNote that this is only a very limited form of inheritance. For instance,there is no way to de�ne a new method in terms of old methods (e.g. de�nea method doublecount as count�count). Also, the same type { viz. Nat {is used by newCounter and newRCounter to represent the states of counters.There is no way to introduce extra instance variables, which in our settingwould correspond to moving from a record type Recordfvar1:A,var2:Bg to the"wider" record type Recordfvar1:A,var2:B,var3:Cg as representation type.(For the more complicated class de�nitions considered in [PT94], more powerfulforms of inheritance are possible.)The limited form of inheritance comes with a dual. Consider the de�nitionof length function for CSList's given below:

cslength : CSList -> Natcslength nil = zerocslength (cons (a,l)) = succ (length l)cslength (snoc (l,a)) = succ (length l)It is clear that this de�nition extends the de�nition of length: List->Natgiven earlier, i.e.length : List -> Natlength nil = zerolength (cons (a,l)) = succ (length l)in exactly the same way as the de�nition of newRCounter extended the de�nitionof newRCounter. And in the same way, we could introduce some syntax toabbreviate the de�nition of cslength, e.g.cslength : CSList -> Natinherits length : List -> Natcslength (snoc (l,a)) = succ (length l)An obvious thing to want is then to be able to use the same name for lengthand cslength. The fact that the following diagram commutesList length - Nat�����������cslength*CSListlistcoerce?suggest that it would be safe to do so.Of course, in exactly the same way the diagramCounter � newCounter Nat������������newRCounterRCountercoerce6commutes, so we could use the same name for newCounter and newRCounter.(Even though there does not appear to be a good reason to do so, unlike forcslength, where using the same name length is clearly convenient.)One could think of ways of making this inheritance mechanism more general.For instance, instead of just adding clauses to the de�nition, we could also allowoverriding, for instancenewRCounter2 : Nat ! RCounterinherits newCounter : Nat ! Countercount (newCounter2 n) = newRCounter2 zeroreset (newCounter2 n) = newRCounter2 (succ n)Then newRCounter2 produces counters with a count-method that reset themand a reset-method that counts.

5 ConclusionWe have described a notion of subtyping and a simple form of inheritance forHagino's categorical datatypes, and indicated how subtyping can be interpretedas implicit coercions between (co)algebras. We have not given a formal de�nitionof a type system providing algebraic and coalgebraic datatypes with subtypingand a complete proof of coherence of the categorical interpretation of such alanguage. This is left as future work.We believe that a type theory with coalgebraic types and subtyping wouldbe useful as a target calculus for encodings of objects. Indeed, in [HP95] thenotion of coalgebra is already used to relate the encodings based on object asrecursive records [Car88][CHC90][KR94] and the encodings based on existentialtypes [PT94]; still, coalgebraic types are not used to express these encodings,because the target type theory does not provide them.References[BCGS89] V. Breazu-Tannen, Th. Coquand, C. A. Gunter, and A. Scedrov. Inheri-tance as implicit coercion. In Logic in Computer Science, pages 112{129.IEEE, 1989.[Car88] Luca Cardelli. A semantics of multiple inheritance. Information andComputation, 76:138{164, 1988.[CHC90] William R. Cook, Walter L. Hill, and Peter S. Canning. Inheritance isnot subtyping. In Principles of Programming Languages, pages 125{135.ACM, 1990.[CS92] Robin Cockett and Dwight Spencer. Strong categorical datatypes I. InR. A. G. Seely, editor, International Meeting on Category Theory 1991,Canadian Mathematical Society Proceedings. AMS, 1992.[Hag87a] Tatsuya Hagino. A categorical programming language. PhD thesis, Uni-versity of Edinburgh, 1987.[Hag87b] Tatsuya Hagino. A typed lambda calculus with categorical type construc-tors. In D.H. Pitt, A Poign�e, and D.E. Rydeheard, editors, Category andComputer Science, pages 140{157. Springer, September 1987.[HP95] Martin Hofmann and Benjamin C. Pierce. A unifying type-theoreticframework for objects. Journal of Functional Programming, 5(4):593{635, 1995.[JR97] Bart Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction.In EATCS Bulletin. june 1997.[KR94] Samuel N. Kamin and Uday S. Reddy. Two semantic models of object-oriented languages. In Carl A. Gunter and John C. Mitchell, editors,Theoretical Aspects of Object-Oriented Programming: Types, Semantics,and Language Design, pages 464{495. The MIT Press, 1994.[Pol97] Erik Poll. Subtyping and Inheritance for Inductive Types. In Informalproceedings of the 1994 TYPES Workshop, Durham, UK, August 1997.[PT94] Benjamin C. Pierce and David N. Turner. Simple type-theoretic founda-tions for object-oriented programming. Journal of Functional Program-ming, 4(2):207{247, April 1994.[Rei95] Horst Reichel. An approach to object semantics based on terminal co-algebras. Mathematical Structures in Computer Science, 5:129{152, 1995.

