
Lano, Kevin, Bicarregui, Juan and Kent, Stuart (1996) A Real-time Action
Logic of Objects. In: Proceedings of ECOOP'96 Workshop on Proof Theory
of Concurrent Object-oriented Programming. . Linz, Austria

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21361/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21361/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

A Real�time Action Logic of
Objects

K� Lano� J� Bicarregui� Dept� of Computing�
Imperial College� ��� Queens Gate� London� SW�

�BZ�
S� Kent� Dept� of Computing� University of

Brighton�

Abstract

This paper presents work performed in the EPSRC
�Object	oriented Speci
cation of Reactive and Real	
time Systems� project� It aims to extend the Object
Calculus of Fiadeiro and Maibaum to cover durative
actions and real	time constraints�
We de
ne a core logic� termed �Real	time ac	

tion logic� �RAL
 which can provide an axiomatic
semantics and reasoning framework for concur	
rent� real	time and object	oriented speci
cation lan	
guages� The logic could also be viewed as providing
the basis of a speci
cation language in its own right�

We show how a modal action logic �MAL
 and
real	time logic �RTL
 for reasoning about concur	
rent object	oriented programs and speci
cations can
be derived from RAL� and indicate how this formal	
ism can be used to provide an axiomatic semantics
for a large part of the object	oriented speci
cation
language VDM���

� Introduction

A variety of semantics for object	orientation have
been developed� from the perspectives of logic ����
set theory ����� type theory ���� category theory ���
��� and process algebra ����

The logic approach is exempli
ed by the object
calculus of ���� First order temporal logic speci
	
cations de
ne the properties of objects� including
the e�ects� permission constraints and liveness re	
quirements of methods� Methods are interpreted as
action symbols in the logic� whilst attributes are in	
terpreted as attribute symbols� The approach in
this paper will be based on elements of the object
calculus �structured temporal theory presentations
with interpretations between theories
� but will gen	
eralise it by using durative actions which can overlap
in their executions� The issue of dynamic recon�g�

uration� one of the main shortcomings of the object
calculus� is addressed for RAL in ����
Temporal logic is relevant to object	orientation

since systems of objects are potentially highly dy	
namic in nature� both the location of execution ac	

tivity and the interconnections between objects will
change over time� Some object	oriented concepts�
such as aggregation� and subtype migration� are in	
herently time	based� and can only be given a precise
meaning by considering how sets of objects or rela	
tionships between objects can change over time�
A particular dilemma that we address is the need

to avoid the �next� operator � of linear tempo	
ral logic �LTL
 in the context of real	time and dis	
tributed systems� where no such �global
 next in	
stant can be sensibly identi
ed� or in the context of
re
nement� where a system and its re
nement may
use distinct granularities of time� The �next� oper	
ator is however a very intuitive and natural means
to specify state transitions� so we wish to retain it in
some form� This is achieved by interpreting �next
time� as �next method invocation time of a method
of the class on the current object�� so that it be	
comes local to a particular object and the class of
that object�

� Real�time Action Logic

We will use RAL to express the semantics of the
VDM�� language ���� ���

��� Logic

RAL can be presented independently of any decom	
position of a speci
cation into modules �classes
� al	
though in this paper we will focus on a class	oriented
view� The syntactic elements of an RAL theory are�

� action symbols �� for example� invocations a�m
of a method m on an object a� These symbols
may be parameterised� Actions may also be
de
ned by their e�ect� as in TLA �����

� attribute symbols� denoting values which can
change from world to world �time to time
� For
example x�att� the attribute att owned by an
object x� The attribute symbols always include
now� representing the �global
 current time�

� the usual type� function and predicate symbols
of typed predicate calculus� including the oper	
ators �� set comprehension� �� F� etc� of ZF set
theory�

� the type TIME� assumed to be totally ordered
by a relation �� with a least element �� and
with N � TIME� It satis
es the axioms of the
set of non	negative elements of a totally ordered
topological ring� with addition operation � and

�

unit �� and multiplication operation � with unit
��

� predicate logic connectives and quanti
ers�

� modal operators� � �holds at a time� and �
�value at a time� and event time terms� ���� i

the time of request of the i	th invocation of ac	
tion �� ���� i
 the time of activation of this in	
vocation� and 	��� i
 the time of termination of
this invocation� i ranges over N�� the non	zero
natural numbers�

The following operators can be de
ned in terms
of the above symbols�

� the modal action formulae ���P �� establishes

P�� P may contain references �
e to the value
of e at commencement of the invocation of �
being considered�

� the operator � representing the calling relation
between two actions�

� the RTL ��� event	time operators ��� ��
true� i
 and ��� �� false� i
 giving the times
of the i	th occurrences of the events of a predi	
cate � becoming true or false� respectively�

� counters �req��
� �act��
 and ��n��
 for re	
quest� activation and termination events�

� the temporal logic operators ��
� ��

� action combinators � � jj �parallel non	
interfering execution
� assignment� etc�

If the set of action� attribute� function and predi	
cate symbols is denoted by �� we denote the RAL
formalism based on this set by RAL��
�

Speci
c to the object	oriented view are types
�Any of all possible object identi
ers� and subsorts
�C of this type which represent the possible object
identi
ers of objects of class C�

A predicate added for concurrent object	oriented
systems is a test for enabling of an action � �whether
a request for execution of � will be serviced or not
�
This is expressed by enabled��
�

����� Examples of Speci�cation

Some examples of the type of properties that can
be speci
ed in an abstract declarative manner using
RAL are periodic timing constraints� �m initiates
every t seconds� and in the order of its requests��

� i � N� � ��m�x
� i� �
 � ��m�x
� i
 � t

Sporadic constraints can also be directly expressed�
We can express fairness requirements such as

the �
rst come�
rst served� queueing discipline for
method requests�

� i� j � N� � ��m� i
 ���m� j
 �
��m� i
 � ��m� j

�If the i	th request for invocation of m is received
before the j	th� then the i	th invocation instance of
m will be activated before the j	th��
Prioritisation constraints� permission constraints�

timeouts and responsiveness constraints can all be
speci
ed in a direct manner using RAL ���� All the
forms of method invocation protocols for concurrent
objects described in ��� can be precisely described
in this logic in a similar way� The Ada rendezvous
interpretation is the default for VDM���

����� Attributes and Actions

For a speci
cation S consisting a set of classes� the
attribute symbols are as follows�

� x�att for x � �C and att an attribute of a class
C of S�

� x�now for x � �C� representing the local time
of object x� Here this will be equated to the
global time attribute now�

� C for each class C� representing the set of ex�
isting objects of C� This is of type F��C
�

Derived attributes of a class will include event coun�
ters �act�m
� ��n�m
 as de
ned below�
The action symbols are�

� newC�c
 for C a class of S and c � �C�

� x�m�e
 for x � �C and m a method of C� with
e � Xm�C a term in the type of the input pa	
rameters of m in C�

If m has both a synchronous ��secured�
 and
asynchronous ��relaxed�
 component� then we
have two actions ms and mr in place of m�

� preGuard postPost where Guard is an ex	
pression over a set of attributes� and Post can

additionally contain expressions of the form �
e
referring to the value of the expression e at com	
mencement of execution of the action�

These are similar to the actions of TLA� and
represent time intervals where Guard holds at
the start of the interval� and Post holds at the
end of the interval�

We write x���m�e
� i
 for ��x�m�e
� i
 etc to make
the notation used for objects more uniform�

�

����� Derived Actions and Attributes

For an object x � �C event occurrence times ��� ��
true� i
 and ��� �� false� i
 can be de
ned from the
above language�

Event counters are also derived operators�

x��act�m�e

 �
card�fj � N� j x���m�e
� j
 � nowg

This de
nition involves � because we consider
�act�m
 to be incremented just after the moment
at which m initiates execution�

x��req�m�e

 �
card�fj � N� j x���m�e
� j
 � nowg

x���n�m�e

 �
card�fj � N� j x�	�m�e
� j
 � nowg

In contrast� ��n�m�e

 is incremented just before

m terminates execution�
void�obj
 abbreviates obj �� C� where obj ��C�
� binds more closely than any other binary op	

erator on terms �although the name constructor �
binds more closely
� but less than any unary term
operator� Thus v � �act�m
�v denotes v �
��act�m
�v
�

The actions preG postP name actions � with
the following properties�

� i � N� � now � ���� i
 � G����� i

� i � N� � now � ���� i
 �

P�att����� i
�
�

att��	��� i

In other words� G must be true at each invocation
time of �� whilst P� with each �hooked� attribute
�

att interpreted as the value att����� i
 of att at ini	
tiation of �� holds at the corresponding termination
time�

����� Formulae

For any class C the following are the formulae in its
RAL language�

�� P�e�� � � � � en
 for an n	ary predicate symbol P
and terms e�� � � �� en�

�� � � 	� � � 	� � � 	� � � for formulae � and
	�

�� ��t for formulae � and time	valued terms t
�� holds at time t��

�� �SD � �� �SD � � for declarations SD and for	
mulae ��

�� ��
� �a�C
 and �a�C
 for formulae
�

��
�
�
a�C
 for formulae
�

�� enabled�x�m
 and enabled�x�m�e

 for meth	
ods m� e in the input type of m� x � �C� m a
method of C�

�a�C� denotes that � holds at each future initia	
tion time of a method invocation a�m on an object
a � �C� where m is a method of the class C� In
other words it abbreviates

� i � N� � a���m�� i
 � now� ��a���m�� i

� � � � �
� i � N� � a���mn� i
 � now� ��a���mn� i

where methods�C
 � fm�� � � � �mng�
Similarly�
a�C� and �a�C� can be de
ned in

terms of the basic RAL operators�
�

�� is� � t � TIME � t � now� ��t whilst

�� is� � t � TIME � t � now � ��t�
�

�� denotes that � holds at all future times it
is not relative to a class C�
An action symbol � can be used as a formula it

then denotes �active��
 � ��
The calling operator � is de
ned by�

� � � �
� i � N� � now � ���� i
 �

� j � N� � ���� j
 � ���� i
 �
	��� j
 � 	��� i

In other words� every invocation interval of � is also
one of ��
The MAL operator ���P is de
ned as�

���P �
� i � N� � now � ���� i
 �

P�att����� i
�
�

att��	��� i

where the same substitution is used as for the de
	
nition of preG postP above�

Notice that therefore �preG postP��
�

G � P
 as

expected� and that

�� � �
 � ����P� ���P

for any P in the language concerned�
Assignment t� �� t� can be de
ned as the ac	

tion pretrue post t� �
�

t� where t� is an attribute

symbol� Similarly sequential composition � and par	
allel composition jj of actions can be expressed as
derived combinators�

� i � N� � � j�k � N��
���� �� i
 � ���� j
 �
	��� �� i
 � 	���k
 �
����k
 � 	��� j

�

and

� j�k � N��
����k
 � 	��� j
 �
� i � N��

���� �� i
 � ���� j
 �
	��� �� i
 � 	���k

These two conditions yield the usual axiom that

��� ��� � �������

Conditionals have the expected properties�

E� �if E then S� else S� � S�

� E� �if E then S� else S� � S�

Similarly� while loops can be de
ned�
A synchronous method invocation a�m�e
 is in	

terpreted as an invoke statement�

invoke a�m�e

An instance �S� i
 of this statement has the proper	
ties�

� i � N� � � j � N� �
��S� i
 � a���m�e
� j
 �
	�S� i
 � a�	�m�e
� j

The � � operator can be used to concisely express
properties of action invocations without requiring
reference to the index of these invocations� For ex	
ample� the property that all actions take non	zero
time to execute can be expressed by� ����now �
�

now
�
� binds more closely than �a�C�
a�C� �a�C� ��

and
� � These latter operators bind as for � �

����� Axioms

The axioms of predicate calculus and ZF set theory
are adopted� with some modi
cations�

For example� the quanti
er axiom�

��v � T � �
� ��e�v�

is only asserted for � such that e is free for the vari	
able v in � �that is� no variable free in e is bound
at the locations of the substituted occurrences of v
in �
� and such that the substitution does not intro	
duce occurrences of attributes within modal opera	
tors in ��

The core logical axioms are�

�C�
 � � i � N� � ��m�e
� i
 ���m�e
� i� �

�the ��m�e
� i
 times are enumerated in order of
their occurrence��

�C�
 � � i � N� �
��m�e
� i
 � ��m�e
� i
 � 	�m�e
� i

�every invocation must be requested before it can
initiate� and initiates before it terminates��
The compactness condition is that for all p � N�

there are only
nitely many i � N� such that ���� i
 �
p� for each action �� Similar conditions are required
for the � and 	 times�

�C�
 � � � ��now

�C�
 �
�	 � �
�t � 	�t � ��t
�	 � �
�t � 	�t � ��t
�	 � �
�t � 	�t� ��t
��v � T ��
�t � �v � T � ��t
��v � T ��
�t � �v � T � ��t

for any time	valued term t and formulae 	 and ��
In the last two formulae� t has no free variables�

�C�
 �
e � �e�now
 now�t � t

�e�t�
�t� � e��t��t�

In general e�t � e holds if e contains no variables
or attribute symbols�

�C�
 �
�t �
�t

for
 without modal operators� and where
�t is

with each �outermost
 term e occurring in a subfor	
mula of
 replaced by e�t� and t is a time	valued
term without free variables� Similarly

g�e��t� � � � � en�t
 � g�e�� � � � � en
�t

for each function symbol g� This means we can elim	
inate � as an operator and only use ��
Of key importance for reasoning about objects is a

framing or locality constraint ���� which asserts that
over any interval in which no action executes� no
attribute changes in value except for now�
Any interval which satis
es the following action

x�idleC�

pre true

post

x��act�m�� �
���������
x��act�m�� �

x���n�m�� �
���������
x���n�m�� �

� � � � x��act�mn� �
���������
x��act�mn�

� x���n�mn� �
���������
x���n�mn�

�

where the mi are all the methods of C� must also
satisfy the axioms�

�x�idleC��x�att �
�

x�att

for every attribute of the object� except x�now�
This locality principle reduces to that of the ob	

ject calculus in the case that all actions have dura	
tion � and TIME � N�
The frame axiom restricts the subtyping relation

in a way similar to that of Liskov�s de
nition of sub	
typing ����� If it is accepted as a part of the theory
!C of a class� then we cannot prove that a class

class C

instance variables x � Z
methods

inc�� �� x �� x � ��

val�� value Z��

return x

end C

is a supertype of

class D is subclass of C

methods

dec�� �� x �� x � �
end D

because there are state changes possible for d � �D
which are not possible for any instances of C �where
we take subtyping as being equivalent to theory ex	
tension
�

����	 Theorems

Some useful theorems are�

�vi
 �
�

� �x���n�m
 � x��act�m
 � x��req�m

The following axioms of LTL ���� hold�

�xiii
 �
�a�C	 ��a�C	
�a�C��a�C	 � 	

� �a�C ���a�C� �
�a�C��� 	
� ��a�C���a�C	

�a�C	 ��a�C�a�C	
� �a�C false � ��a�CP�e
 � P��a�Ce

for predicate symbols P�
�v � T � �a�C	 � �a�C �v � T �	

Also�

�
�	 � �a�C	 �

�	 �
�	
a�C 	 �
�	

Note that the axiom �a�C	 �
a�C	 need not be
valid since there may not be any method activations
at or after the current time�
Axioms of the modal logic S� hold�

�xvii
 �
�a�C��a�C�� �

�a�C� � � �a�C�
�a�C��� 	
� ��a�C�� �a�C	

�a�C�� �a�C�a�C�

The same axioms hold for �� in place of �a�C�

�
� �
�t
 �
�t
�t� �a�C�
�t

� �
�t
 �
�t
a�C�
�t
�
�t
where in the last four formulae� t is a time	valued
term without free variables�

����
 Inference Rules

The usual inference rules of predicate logic are
taken� In addition the following rule is adopted�

! � �

! � � t � TIME � ��t

Derivability in the logic is denoted by � as usual�

� Interpretations of Class Fea�

tures

The following axioms enable an RAL theory to be
given to a class speci
cation� This means that prac	
tical development can use a combination of declar	
ative RAL formulae and the more procedurally ori	
ented VDM�� class descriptions� whilst reasoning
about both parts of a speci
cation can be carried
out in a uniform formalism�
If we have a method de
nition in class C of the

form�

m�x � Xm�C� value y � Ym�C

pre Prem�C ��
Codem�C�

then the action a�m�e
 has the properties�

a�Prem�C �e�x	 � a � C �

a
m�e� � a�Codem�C�e�x	

where each attribute att of C occurring in Prem�C

is renamed to a�att in a�Prem�C and similarly
for Codem�C� Additionally� invocations of ac	
tions b�n�f
 within Code are explicitly written as
invoke b�ns�f
 statements�
The operator �a�C can be used to simplify state	

ments about the e�ects of methods in a mutex

�

class C� If Codem�C is a speci
cation statement
�ext wr v post P� then we have�

�a�C � e � Xm�C �

a�Prem�C �e�x	 � a � C �

�a
m�e� � �a�CP
��e�x	�

where occurrences of �
vi in P are replaced by u
a�Cvi

in P�� This form is close to the usual characterisa	
tion of action e�ects in the object calculus�

In the case that C has a thread with an asyn	
chronous code segment Defnm�C for m� the above
axiom de
nes the properties of the a�ms�e
 action�
and a�mr�e
 is de
ned by

a � C �
a�mr�e
 � a�Defnm�C�e�x�

We also have that a�ms�e
 is followed by a corre	
sponding invocation of a�mr�e
� with no other in	
tervening method activation on the object�

� i � N� � a�	�ms�e
� i
 � a���mr�e
� i
 �
� j � N� � a���idleC� j
 � a�	�ms�e
� i
 �

a�	�idleC� j
 � a���mr�e
� i

The initialisation of a class C can be regarded as
a method initC which is called automatically when
an object c is created by the action newC�

newC�c
 � c�initC

newC itself has the properties�

newC�c
 � c �� C

�newC�c
��C �
�

C � fcg

A method must be enabled when it initiates exe	
cution�

�x � �C� i � N�� e � Xm�C �
enabled�x�m�e

�x���m�e
� i

for all methods m of C�
The invariant of a class is true at every method

initiation and termination time�

�a�CInvC � � i � N� � InvC�a�	�mj� i

for each method mj of C and a � �C� However� the
typing constraints for attributes are always true�

�
� �a�att � T

for each attribute declaration att � T of C�
Permission guards for a methodm give conditions

which must be implied by enabled�m
�

per m � G

yields the axiom enabled�m
 � G�
The whenever construct of VDM�� is interpreted

as follows� A statement

whenever �
also from � ��� �

asserts that � must be true at some point in each
interval of the form �t� t �
� where t is a time at
which � becomes true�
Thus it can be expressed directly as�

� i � N�� 	 t � TIME �

�� �� true� i� � t �
�� �� true� i� � � �

��t

This de
nition yields a transitivity principle�
Techniques for concurrent reasoning which arise

from the RAL formalisation are� �i
 induction prin	
ciples based on the frame axiom� In VDM�� we
divide classes into active mutex classes� and passive

classes� The latter usually obey some weakening of
mutual exclusion� to allow reader methods to co	
execute on the same object� However� such passive
objects can be treated as internally mutex in some
respects� because updater methods execute in exclu	
sion with themselves and other methods� Thus� if �
is true at creation of an object� and is preserved by
every updater m�e
� then it is true at every method
activation and termination time �it may fail during
updater executions
�

�newC�c
�� �

�
V
m�methods�C� � e � Xm�C � c � C � � �

�c�m�e
��
 �

�c�C�c � C� �
 �

� i � N� � �c � C� �
�c�	�mj� i

for each method mj of C� where c � �C�
�ii
 Characterisation of asynchronous processes as

sets of action instances and axioms relating these
�����

� Morphisms and Semantics

The concept of a theory morphism for RAL is similar
to that for the object calculus� A morphism � �
Th�� Th� maps each type symbol T of Th� to a
type symbol ��T
 of Th�� each function symbol of
Th� to a function symbol ofTh�� and each attribute
of Th� to an attribute of Th�� Actions of Th� are
mapped to actions of Th��
The type TIME is always mapped to itself�

�

We must have that Th� � ���
 for each theo	
rem � of Th�� In particular� the locality property
of Th� must be true under interpretation via � in
Th�� As in the object calculus� this will mean that
actions of Th� not in the range of � can only modify
�the interpretations of
 attributes of Th� by execut	
ing concurrently with �interpretations of
 actions of
Th��

We can construct a category of theories with the	
ory morphisms as categorical arrows as usual�
A semantics of RAL can be given based on that

for modal action logic in ���� A soundness proof can
be given� and a completeness proof with respect to
a simpli
ed semantics can be derived�

� Conclusions

We have introduced a formalism for reasoning about
concurrent object	oriented programs and speci
ca	
tions� This formalism possesses a sound semantics�
and it is therefore consistent relative to ZF set the	
ory� The advantage of the formalismover other real	
time and concurrency formalisms is the conciseness
of the core syntax and axiomatisation� and its abil	
ity to express the full range of reactive and real	
time system behaviour via derived constructs� The
TAM formalism of ���� can be regarded as a subset
of RAL� and could be used to transform speci
ca	
tion and code fragments that are purely local to one
class and that are within its language� For prac	
tical development� we also need higher	level design
transformations such as design patterns�

Examples of using the logic to express properties
of distributed and concurrent systems can be found
in the papers and books ���� ����

References

��	 A Burns and A Wellings� HRT
HOOD� A struc

tured design method for hard real
time systems�
Real�Time Systems� ������������ January �����

��	 Cook W� R�� Palsberg J�� A Denotational Seman�

tics of Inheritance and its Correctness� Proceedings
of OOPSLA� pages ���
���� �����

��	 S Cook and J Daniels� Designing Object Systems�

Object�Oriented Modelling with Syntropy� Prentice
Hall� Sept �����

��	 E Durr and E Dusink� The role of VDM�� in the
development of a real
time tracking and tracing sys

tem� In J Woodcock and P Larsen� editors� FME
���� Lecture Notes in Computer Science� Springer

Verlag� �����

��	 J Fiadeiro and T Maibaum� Sometimes �Tomor

row� is �Sometime�� In Temporal Logic� volume
��� of Lecture Notes in Arti�cial Intelligence� pages
������ Springer
Verlag� �����

��	 J� Goguen� Sheaf Semantics for Concurrent Inter�
acting Objects� Mathematical Structures in Com

puter Science� ����������� �����

��	 F Jahanian� A K Mok� Safety Analysis of Timing
Properties in Real
time Systems� IEEE Transac�

tions on Software Engineering� SE
��� pp� ��������
September �����

��	 Jones C� B�� An object
based design method for
concurrent programs� Technical Report UMCS
��

��
�� Manchester University� �����

��	 S Kent� K Lano� Axiomatic Semantics for Concur�
rent Object Systems� AFRODITE Technical Report
AFRO�IC�SKKL�SEM�V�� Dept� of Computing�
Imperial College� ��� Queens Gate� London SW�
�BZ�

���	 L Lamport� The Temporal Logic of Actions� Tech

nical Report ��� Digital Equipment Corporation�
Systems Research Center� December �����

���	 Lano K�� Formal Object�oriented Development�
FACIT series� Springer
Verlag� �����

���	 Lano K�� Reactive System Speci�cation and Re�

�nement� Proceedings of TAPSOFT ���� Springer

Verlag LNCS ���� �����

���	 Lano K�� Distributed System Speci�cation in

VDM��� FORTE ��� Proceedings� Chapman and
Hall� �����

���	 Lano K�� Goldsack S�� Re�nement Rules for Con�

currency and Real�time� MEDICIS Workshop� April
�����

���	 G Lowe and H Zedan� Re�nement of complex
systems� A case study� The Computer Journal�
��������������� �����

���	 Liskov B�� Data abstraction and hierarchy� In OOP�
SLA ��� Conference Proceedings� �����

���	 Malcolm G�� Interconnections of Object Speci�ca�

tions� Proceedings of BCS FACS Workshop on For

mal Methods and Object
orientation� to appear�
Springer
Verlag� �����

���	 Maung I�� Behavioural Subtyping and Substitutabil�
ity� Proceedings of BCS FACS Workshop on For

mal Methods and Object
orientation� to appear�
Springer
Verlag� �����

���	 A Pnueli� Applications of temporal logic to the
speci�cation and veri�cation of reactive systems� A
survey of current trends� In J de Bakker� W P
de Roever� and G Rozenberg� editors� Current

Trends in Concurrency� LNCS vol� ���� Springer

Verlag� �����

�

