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A Real�time Action Logic of
Objects

K� Lano� J� Bicarregui� Dept� of Computing�
Imperial College� ��� Queens Gate� London� SW�

�BZ�
S� Kent� Dept� of Computing� University of

Brighton�

Abstract

This paper presents work performed in the EPSRC
�Object	oriented Speci
cation of Reactive and Real	
time Systems� project� It aims to extend the Object
Calculus of Fiadeiro and Maibaum to cover durative
actions and real	time constraints�
We de
ne a core logic� termed �Real	time ac	

tion logic� �RAL
 which can provide an axiomatic
semantics and reasoning framework for concur	
rent� real	time and object	oriented speci
cation lan	
guages� The logic could also be viewed as providing
the basis of a speci
cation language in its own right�

We show how a modal action logic �MAL
 and
real	time logic �RTL
 for reasoning about concur	
rent object	oriented programs and speci
cations can
be derived from RAL� and indicate how this formal	
ism can be used to provide an axiomatic semantics
for a large part of the object	oriented speci
cation
language VDM���

� Introduction

A variety of semantics for object	orientation have
been developed� from the perspectives of logic ����
set theory ����� type theory ���� category theory ���
��� and process algebra ����

The logic approach is exempli
ed by the object
calculus of ���� First order temporal logic speci
	
cations de
ne the properties of objects� including
the e�ects� permission constraints and liveness re	
quirements of methods� Methods are interpreted as
action symbols in the logic� whilst attributes are in	
terpreted as attribute symbols� The approach in
this paper will be based on elements of the object
calculus �structured temporal theory presentations
with interpretations between theories
� but will gen	
eralise it by using durative actions which can overlap
in their executions� The issue of dynamic recon�g�

uration� one of the main shortcomings of the object
calculus� is addressed for RAL in ����
Temporal logic is relevant to object	orientation

since systems of objects are potentially highly dy	
namic in nature� both the location of execution ac	

tivity and the interconnections between objects will
change over time� Some object	oriented concepts�
such as aggregation� and subtype migration� are in	
herently time	based� and can only be given a precise
meaning by considering how sets of objects or rela	
tionships between objects can change over time�
A particular dilemma that we address is the need

to avoid the �next� operator � of linear tempo	
ral logic �LTL
 in the context of real	time and dis	
tributed systems� where no such �global
 next in	
stant can be sensibly identi
ed� or in the context of
re
nement� where a system and its re
nement may
use distinct granularities of time� The �next� oper	
ator is however a very intuitive and natural means
to specify state transitions� so we wish to retain it in
some form� This is achieved by interpreting �next
time� as �next method invocation time of a method
of the class on the current object�� so that it be	
comes local to a particular object and the class of
that object�

� Real�time Action Logic

We will use RAL to express the semantics of the
VDM�� language ���� ���

��� Logic

RAL can be presented independently of any decom	
position of a speci
cation into modules �classes
� al	
though in this paper we will focus on a class	oriented
view� The syntactic elements of an RAL theory are�

� action symbols �� for example� invocations a�m
of a method m on an object a� These symbols
may be parameterised� Actions may also be
de
ned by their e�ect� as in TLA �����

� attribute symbols� denoting values which can
change from world to world �time to time
� For
example x�att� the attribute att owned by an
object x� The attribute symbols always include
now� representing the �global
 current time�

� the usual type� function and predicate symbols
of typed predicate calculus� including the oper	
ators �� set comprehension� �� F� etc� of ZF set
theory�

� the type TIME� assumed to be totally ordered
by a relation �� with a least element �� and
with N � TIME� It satis
es the axioms of the
set of non	negative elements of a totally ordered
topological ring� with addition operation � and
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unit �� and multiplication operation � with unit
��

� predicate logic connectives and quanti
ers�

� modal operators� � �holds at a time� and �
�value at a time� and event time terms� ���� i

the time of request of the i	th invocation of ac	
tion �� ���� i
 the time of activation of this in	
vocation� and 	��� i
 the time of termination of
this invocation� i ranges over N�� the non	zero
natural numbers�

The following operators can be de
ned in terms
of the above symbols�

� the modal action formulae ���P �� establishes

P�� P may contain references �
e to the value
of e at commencement of the invocation of �
being considered�

� the operator � representing the calling relation
between two actions�

� the RTL ��� event	time operators ��� ��
true� i
 and ��� �� false� i
 giving the times
of the i	th occurrences of the events of a predi	
cate � becoming true or false� respectively�

� counters �req��
� �act��
 and ��n��
 for re	
quest� activation and termination events�

� the temporal logic operators �� 
� ��

� action combinators � � jj �parallel non	
interfering execution
� assignment� etc�

If the set of action� attribute� function and predi	
cate symbols is denoted by �� we denote the RAL
formalism based on this set by RAL��
�

Speci
c to the object	oriented view are types
�Any of all possible object identi
ers� and subsorts
�C of this type which represent the possible object
identi
ers of objects of class C�

A predicate added for concurrent object	oriented
systems is a test for enabling of an action � �whether
a request for execution of � will be serviced or not
�
This is expressed by enabled��
�

����� Examples of Speci�cation

Some examples of the type of properties that can
be speci
ed in an abstract declarative manner using
RAL are periodic timing constraints� �m initiates
every t seconds� and in the order of its requests��

� i � N� � ��m�x
� i� �
 � ��m�x
� i
 � t

Sporadic constraints can also be directly expressed�
We can express fairness requirements such as

the �
rst come� 
rst served� queueing discipline for
method requests�

� i� j � N� � ��m� i
 ���m� j
 �
��m� i
 � ��m� j


�If the i	th request for invocation of m is received
before the j	th� then the i	th invocation instance of
m will be activated before the j	th��
Prioritisation constraints� permission constraints�

timeouts and responsiveness constraints can all be
speci
ed in a direct manner using RAL ���� All the
forms of method invocation protocols for concurrent
objects described in ��� can be precisely described
in this logic in a similar way� The Ada rendezvous
interpretation is the default for VDM���

����� Attributes and Actions

For a speci
cation S consisting a set of classes� the
attribute symbols are as follows�

� x�att for x � �C and att an attribute of a class
C of S�

� x�now for x � �C� representing the local time
of object x� Here this will be equated to the
global time attribute now�

� C for each class C� representing the set of ex�
isting objects of C� This is of type F��C
�

Derived attributes of a class will include event coun�
ters �act�m
� ��n�m
 as de
ned below�
The action symbols are�

� newC�c
 for C a class of S and c � �C�

� x�m�e
 for x � �C and m a method of C� with
e � Xm�C a term in the type of the input pa	
rameters of m in C�

If m has both a synchronous ��secured�
 and
asynchronous ��relaxed�
 component� then we
have two actions ms and mr in place of m�

� preGuard postPost where Guard is an ex	
pression over a set of attributes� and Post can

additionally contain expressions of the form �
e
referring to the value of the expression e at com	
mencement of execution of the action�

These are similar to the actions of TLA� and
represent time intervals where Guard holds at
the start of the interval� and Post holds at the
end of the interval�

We write x���m�e
� i
 for ��x�m�e
� i
 etc to make
the notation used for objects more uniform�

�



����� Derived Actions and Attributes

For an object x � �C event occurrence times ��� ��
true� i
 and ��� �� false� i
 can be de
ned from the
above language�

Event counters are also derived operators�

x��act�m�e

 �
card�fj � N� j x���m�e
� j
 � nowg


This de
nition involves � because we consider
�act�m
 to be incremented just after the moment
at which m initiates execution�

x��req�m�e

 �
card�fj � N� j x���m�e
� j
 � nowg


x���n�m�e

 �
card�fj � N� j x�	�m�e
� j
 � nowg


In contrast� ��n�m�e

 is incremented just before

m terminates execution�
void�obj
 abbreviates obj �� C� where obj ��C�
� binds more closely than any other binary op	

erator on terms �although the name constructor �
binds more closely
� but less than any unary term
operator� Thus v � �act�m
�v denotes v �
��act�m
�v
�

The actions preG postP name actions � with
the following properties�

� i � N� � now � ���� i
 � G����� i

� i � N� � now � ���� i
 �

P�att����� i
�
�

att��	��� i


In other words� G must be true at each invocation
time of �� whilst P� with each �hooked� attribute
�

att interpreted as the value att����� i
 of att at ini	
tiation of �� holds at the corresponding termination
time�

����� Formulae

For any class C the following are the formulae in its
RAL language�

�� P�e�� � � � � en
 for an n	ary predicate symbol P
and terms e�� � � �� en�

�� � � 	� � � 	� � � 	� � � for formulae � and
	�

�� ��t for formulae � and time	valued terms t  
�� holds at time t��

�� �SD � �� �SD � � for declarations SD and for	
mulae ��

�� ��
� �a�C
 and �a�C
 for formulae 
�

�� 
�
� 
a�C
 for formulae 
�

�� enabled�x�m
 and enabled�x�m�e

 for meth	
ods m� e in the input type of m� x � �C� m a
method of C�

�a�C� denotes that � holds at each future initia	
tion time of a method invocation a�m on an object
a � �C� where m is a method of the class C� In
other words it abbreviates

� i � N� � a���m�� i
 � now� ��a���m�� i

� � � � �
� i � N� � a���mn� i
 � now� ��a���mn� i


where methods�C
 � fm�� � � � �mng�
Similarly� 
a�C� and �a�C� can be de
ned in

terms of the basic RAL operators�
�

�� is� � t � TIME � t � now� ��t whilst

�� is� � t � TIME � t � now � ��t�
�

�� denotes that � holds at all future times  it
is not relative to a class C�
An action symbol � can be used as a formula  it

then denotes �active��
 � ��
The calling operator � is de
ned by�

� � � �
� i � N� � now � ���� i
 �

� j � N� � ���� j
 � ���� i
 �
	��� j
 � 	��� i


In other words� every invocation interval of � is also
one of ��
The MAL operator ���P is de
ned as�

���P �
� i � N� � now � ���� i
 �

P�att����� i
�
�

att��	��� i


where the same substitution is used as for the de
	
nition of preG postP above�

Notice that therefore �preG postP��
�

G � P
 as

expected� and that

�� � �
 � ����P� ���P


for any P in the language concerned�
Assignment t� �� t� can be de
ned as the ac	

tion pretrue post t� �
�

t� where t� is an attribute

symbol� Similarly sequential composition � and par	
allel composition jj of actions can be expressed as
derived combinators�

� i � N� � � j�k � N��
���� �� i
 � ���� j
 �
	��� �� i
 � 	���k
 �
����k
 � 	��� j


�



and

� j�k � N��
����k
 � 	��� j
 �
� i � N��

���� �� i
 � ���� j
 �
	��� �� i
 � 	���k


These two conditions yield the usual axiom that

��� ��� � �������

Conditionals have the expected properties�

E� �if E then S� else S� � S�


� E� �if E then S� else S� � S�


Similarly� while loops can be de
ned�
A synchronous method invocation a�m�e
 is in	

terpreted as an invoke statement�

invoke a�m�e


An instance �S� i
 of this statement has the proper	
ties�

� i � N� � � j � N� �
��S� i
 � a���m�e
� j
 �
	�S� i
 � a�	�m�e
� j


The � � operator can be used to concisely express
properties of action invocations without requiring
reference to the index of these invocations� For ex	
ample� the property that all actions take non	zero
time to execute can be expressed by� ����now �
�

now
�
� binds more closely than �a�C� 
a�C� �a�C� ��

and 
� � These latter operators bind as for � �

����� Axioms

The axioms of predicate calculus and ZF set theory
are adopted� with some modi
cations�

For example� the quanti
er axiom�

��v � T � �
� ��e�v�

is only asserted for � such that e is free for the vari	
able v in � �that is� no variable free in e is bound
at the locations of the substituted occurrences of v
in �
� and such that the substitution does not intro	
duce occurrences of attributes within modal opera	
tors in ��

The core logical axioms are�

�C�
 � � i � N� � ��m�e
� i
 ���m�e
� i� �


�the ��m�e
� i
 times are enumerated in order of
their occurrence��

�C�
 � � i � N� �
��m�e
� i
 � ��m�e
� i
 � 	�m�e
� i


�every invocation must be requested before it can
initiate� and initiates before it terminates��
The compactness condition is that for all p � N�

there are only 
nitely many i � N� such that ���� i
 �
p� for each action �� Similar conditions are required
for the � and 	 times�

�C�
 � � � ��now

�C�
 �
�	 � �
�t � 	�t � ��t
�	 � �
�t � 	�t � ��t
�	 � �
�t � 	�t� ��t
��v � T ��
�t � �v � T � ��t
��v � T ��
�t � �v � T � ��t

for any time	valued term t and formulae 	 and ��
In the last two formulae� t has no free variables�

�C�
 �
e � �e�now
 now�t � t

�e�t�
�t� � e��t��t�


In general e�t � e holds if e contains no variables
or attribute symbols�

�C�
 � 
�t � 
�t

for 
 without modal operators� and where 
�t is 

with each �outermost
 term e occurring in a subfor	
mula of 
 replaced by e�t� and t is a time	valued
term without free variables� Similarly

g�e��t� � � � � en�t
 � g�e�� � � � � en
�t

for each function symbol g� This means we can elim	
inate � as an operator and only use ��
Of key importance for reasoning about objects is a

framing or locality constraint ���� which asserts that
over any interval in which no action executes� no
attribute changes in value except for now�
Any interval which satis
es the following action

x�idleC�

pre true

post

x��act�m�� �
���������
x��act�m�� �

x���n�m�� �
���������
x���n�m�� �

� � � � x��act�mn� �
���������
x��act�mn�

� x���n�mn� �
���������
x���n�mn�

�



where the mi are all the methods of C� must also
satisfy the axioms�

�x�idleC��x�att �
�



x�att


for every attribute of the object� except x�now�
This locality principle reduces to that of the ob	

ject calculus in the case that all actions have dura	
tion � and TIME � N�
The frame axiom restricts the subtyping relation

in a way similar to that of Liskov�s de
nition of sub	
typing ����� If it is accepted as a part of the theory
!C of a class� then we cannot prove that a class

class C

instance variables x � Z
methods

inc�� �� x �� x � ��

val�� value Z��

return x

end C

is a supertype of

class D is subclass of C

methods

dec�� �� x �� x � �
end D

because there are state changes possible for d � �D
which are not possible for any instances of C �where
we take subtyping as being equivalent to theory ex	
tension
�

����	 Theorems

Some useful theorems are�

�vi
 �
�

� �x���n�m
 � x��act�m
 � x��req�m



The following axioms of LTL ���� hold�

�xiii
 �
�a�C	 ��a�C	
�a�C��a�C	 � 	

� �a�C ���a�C� �
�a�C��� 	
� ��a�C���a�C	

�a�C	 ��a�C�a�C	
� �a�C false � ��a�CP�e
 � P��a�Ce


for predicate symbols P�
�v � T � �a�C	 � �a�C �v � T �	

Also�

�
�	 � �a�C	 �

�	 � 
�	 
a�C 	 � 
�	

Note that the axiom �a�C	 � 
a�C	 need not be
valid since there may not be any method activations
at or after the current time�
Axioms of the modal logic S� hold�

�xvii
 �
�a�C��a�C�� �

�a�C� � � �a�C�
�a�C��� 	
� ��a�C�� �a�C	

�a�C�� �a�C�a�C�

The same axioms hold for �� in place of �a�C�

�
� �
�t
 � 
�t 
�t� �a�C�
�t



� �
�t
 � 
�t 
a�C�
�t
� 
�t
where in the last four formulae� t is a time	valued
term without free variables�

����
 Inference Rules

The usual inference rules of predicate logic are
taken� In addition the following rule is adopted�

! � �

! � � t � TIME � ��t

Derivability in the logic is denoted by � as usual�

� Interpretations of Class Fea�

tures

The following axioms enable an RAL theory to be
given to a class speci
cation� This means that prac	
tical development can use a combination of declar	
ative RAL formulae and the more procedurally ori	
ented VDM�� class descriptions� whilst reasoning
about both parts of a speci
cation can be carried
out in a uniform formalism�
If we have a method de
nition in class C of the

form�

m�x � Xm�C� value y � Ym�C

pre Prem�C ��
Codem�C�

then the action a�m�e
 has the properties�

a�Prem�C �e�x	 � a � C �

a
m�e� � a�Codem�C�e�x	

where each attribute att of C occurring in Prem�C

is renamed to a�att in a�Prem�C and similarly
for Codem�C� Additionally� invocations of ac	
tions b�n�f 
 within Code are explicitly written as
invoke b�ns�f 
 statements�
The operator �a�C can be used to simplify state	

ments about the e�ects of methods in a mutex

�



class C� If Codem�C is a speci
cation statement
�ext wr v post P� then we have�

�a�C � e � Xm�C �

a�Prem�C �e�x	 � a � C �

�a
m�e� � �a�CP
��e�x	�

where occurrences of �
vi in P are replaced by u
a�Cvi

in P�� This form is close to the usual characterisa	
tion of action e�ects in the object calculus�

In the case that C has a thread with an asyn	
chronous code segment Defnm�C for m� the above
axiom de
nes the properties of the a�ms�e
 action�
and a�mr�e
 is de
ned by

a � C �
a�mr�e
 � a�Defnm�C�e�x�

We also have that a�ms�e
 is followed by a corre	
sponding invocation of a�mr�e
� with no other in	
tervening method activation on the object�

� i � N� � a�	�ms�e
� i
 � a���mr�e
� i
 �
� j � N� � a���idleC� j
 � a�	�ms�e
� i
 �

a�	�idleC� j
 � a���mr�e
� i


The initialisation of a class C can be regarded as
a method initC which is called automatically when
an object c is created by the action newC�

newC�c
 � c�initC

newC itself has the properties�

newC�c
 � c �� C

�newC�c
��C �
�

C � fcg


A method must be enabled when it initiates exe	
cution�

�x � �C� i � N�� e � Xm�C �
enabled�x�m�e

�x���m�e
� i


for all methods m of C�
The invariant of a class is true at every method

initiation and termination time�

�a�CInvC � � i � N� � InvC�a�	�mj� i


for each method mj of C and a � �C� However� the
typing constraints for attributes are always true�

�
� �a�att � T


for each attribute declaration att � T of C�
Permission guards for a methodm give conditions

which must be implied by enabled�m
�

per m � G

yields the axiom enabled�m
 � G�
The whenever construct of VDM�� is interpreted

as follows� A statement

whenever �
also from � ��� �

asserts that � must be true at some point in each
interval of the form �t� t � 
� where t is a time at
which � becomes true�
Thus it can be expressed directly as�

� i � N�� 	 t � TIME �


�� �� true� i� � t � 
�� �� true� i� � � �

��t

This de
nition yields a transitivity principle�
Techniques for concurrent reasoning which arise

from the RAL formalisation are� �i
 induction prin	
ciples based on the frame axiom� In VDM�� we
divide classes into active mutex classes� and passive

classes� The latter usually obey some weakening of
mutual exclusion� to allow reader methods to co	
execute on the same object� However� such passive
objects can be treated as internally mutex in some
respects� because updater methods execute in exclu	
sion with themselves and other methods� Thus� if �
is true at creation of an object� and is preserved by
every updater m�e
� then it is true at every method
activation and termination time �it may fail during
updater executions
�

�newC�c
�� �

�
V
m�methods�C� � e � Xm�C � c � C � � �

�c�m�e
��
 �

�c�C�c � C� �
 �

� i � N� � �c � C� �
�c�	�mj� i


for each method mj of C� where c � �C�
�ii
 Characterisation of asynchronous processes as

sets of action instances and axioms relating these
�����

� Morphisms and Semantics

The concept of a theory morphism for RAL is similar
to that for the object calculus� A morphism � �
Th�� Th� maps each type symbol T of Th� to a
type symbol ��T
 of Th�� each function symbol of
Th� to a function symbol ofTh�� and each attribute
of Th� to an attribute of Th�� Actions of Th� are
mapped to actions of Th��
The type TIME is always mapped to itself�

�



We must have that Th� � ���
 for each theo	
rem � of Th�� In particular� the locality property
of Th� must be true under interpretation via � in
Th�� As in the object calculus� this will mean that
actions of Th� not in the range of � can only modify
�the interpretations of
 attributes of Th� by execut	
ing concurrently with �interpretations of
 actions of
Th��

We can construct a category of theories with the	
ory morphisms as categorical arrows as usual�
A semantics of RAL can be given based on that

for modal action logic in ���� A soundness proof can
be given� and a completeness proof with respect to
a simpli
ed semantics can be derived�

� Conclusions

We have introduced a formalism for reasoning about
concurrent object	oriented programs and speci
ca	
tions� This formalism possesses a sound semantics�
and it is therefore consistent relative to ZF set the	
ory� The advantage of the formalismover other real	
time and concurrency formalisms is the conciseness
of the core syntax and axiomatisation� and its abil	
ity to express the full range of reactive and real	
time system behaviour via derived constructs� The
TAM formalism of ���� can be regarded as a subset
of RAL� and could be used to transform speci
ca	
tion and code fragments that are purely local to one
class and that are within its language� For prac	
tical development� we also need higher	level design
transformations such as design patterns�

Examples of using the logic to express properties
of distributed and concurrent systems can be found
in the papers and books ���� ����
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