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Abstract

The original purpose of type systems for programming languages was
to prevent certain forms of run-time errors, like using a number as a
function. Some type systems go as far as guaranteeing the absence of
run-time errors, e.g. the type system of Standard ML. One can call such
a type system “sound”.

This raises the question of the dual notion of completeness, i.e. is
everything typable that does not have run-time errors? Or, to put it in
another way: does the type system restrict the expressive power of the
underlying implementation in an undesirable way?

To make this rather vague idea precise we define an abstract notion of
“type system”, together with general notions of soundness and complete-
ness. We examine several type systems for these properties, for instance
A" and PCF are both complete, but for very different reasons.

1 Introduction

The purpose of type systems for programming languages was originally to pre-
vent run-time errors like using a character as a pointer, etc. Nowadays people
have found additional uses of types, especially following the propositions-as-
types principle. However, for this paper our main interest in type systems is
the way they prevent errors, not in what way the typable terms can be viewed
as proof objects.

Robin Milner once stated the slogan “well-typed programs don’t go wrong”.
This actually means that (if the type system is sound then) programs that type-
check do not have run-time errors. Without the parentheses the statement is a
tautology, as this is just the definition of soundness. Thus, Milner’s statement
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asserts the soundness of some type system, here it probably was the type system
of ML.

The above paragraph rests on one unexplained notion, the notion of run-
time error. What actually is a run-time error? This is not and cannot be an
absolute notion; take for example the familiar “core dumped” error: if a program
terminates with message “core dumped” then it is unclear whether we had a real
run-time error or whether our program simply printed “core dumped” on the
screen and terminated. We need to define which run-time scenarios we regard
as run-time errors. This is to some extent a matter of taste, we have a design
decision to make. Having said that, in most cases there is an obvious choice.

Trivially, an operational semantics without a notion of run-time error has
only sound type systems. But this is not very helpful to the programmer who
does make errors from time to time; not all these errors can be detected by the
type system, but quite a few (the majority, actually) can if the type system is
rich enough.

Suppose we have a run-time system plus a sound type system. Can we
turn Milner’s slogan around, is it true that “programs that don’t go wrong are
well-typed?” This is the completeness question for the type system which is
the subject of this paper. The question matters as the completeness of a type
system means that the expressive power of the underlying operational semantics
is not restricted by the type system.

To be a bit more precise: we are talking about unrestricted expressive power
w.r.t. the types the type system provides. In general this is quite different from
the expressive power of the untyped language itself. For example, the simply
typed A-calculus \” is not Turing-complete, while the untyped A-calculus is, but
this does not directly imply the incompleteness of the simple type system. The
problem is that the missing terms would have to be given simple types, but it is
not obvious that we could do so without introducing errors (whatever we have
declared to be an error).

Moreover, when we assess the expressive power of a language it is not so
much our concern which program texts pass the type-checker as which programs
do, where a program is simply an equivalence class of observationally equivalent
program descriptions. We shall call a type system bicomplete whenever all sound
programs are expressible up to observational equivalence; for completeness, we
do not require equivalence but rather some information preorder between the
programs. Intuition: think of the partial order in domain theory — our notion
of completeness is satisfied if we can always express a “larger” program.

2 Typing Transition Systems

In order to talk about arbitrary type systems for arbitrary programming lan-
guages in any non-informal way we need an abstract notion of programming
language and an abstract notion of type system.

We shall first focus on the untyped world. To avoid too specific notions
of abstract programming language we firmly base it on the notion of labelled



transition system, see e.g. [16, 11, 5].

Definition 1
A transition system is a structure (Sta, Lab, Tra) where

e Sta is a set of states,
e Lab is a set of labels, and
e Tra C Sta x Lab x Sta is the transition relation.

A transition system is called pointed if there is a distinguished initial state ¢.

As usual, we write s Ly &' for (s,1,5") € Tra; also, s — s’ with w € Lab* is
shorthand for that there exist states sg,... , s, and labels [y, ... [, with s = s¢,
s'=s,,w=1---1, and s; 1 iy s;. If s = s’ then s' is reachable from s; a
state is reachable iff it is reachable from the initial state .. We write — for the
reachability relation, i.e. s - s’ <= Jw € Lab*.s —> s'.

Transition systems are traditionally studied as models for concurrent pro-
gramming, nondeterministic programming, etc. This is not our main objective
here, in particular we are interested in the ordinary deterministic scenario:

Definition 2 l l
An TS is called deterministic if s — s’ and s — s” imply s’ = s".

Definition 3
Given a transition system, a relation < on states is a simulation if the following
holds: If s; < s5 then

~

VI € Lab,s| € Sta. (s1 —> s, D s} € Sta. (s2 — sy A s} < s))).

~

A bisimulation is a simulation < such that 2 is a simulation as well.

The notions of simulation and bisimulation are usually studied in the context
of process algebra [5] or modal logic [11]. However, the use of bisimulations we
have in mind in this paper is better indicated by Rutten’s observation [14] of the
duality between algebras and congruence relations on one hand and transition
systems (viewed as coalgebras) and bisimulations on the other.

Here are a few useful observations on simulations and bisimulations: simu-
lations are closed under (arbitrary) union and composition, hence the transitive
closure of a simulation is a simulation and there is always a largest simulation.
We write 3 for the largest simulation in a TS (which is necessarily a preorder)
and = for the largest bisimulation (which is necessarily an equivalence). The
reflexive transitive closure of a simulation is also a simulation, since the iden-
tity relation obviously is one. Bisimulations are also closed under inversion and
hence under equivalence closure or partial equivalence closure. The symmetric
interior of a simulation is a bisimulation whenever the TS is deterministic.

There are several ways of defining an “information ordering” for any trans-
ition system, one is the familiar order on traces:



Definition 4
We define a relation C on states as follows:

51 C sy <= VYw € Lab*,s| € Sta. s, — s} D 3sy, € Sta. s5 — s
We write s = s’ for sC s’ As' C s.

Proposition 1 The relation C is a preorder.

Simulations and the trace preorder are connected, especially for determin-
istic or even pseudo-deterministic transition systems. We call a TS pseudo-

C ! ! .
deterministic iff s — s’ and s — s"" always imply s’ = s”.

Proposition 2 Any simulation is contained in T and any bisimulation in =.
If the TS is pseudo-deterministic then C = 3 and = = ~.

We take pointed transition systems as our abstract notion of programming
language, with one modification: we introduce a notion of error-state in order
to be able to express soundness.

Definition 5

An error transition system is a pair (T, Err) such that T is a transition system
(Sta, Lab, Tra) and Err C Sta is a set of error states. The strict part of an ETS
is the TS Ty obtained from 7' by removing all error states and restricting the
transition relation accordingly.

The strict part of a pointed error transition system is pointed if ¢ is not an error
state itself. A simulation (bisimulation) of an ETS is a simulation (bismula-
tion) of its strict part. For error transition systems there is a simple notion of
soundness:

Definition 6
A state s is sound iff no error state is reachable from s. A pointed ETS is sound

if no error state is reachable. For each ETS T = (X, Err) we define another
ETS T* = (X, {s € Stax | —soundr(s)}).

In particular, Tj is the transition system in which all unsound states have been
removed.

Of course, we can construct only sound ETSs simply by setting Err = 0,
but this is like denying that humans make errors. More useful is the following
setting: start with an unsound untyped ETS, restrict the set of labels to those
that pass the type-check of some type system, and then obtain a new ETS by
restricting the transition relation to these labels; if this new error transition
system is sound then one can say that the type system is sound w.r.t. the
untyped ETS. We shall explore this later in more detail.

As well as soundness, we can define a notion of completeness for an ETS.
For pointed transition systems, one could say that they are complete iff every
state is reachable upto bisimilarity. Dually to the view that one can implement



a partial function by a more complete function, it should be sufficient to reach
a state that simulates the other one. In error transition systems, we are not
interested in reaching error states or indeed unsound states. To sum up:

Definition 7
For arbitrary transition systems: a state s is called complete iff

Vs € Sta.3s] € Sta. (s — s) A sy 3 s1).
It is called bicomplete iff
Vs € Sta. 3s] € Sta. (s —» s} A sy = 8)).

A pointed TS is (bi-) complete iff its initial state ¢ is (bi-) complete. An error
transition system 7T is strongly (bi-) complete iff Ty is (bi-) complete, and it is
called (bi-) complete iff T* is strongly (bi-) complete.

Any bicomplete ETS is complete, but the converse may not hold. We shall
later see that there is a large class of ETS that fall into this gap. In some sense
bicompleteness is therefore a more adequate notion.

The choice of ~ and Z in the definition of bicompleteness and complete-
ness instead of other notions of equivalence and approximation (e.g. trace equi-
valence) is motivated by the observation that the bisimulation equivalence on
transition systems is a concept dual to congruence relations on X-algebras; for
an elaborate treatment of this idea see [14]. In particular, we can view labelled
transition systems as models of a programming language amongst which the
fully abstract model is a terminal object; the latter is also given by quotienting
any model by its largest bisimulation. Our notion of bicompleteness corresponds
to asking whether the terminal model satisfies the formula Vs.c — s.

3 A Concrete Programming Language

We will now consider the pure A-calculus as a concrete programming language,
i.e. as an instance of the notion of pointed error transition system. The op-
erational semantics is provided by the untyped A-calculus with call-by-value
evaluation. This choice (call-by-value) is somewhat arbitrary, but the questions
we address and the answers we find are not significantly different from what we
could do with other strategies.

We consider expressions over the abstract syntax as shown in table 1, for
which we assume the usual notational conventions for the A-calculus.

The metavariable e ranges over ezpressions, m over matches (a pair of a vari-
able and an expression), and x ranges over a countably infinite set of variables.
To define an operational semantics for this language we need a notion of value
and environment, as defined in the right column in table 1. The metavariable v
ranges over values which for this simple language are just closures — a closure is
a pair of an environment and a match. E ranges over environments, finite lists



v == (E,m)
m= Q| Elz — ]
rou= ol

e == z|(Am)|(e€)

Table 1: Abstract Syntax

r#Zx Erz—or
Elz' mv]Fax—>r Elz »v]lkFz—>wv

OFz— 1

EFXm — (E,m)
Ete— (E' ze') Ere v Elz—vke —r

EF(ee)—>r
EFe— 1 Ete—v Ete—> R
EF(ee)— 01 EF(ee)y— 1

Table 2: Expression Evaluation

of pairs of variables and values; r ranges over evaluation results, B is standing
for an evaluation that has “gone wrong”.

Table 2 defines the evaluation of expressions in the usual SOS style (see [10]).

We have three rules for variable access: (i) we skip irrelevant environment
entries, (ii) we access value entries, and (iii) we report an error when we access an
unbound variable, i.e. a variable in the empty environment. For this language
this is the only elementary form of error. All other errors result from error
propagation.

In the last rule we only propagate B when the first component reaches a
value. Without that requirement, an implementation of this dynamic semantics
would have to employ a parallel evaluation strategy (normally used for imple-
menting angelic non-determinism [3]) for the evaluation of applications.

Having variable access as the only source for unsoundness is not enough to
motivate a proper type system for preventing unsoundness and we will see later
why. But even in that limited setting we can already state and prove soundness
and completeness results by using techniques which can be adapted easily to
more sophisticated languages.

Based on this traditional large-step operational semantics, we can define a
corresponding ETS:

Definition 8
The ETS )\, is defined as follows:

e Sta = Env U {R}



[ ] L:<>
e Lab = Ezp x Var
o F

(e_,z)). < Ele— Wand
EYYE — 3ve Val. E-e 5 v AE = Elz — v

e Err ={M}

Proposition 3 The ETS A\, is deterministic.

The ETS ), is obviously unsound since the evaluation of a variable in ¢
results in WM. Since an environment only binds finitely many variables, any
environment in ), is unsound; consequently, the notions of completeness and
bicompleteness are not defined for A, since (\,)§ has no states at all. As we
shall see later, \, is strongly bicomplete.

In order to establish some general results for this untyped language we need
a few auxiliary notions: context, free variable, etc.

For some meta-theoretic reasoning it is useful to have a notion of “expression
with a hole”. For our purposes it is sufficient to restrict this general idea of
context to more specific ones.

Definition 9
Contexts are defined over the following abstract syntax:

C == O] ((AzC)e)

Given a context C' and an expression e we write C[e] for the expression defined
as follows:

O] = e
((w.C) Nl = ((w.Clel) ¢

Definition 10
We define concatenation of environments as follows (infix notation):

O+HE = E
Elz—v]|+HE = (E+ E)z~ v

We assume the usual definition of free variable for expressions FV(e) and
generalise it to values and environments as follows:

Definition 11
The domain of an environment E, Dom E, is a finite set of variables, defined
as: Dom O = 0 and Dom E[x — v] = {x} UDom E. The free variables of values
and environments are defined as follows:

FV(E,m)=FV(E)U (FV(Am) \ Dom E)

FV(0) = 0
FV(E[z — v]) = FV(v) UFV(E)



Intuitively, values and environments should not contain any free variables. But
we do not get this property for free. We will later establish a couple of results
which will enable us to ignore non-closed values and environments for all intents
and purposes.

For expressions, values, environments, etc. there is a notion of substitution,
e.g. E[e/z] is the environment obtained from E by replacing all free occurrences
of z by the expression e. Substitution is restricted to the case where the sub-
stitute is a closed expression; this way there is no risk of name capture and
substitution is purely syntactic.

4 Properties of Evaluation

To show certain properties of the simulation < we first define a few other rela-
tions, some of which will turn out to be simulations or bisimulations.

Definition 12 .
We define a preorder 3 between values and a family of preorders 3 (indexed
by expressions) between environments as the smallest preorders satisfying (on

values):
Am

(B,m) 3 (E'\m) «— E X E'

e
For environments: E 2 E' iff for all z € FV(e): E = Ey + Ex[z — v] (with
x ¢ Dom Ej) implies that there are environments E], E} and a value v’ with
E' = E| + El[z — V'] (and = ¢ Dom E}) such that v S v'.

Intuitively, v X v’ holds if v and v' are the same except that closures in v’ may
have additional entries and may omit redundant ones; a binding is redundant if
it binds a non-occurring variable.

e
Lemma 4 If By 3 E» and Ey + e — vy then there is a value vo such that
EyFe— vy and vy 3 vs.

Proof. By induction over the height of the derivation tree of E; e — v.
For the evaluation of variables there are two (potentially) succeeding rules,
so we have two cases to consider for deriving E1 F x — v;.

T
1. E{lz = v1] F x — v;. Then by definition of X we have Ey = E, -+ El[z —
v2] with ¢ Dom E} and v; 3 ve. From this we get Es F z — vs.

2. Suppose Ej[z' = v] F & = v from = # 2’ and E| F ¢ — v;. Clearly
T T
E| 3 Ey 3 E» and the result follows from the induction hypothesis for

~

El -z — .



For the evaluation of A-bindings the result is immediate from the definitions
of evaluation and Z.

Closure application: if we derive E; F (ee') — vy from E; F e — (E{,m),
m=uzx.e", By Fe — v, and Ej[x — v] F ¢’ — v; then we know by induction
hypothesis on e that Es - e — (E},m) and (E],m) 3 (E}, m); by induction hy-
pothesis on ¢’ we have Ey F e’ — v’ and v 3 v'. Now consider the environments

"
(&

E! = Ej[z — v] and E} = El[z — v']. If we can show E]' 3 E! then we get
the result by induction hypothesis on E{ - ¢’ — v;. Considering an arbitrary
variable y free in e”, we either have y = x for which the result is immediate from

v 2V, or y # z for which the result easily follows from (E{,m) 2 (E},m). O

Definition 13
EXF ifftVe ESE.E~E ffESE NE JE.

For the relation < we immediately get from lemma 4 and determinism of A,:

Corollary 5 The relation = is a simulation and ~ a bisimulation.

The bisimulation ~ is already a rather powerful tool. For example, it allows
to show that the permutation and thinning of environment entries results in
bisimilar environments. In very similar style we can establish other bisimula-
tions, though we shall not go into the same detail. In particular, we want to get
rid of free variables in values and environments.

Definition 14

We define relations « on values and environments as the smallest equivalence
relations such that for all variables x: E « E[L/z] and v « v[L/x] where L is
the expression (Ay.yy) (Ay.y y).

Obviously, each —-equivalence class of values and environments has a closed
member. Moreover, this member is unique.

Proposition 6
VYo.3W'. (v~ ' AFV(W')=0) A VE.JE'.(E~ E'NFV(E') =0)

The idea behind - is that the L expression is just as good as an unbound
variable, because accessing an unbound variable during an evaluation results in
B and accessing L also fails to deliver a result. In other words:

Proposition 7 The relation — is a bisimulation.

Remark: the formal proof is technically slightly different from the previous one,
as one has to allow the replacement of expressions by equivalent ones, where
the equivalence relation depends on the (domain of the) current environment.
Based on what we have so far we can define a new bisimulation equivalence
= as (~ U ~)T which allows us to combine the pumping of closures with the



replacement of free variables by L. Notice that we do not have to go through the
operational semantics again to show that = is indeed a bisimulation equivalence:
it is a bisimulation, because bisimulations are closed under arbitrary union and
under composition (and hence under transitive closure), and it is an equivalence
relation because the transitive closure of any symmetric and reflexive relation
is one.

Definition 15
We define inductively a pair of relations ~» between values and expressions and
between environments and contexts as follows:

(E,m) ~ C[Am] < E~C

O~0
Elz —»v]~ Cl(Az.0)e] = v~ eANE~C

Read v ~~ e as “v is represented by e”. Clearly, all values and environments
have unique representants:

Proposition 8 Vv.Jle.v ~» e AVE. JIC. E ~~ C

Moreover, closed values have closed representants:

Proposition 9 VE,C,e. (E ~ C D FV(Cle]) C FV(E)U FV(e) \ Dom E)
and Yu,e. (v ~~e D FV(v) D FV(e))

The idea behind representants is that if e represents v and we evaluate e
then we get v back. In this strict form this is (i) meaningless, because for
an evaluation we have to give an environment as well, and (ii) not true (for
any environment), because at least closures may differ in a certain way and
free variables in v could spoil the result. So we have to consider values and
environments modulo some bisimulation equivalence. What we can claim is the
following:

Lemma 10 Let v be a closed value and E be a closed environment. Suppose
v~ e and E ~ C. Then we have

1.VE' W . E'te— v Av=0

2. W, . (FV()) CDomEANEFe —v')D
VE'. " (E"F Cle'] = v" Av' = 0"))

Proof. By induction on the structure of v and E (notice that closedness is
preserved, i.e. (E,m) is a closed value only if E is a closed environment, etc.).

Closures: let v = (Ey,m) and E; ~ Cy; therefore e = Ci[Am]. We have
to show E' F e — v’ and v = o' for some v'. Clearly Ey - Am — (Ey,m), so
we can apply the induction hypothesis for F; (second property) and obtain the
result.

10



For environments, consider the empty environment: suppose ¢ - a — v" and
FV(a) C FV(0) = 0. Then for any E' we have ¢ ~ E' by definition of ~ and
hence by lemma 4 there is a value v" such that E' - a — v"” and v’ = v".

Non-empty environments: E = Ej[x — v1]. Suppose v; ~ e; and Ey ~ C}.
Take an arbitrary expression e’ with FV(e') C Dom E such that E ¢ — v’
for some v'. Consider the expression eqg = (Az.e') e;. We have E; F ey — v"
iff we also have E; F e; — v] and Ej[z — vi] F ¢ — ¢". From the induction
hypothesis on v; we know that there is a v] such that Ey F e; — v} and v; = vf;
this implies £ = E" = Ej[x — v]] and thus there is a v"" with E" F e’ — v"
and v' = v". Now we can apply the induction hypothesis on F; and get for
any E' a value v"" with E' - Cy[eg] — v Av" = v""'. By transitivity of = we
have v’ = v, O

Now, from lemma 10 and proposition 6 it follows that for any value v there is
an expression e the evaluation of which reproduces in any environment a value
that bisimulates the original one.

Corollary 11 Let E be a closed environment with E ~ C.
If E4++ E' - e — v then there is a v' = v such that E' - Cle] — v'. Conversely,
if E' F Cle] = v’ then there is a value v = v’ such that E + E' e — v.

Proof. Follows easily from lemma 10 by induction on the length of E. For ex-
ample, the induction step for environments goes as follows (we omit the bisim-
ilarity argument for the values; e, is the representant of v):

Epjz »v]H E' Fe—owv < Ey+H E'F (Az.e)e, = v <

E'F C[(Az.e) ey] > v2 <= E'F Cle] = vo o

Because )\, is deterministic we already know from lemma 2 that C is a
simulation and = a bisimulation. From the properties we have established about
= we can show something stronger: environment concatenation -+ is monotonic
w.r.t. to C, and therefore the trace order on environments is directly reflected
on values.

Theorem 12 The ETS A, is strongly bicomplete.

Proof. We have to show that any environment is reachable from ¢ upto ~. We
show the stronger property that any E[xz — v] is reachable in a single step from
E, the theorem then follows by induction on the length of the environment. The
value v is bisimilar (via =) to some closed value v' which has a representative

v’ ~ e. Hence by lemma 10 we have E F ¢ — v" with v = ¢" and so by

definition of transition E % Elz — v"] and by definition of = on values:

E[z — v] = E[z — v"] which implies E[z — v] = E[z — v"]. o

11



5 Abstract Type Systems

What is common to all type systems? Typically, they come with a ternary
relation B + e : 7 which states that an expression e has type 7 in a type
environment B. Having this type 7 can be seen as an assertion that it is safe
to evaluate the expression e in any environment E that “fits” B. We can
think of the type as standing for a class of values and the type environment
as standing for a class of (value) environments. The “fitting” relation is a bit
vague in general, but in any case the empty environment should fit the empty
type environment. Therefore, the ingredients of a type system are similar (in
an informal sense) to the ingredients of the programming language which it is
attached to.

The above argument is somewhat biased towards functional programming
languages. We are looking for the general scenario, i.e. type systems for arbitrary
pointed transition systems. What is a type system in this abstract setting?
Generalising from the observation we just made for functional programming, a
type system for a pointed TS should be another pointed TS. This is a bit like
taking the slogan “typing is an abstract interpretation” and turning it around:
“any abstract interpretation induces a type system”.

To link the type system with the operational semantics we only need one
thing: a link between the syntaxes of both systems.

Definition 16
A type system is a structure (A, B, =) such that A and B are pointed transition
systems and = C Labg X Labp.

In the following we will concentrate on type systems with Lab4 = Labp and
where = is the equality on labels.

What does it mean to have a type system? The original idea from functional
programming was to restrict the set of expressions to well-typed ones. A well-
typed expression is simply an expression that has a type. Dually, environments
have types: the corresponding type environments. The general picture is that
the states of the type system serve as types for the states of the other transition
system.

Definition 17
Given a type system (A, B, =) we define the associated untyped transition system
A : B as the pointed TS given as:

e the set of states Stas x Stap,
e the set of labels Labg x Labp,
e the initial state (1a,tB),

e the transition relation:
XLY)2W (XY = z=yAX S X' AY LY.

12



In other words, the associated untyped transition system is just the pointwise
product — except for the labels which are synchronised via the label relation
=. Notice that the construction is symmetric: the transition system we get
from imposing A as a type system for B is isomorphic to the one we get from
switching their roles.

We do not have yet a notion of soundness or completeness — for this we
need again error states.

Definition 18
A type system for an ETS E = (T, Err) is a type system (T, A, =). Its associated
error transition system E : A is (T : A, Err x Stay).

The idea is that we reach an error whenever we reach an error in the underlying
untyped world. Instead of the above one could use ETSs themselves to type
ETSs, with the idea that error states in the type system represent type errors.
However, this would not change the break of symmetry.

We can lift the notions of soundness etc. from ETSs to ETSs with type
systems: a type system A for an ETS is called sound (complete) iff the associated
ETS is sound (complete). One can check that this gives indeed the usual notion
of soundness. In particular, for \,: a type system for A, is sound iff no expression
that type-checks in the initial type environment gives a run-time error in the
initial environment of the underlying untyped language.

Establishing the similarity or bisimilarity of states in the typed system can
be arbitrarily tricky. States that could be distinguished in the original system
might become indistinguishable due to the sudden lack of observers (labels that
pass the type check). Indistinguishability is preserved though:

Proposition 13 Let A and B be pointed transition systems. Let s 3 s2 and
b1 XB b2. Then (s1,b1) 3 (s2,b2) in A= B for any =.

6 Concrete Type Systems

What would a sound and complete type system for A, look like? We restrict
our attention to the situations in which the labels are equal and = is the iden-
tity relation. A slightly unusual type system is given by the following pointed
transition system which we call A%:

e states: finite sets of variables with () as initial state,

e labels: as for )\, i.e. pairs of expressions and variables,

o transitions: M “Y N <= N =MU {z} NFV(e) C M.

Since the only elementary error in A, is to access an unaccounted variable,
it should be intuitively clear that A° is sound for \,. Indeed:

Theorem 14 )\, : \° is sound.

13



Proof. We prove by induction on the derivation trees the stronger invariant that
whenever E e — r and FV(e) C Dom E and FV(E) = () then r # B and
FV(r) = 0. Clearly Dom E = M in any reachable state (E, M) and hence it
follows that FV(E) = ) which means that B is unreachable. a

What about completeness? This is not such a trivial question as one first
might think, because the restriction to closed terms affects extensional equality
(see [1, 8]). Still, the pointed TS A° is bicomplete for \,:

Theorem 15 )\, : \° is bicomplete.

Proof. Take an arbitrary non-error state (E,M). We have to show that it is
reachable (up to &) if it is sound.
Suppose x € M\ Dom E: in this case the state is unsound since we can reach

B by the transition (E, M) %) W. Therefore we can assume M C DomE.

Define E | M to be the restriction of E to variables occurring in M. By an
argument very similar to the proof of lemma 4 we have E | M ~ E for all e with
FV(e) C M. This implies (E,M) =~ (E | M,M). By strong bicompleteness
of A\, (theorem 12) the environment E | M is reachable up to =. Suppose
E| M~ E" and ¢ — E'. Lemma 13 implies that (E', M) ~ (E, M). The
domains of E' and E | M are equal to each other (by bisimilarity) and to M
(by the earlier assumption). Moreover, the concrete w obtained from the proof

of theorem 12 only consists of closed expressions. But for any closed expression
¢ we have the A0 transition M =% M U {z} and thus (E’, M) is reachable. O

If we consider more traditional type systems for the A-calculus, for example
A7 or other systems of the A-cube (see [2]), establishing soundness of these type
systems for A\, is possible through proving a subject reduction property. These
systems typically exhibit the difference between completeness and bicomplete-
ness. The transition system for A™ simply uses types as values and modus ponens
for application.

Theorem 16 A\, : A7 is complete but not bicomplete.

Proof. Suppose (E, B) is a sound state. Any reachable state of the form (E’, B)
simulates (E, B) because all expressions that type-check in B are strongly nor-
malising in E’ (by the SN property of A\7). If there is no reachable state of
the form (E’, B) then B contains bindings to uninhabited types. We can re-
place all occurrences of type 0 in B by 0 — 0 getting a new type environment
B'; the state (E, B) is simulated by (E, B’), in particular all expressions that
type-check in B also type-check in B’. Moreover, all types in B’ are inhabited,
so that we can find some reachable (E’; B") which by the previous argument
simulates (E, B') and (by transitivity) (E, B).

Bicompleteness fails, because we could give a variable z the type (0 — 0) —
(0 — 0) and bind it to ({,2.L) where L is some non-terminating expression.
This is a sound pair, but it is not bisimilar to any reachable state. O
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One might regard the completeness argument in the proof as unsatisfactory as
we simply replaced all troublesome types by other types. The reason we could
do this is that types are not directly observable in A\™, they are part of the states
and not part of the transitions. To forbid the change of types one could modify
transitions in A\™ from (e, z) to (e,xz,t) where t is the type of x and e. This
change would ensure that types are preserved by simulation and it would imply
the incompleteness of the corresponding typed transition system.

The lack of bicompleteness of A, : A” due to the failure of expressing non-
termination may seem innocuous, but it is a bit more serious than one might
expect. With an argument very similar to the one used for the proof of the
completeness claim one can show that any two reachable states (E,B) and
(E', B') are bisimilar if B = B’. The reachable part of the transition system
Ay @ A7 (divided by bisimilarity) is like the minimal model of A\™ in which all
carrier sets are either singletons or empty, depending on whether the proposition
corresponding to the type is true or not. In particular, we cannot distinguish
different Church-numerals. Even if we added a zero-tester and a predecessor,
different Church-numerals would still be indistinguishable because we still have a
strongly normalising language. The further addition of a value that triggers non-
termination (like the counterexample to bicompleteness) changes all that: non-
termination of a A, evaluation is observed at the transition system level as the
failure to make a transition with a certain label and thus it affects bisimilarity.

In other words, the completeness question is more interesting for type sys-
tems that allow non-termination, e.g. Ax or PCF. PCF is essentially A\™ extended
by natural numbers and fixpoints, see [9]. Using call by value evaluation we as-
sume that it is an error to evaluate the PCF term (Succ ) if z is not bound to a
natural number. This induces a partial logical equivalence relation on all values
(see [7]) and a PCF state (F, B) is sound iff the environment E (restricted to
the domain of B) is logically related to itself w.r.t. B. From this we can deduce
the bicompleteness of PCF:

Theorem 17 PCF is bicomplete.

Proof. Let (E,B) be a sound (but unreachable) PCF state. We want to con-
struct a reachable state (E', B) which is bisimilar to (E, B). We do this point-
wise for all variables bound in B. We can do this by encoding the syntax of PCF
in PCF and writing the obvious evaluation functions for evaluating godelised
open expressions in a given (typed) environment. Notice that we need one func-
tion for each combination of types for the environment and the expected type
for the expression, but for each concrete typed value finitely many such func-
tions suffice. O

One might expect that the argument in the proof of theorem 17 carries over to
arbitrary (Turing-complete) programming languages. However, it is not always
possible to express an evaluation function within the language, i.e. traversing the
structure of an expression may already violate the typing rules. In particular,
Standard ML [6] is incomplete: for recursive datatypes which “mutate” during
recursion it is not possible to fully traverse their data, example:
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ZZ | SS of (’a t) t | Var of int
Sof (Pat) t

datatype ’a opent =
datatype ’a t = Z |
fun eval ZZ env = Z
| eval (SS x) env = S (eval x env)
| eval (Var n) (v::xs) =
if n=0 then v else eval (Var (n-1)) xs

The function eval can be seen as evaluating (a subset of the) encoded open
expressions of type ’a t in a given environment. It is sound, but its definition
does not type-check in SML and it is not possible to define this function by
other means either [4].

7 Conclusion and Related Work

We have defined a general notion of what it means to be a type system for an
arbitrary transition system, and express what it means for such a system to
be sound and/or complete. So far, the literature has focussed on looking at
particular notions of soundness of particular programming languages, e.g. [15]
for Standard ML.

Related to the work presented here is a recent paper by Puntigam [12]. Pun-
tigam aims at types for object oriented languages and uses the trace semantics
for typing. In several ways this is more specific than what we suggest here, but
it is based on the same fundamental idea of linking labelled transitions with
types. While Puntigam has a different and more specific objective but uses sim-
ilar methods, van Raamsdonk and Severi [13] also aim at typing for transition
systems but do it very differently; still, they also use states as types for states.

We showed the completeness and lack of bicompleteness of the type system
A7. It should be clear that the proof of the latter easily generalises to all type
systems in the A-cube as they admit the same counter-examples, but it is less
clear and indeed dubious whether the completeness argument goes through as
well. By construction, reachable environments are inhabited and therefore they
are tautologies when we interpret them as propositions using the Curry-Howard
isomorphism. Conversely, any environment that has a tautological type envir-
onment is reachable (up to simulation). This holds for all strongly normalising
type systems for the A-calculus. We could show the completeness of A™ by
exhibiting for any non-tautological type environment a tautological one that
type-checks the same (and more) expressions. This trick does not carry over to
more expressive type systems than A7.

We also showed the bicompleteness of PCF. The proof of this property can
apparently be adapted to many other Turing-complete programming languages;
still, Standard ML is (surprisingly) incomplete.
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