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Abstract 

This paper provides an assessment on the systematic risk in the equity capital markets of 

Pakistan. We investigate the possibility of time varying betas in Pakistan using three 

estimation techniques: (a) a Constant Conditional Correlation GARCH Approach, (b) a 

Dynamic Conditional Correlation GARCH Approach, and (c) a Principal Component 

Analysis approach. A sample of returns on the top 38 firms listed at the Karachi Stock 

Exchange (KSE) over the period 1998-2005 is used as a platform to evaluate the performance 

of these three approaches. An in-sample forecast evaluation of various approaches is 

employed which shows the superiority of the GARCH approach. 
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1 Introduction  

Modern finance relies heavily on estimates of systematic risk ‘beta’ as it has a pivotal role in 

testing assets pricing theory, estimation of cost of capital, testing trading strategies, and 

conducting event studies.  

The Capital Asset Pricing Model (CAPM) assumes that the relevant risk measure in holding a 

given security is the systematic risk or beta, as all the other risks can be diversified through 

portfolio diversification. Various studies show that beta varies over time in contrast to the 

CAPM assumption that beta is time in-variant. For example, Blume (1971) in a pioneering 

effort finds that portfolio betas tend to regress towards one over time and that his 

methodology produces superior beta estimates. Vasicek (1973) argues that utilizing the 

Bayesian Approach can produce better beta estimates. Vasicek and Blume betas have been 

empirically tested for their ability to predict future period-unadjusted betas (Klemkosky and 

Martin, 1975; Dimson and Marsh, 1983). These studies marginally favor Blume's method for 

its accuracy in determining future ordinary least square (OLS) estimates. It was not until 

twenty years later that Lally (1998) examines Vasicek and Blume methods for correcting 

OLS betas and suggests that when the firms are portioned into industries, Vasicek's method 

could be superior to Blume's method. In addition, Lally (1998) points out that the degree of 

financial leverage may have significant impact on beta forecasts.  

The pursuit for obtaining more accurate beta estimates has continued over years. Some other 

related issues that have been investigated include the methods of estimation (Chan and 

Lakonishok, 1992); the effect of length of estimation period (Levy, 1971; Baesel, 1974; 

Altman et al., 1974; Roenfeldt, 1978; Kim, 1993); the effect of return interval (Frankfurter et 

al., 1994, Braislford and Josev, 1997) and the effect of outliers (Shalit and Yitzhaki, 2002).  

Fabozzi and Francis (1978) find evidence in favor of stochastic properties of beta estimates. 

In addition, Sunder (1980), Lee and Chen (1982), Ohlson and Rosenberg (1982), and Bos and 

Newbold (1984) provide strong evidence that the beta of a security is non-stationary, and can 

be best described by some form of a stochastic model. The phenomenon of Beta Instability is 

not limited to any particular market as suggested by various studies on the Australian, Indian, 

and Singaporean markets. Brooks, Faff, and McKenzie (1998) investigated the beta 

instability over the period 1974-1996 for Australian market and found that 67% of firms have 

time varying betas. Brooks, Faff, and Arif (1998) also support the incidence of beta 

instability for the Singapore market. Moonis and Shah (2003) test for time varying betas in 

the Indian Market and find that the null of beta constancy is rejected for 52% of firms. Much 
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of this discussion supports the time varying beta models as opposed to constant beta models. 

Therefore the success of the conditional CAPM is dependent on capturing the dynamics of 

beta.  

This paper investigates the instability of beta in the Karachi Stock Exchange (KSE) using 

three approaches. The first approach is Constant Correlation-Generalized Autoregressive 

Conditional Heteroskedasticity (GARCH) or simply put GARCH approach to model the time 

varying beta using conditional variance information produced to construct a conditional beta 

series and has been used in various studies for volatility modeling (Bollerslev, 1990) and for 

time varying beta estimation (Brooks, Faff, and McKenzie, 1998). The second approach is 

Dynamic Conditional Correlation GARCH (DCC-GARCH) approach. DCC-GARCH models 

are a new class of models which are easy to estimate and allow the correlation to change over 

time and were developed in Engle (2002). The third is Orthogonal GARCH (O-GARCH) 

approach – a principal component analysis based approach that allows generating large 

covariance matrices in an efficient manner. This model was first introduced in Alexander and 

Chibumba (1996) and subsequently developed in Alexander (2001). The O-GARCH model is 

an accurate and efficient method for generating large covariance matrices and only requires 

the estimation of uni-variate GARCH models.  

Our study is significantly different from the previous literature that undertook beta instability. 

Most of the previous studies except one (Brooks, Faff, and McKenzie, 1998) have used one 

technique and they are constrained by the use of constant correlation.1  In contrast, our study 

also employs Conditional Correlation for the first time to account for beta instability. We find 

evidence in favor of time variant betas of firms listed at the KSE. We also find that constant 

correlation model perform better than their counterpart conditional correlation models for 

beta estimation. 

The paper is organized as follows. Section 2 outlines the methodology by which conditional 

and un-conditional betas may be estimated. It also explains the performance evaluation 

criteria of alternative models.  Section 3 details the data to be analyzed and presents selected 

descriptive statistics. Time varying betas are then generated for the dataset and the relative 

performance of each model is evaluated. Finally, Section 4 concludes the paper. 

                                                           

1 Brooks, Faff, and McKenzie, 1998 uses (a) a multivariate generalized ARCH approach, (b) a time varying beta 

market model approach suggested by Schwert and Seguin (1990), and (c) the Kalman filter technique. 
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2 Methodology 

The unconditional point estimate of beta for any asset is given by the Constant Market Risk 

Model (CMRM):  

itmtiiit RR    (1)  

Where: 

 Rit   =  the stock returns series  

 Rmt =  the index returns series  

 it     =  the disturbance vector 

The CMRM assumes that intercept and slope vectors are constant over time with the latter 

representing the systematic risk or beta of the firm. The evidence presented in the previous 

section strongly indicates the instability of the CMRM parameters across various markets. 

Therefore we use Time Varying Market Risk Model (TVMRM) to establish beta instability. 

The TVMRM utilizes a binary variable that equals to one when the index return was negative 

(Bear) and zero when index return was positive (Bull), e.g. if the index return between 

January and March was negative the binary variable assumes value of 1.  

itmtmtit DRRDR   132132  (2)  

Where: 

 Rit   =  the stock returns series  

 Rmt =  the index returns series  

 D1  =   a binary variable that equals one when index return was negative 

it     =  the disturbance vector 

Which is equivalent to 

    itmtBullBearmtBullBearit DRRDR   1212  (3)  

2.1 GARCH 

This technique involves the use of multivariate GARCH model introduced by Bollerslev 

(1990). A bi-variate specification of the model is used in this study and the general 

specification of model is subsequently presented. We begin by specifying the conditional 

mean:   

''

ititR   (4)  

Where 
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This may be described as  1 ~ 0,it t tN H  
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information set 
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and is normally distributed with zero mean and a conditional covariance 
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A functional form must be specified for this conditional variance matrix Ht.  The conditional 

variance in the univariate form may be represented as:  
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 (7)  

or,  

1 tt BHACH   (8)  

where Ht, C, A,  and B represent their respective matrices. The model presents a complex 

problem as the number of coefficients that need to be simultaneously estimated are 

prohibitively high. In this particular instance there are 21 individual coefficients and 

increasing the order of the GARCH model would results in simultaneous exponential increase 

in the coefficients. Bollerslev (1990) proposed to set the off-diagonals in the coefficient 

matrices equal to zero which results in a new specification of conditional variance of each 

equation.  

1,2222

2

1,22222,22

1,1111

2

1,11111,11
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
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
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 (9)  

Bollerslev (1990) suggests, assuming correlation between conditional variances constant, to 

derive conditional covariance. Though such an assumption may provide computational 
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flexibility, this effectively imposes a highly non-linear restriction on the coefficients in 

Equation (6). Thus conditional covariance from the conditional variance matrices may be 

estimated as: 

ttt hhh ,22,1112,12   (10)  

However, we only need to estimate 7 parameters instead of 21, given that the coefficients a & 

b ≥ 0 and the coefficients c > 0. The positive sign for Ht can then be guaranteed (Engle and 

Kroner, 1995). This bi-variate GARCH model provides the necessary elements to construct 

the time series of beta for any security by estimating Equation (11). 

 
 mtt

mtitt

it
R

RR

var

,cov
  (11)  

Where  mtt Rvar  is provided in the form of h22,t and  mtitt RR ,cov  in the form 12,th  . As such, 

the resultant conditional beta comes from a restricted full version of Constant Conditional 

Correlation GARCH model.  

2.2 Dynamic Conditional Correlation GARCH 

Sheppard (2001) and Engle (2002) propose the DCC-GARCH model. This model is a 

generalization of Bollerslev (1990) model and makes use of uni-variate estimates as inputs in 

the second stage of estimation process as described in Equation (12). Following Engle 

(2002), the vector of k asset returns is the demeaned vector, t tr r   , and is assumed to be 

conditionally multivariate normal:  

 1| ~ 0,t t t

t t t t

r N H

H D R D




 

(12)  

Where:  

Ht is the conditional covariance matrix;  

Rt is the kxk  time varying correlation matrix.  

Dt is a kxk diagonal matrix of conditional volatility from GARCH(1,1) as follows:  

  
qi

qitiqi

pi

pitipiiti hrh ,

2

,,   (13)  
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Dividing each return by its conditional standard deviation tih , , a vector of standardized 

returns is obtained,  1 ~ 0,t t t t tD r where N R  .This formulation may be used to write 

Engle’s specification of a dynamic correlation structure for the set of returns:  
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tQ is a diagonal matrix containing the square root of the diagonal entries of 
tQ .

tQ is the 

matrix of unconditional covariances of the standardized returns from the first stage 

estimation. Engle shows that the loglikelihood of the estimator may be written as:  

  ' 1
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1
log 2 2log log

2
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t t t t t
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L k D R R  
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(15)  

The first stage of the estimation process replaces Rt with the k x k identity matrix to get the 

first stage likelihood. This reduces to the sum of the log-likelihood of uni-variate GARCH 

equations. The second stage estimate the DCC parameters in (12) using the original 

likelihood in (13) conditional on the first stage uni-variate parameter estimates. The 

estimation procedure and theoretical and empirical properties are extensively discussed in 

Engle and Sheppard (2001).  

2.3 O-GARCH (Principal Component Analysis Approach)  

The third approach in this study utilizes principal component analysis for generating 

Covariance matrices and was proposed by Alexander (2001). Consider the normalized data in 

a matrix X of dimensions T x k where each column is standardized with mean zero and 

variance one. If the ith asset return is yi, then the normalized variables are   iiii yx  / , 

where i  and i  are the mean and standard deviation of yi for 1, ,i k . Now let W be the 

matrix of eigenvectors of X`X/T, and be the associated diagonal matrix of eigenvalues, 

ordered according to decreasing magnitude of eigenvalue.2 The principal components of Y 

are given by the T x k matrix 

XWP   (16)  

                                                           

2 Eigenvectors are a special set of vectors associated with a linear system of equations (i.e. a matrix equation) 

that are sometimes also known as characteristic vectors, proper vectors, or latent vectors (Marcus and Minc, 

1988). 
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It is easy to show that such a linear transformation of the original factor returns produces 

transformed risk factor returns P that are orthogonal and have variances equal to the 

eigenvalues in  . Since W is an orthogonal matrix (14) is equivalent to X = PW', that is  

iririiii pppy   *

2

*

21

*

1   (17)  

Where iijij  *  and the error term picks up the approximation from using only the first r of 

the k principal components. These r principal components are the key risk factors of the 

system. The m principal components are orthogonal so their covariance matrix is a diagonal 

matrix D, and variances of (15) give, 

VADAY  '  (18)  

Where, *
ijA   is the k x m matrix of normalized factor weights,     rpVpVdiagD ,,1   

is the covariance matrix of the principal components and V  is the covariance matrix of the 

errors. Ignoring V  gives the approximation that forms the basis of a principal component 

model for large covariance matrices:  

'ADAV   (19)  

This provides computational efficiency by calculating only r variances instead of   2/1kk   

variances and co-variances of the original system. Moreover, the V will always be positive 

semi-definite. 

2.4 Evaluation of Models 

Each of these three techniques discussed above generates a conditional parameterisation of 

risk. In an attempt to establish the relative dominance of one technique over another, the 

following methodology is proposed. The series Rit may be forecast in sample itR̂  using the 

market model in equation 1 that is: 

mtititit RR  ^

 (20)  

Where: 

it = provided by each of the three techniques previously described 

mtR = the return on the market index. 

A conditional intercept coefficient series is generated by the GARCH, O-GARCH and DCC-

GARCH, may be estimated as: 

mtititit RR   ^  (21)  
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i.e. it  is equal to the mean industry return less the mean conditional beta times the mean 

country index. Having forecast ^

itR using each of the conditional beta series, one may asses 

their goodness of fit by estimating the variance of the forecast errors and the coefficient of 

determination R2 (Brooks, Faff, and McKenzie, 1998 and Moonis and Shah, 2003). 

Furthermore, the use of these techniques for the evaluation of alternative models enables us 

to compare the performance of the GARCH, DCC-GARCH, and O-GARCH models for 

estimating time dependent conditional beta series. 

3 Data and Results  

The data for this study is taken from Datastream. Datastream contains adjusted prices of 

firms listed on KSE with daily frequency from 1998 onwards. Our data coverage starts in 

January 1998 and ends in December 2005. We select the sample firms based on the following 

criteria: 

1. The firm must be listed on KSE in January 1998; 

2. The market capitalization of the firms must be among the top 50 firms in January 

1998; and  

3. The rupee value traded of the firm must be among the top 50 firms in January 1998. 

This selection criteria returns 38 firms. In Pakistan the turnover is limited to certain blue chip 

firms and therefore all the firms do not have significant liquidity (i.e. number of days traded 

and rupee value traded) and therefore we restrict the sample to 38 firms. Should more firms 

be included in the sample, we would have to account for infrequent trading as well, which 

would have made our analysis even more complex. Although our sample is restricted to 38 

firms, it still accounts for 70% of the KSE 100 market capitalization as of date of writing.  

The continuously compounded percentage return of each firm and index is calculated as the 

log of the daily price differences. Table 1 presents descriptive statistics of the daily returns 

over the period January 1998 to December 2005. It shows that AGIL has the highest mean 

return of 0.19%, whilst HUBC has the lowest mean return of 0.05%. ICI exhibits the highest 

daily volatility (5.67%), followed by BOP (4.41%), whilst the lowest volatility in returns is 

found for ULEVER (2.21%).3 The returns series collectively is negatively skewed, 

leptokurtic, and significantly fail the Jarque-Bera test for normality. 

                                                           

3 Volatility is measured as the standard deviation of daily returns. 
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3.1 Market Risk Models 

Initially the Constant Market Model, as in Equation (1), was estimated for each of the firms 

using the KSE 100 Index as the market proxy. The market model generated beta estimates 

(standard errors in parenthesis) are also presented in Table 1 in the last column and reveal 

that each of the point beta estimates are significantly different from zero for all the firms at 

the 1% significance level.  

The evidence provided in the literature suggests that these market model parameters are 

unstable over time. Therefore, we estimate Time Varying Market Risk Model for each firm 

using Equation (2) and report the estimated parameters in Table 2. The results suggest that at 

1% significance level, 30% of firms have asymmetric betas, at 5% level it increases to 43% 

of the firms and at 10% level it reaches 50%. In sum, half of the sample firms listed at KSE 

have betas that are different in bull and bear market phase at the 10% or lower significance 

level and therefore it is appropriate to estimate time varying betas using the techniques 

outlined in the previous section. 

3.2 GARCH Conditional Beta  

Estimation of GARCH based time varying parameters of firm beta requires fitting GARCH 

(1, 1) model to the returns data for each of the 38 firms. The details of estimation are reported 

in Table 3, which presents GARCH parameters (standard errors in parenthesis) for model 

fitted to each firm's return time series. The correlation between the firm and KSE 100 Index 

is assumed to be constant and is presented in the last column and also in Table 7. Table 3 

shows that ARCH and GARCH terms (α and β respectively) are significant at the 1% level, 

sum to be less than unity, and satisfy the positively assumptions outlined earlier in Section 2 

for all firms except GTYR. Surprisingly, not a single firm exhibits negative ARCH parameter 

and therefore we include all 38 firms in the sample to carry out further analysis.  The highest 

correlation coefficient value is 86.45% for PTC, while the lowest value of 23.74% is 

observed for GTYR. Brooks et al. (1998) find that for majority of the industries in sample, 

the GARCH models are significant in the sense that ARCH and GARCH terms are significant 

except for paper and packaging, entrepreneurial investors and miscellaneous industrials 

sectors. 

The GARCH (1, 1) specification provides conditional variance for each of the 38 firms and 

then the beta series is estimated for each firm as detailed in Section 2.1. Table 6 presents first 

moment along-with the highest and the lowest values in parentheses. We find that the mean 

of beta series for each firm is similar to the point estimates of beta for each firm as noted in 

Table 1, however, the high and low conditional beta estimates exhibit high level of 
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variability. The lowest variability is found for ULEVER (1.15/0.18), whereas the highest 

variability is exhibited by ICI (10.4/0.28). 

3.3 DCC-GARCH Conditional Beta  

Table 4 presents estimates of a DCC model (standard error in parenthesis). The last two 

columns show the estimates of DCC (1, 1) parameters represented by α* and β*, whereas ω, 

α and β are from uni-variate GARCH (1, 1) for the firms under consideration. ARCH and 

GARCH parameters of the DCC-GARCH (1, 1) models are statistically significant at 1% for 

30 firms except for HUBC, PGF, and SAIF for which they are significant at the 10% level, 

for NML at the 5% level and insignificant for ICI, UNBL, GTYR, and ULEVER.  

The application of the DCC-GARCH model provides conditional co-variance matrices for 

each of the 38 firms. We then estimate beta series for each firm as outlined in Section 2 and 

report in Table 6. It is interesting that the mean of beta series using DCC-GARCH model is 

similar to the beta reported for each firm in Table 1. However, as in the case of GARCH (1, 

1) model, the high and low conditional beta estimates from DCC-GARCH model also show 

higher variation. The lowest variability (Table 6) is found for ULEVER (1.21/0.08), whereas 

the highest variability is exhibited by ICI (3.70/8.45). 

3.4 O-GARCH Conditional Beta  

The O-GARCH model utilizes the inputs from GARCH (1, 1) model. One of the advantages 

of this technique is that only GARCH (1, 1) variances of the trend and the principal 

components need to be estimated and the entire covariance matrix of the original system is 

only a transformation of these two variances as defined in Equation (16). O-GARCH is 

highly correlated to the GARCH (1, 1) and there is negligible loss of precision had the 

GARCH (1, 1) model been used to estimate all the required parameters. In illiquid markets 

like Pakistan, there is another advantage that volatilities and correlations of all variables in 

the system can be estimated even when the data is sparse or missing or unreliable. 

Table 5 presents estimates of O-GARCH Model (standard error in parenthesis) for all firms. 

The ARCH and GARCH parameters of all firms are significant at the 1% level except for 

FABL (5% level), PTC and MLCF (10% level), and ICI and GTYR (insignificant). It is 

noteworthy that the mean of beta series is again similar to point estimate of beta for each 

firm, as reported in Table 1. 

Again, as in the case of GARCH and DCC-GARCH models, the highest and the lowest 

conditional beta estimates using the O-GARCH model exhibit variability (Table 6). The 

variability was consistent using GARCH and DCC-GARCH and the same companies 
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exhibited variability in high-low betas, whereas the variability of high-low beta from 

estimates of O-GARCH is different. The lowest variability is found for PSO (1.55/0.27), 

whereas the highest variability is exhibited by AGIL (2.49/1.12). 

In general, all the approaches used in this study to estimate conditional beta appear to provide 

similar estimation of risk while considering their mean values. In addition, the mean of 

conditional beta series in most of the cases is not significantly different from beta point 

estimates computed from Market Risk Model. The comparison of beta estimates from all 

three models is presented in Table 6 with highest and lowest betas in parenthesis. When 

considering the range of estimated betas we find that DCC-GARCH model and GARCH 

model generate beta estimates that vary more over time as compared to those of the O-

GARCH model. 

Table 7 presents a summary of implied correlation estimates from all the models under 

consideration. Implied correlations are correlation coefficients between index return series 

and firm return series generated by different models used in this study and are determined by 

the following relationship:  

 

itmt

mtit

RR

itmt
RR

RRCov




,
,   (22)  

When considering the range of implied correlation coefficients we find that the O-GARCH 

model generates correlation coefficients that vary more over time as compared to those of the 

DCC-GARCH model. 

Overall, we find that the estimated parameters are significant and provide evidence in favor 

of beta instability. We now consider the relative superiority of the alternate models used in 

the study given the evidence that different models generate different conditional beta series. 

3.5 Performance of Time Varying Betas Model 

The beta series estimated here suggest that there are differences between beta series 

generated using techniques described earlier even though the mean of the beta series 

estimates are not significantly different from each other. Therefore, it is appropriate to rank 

these models to find out which of the three models generate relatively more accurate measure 

of risk. We use two measures: the coefficient of determination R2 and the variance of errors. 

Table 8 presents R2 and the variances of all models used in this study. Our results show 

significant gains in accuracy in terms of higher mean R2 for our sample when betas are 

allowed to vary in comparison to OLS betas, on the contrary, however, we did not find 

improvement in variance of errors. The average R2 for the sample firms increased to 0.86 
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from 0.29 when betas were allowed to be time varying. This finding is similar to that of 

Brooks, Faff, and Mckenzie (1998) for Australian market, Brooks, Faff, and Arif (1998) for 

Singaporean market, and Moonis and Shah (2003) for Indian market where time varying 

betas performed better than their counterpart constant betas. Majority of the earlier studies 

were not able to capture the conditional correlation. However, to our knowledge, this is the 

first study that employs conditional correlation models in time varying beta estimation. 

We also find that GARCH model performs the best in terms of higher R2 in comparison to 

DCC-GARCH and O-GARCH models that hypothetically should have performed better as 

they allow the correlation to vary as well. However, we find no significant evidence of their 

dominance in beta estimation despite their popularity in volatility estimation.   

4 Conclusion  

There is significant evidence suggesting that point estimations of systematic risk are not 

stable over time. This paper therefore examines the issue of beta instability using the returns 

of 38 firms listed on KSE over the period 1998-2005. Conditional betas were generated using 

three different models namely the GARCH, the DCC-GARCH, and the O-GARCH. Given 

the estimates of time varying betas from different models, it seems that the KSE is not 

different from other emerging and developed markets in terms of beta stability and that betas 

are time varying at the KSE. The evidence found here overwhelmingly supports GARCH 

model on the basis on goodness of fit criterion. The strong evidence in favour of time varying 

betas highlights the limitations of OLS betas. The superior performance of time varying betas 

as opposed to OLS betas can be judged by the significant improvement in the R2. 

This paper contributes to the existing literature by accounting for conditional correlation, 

whereas all the previous work, to the best of our knowledge, has ignored conditional 

correlation for estimation of time varying betas. This point is rather surprising given their 

applications in asset allocation since conditional correlation estimates are very important in 

such decisions. In addition, our paper is an attempt to explore betas and their time varying 

nature in the context of the Pakistani Market. 

The time varying nature of betas has significant implications for portfolio managers (portfolio 

diversification and hedging) and financial analysts (fair value estimation). The challenge 

however is to explore ways on how to incorporate the beta instability in such financial 

decisions. 
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Table 1: Summary Statistics and Beta Point Estimates 

Figures in parenthesis are standard errors.  

Firms Mean St. Dev Kurtosis Skewness Jarque Bera Beta 

ACBL 0.10% 2.61% 9.3831 0.1051 84.28 0.876    ( 0.0249 ) 

AGIL 0.19% 5.09% 17.7811 0.3522 58.27 0.702    ( 0.0597 ) 

AICL 0.08% 3.62% 7.59883 0.104 363.09 1.109    ( 0.0363 ) 

ASKL 0.03% 3.01% 9.79252 0.4198 170.27 0.540    ( 0.0344 ) 

BAHL 0.12% 2.24% 9.00936 0.5363 82.09 0.424    ( 0.0254 ) 

BOC 0.01% 2.41% 12.3971 0.4645 89,493.56 0.365    ( 0.0281 ) 

BOP 0.13% 4.14% 12.14008 0.6739 249,581.54 1.305    ( 0.0409 ) 

CHCC 0.09% 3.42% 13.6973 0.0006 335.06 0.639    ( 0.0390 ) 

DGKC 0.15% 3.86% 5.93526 0.2338 1,956.35 1.342    ( 0.0360 ) 

DSFL 0.02% 3.31% 4.97705 0.7102 29.69 1.178    ( 0.0304 ) 

ENGRO 0.05% 2.70% 5.43053 0.246 477.91 0.899    ( 0.0260 ) 

FABL 0.08% 3.09% 5.0816 0.1052 245.97 0.920    ( 0.0313 ) 

FFC 0.05% 2.36% 10.30497 1.0346 38,410.20 0.860    ( 0.0213 ) 

GADT 0.05% 3.44% 20.6543 0.3902 94.3 0.492    ( 0.0403 ) 

GTYR 0.16% 4.26% 371.74945 13.0991 71.41 0.551    ( 0.0502 ) 

HUBC 0.05% 3.23% 18.24532 1.1908 1,652.59 1.226    ( 0.0281 ) 

IBFL 0.10% 3.15% 40.95642 0.1785 412.69 0.854    ( 0.0331 ) 

ICI 0.02% 5.67% 569.96779 0.0306 71.64 1.054    ( 0.0647 ) 

INDU 0.14% 2.74% 4.40441 0.3197 73.34 0.614    ( 0.0303 ) 

KESC 0.04% 4.05% 7.0915 0.6668 108.75 1.338    ( 0.0391 ) 

LUCK 0.16% 3.90% 4.6455 0.2559 500.98 1.033    ( 0.0414 ) 

MCB 0.14% 3.13% 4.53366 0.1574 213.89 1.138    ( 0.0283 ) 

MLCF 0.11% 4.15% 4.02612 0.6744 78.3 1.168    ( 0.0430 ) 

NML 0.12% 3.68% 14.30634 0.7531 319.55 1.121    ( 0.0370 ) 

PGF 0.06% 3.08% 5.42471 0.1737 5,674.97 1.057    ( 0.0289 ) 

PIAA 0.03% 3.83% 4.47486 0.4871 212.48 1.052    ( 0.0401 ) 

PICIC 0.17% 3.76% 17.05 0.2329 386.3 0.753    ( 0.0424 ) 

PIOC 0.13% 5.07% 5.02338 0.2065 481.94 0.980    ( 0.0574 ) 

PSO 0.02% 2.98% 10.53073 0.4488 451.45 1.234    ( 0.0235 ) 

PSYL 0.02% 3.56% 9.53285 0.755 264.87 0.550    ( 0.0413 ) 

PTC 0.02% 2.84% 8.98261 0.2136 586.22 1.338    ( 0.0173 ) 

SAIF 0.03% 3.40% 11.87845 0.2295 498.22 0.502    ( 0.0397 ) 

SHEL 0.04% 2.55% 7.49827 0.0119 30.06 0.770    ( 0.0257 ) 

SNBL 0.10% 2.53% 16.69153 0.625 1,856.16 0.432    ( 0.0291 ) 

SNGP 0.10% 3.17% 4.90754 0.2018 58.22 1.210    ( 0.0274 ) 

SSGC 0.05% 3.11% 11.18099 0.8798 152.94 1.149    ( 0.0276 ) 

ULEVER 0.02% 2.21% 9.37718 0.2625 1,199.49 0.441    ( 0.0249 ) 

UNBL 0.14% 3.82% 41.94784 0.9629 155.28 0.679    ( 0.0438 ) 
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Table 2: Time Varying Risk Model Results  

Subscripts a, b, and c represent significance levels of 10%, 5%, and 1% for all parameters 

reported for that firm. All the parameters for a firm with no superscript are insignificant. 

Figures in parentheses are standard errors.  

Firms Alpha Alpha Dummy Beta Beta Dummy 

ACBL 0.000    (0.001) 0.001    (0.001) 0.836    (0.041) 0.068    (0.051) 

AGIL 0.000    (0.002) 0.002    (0.002) 0.622    (0.098) 0.131    (0.123) 

AICLc 0.000    (0.001) 0.000    (0.001) 0.897    (0.059) 0.329    (0.075) 

ASKL 0.001    (0.001) 0.001    (0.001) 0.509    (0.056) 0.057    (0.071) 

BAHL 0.000    (0.001) 0.002    (0.001) 0.421    (0.042) 0.001    (0.052) 

BOCb 0.002    (0.001) 0.002    (0.001) 0.286    (0.046) 0.122    (0.058) 

BOPc 0.002    (0.001) 0.002    (0.002) 1.147    (0.067) 0.258    (0.084) 

CHCC 0.002    (0.001) 0.003    (0.002) 0.622    (0.064) 0.020    (0.080) 

DGKCc 0.001    (0.001) 0.001    (0.001) 1.097    (0.059) 0.387    (0.074) 

DSFL 0.001    (0.001) 0.002    (0.001) 1.165    (0.050) 0.027    (0.063) 

ENGROc 0.002    (0.001) 0.002    (0.001) 0.801    (0.042) 0.152    (0.053) 

FABL 0.001    (0.001) 0.001    (0.001) 0.928    (0.051) 0.011    (0.065) 

FFCc 0.001    (0.001) 0.001    (0.001) 0.760    (0.035) 0.163    (0.044) 

GADT 0.001    (0.001) 0.002    (0.002) 0.530    (0.066) 0.061    (0.083) 

GTYR 0.001    (0.002) 0.001    (0.002) 0.499    (0.082) 0.083    (0.104) 

HUBCb 0.002    (0.001) 0.001    (0.001) 1.148    (0.046) 0.133    (0.058) 

IBFLb 0.001    (0.001) 0.001    (0.001) 0.773    (0.054) 0.136    (0.068) 

ICI 0.000    (0.002) 0.001    (0.003) 1.091    (0.106) 0.058    (0.134) 

INDU 0.000    (0.001) 0.001    (0.001) 0.556    (0.050) 0.088    (0.063) 

KESC 0.001    (0.001) 0.000    (0.002) 1.317    (0.064) 0.030    (0.081) 

LUCKb 0.001    (0.001) 0.001    (0.002) 0.909    (0.068) 0.196    (0.085) 

MCB 0.001    (0.001) 0.000    (0.001) 1.103    (0.046) 0.055    (0.058) 

MLCFc 0.000    (0.001) 0.000    (0.002) 1.017    (0.070) 0.239    (0.089) 

NMLc 0.000    (0.001) 0.001    (0.001) 0.973    (0.060) 0.227    (0.076) 

PGFa 0.001    (0.001) 0.001    (0.001) 0.985    (0.047) 0.117    (0.060) 

PIAAc 0.001    (0.001) 0.000    (0.002) 0.856    (0.065) 0.307    (0.083) 

PICIC 0.002    (0.001) 0.001    (0.002) 0.771    (0.070) 0.031    (0.088) 

PIOCa 0.000    (0.002) 0.001    (0.002) 0.843    (0.094) 0.212    (0.119) 

PSOc 0.002    (0.001) 0.001    (0.001) 1.158    (0.038) 0.119    (0.049) 

PSYL 0.000    (0.001) 0.001    (0.002) 0.640    (0.068) 0.137    (0.085) 

PTC 0.000    (0.001) 0.001    (0.001) 1.326    (0.028) 0.015    (0.036) 

SAIFc 0.000    (0.001) 0.000    (0.002) 0.321    (0.065) 0.293    (0.082) 

SHELc 0.002    (0.001) 0.002    (0.001) 0.683    (0.042) 0.137    (0.053) 

SNBL 0.001    (0.001) 0.000    (0.001) 0.396    (0.048) 0.053    (0.060) 

SNGPc 0.000    (0.001) 0.000    (0.001) 1.098    (0.045) 0.184    (0.057) 

SSGCa 0.001    (0.001) 0.001    (0.001) 1.084    (0.045) 0.097    (0.057) 

ULEVERb 0.001    (0.001) 0.001    (0.001) 0.373    (0.041) 0.107    (0.051) 

UNBL 0.001    (0.001) 0.000    (0.002) 0.666    (0.072) 0.031    (0.091) 
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Table 3: GARCH Model Estimates for KSE Listed Equities  

Superscript d indicates that ARCH and GARCH parameters for that firm are insignificant. All 

the parameters for other firms are significant at 1% level. Figures in parenthesis are standard 

errors.  

Firms ω α β α+ β ρ 

ACBL 0.000    ( 0.000 ) 0.118    ( 0.007 ) 0.852    ( 0.006 ) 0.9699 0.6173 

AGIL 0.000    ( 0.000 ) 0.021    ( 0.001 ) 0.978    ( 0.001 ) 0.9993 0.2535 

AICL 0.000    ( 0.000 ) 0.231    ( 0.019 ) 0.703    ( 0.019 ) 0.9336 0.5622 

ASKL 0.000    ( 0.000 ) 0.248    ( 0.017 ) 0.554    ( 0.022 ) 0.8024 0.3302 

BAHL 0.000    ( 0.000 ) 0.173    ( 0.014 ) 0.717    ( 0.018 ) 0.8902 0.3489 

BOC 0.000    ( 0.000 ) 0.153    ( 0.009 ) 0.757    ( 0.013 ) 0.9101 0.2781 

BOP 0.000    ( 0.000 ) 0.118    ( 0.008 ) 0.854    ( 0.008 ) 0.9720 0.579 

CHCC 0.000    ( 0.000 ) 0.082    ( 0.005 ) 0.885    ( 0.006 ) 0.9667 0.3431 

DGKC 0.000    ( 0.000 ) 0.127    ( 0.009 ) 0.867    ( 0.008 ) 0.9948 0.6386 

DSFL 0.000    ( 0.000 ) 0.106    ( 0.007 ) 0.851    ( 0.009 ) 0.9571 0.6542 

ENGRO 0.000    ( 0.000 ) 0.224    ( 0.015 ) 0.734    ( 0.011 ) 0.9585 0.6113 

FABL 0.000    ( 0.000 ) 0.133    ( 0.013 ) 0.795    ( 0.017 ) 0.9282 0.5483 

FFC 0.000    ( 0.000 ) 0.159    ( 0.012 ) 0.798    ( 0.010 ) 0.9577 0.6694 

GADT 0.000    ( 0.000 ) 0.011    ( 0.001 ) 0.985    ( 0.001 ) 0.9959 0.2629 

GTYRd 0.002    ( 0.232 ) 0.000    ( 0.003 ) 0.019    ( 127.804 ) 0.0195 0.2374 

HUBC 0.000    ( 0.000 ) 0.124    ( 0.005 ) 0.869    ( 0.005 ) 0.9933 0.6969 

IBFL 0.000    ( 0.000 ) 0.162    ( 0.008 ) 0.831    ( 0.010 ) 0.9932 0.4983 

ICI 0.000    ( 0.000 ) 0.036    ( 0.010 ) 0.915    ( 0.016 ) 0.9512 0.3414 

INDU 0.000    ( 0.000 ) 0.209    ( 0.019 ) 0.615    ( 0.030 ) 0.8240 0.4114 

KESC 0.000    ( 0.000 ) 0.263    ( 0.017 ) 0.648    ( 0.019 ) 0.9115 0.6064 

LUCK 0.000    ( 0.000 ) 0.092    ( 0.010 ) 0.895    ( 0.010 ) 0.9868 0.4864 

MCB 0.000    ( 0.000 ) 0.130    ( 0.014 ) 0.783    ( 0.019 ) 0.9129 0.6674 

MLCF 0.000    ( 0.000 ) 0.078    ( 0.009 ) 0.893    ( 0.011 ) 0.9706 0.5177 

NML 0.001    ( 0.000 ) 0.284    ( 0.018 ) 0.320    ( 0.028 ) 0.6036 0.5598 

PGF 0.000    ( 0.000 ) 0.151    ( 0.018 ) 0.696    ( 0.029 ) 0.8472 0.6319 

PIAA 0.000    ( 0.000 ) 0.095    ( 0.008 ) 0.860    ( 0.009 ) 0.9547 0.5044 

PICIC 0.000    ( 0.000 ) 0.164    ( 0.015 ) 0.751    ( 0.017 ) 0.9154 0.3678 

PIOC 0.000    ( 0.000 ) 0.056    ( 0.004 ) 0.940    ( 0.004 ) 0.9969 0.3555 

PSO 0.000    ( 0.000 ) 0.176    ( 0.011 ) 0.819    ( 0.009 ) 0.9952 0.7596 

PSYL 0.000    ( 0.000 ) 0.051    ( 0.004 ) 0.916    ( 0.007 ) 0.9669 0.2845 

PTC 0.000    ( 0.000 ) 0.103    ( 0.007 ) 0.889    ( 0.005 ) 0.9920 0.8645 

SAIF 0.000    ( 0.000 ) 0.018    ( 0.001 ) 0.982    ( 0.001 ) 0.9994 0.2711 

SHEL 0.000    ( 0.000 ) 0.292    ( 0.024 ) 0.603    ( 0.025 ) 0.8953 0.5552 

SNBL 0.000    ( 0.000 ) 0.158    ( 0.012 ) 0.757    ( 0.014 ) 0.9154 0.3139 

SNGP 0.000    ( 0.000 ) 0.122    ( 0.008 ) 0.848    ( 0.006 ) 0.9700 0.7011 

SSGC 0.000    ( 0.000 ) 0.158    ( 0.012 ) 0.769    ( 0.017 ) 0.9266 0.6798 

ULEVER 0.000    ( 0.000 ) 0.056    ( 0.004 ) 0.931    ( 0.004 ) 0.9867 0.3669 

UNBL 0.000    ( 0.000 ) 0.016    ( 0.001 ) 0.984    ( 0.001 ) 0.9999 0.3264 
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Table 4: DCC-GARCH Model Estimates for KSE Listed Equities  

Superscripts a and b represent significance levels of 10% and 5% levels and d indicates that 

they are insignificant. All the parameters for other firms are significant at 1% level. * 

represents DCC(1,1) parameters whereas all others are GARCH(1,1) estimates. Figures in 

parentheses are standard errors.  

Firms ω α β α* β* 

ACBL 0.0000    ( 0.000 ) 0.141    ( 0.047 ) 0.823    ( 0.049 ) 0.025    ( 0.013 ) 0.939    ( 0.034 ) 

AGIL 0.0000    ( 0.000 ) 0.031    ( 0.005 ) 0.966    ( 0.000 ) 0.021    ( 0.006 ) 0.976    ( 0.006 ) 

AICL 0.0001    ( 0.000 ) 0.259    ( 0.050 ) 0.666    ( 0.054 ) 0.033    ( 0.009 ) 0.940    ( 0.014 ) 

ASKL 0.0002    ( 0.000 ) 0.257    ( 0.094 ) 0.538    ( 0.115 ) 0.031    ( 0.009 ) 0.947    ( 0.016 ) 

BAHL 0.0001    ( 0.000 ) 0.195    ( 0.056 ) 0.670    ( 0.070 ) 0.037    ( 0.013 ) 0.918    ( 0.035 ) 

BOC 0.0001    ( 0.000 ) 0.190    ( 0.077 ) 0.686    ( 0.085 ) 0.093    ( 0.082 ) 0.500    ( 0.687 ) 

BOP 0.0001    ( 0.000 ) 0.162    ( 0.056 ) 0.797    ( 0.061 ) 0.058    ( 0.011 ) 0.930    ( 0.015 ) 

CHCC 0.0001    ( 0.000 ) 0.128    ( 0.040 ) 0.791    ( 0.054 ) 0.011    ( 0.017 ) 0.989    ( 0.026 ) 

DGKC 0.0000    ( 0.000 ) 0.149    ( 0.022 ) 0.843    ( 0.026 ) 0.047    ( 0.011 ) 0.937    ( 0.021 ) 

DSFL 0.0000    ( 0.000 ) 0.106    ( 0.022 ) 0.854    ( 0.030 ) 0.044    ( 0.020 ) 0.949    ( 0.029 ) 

ENGRO 0.0000    ( 0.000 ) 0.226    ( 0.068 ) 0.727    ( 0.066 ) 0.076    ( 0.021 ) 0.845    ( 0.067 ) 

FABL 0.0001    ( 0.000 ) 0.147    ( 0.037 ) 0.757    ( 0.048 ) 0.020    ( 0.010 ) 0.979    ( 0.012 ) 

FFC 0.0000    ( 0.000 ) 0.180    ( 0.074 ) 0.773    ( 0.073 ) 0.047    ( 0.057 ) 0.822    ( 0.524 ) 

GADT 0.0000    ( 0.000 ) 0.008    ( 0.003 ) 0.981    ( 0.001 ) 0.043    ( 0.018 ) 0.930    ( 0.033 ) 

GTYRd 0.0016    ( 0.001 ) 0.000    ( 0.002 ) 0.115    ( 0.697 ) 0.022    ( 0.012 ) 0.978    ( 0.017 ) 

HUBCa 0.0000    ( 0.000 ) 0.188    ( 0.112 ) 0.802    ( 0.092 ) 0.050    ( 0.025 ) 0.869    ( 0.040 ) 

IBFL 0.0000    ( 0.000 ) 0.177    ( 0.043 ) 0.814    ( 0.039 ) 0.047    ( 0.014 ) 0.939    ( 0.022 ) 

ICId 0.0002    ( 0.001 ) 0.047    ( 0.117 ) 0.897    ( 0.205 ) 0.163    ( 0.024 ) 0.832    ( 0.019 ) 

INDU 0.0002    ( 0.000 ) 0.237    ( 0.067 ) 0.530    ( 0.081 ) 0.049    ( 0.017 ) 0.909    ( 0.033 ) 

KESC 0.0002    ( 0.000 ) 0.236    ( 0.065 ) 0.681    ( 0.062 ) 0.045    ( 0.017 ) 0.925    ( 0.030 ) 

LUCK 0.0000    ( 0.000 ) 0.109    ( 0.022 ) 0.874    ( 0.029 ) 0.035    ( 0.009 ) 0.959    ( 0.012 ) 

MCB 0.0001    ( 0.000 ) 0.148    ( 0.039 ) 0.742    ( 0.051 ) 0.029    ( 0.007 ) 0.967    ( 0.008 ) 

MLCF 0.0001    ( 0.000 ) 0.098    ( 0.030 ) 0.861    ( 0.043 ) 0.042    ( 0.009 ) 0.946    ( 0.010 ) 

NMLb 0.0006    ( 0.000 ) 0.287    ( 0.134 ) 0.310    ( 0.200 ) 0.042    ( 0.020 ) 0.944    ( 0.032 ) 

PGFa 0.0002    ( 0.000 ) 0.175    ( 0.102 ) 0.644    ( 0.124 ) 0.049    ( 0.029 ) 0.935    ( 0.055 ) 

PIAA 0.0001    ( 0.000 ) 0.106    ( 0.020 ) 0.840    ( 0.029 ) 0.047    ( 0.019 ) 0.910    ( 0.049 ) 

PICIC 0.0001    ( 0.000 ) 0.130    ( 0.048 ) 0.803    ( 0.065 ) 0.029    ( 0.008 ) 0.952    ( 0.015 ) 

PIOC 0.0000    ( 0.000 ) 0.072    ( 0.005 ) 0.921    ( 0.013 ) 0.031    ( 0.010 ) 0.960    ( 0.012 ) 

PSO 0.0000    ( 0.000 ) 0.205    ( 0.070 ) 0.786    ( 0.065 ) 0.038    ( 0.012 ) 0.921    ( 0.019 ) 

PSYL 0.0001    ( 0.000 ) 0.072    ( 0.021 ) 0.869    ( 0.032 ) 0.000    ( 0.002 ) 0.000    ( 0.691 ) 

PTC 0.0000    ( 0.000 ) 0.125    ( 0.051 ) 0.859    ( 0.053 ) 0.114    ( 0.032 ) 0.806    ( 0.060 ) 

SAIFa 0.0003    ( 0.000 ) 0.092    ( 0.053 ) 0.648    ( 0.094 ) 0.016    ( 0.005 ) 0.984    ( 0.006 ) 

SHEL 0.0001    ( 0.000 ) 0.315    ( 0.092 ) 0.573    ( 0.087 ) 0.028    ( 0.011 ) 0.947    ( 0.022 ) 

SNBL 0.0001    ( 0.000 ) 0.208    ( 0.087 ) 0.597    ( 0.121 ) 0.033    ( 0.011 ) 0.955    ( 0.018 ) 

SNGP 0.0000    ( 0.000 ) 0.139    ( 0.041 ) 0.823    ( 0.051 ) 0.040    ( 0.009 ) 0.915    ( 0.020 ) 

SSGC 0.0001    ( 0.000 ) 0.178    ( 0.062 ) 0.728    ( 0.072 ) 0.061    ( 0.015 ) 0.881    ( 0.025 ) 

ULEVERd 0.0000    ( 0.000 ) 0.080    ( 0.053 ) 0.895    ( 0.056 ) 0.015    ( 0.011 ) 0.958    ( 0.045 ) 

UNBLd 0.0008    ( 0.000 ) 0.161    ( 0.124 ) 0.263    ( 0.330 ) 0.016    ( 0.005 ) 0.984    ( 0.008 ) 
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Table 5: O-GARCH Model Estimates for KSE Listed Equities 

Superscripts a and b represent significance levels of 10% and 5% levels and d indicates 

insignificance. All the parameters for other firms are significant at 1% level. Figures in 

parentheses are standard errors.  

Firms ω α β α + β R2 

ACBL 0.008    ( 0.0022 ) 0.068    ( 0.0103 ) 0.914    ( 0.0012 ) 0.982 80.86% 

AGIL 0.005    ( 0.0016 ) 0.091    ( 0.0088 ) 0.905    ( 0.0020 ) 0.996 62.67% 

AICL 0.012    ( 0.0035 ) 0.127    ( 0.0210 ) 0.854    ( 0.0056 ) 0.982 78.11% 

ASKL 0.036    ( 0.0082 ) 0.097    ( 0.0175 ) 0.852    ( 0.0053 ) 0.95 66.51% 

BAHL 0.038    ( 0.0064 ) 0.141    ( 0.0194 ) 0.800    ( 0.0110 ) 0.94 67.44% 

BOC 0.025    ( 0.0050 ) 0.111    ( 0.0162 ) 0.857    ( 0.0059 ) 0.968 63.91% 

BOP 0.004    ( 0.0017 ) 0.112    ( 0.0126 ) 0.886    ( 0.0040 ) 0.998 78.95% 

CHCC 0.018    ( 0.0050 ) 0.115    ( 0.0153 ) 0.864    ( 0.0048 ) 0.979 67.16% 

DGKC 0.003    ( 0.0011 ) 0.091    ( 0.0079 ) 0.902    ( 0.0019 ) 0.993 81.93% 

DSFL 0.004    ( 0.0013 ) 0.092    ( 0.0099 ) 0.902    ( 0.0025 ) 0.994 82.71% 

ENGRO 0.009    ( 0.0023 ) 0.151    ( 0.0182 ) 0.840    ( 0.0067 ) 0.991 80.56% 

FABLb 0.004    ( 0.0018 ) 0.066    ( 0.0079 ) 0.930    ( 0.0007 ) 0.996 77.41% 

FFC 0.021    ( 0.0053 ) 0.139    ( 0.0232 ) 0.803    ( 0.0108 ) 0.942 83.47% 

GADT 0.018    ( 0.0051 ) 0.125    ( 0.0178 ) 0.855    ( 0.0064 ) 0.98 63.15% 

GTYRd 0.003    ( 0.0039 ) 0.044    ( 0.0216 ) 0.956    ( 0.0004 ) 1 61.87% 

HUBC 0.026    ( 0.0079 ) 0.200    ( 0.0421 ) 0.724    ( 0.0356 ) 0.925 84.85% 

IBFL 0.006    ( 0.0018 ) 0.097    ( 0.0117 ) 0.893    ( 0.0028 ) 0.99 74.92% 

ICId 0.038    ( 0.0347 ) 0.067    ( 0.0487 ) 0.884    ( 0.0046 ) 0.951 67.07% 

INDU 0.008    ( 0.0027 ) 0.070    ( 0.0087 ) 0.919    ( 0.0013 ) 0.988 70.57% 

KESC 0.019    ( 0.0037 ) 0.126    ( 0.0229 ) 0.831    ( 0.0102 ) 0.957 80.32% 

LUCK 0.003    ( 0.0013 ) 0.069    ( 0.0068 ) 0.925    ( 0.0009 ) 0.994 74.32% 

MCB 0.005    ( 0.0015 ) 0.077    ( 0.0097 ) 0.909    ( 0.0018 ) 0.986 83.37% 

MLCFa 0.006    ( 0.0034 ) 0.046    ( 0.0081 ) 0.940    ( 0.0003 ) 0.986 75.88% 

NML 0.009    ( 0.0029 ) 0.154    ( 0.0317 ) 0.846    ( 0.0131 ) 1 77.99% 

PGF 0.025    ( 0.0090 ) 0.107    ( 0.0214 ) 0.827    ( 0.0101 ) 0.934 81.59% 

PIAA 0.014    ( 0.0030 ) 0.101    ( 0.0116 ) 0.873    ( 0.0038 ) 0.974 75.22% 

PICIC 0.028    ( 0.0089 ) 0.076    ( 0.0155 ) 0.878    ( 0.0042 ) 0.954 68.39% 

PIOC 0.004    ( 0.0016 ) 0.046    ( 0.0048 ) 0.946    ( 0.0004 ) 0.993 67.78% 

PSO 0.008    ( 0.0017 ) 0.185    ( 0.0265 ) 0.793    ( 0.0108 ) 0.978 87.98% 

PSYL 0.043    ( 0.0096 ) 0.087    ( 0.0141 ) 0.851    ( 0.0041 ) 0.938 64.22% 

PTCa 0.017    ( 0.0094 ) 0.315    ( 0.0872 ) 0.616    ( 0.0531 ) 0.931 93.22% 

SAIF 0.021    ( 0.0052 ) 0.150    ( 0.0251 ) 0.831    ( 0.0114 ) 0.981 63.55% 

SHEL 0.015    ( 0.0033 ) 0.101    ( 0.0143 ) 0.867    ( 0.0037 ) 0.968 77.76% 

SNBL 0.024    ( 0.0057 ) 0.092    ( 0.0130 ) 0.876    ( 0.0036 ) 0.968 65.70% 

SNGP 0.013    ( 0.0039 ) 0.080    ( 0.0166 ) 0.875    ( 0.0056 ) 0.955 85.05% 

SSGC 0.046    ( 0.0158 ) 0.211    ( 0.0529 ) 0.649    ( 0.0571 ) 0.861 83.99% 

ULEVER 0.020    ( 0.0048 ) 0.110    ( 0.0165 ) 0.861    ( 0.0046 ) 0.972 68.35% 

UNBL 0.009    ( 0.0035 ) 0.095    ( 0.0181 ) 0.897    ( 0.0025 ) 0.992 66.32% 
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Table 6: Equity Betas of KSE Listed Equities  

Figures in parentheses represent standard errors for the second column and the highest and 

the lowest beats for other columns.  

Firms OLS β GARCH β DCC-GARCH β O-GARCH β 

ACBL 0.88    ( 0.025 ) 0.98    ( 3.87 / 0.34 ) 0.80    ( 1.33 / 0.01 ) 0.95    ( 2.86 / 0.28 ) 

AGIL 0.70    ( 0.060 ) 0.73    ( 2.14 / 0.18 ) 0.96    ( 2.49 / 1.12 ) 0.95    ( 2.82 / 0.31 ) 

AICL 1.11    ( 0.036 ) 1.24    ( 4.87 / 0.45 ) 1.06    ( 1.85 / 0.58 ) 1.26    ( 4.54 / 0.31 ) 

ASKL 0.54    ( 0.034 ) 0.64    ( 2.18 / 0.18 ) 0.40    ( 1.45 / 0.69 ) 0.52    ( 2.88 / 1.12 ) 

BAHL 0.42    ( 0.025 ) 0.50    ( 1.56 / 0.13 ) 0.43    ( 1.10 / 0.54 ) 0.53    ( 1.57 / 0.02 ) 

BOC 0.36    ( 0.028 ) 0.42    ( 1.64 / 0.10 ) 0.34    ( 1.09 / 0.48 ) 0.40    ( 2.17 / 0.82 ) 

BOP 1.30    ( 0.041 ) 1.38    ( 4.82 / 0.43 ) 1.34    ( 2.16 / 0.13 ) 1.42    ( 3.46 / 0.16 ) 

CHCC 0.64    ( 0.039 ) 0.75    ( 2.03 / 0.20 ) 0.61    ( 1.56 / 0.83 ) 0.76    ( 2.78 / 0.11 ) 

DGKC 1.34    ( 0.036 ) 1.45    ( 3.40 / 0.55 ) 1.27    ( 2.05 / 0.37 ) 1.40    ( 3.68 / 0.24 ) 

DSFL 1.18    ( 0.030 ) 1.34    ( 2.98 / 0.50 ) 1.15    ( 1.72 / 0.09 ) 1.31    ( 2.36 / 0.41 ) 

ENGRO 0.90    ( 0.026 ) 0.98    ( 3.39 / 0.33 ) 0.83    ( 1.44 / 0.25 ) 0.92    ( 3.28 / 0.13 ) 

FABL 0.92    ( 0.031 ) 1.09    ( 3.00 / 0.33 ) 0.85    ( 1.60 / 0.15 ) 1.04    ( 2.37 / 0.27 ) 

FFC 0.86    ( 0.021 ) 0.93    ( 2.54 / 0.34 ) 0.79    ( 1.22 / 0.20 ) 0.88    ( 2.46 / 0.25 ) 

GADT 0.49    ( 0.040 ) 0.56    ( 1.30 / 0.16 ) 0.60    ( 1.52 / 0.79 ) 0.70    ( 4.50 / 0.24 ) 

GTYR 0.55    ( 0.050 ) 0.70    ( 1.22 / 0.14 ) 0.81    ( 1.57 / 0.26 ) 1.01    ( 2.86 / 0.16 ) 

HUBC 1.23    ( 0.028 ) 1.18    ( 3.46 / 0.44 ) 1.07    ( 1.67 / 0.62 ) 1.10    ( 3.90 / 0.26 ) 

IBFL 0.85    ( 0.033 ) 0.88    ( 2.15 / 0.23 ) 0.81    ( 1.66 / 0.63 ) 0.86    ( 2.81 / 0.04 ) 

ICI 1.05    ( 0.065 ) 1.14    ( 10.40 / 0.28 ) 1.15    ( 1.93 / 0.27 ) 1.84    ( 3.70 / 8.45 ) 

INDU 0.61    ( 0.030 ) 0.74    ( 2.71 / 0.18 ) 0.58    ( 1.38 / 0.34 ) 0.72    ( 2.18 / 0.26 ) 

KESC 1.34    ( 0.039 ) 1.52    ( 6.61 / 0.46 ) 1.23    ( 2.06 / 0.86 ) 1.43    ( 5.93 / 0.50 ) 

LUCK 1.03    ( 0.041 ) 1.14    ( 2.64 / 0.33 ) 1.07    ( 2.02 / 0.82 ) 1.21    ( 2.84 / 0.18 ) 

MCB 1.14    ( 0.028 ) 1.26    ( 3.16 / 0.56 ) 1.08    ( 1.58 / 0.14 ) 1.21    ( 2.50 / 0.37 ) 

MLCF 1.17    ( 0.043 ) 1.35    ( 4.81 / 0.40 ) 1.13    ( 2.13 / 0.37 ) 1.32    ( 3.15 / 0.02 ) 

NML 1.12    ( 0.037 ) 1.32    ( 8.77 / 0.35 ) 1.13    ( 1.87 / 0.39 ) 1.35    ( 6.32 / 0.14 ) 

PGF 1.06    ( 0.029 ) 1.25    ( 5.73 / 0.39 ) 0.97    ( 1.56 / 0.12 ) 1.16    ( 3.22 / 0.32 ) 

PIAA 1.05    ( 0.040 ) 1.22    ( 3.66 / 0.37 ) 1.02    ( 1.81 / 0.22 ) 1.19    ( 2.72 / 0.12 ) 

PICIC 0.75    ( 0.042 ) 0.90    ( 6.41 / 0.16 ) 0.74    ( 1.72 / 0.32 ) 0.95    ( 2.76 / 0.16 ) 

PIOC 0.98    ( 0.057 ) 1.12    ( 2.65 / 0.37 ) 1.02    ( 2.50 / 1.02 ) 1.21    ( 3.43 / 0.62 ) 

PSO 1.23    ( 0.024 ) 1.20    ( 2.77 / 0.58 ) 1.16    ( 1.55 / 0.27 ) 1.16    ( 2.92 / 0.41 ) 

PSYL 0.55    ( 0.041 ) 0.65    ( 1.42 / 0.20 ) 0.47    ( 1.71 / 0.99 ) 0.60    ( 1.37 / 0.17 ) 

PTC 1.34    ( 0.017 ) 1.36    ( 3.84 / 0.71 ) 1.26    ( 1.53 / 0.41 ) 1.28    ( 2.37 / 0.36 ) 

SAIF 0.50    ( 0.040 ) 0.59    ( 1.22 / 0.18 ) 0.55    ( 1.68 / 1.12 ) 0.75    ( 2.57 / 0.04 ) 

SHEL 0.77    ( 0.026 ) 0.85    ( 2.85 / 0.28 ) 0.68    ( 1.24 / 0.16 ) 0.77    ( 2.62 / 0.19 ) 

SNBL 0.43    ( 0.029 ) 0.52    ( 3.82 / 0.15 ) 0.41    ( 1.23 / 0.45 ) 0.52    ( 3.64 / 0.20 ) 

SNGP 1.21    ( 0.027 ) 1.31    ( 4.47 / 0.60 ) 1.13    ( 1.65 / 0.22 ) 1.25    ( 3.04 / 0.50 ) 

SSGC 1.15    ( 0.028 ) 1.26    ( 4.90 / 0.45 ) 1.07    ( 1.62 / 0.35 ) 1.21    ( 3.66 / 0.36 ) 

ULEVER 0.44    ( 0.025 ) 0.47    ( 1.15 / 0.18 ) 0.35    ( 1.00 / 0.45 ) 0.43    ( 1.21 / 0.08 ) 

UNBL 0.68    ( 0.044 ) 0.80    ( 2.13 / 0.17 ) 0.70    ( 1.86 / 0.51 ) 0.91    ( 2.69 / 0.04 ) 
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Table 7: Implied Correlation Coefficients  

Figures in parentheses are negative values.  

Firms GARCH DCC-GARCH O-GARCH 

  Avg High Low Avg High Low 

ACBL 0.6173 0.5648 0.9394 (0.0089) 0.5991 0.7908 0.3984 

AGIL 0.2535 0.3466 0.8996 (0.4050) 0.3647 0.7423 (0.0576) 

AICL 0.5622 0.5353 0.9396 (0.2930) 0.5782 0.8085 0.2077 

ASKL 0.3302 0.2425 0.8888 (0.4220) 0.2801 0.6277 (0.2930) 

BAHL 0.3489 0.3522 0.9005 (0.4400) 0.3756 0.7043 (0.0095) 

BOC 0.2781 0.2567 0.8282 (0.3630) 0.2721 0.7324 (0.2230) 

BOP 0.5790 0.5969 0.9598 (0.0567) 0.6134 0.9261 0.0008 

CHCC 0.3431 0.3262 0.8379 (0.4450) 0.3504 0.5981 0.0010 

DGKC 0.6386 0.6061 0.9774 (0.1730) 0.6190 0.9057 0.1422 

DSFL 0.6542 0.6391 0.9564 (0.0487) 0.6538 0.9151 0.1164 

ENGRO 0.6113 0.5655 0.9763 (0.1670) 0.5811 0.8304 0.1627 

FABL 0.5483 0.5058 0.9515 (0.0919) 0.5335 0.7852 0.2918 

FFC 0.6694 0.6180 0.9458 (0.1520) 0.6299 0.8678 0.2591 

GADT 0.2629 0.3224 0.8092 (0.4220) 0.3248 0.6879 (0.1810) 

GTYR 0.2374 0.3493 0.6758 (0.1100) 0.3363 0.6439 (0.0393) 

HUBC 0.6969 0.6104 0.9472 (0.3540) 0.6468 0.8589 0.1070 

IBFL 0.4983 0.4719 0.9696 (0.3700) 0.4895 0.8973 0.0003 

ICI 0.3414 0.3728 0.6249 (0.0871) 0.6068 0.9427 (0.2430) 

INDU 0.4114 0.3892 0.9286 (0.2300) 0.4078 0.7685 (0.1610) 

KESC 0.6064 0.5562 0.9334 (0.3870) 0.5857 0.8059 (0.1380) 

LUCK 0.4864 0.5058 0.9488 (0.3840) 0.5233 0.8379 0.0006 

MCB 0.6674 0.6361 0.9272 0.0008 0.6485 0.8754 0.2741 

MLCF 0.5177 0.5014 0.9427 (0.1660) 0.5201 0.8725 0.0001 

NML 0.5598 0.5630 0.9361 (0.1960) 0.5834 0.8418 0.1538 

PGF 0.6319 0.5799 0.9342 0.0007 0.5994 0.8527 0.1952 

PIAA 0.5044 0.4901 0.8694 (0.1070) 0.4995 0.7964 0.0004 

PICIC 0.3678 0.3592 0.8385 (0.1550) 0.4041 0.6224 0.1427 

PIOC 0.3555 0.3683 0.9061 (0.3690) 0.3910 0.7414 (0.1690) 

PSO 0.7596 0.7163 0.9556 0.1656 0.7409 0.9124 0.5496 

PSYL 0.2845 0.2447 0.8850 (0.5110) 0.2592 0.2592 0.2591 

PTC 0.8645 0.8113 0.9897 (0.2620) 0.8221 0.9769 0.1448 

SAIF 0.2711 0.2982 0.9084 (0.6030) 0.3206 0.6138 (0.0300) 

SHEL 0.5552 0.4888 0.8978 (0.1110) 0.5109 0.7588 0.0009 

SNBL 0.3139 0.3008 0.8911 (0.3250) 0.3274 0.6557 (0.0515) 

SNGP 0.7011 0.6548 0.9586 0.1271 0.6748 0.8849 0.1415 

SSGC 0.6798 0.6355 0.9580 (0.2070) 0.6644 0.8987 0.0009 

ULEVER 0.3669 0.2949 0.8288 (0.3710) 0.3294 0.5454 0.1383 

UNBL 0.3264 0.3378 0.8934 (0.2450) 0.3621 0.6886 0.0002 
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Table 8: Performance of Time Varying Betas  

This table presents coefficient of determination R2 and the variances of the errors. 

Firms OLS GARCH DCC-GARCH O-GARCH 

 R-Sqr Var(E) R-Sqr Var(E) R-Sqr Var(E) R-Sqr Var(E) 

ACBL 0.40 0.03% 0.87 0.04% 0.89 0.04% 0.94 0.04% 

AGIL 0.09 0.02% 0.76 0.25% 0.80 0.24% 0.73 0.25% 

AICL 0.32 0.04% 0.87 0.09% 0.87 0.09% 0.89 0.10% 

ASKL 0.13 0.01% 0.82 0.08% 0.76 0.08% 0.73 0.08% 

BAHL 0.16 0.01% 0.85 0.04% 0.83 0.04% 0.76 0.04% 

BOC 0.10 0.00% 0.81 0.05% 0.69 0.05% 0.65 0.05% 

BOP 0.35 0.06% 0.88 0.12% 0.88 0.12% 0.88 0.12% 

CHCC 0.15 0.01% 0.85 0.11% 0.77 0.11% 0.73 0.11% 

DGKC 0.43 0.06% 0.91 0.09% 0.88 0.09% 0.92 0.09% 

DSFL 0.44 0.05% 0.91 0.06% 0.90 0.06% 0.93 0.06% 

ENGRO 0.38 0.03% 0.87 0.05% 0.86 0.05% 0.89 0.05% 

FABL 0.31 0.03% 0.87 0.07% 0.88 0.07% 0.89 0.07% 

FFC 0.46 0.02% 0.93 0.03% 0.92 0.03% 0.94 0.03% 

GADT 0.09 0.01% 0.87 0.11% 0.63 0.11% 0.62 0.11% 

GTYR 0.07 0.01% 0.83 0.17% 0.68 0.17% 0.82 0.17% 

HUBC 0.50 0.05% 0.89 0.05% 0.87 0.05% 0.93 0.05% 

IBFL 0.28 0.02% 0.87 0.08% 0.77 0.08% 0.82 0.07% 

ICI 0.12 0.04% 0.71 0.30% 0.88 0.30% 0.94 0.29% 

INDU 0.20 0.01% 0.84 0.06% 0.79 0.06% 0.79 0.06% 

KESC 0.39 0.06% 0.85 0.10% 0.83 0.10% 0.92 0.11% 

LUCK 0.28 0.04% 0.88 0.12% 0.85 0.11% 0.84 0.12% 

MCB 0.45 0.04% 0.89 0.06% 0.91 0.06% 0.95 0.06% 

MLCF 0.29 0.05% 0.87 0.13% 0.86 0.13% 0.89 0.13% 

NML 0.34 0.04% 0.83 0.10% 0.82 0.10% 0.85 0.09% 

PGF 0.42 0.04% 0.89 0.06% 0.88 0.06% 0.94 0.06% 

PIAA 0.29 0.04% 0.87 0.11% 0.84 0.11% 0.86 0.11% 

PICIC 0.15 0.02% 0.82 0.12% 0.83 0.12% 0.83 0.13% 

PIOC 0.16 0.03% 0.83 0.22% 0.77 0.22% 0.76 0.22% 

PSO 0.58 0.05% 0.94 0.04% 0.92 0.04% 0.97 0.04% 

PSYL 0.11 0.01% 0.85 0.12% 0.85 0.12% 0.76 0.12% 

PTC 0.76 0.06% 0.95 0.02% 0.96 0.02% 0.97 0.02% 

SAIF 0.12 0.01% 0.87 0.11% 0.66 0.10% 0.66 0.11% 

SHEL 0.32 0.02% 0.89 0.05% 0.87 0.05% 0.88 0.05% 

SNBL 0.12 0.01% 0.83 0.06% 0.76 0.06% 0.73 0.06% 

SNGP 0.50 0.05% 0.90 0.05% 0.92 0.05% 0.96 0.05% 

SSGC 0.47 0.04% 0.86 0.06% 0.91 0.05% 0.94 0.05% 

ULEVER 0.15 0.01% 0.87 0.04% 0.83 0.04% 0.75 0.04% 

UNBL 0.14 0.02% 0.80 0.14% 0.74 0.13% 0.72 0.13% 

 


