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Abstract

Capture-recapture models have increased in complexity over the last decades
and goodness-of-fit assessment is crucial to ensure that considered models pro-
vide an adequate fit to the data. In this thesis, my primary emphasis is to
develop new diagnostic tools for capture-recapture models in order to target
possible reasons of lack-of-fit, which might provide biological insights and point
towards better-fitting candidate models.

Starting with the basic Cormack-Jolly-Seber model, I develop a new tool
for detecting heterogeneity in capture. I then progress to the more complex
multi-state models, for which T propose a test for detecting a mover-stayer
structure within the population. Finally, I move on to more general models
presenting additional levels of uncertainty: first partial observations and then
unobservable states. In the presence of partial observations, part of the obser-
vations are assigned to states with certainty whereas others are not. I develop
a new test for the underlying state-structure of the partial observations, this
test detects that the partial observations are not generated by the observable
states defined in the experiment. In the presence of unobservable states, the
additional level of uncertainty relates only to the non-captures. I present a
procedure to test whether one or two unobservable states need to be defined
in order for the model to provide an adequate fit to the data.

Lastly, I explore the use of multi-state models to incorporate individual

time-varying covariates, based on a fine discretisation of the covariate space.
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Chapter 1

Introduction

In the current context of global climate change, environmental issues are the
object of many government policies. Measuring and understanding environ-
mental change, and its impact is key to generating suitable and efficient poli-
cies. This is an incredibly vast puzzle, spanning several areas such as climate
change modelling, pollution measurement, or more generally ecosystems’ un-
derstanding; and studying the dynamics of animal populations is a piece of

this puzzle.

1.1 Capture-mark-recapture

Unlike humans, for whom census is (generally) straightforward, specific data
collection techniques have to be used to monitor animal populations. One of
the techniques used to study a species consists of marking animals from a pop-
ulation of interest uniquely and then recording whether they are recaptured
or re-sighted at subsequent sampling (capture) occasions, which are generally
made at equal time intervals. The resulting data are known as capture-mark-
recapture (CMR) data (Williams et al., 2002). Note that the vocabulary re-
lating to capture, sighting, encounter will be used interchangeably throughout

this thesis.
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Figure 1.1: Capture-mark-recapture of slender-billed gulls.

Different kinds of markings are used depending on the species of inter-
est: rings are commonly used for birds (e.g. flamingoes, gulls), ear tags for
ibex, pen-markings for lizards, and so forth. Figure 1.1 illustrates the CMR
technique conducted on slender-billed gulls ( Chroicocephalus genei). Marking
can be unnecessary for some species that already present natural individual
marks, akin to human fingerprints: for instance, Great crested newts’ ( Tritu-
rus cristatus) belly pattern (McCrea and Morgan, 2014, p.3), or the dorsal fin
and scars for various whale species (see for example Hammond et al., 1990).

The CMR technique is not restricted to ecological applications. Tt is widely
used in other areas where populations are difficult to follow such as forced

labour (van der Heijden et al., 2015) or drug use (Mastro et al., 1994).

1.2 Capture-recapture models’ increasing com-
plexity

The capture-recapture models used to understand the mechanisms underlying
data collected from a CMR experiment have become increasingly complex over
the years, in order to be more biologically realistic and thus result in more

accurate inference. This thesis focusses on models aiming to estimate survival
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and/or movement within an open population, allowing for birth /immigration
and death /emigration (McCrea and Morgan, 2014, p.57).

The most basic capture-recapture model is the Cormack-Jolly-Seber (CJS)
model, which estimates the apparent survival probability within the analysed
population, whilst accounting for imperfect detection (Lebreton et al., 1992).
The survival is termed as apparent because permanent emigration and death
are confounded.

However, other demographic parameters are also of interest such as prob-
abilities of movement between colonies for migratory birds, or transitions be-
tween physiological states like health status. Hence, multi-state models were
introduced, to estimate state-dependent survival probabilities and the proba-
bility of moving between states, whilst accounting for imperfect detection in
each of the states (McCrea and Morgan, 2014, p.87) . The process governing
movement between the different states is a Markov chain, usually assumed
to be of first-order; meaning that the future state depends on the past only
through the current state. Or, in other words, there is no memory. This is
not always realistic since animals such as Canada Geese have been shown to
display memory (Hestbeck et al., 1991). The order of the Markov chain can
be increased to account for this kind of issue, using for example a second-order
Markov process (i.e. the future state depends on the past through both present
and previous state) (see for example McCrea and Morgan, 2014, p.96) .

If the states of interest are animal locations (e.g. to study migration pat-
terns), states are easily assigned during fieldwork: when an animal is captured,
its state is clearly visible and recorded. However, when these states are phys-
iological, like health status, inference often has to be made based strictly on
the behaviour of the animals as it is often impossible to perform medical tests
on them. In this case, the state assignment is prone to error and more com-
plex models were developed to account for this uncertainty: multievent mod-

els (Pradel, 2005). They form a general umbrella model, encompassing the
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multi-state and CJS models, which can both be easily expressed as multievent
models.

Finally, the model parameters can be time-dependent and /or state-dependent,
or constant overall; they can also be expressed as functions of covariates that
may be relevant (e.g. gender, climate) (Lebreton et al., 1992).

Hence, the set of potential models which can be fitted to a single dataset

is very large.

1.3 The necessity for diagnostic tools

‘Essentially, all models are wrong, but some are useful’ (Box and Draper,
1987).

Statistical models are, by definition, based on assumptions and subsequent
inference is only valid under those assumptions. In other words, unrealistic
assumptions can lead to flawed inferences. The increasing complexity from
CJS to multievent models, is due to a relaxation of some of the more strict
assumptions, in order to obtain more informative and accurate biological con-
clusions.

Many competing models are generally fitted to a dataset. In order to draw
biological conclusions and make inference, a selection must be made. This is
usually done using information criteria such as the AIC (Akaike’s Information
Criterion), or tests for nested models such as the likelihood-ratio test or the
score test. In certain cases, it is not necessary to select only one model and
model averaging may be performed. This procedure should however be used
with caution as only compatible models should be averaged together (New-
man et al., 2014, Chapter 5). At this stage, the best model(s) among the fitted
models is chosen. The candidate models most often do not exhaustively repre-
sent the set of all possible models. Particularly for complex models, it would

be too time-consuming to explore all possibilities, the likelihood optimisation
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might also prove problematic for some models (McCrea and Morgan, 2011).
Thus, the model selected by information criteria is the least worst among the
investigated candidates, whilst the likelihood ratio test and score test also as-
sess the relative fit of examined models. It is crucial that at least one of the
candidate models should provide an adequate fit to the data (Pradel et al.,
2003): if the selected best model does not fit the data adequately, erroneous
conclusions may result, which in turn can be misused by decision-makers.
Assessing whether a model fits data adequately is termed absolute goodness-
of-fit assessment. It is usually measured overall, based on the distance between
expected values under the model and observed values. The statistic most com-
monly considered, for data grouped into K cells, is Pearson’s x? (Cressie and
Read, 1988, page 10). Let Oy and Ej respectively denote the observed and

expected frequencies in cell k. The test-statistic is then defined by:

=3O ];kE_k)Q | (L.1)

k=1

Capture-recapture data can be viewed as multinomial data, with all the
possible capture histories representing the outcomes, and the number of ani-
mals with each capture history following a multinomial distribution. Hence,
one way of examining goodness-of-fit would be to compare expected and ob-
served values for these frequencies. This general goodness-of-fit assessment is
straightforward to understand and easily implemented, but not optimal for a
capture-recapture framework. Indeed, the number of possible capture histories
increases exponentially with the number of capture occasions: (S + 1)%-1 —1
histories for an experiment with K capture occasions and S states, and this,
in turn, leads to very sparse data for goodness-of-fit purposes (Lebreton and
Pradel, 2002; Pradel et al., 2005; Lebreton et al., 2009). In addition to this,
Burnham (1991) also noted that the omnibus test has low power.

More importantly, even in perfect conditions, an overall goodness-of-fit test
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does not provide enough information. Indeed, if the omnibus test is rejected,
we can conclude that the model does not fit the data adequately, but there
is no indication as to why it does not fit (Pradel et al., 2005). Diagnostic
tests on the other hand, are specific to model assumptions, and thus provide
information regarding possible reasons for lack-of-fit. This guides the model-
building process by pointing towards more appropriate models for the analysed
data and can also provide new ecological insight. Hence, diagnostic tools are
particularly valuable for capture-recapture models.

Note that lack-of-fit may also result from over dispersion (Amstrup et al.,
2005, p.19) (higher residual variance than expected under a multinomial model)
and this is usually accounted for by using a variance inflation factor, the ¢,
which is the ratio of the chi-square statistic divided by the number of degrees

of freedom (McCrea and Morgan, 2014, p.174).

1.4 Thesis structure

The main motivation of this thesis is to develop new diagnostic tools for
capture-recapture models, that are relatively easy to implement and inter-
pret. Their performance is generally evaluated using simulation and they are
also applied to real-life datasets. This thesis explores potential reasons of
structural lack-of-fit of the models and does not consider over dispersion as-
sessment. Also, the aim of this thesis is to develop goodness-of-fit tools for
capture-recapture models, and thus we do not present the technicalities of
parameter estimation.

Diagnostic tools currently exist for the CJS model as well as for multi-
state models (Pradel et al., 2005). They detect specific phenomena that cause
a breakdown of the model assumptions such as trap effects and transience.
These concepts will be explained in Chapter 2, alongside the CJS model and

its existing diagnostic tests.
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Other phenomena might also violate model assumptions and it would be
of interest to be able to detect these and identify them specifically. Chapter 2
focusses on heterogeneity in capture within a CJS framework and introduces a
test of positive association, based on Goodman-Kruskal’s gamma (Siegel and
Castellan Jr., 1988) as a new tool for detecting heterogeneity in capture.

Chapter 3 progresses to multi-state capture-recapture models and naturally
extends the test of positive association to the area of transition probabilities,
which have generally not been given much attention in the literature. Details
are then provided for the only existing diagnostic test related to the transition
probabilities: Test WBWA, currently used to detect memory. Finally, Chapter
3 gives rise to a new tool to detect the existence of a mover-stayer structure
within the analysed population by combining the existing Test WBWA and
the test of positive association.

There are currently no diagnostic tests for the more complex multievent
capture-recapture models, which account for uncertainty in state assignment.
We approach the area of uncertainty by examining two specific cases: partial
observations in Chapter 4, and unobservable states in Chapter 5. Partial
observations occur when the state cannot be determined upon capture for some
animals (i.e. state uncertainty for some observations); whereas unobservable
states present an additional level of uncertainty only on the non-captures. We
developed tests of the model structure in terms of underlying states for both
these cases; and our main aim was to assess whether they could work. Their
performance was therefore assessed using simulation under extremely good
conditions, i.e. very large sample sizes.

Chapter 4 presents the multievent framework and the existing mixture test,
Test M, currently used for multi-state models. We show that a mixture test
can also be defined for partial observations. This new test detects whether
there is evidence that partial observations are actually generated by other

states than those directly observable in the experiment.



1. Introduction 8

Chapter 5 develops a procedure to test for unobservable states. In order
to do so, it was necessary to examine a more general framework of mixtures
of multinomials, which we present in detail. We were then faced with the
obstacle of parameter redundancy, which is defined and explored in detail for
our situation. We derive general parameter redundancy results for mixtures
of multinomials in the presence of unobservable components. We finally im-
plement a procedure for the general framework of mixtures of multinomials
to test for unobservable components. We then apply this procedure within a
capture-recapture framework, to test whether there is statistical support for
defining unobservable states.

Chapter 6 constitutes a separate but related piece of work. We mentioned
previously that covariates can be incorporated in capture-recapture models.
However, this is particularly challenging for time-varying individual covariates
such as weight, since on each occasion the animal is not captured, its weight
value is unknown. Different methods have been proposed to handle this prob-
lem, and Chapter 6 explores the use of multi-state models with a large number
of states representing discretised values of the covariate.

Finally Chapter 7 summarises the contributions of this thesis and further

research paths that can be explored.



Chapter 2

A new tool for detecting

heterogeneity in capture

This chapter proposes a new method to detect and identify heterogeneity in
capture within a Cormack-Jolly-Seber (CJS) framework. In Section 2.1, we
describe the CJS model and associated data, we also detail the existing di-
agnostic tests derived for this model. The CJS model is based on relatively
restrictive assumptions, which are detailed in Section 2.1. This chapter fo-
cusses on the assumption of equal recapture probability at each occasion for
all marked animals known to be in the population.

This assumption is violated when there is a trap-effect (i.e. capture at
a given occasion affecting capture probability at the following occasion); but
also more generally when the animals demonstrate heterogeneous behaviour
in terms of capture. This is very common in animals with a social structure,
where dominant animals are more likely to be resighted than subordinates
(Cubaynes et al., 2010), or if some animals are located in places that are
difficult to access.

It is important to identify and account for heterogeneity in capture when

it occurs: firstly, not accounting for it can lead to biases in estimates of demo-



2. Detecting heterogeneity in capture 10

graphic parameters such as survival. Although survival estimates have been
shown to be fairly robust, even small biases can lead to flawed inference or have
an impact on management strategies (Prévot-Julliard et al., 1998; Cubaynes
et al., 2010; Fletcher et al., 2012; Abadi et al., 2013). Secondly, the presence
of heterogeneity in capture will warrant further investigations as to its causes,
this may in turn lead to identifying individuals with different behavioural pat-
terns such as breeders/non-breeders, bold/timid, dominant/subordinates or
animals with different feeding strategies (Corkrey et al., 2012). Finally, het-
erogeneity in capture can also be a result of the study design (Oliver et al.,
2011; Corkrey et al., 2012), and identifying it would give directions to possible
adjustments. Indeed, heterogeneity in capture can be related to the sampling
process, or stem from resighting errors, in which case additional data collec-
tion rules may be specified: for example, it is more or less standard practice to
require at least two observations for neck-banded geese (Madsen et al., 2014).

It is currently difficult to identify heterogeneity in capture separately from
other phenomena, particularly trap-dependence, that could cause a break-
down in the CJS model assumptions. In Section 2.2, we introduce a new
tool to detect heterogeneity in capture, based on Goodman-Kruskal’s gamma
(Siegel and Castellan Jr., 1988). Other methods which have been proposed to
identify this phenomenon are presented in Section 2.3: an adapted version of
the existing diagnostic tests, suggested by Péron et al. (2010), Leslie’s equal
catchability test (Orians and Leslie, 1958) and Carothers’ extension of the
Leslie test (Carothers, 1971).

A simulation study is conducted in Section 2.4 to assess the performance of
the new approach in detecting heterogeneity in capture specifically, compara-
tively to the other methods. In Section 2.5 we apply the tests to a dataset of
Great cormorants (Phalacrocoraz carbo sinensis) and a dataset of Sandwich
terns (Thalasseus sandvicensis). Finally, we conclude and discuss the results

obtained in Section 2.6.
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2.1 The Cormack-Jolly-Seber framework

2.1.1 Data summaries

Capture-recapture data in its simplest form consists of records of whether each
animal is seen (coded as 1) or not seen (coded as 0), at each sampling occasion
i of a capture-recapture experiment (see for example Lebreton et al., 1992).
This produces a set of encounter or capture histories, as illustrated in Table
2.1. In this example, animal Z321 was first captured, marked and released at
occasion 1, not seen from occasions 2 to 5 and was seen again at occasion K.
The data can be compressed in a capture history matrix, by pooling animals
with the same capture history, as shown in Table 2.2. The encounter histories
can be further summarised by considering pairs of release and subsequent
recapture: the full m-array, which classifies the animals by previous capture
history, and the reduced m-array which conditions only on current capture
(Burnham et al., 1987). All animals released at the same occasion form a
cohort, and the animals from the same cohort, which share the same previous
capture history, form subcohorts . Table 2.3 provides an example of a full m-
array; it contains the number of animals released at occasion ¢ and recaptured
for the first time at occasion 7, or never seen again, grouped by their previous
capture history {h}. Table 2.4 presents a reduced m-array m, with elements
m; ; and v; defined as the animals released at occasion 7 and first recaptured

at occasion j, and those never seen again, respectively.
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Table 2.1: Example capture histories for a capture-recapture experiment with
K encounter occasions

Animal ID Encounter occasion
1 2 3 4 5 K
74321 1 00 0 0 ... 1
C324 1 1 0 1 0 1
K11} 0 1 0 0 0 0
Z12) 0O 01 1 0 ... 0

Table 2.2: An example of summarised capture history matrix with 6 encounter
occasions

Capture history Number of animals
11 1 1 1 1 10
101 0 1 0 15
1 00 0 0 1 22

1 1 0 28

1 0 0 4

0 1 1 36

Table 2.3: Full m-array example: ¢ denotes the release occasion, j denotes the
first subsequent recapture occasion, and {h} denotes the previous history of
the animals

Ji Never seen again
2 3 4 5 6
i{h} 1{-} 10 15 0 0 22 0
2 {1} - 10 0 0 O 0
{0} -0 0 0

5{1111} - - - - 10 0
{to010}f - - - - 0 15
{0001} - - - - 0 28

{0000} - - - - 36 0
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Table 2.4: Reduced m-array: ¢ denotes the release occasion, j denotes the first
subsequent recapture occasion

J Never seen again

1 19 20 3 0 22 0
2 - 19 11 35 O 0
3 - - 47 29 6 0
4 - - - 50 49 7
5 - - - - 46 104

2.1.2 The CJS model

Capture-recapture data consisting of 1s and 0s, as presented in Section 2.1.1,
are typically modelled using a CJS model, which conditions on first capture.
It allows the estimation of the apparent survival probability from occasion 7 to
i+ 1, ¢; (the model does not distinguish death from permanent emigration),
as well as the imperfect recapture probabilities at occasion i, denoted p; (see
for example McCrea and Morgan, 2014, p. 70).

As stated in Chapter 1, the CJS model is based on relatively restrictive

assumptions. They are listed below, as defined in Williams et al. (2002).

1. Every marked animal present in the population at sampling period ¢ has

the same probability p; of being recaptured or resighted.

2. Every marked animal present in the population immediately following
the sampling period ¢ has the same probability ¢; of surviving until

sampling period 7 + 1.
3. Marks are neither lost nor overlooked, and are recorded correctly.
4. Sampling periods are instantaneous.

5. All emigration from the sampling area is permanent.
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6. The fate of each animal with respect to capture and survival probability

is independent of the fate of any other animal.

The reduced m-array is a sufficient statistic for this model, meaning it
contains all the information necessary to estimate the model parameters. Let
v; denote the number of animals released at 7 and never seen again, m; ; and x;
the cell-probabilities respectively associated to the reduced m-array terms m; ;
and v;, and K the number of capture occasions. It follows that m; ; = ¢;_1p;
forj=i+4+1, m; = Hij &e(1 — pry1)| ¢j—1pj for j > i+ 1, whilst xx =1
and y; = 1 — Zf:iﬂ mi; for i < K (see for example Lebreton et al., 1992).

The likelihood of the CJS model can then be expressed as:

pe ( JK2+1 Mij + Uz) 3
. ¢’ b mi’ " UZ 7Tmz JX;}Z 2.1
( {mig E (Miipa)! - (mi ) (vi)! jl;[rl h -

Burnham (1991) showed that the first two model assumptions are testable
through a factorisation of the CJS likelihood. They are respectively the object
of existing diagnostic Test 2 and Test 3, which are implemented in software
such as programs RELEASE or U-CARE (Cooch and White, 2014, Chapter
5). These informative components result from the pooling-peeling algorithm
adopted by Burnham (1991), that was later extended to multi-state models
by Pradel et al. (2003).

2.1.3 Existing diagnostic tests

Figure 2.1 summarises the factorisation steps used by Burnham (1991), which
result in two separate goodness-of-fit components and one parameter estima-
tion component based on the minimal sufficient statistics (i.e. the minimal
information needed to estimate the model parameters). The following colour

coding will be used throughout this subsection for the different components:
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red for parameter estimation, blue for Test 3 and green for Test 2.

The first two likelihood components, relating to first captures and losses/gains

on captures, are only meaningful when simultaneously estimating abundance

in an open population (see for example McCrea and Morgan, 2014, p.150).

The CJS model, however, conditions on first capture and its likelihood corre-

sponds to the probability of the recaptures given the releases. The detail of

the pooling-peeling steps resulting in the final factorisation are illustrated in

Figure 2.2, using an example m-array.

The notations used to express the factorised likelihood components in prob-

abilistic terms are as follows:

K: the number of capture occasions in the experiment,

{Rh}: the previous capture history of a specific subcohort of animals,
R;: the number of animals released at a given occasion 1,

r;: the number of animals released at ¢ who are re-captured,

m; ; and m; ;: respectively the elements of the reduced m-array and their

associated cell-probabilities as defined previously,

m;; = D 1 Mk, the partial column sums for i < j,

mf = I—lmy, for j = 2,..., K — 1: the terms peeled out during the
last step of the pooling-peeling algorithm. Indeed, the first term peeled
out (see Figure 2.2) is m{ = my o, at the next stage, the second term

peeled out is m& = my 3 + ma3 and so forth.

C; = Cj_y — mf_l + rj_q, for j > 2, with Cy = ri: the total number
of animals from which the mf terms are peeled out (i.e. total of the
conditional multinomials pooled prior to the current peeling step). For
the example used in Figure 2.2, Cy = ry = 19420+ 3 4+ 0 + 22 = 64,
C5=(64—19)+ (19+ 11+ 354+ 0) =110
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Pr(dataset)=Pr(first captures) xPr (releases|recaptures) ler (recaptures\releasesj

4
|Pr(subcohorts\(:ohort.s) |>< |P1'((:()horts\1'(\1(\;1.&;(‘,5)|

l v
Pr(MSS) |x|Pr(cohorts| MSS)
Parameter estimation

Figure 2.1: Burnham’s likelihood factorisation of the CJS model, resulting in
separate goodness-of-fit (GOF) and parameter estimation components, MSS
denotes the minimal sufficient statistics

o 7, = [pj_1p;|/ Zk _j T(—1) ] the conditional probabilities of the peeled

bltsm yfor j=2,..., K — 1.

The MSS for the CJS model are defined by Burnham (1991) as the r;
terms, with i = 1, ..., K — 1 and the m! terms, with i = 2, ... K — 1. The final
components of the factorised likelihood are presented below in probabilistic

terms: .

K—1 Ritny
H{h} (mi,iJrl;{h}v-"vmi,K:{h}7Ri;{h} —Ti;{h})
i (2.2)
i=1 (mi,i—o—l,u-,mi,K»Ri_Ti)
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3 - - 47 29 6 82 82
4 - - - 50 49 \ 99 106
5 - - - - 46 ¥16 150

l \_/
Pr(m;ii1em; | ) X Pr(r; | R;)

conditional multinomials binomials

Subsequent recapture
Release occasion occasion

{)g\ 3 4 5 6
1. Peel: binomial ( 19 ) 20 3 0 22 ‘ 2. Pool: conditional

1

2 = |19 11 35 0 multinomials
3 - - 47 29 6

4 - - - 50 49

5 - - - - 46

Repeat peeling & pooling until occasion K — 2

U

Pr(MSS) x Pr(cohorts|MSS)

Figure 2.2: An illustration of the pooling-peeling steps leading to components
Test 2 and Test 3
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Equation 2.2 represents the conditional distribution of the subcohorts given
the cohorts, they consist of K — 1 multivariate hypergeometrics and give rise
to Test 3 (Burnham et al., 1987). Equation 2.3 and 2.4 denote the likelihood
components used for parameter estimation: the probability of the minimal
sufficient statistics. More precisely, Equation 2.3 refers to the binomials peeled
off in the very first step P(r; | R;) whilst Equation 2.4 refers to the binomials
peeled at each occasion in the last step P(m? | C;). Equation 2.5 represents
the conditional distribution of the cohorts given the MSS, they consist of K —3
hypergeometrics (Pradel et al., 2003). This component is used for Test 2, to
test the homogeneity between cohorts.

Test 3 and Test 2 can both be divided in subcomponents, their description
and associated hypotheses are given below, based on the detailed description
given in Choquet et al. (2005). Test 3 is subdivided into two components: Test
3.SR detects transience, which occurs when animals are just passing through
the sampling site and hence only seen once. At each occasion, Test 3.SR com-
pares, for animals encountered at occasion ¢, the newly marked animals to
previously marked animals with respect to whether they are seen again. The
null hypothesis for this test is Hy: “There is no difference in the probability of
being seen again between newly and previously marked animals encountered
at occasion i’ and the alternative hypothesis is defined as H,. The specific
directional departure from the null hypothesis corresponding to transience is:
“Amongst the animals encountered at occasion i, the newly marked animals
present a lower probability of being seen again than previously marked ani-
mals”. The second component, Test 3.5m has a less clear interpretation, it
compares, for animals encountered at occasion ¢, the timing of recapture of

the newly marked animals seen again and of the previously marked animals



2. Detecting heterogeneity in capture 19

that are seen again. The null hypothesis for this test is Hy: “There is no differ-
ence in the expected time of first re-encounter between newly and previously
marked animals encountered at occasion ¢, and the alternative is defined as
Hy. In the same way, Test 2 is subdivided into Test 2.CT and Test 2.CL.
Test 2.CT detects short-term trap-effects, which occur when capture at the
current occasion affects the probability of being captured at the next occasion:
trap-shyness if it decreases and trap-happiness if it increases. To identify this
trap-dependence phenomenon, Test 2.CT compares animals captured at ¢ and
those not captured at i, in terms of whether they were recaptured at ¢ + 1 or
later (given that the animals are alive at both i and i+ 1). The null hypothesis
for this test is Hy: “For the animals known to be alive at both 7 and 7 + 1,
there is no difference in the probability of being seen again at i+ 1 between the
animals encountered at ¢ and those not encountered at ¢”, and the alternative
is defined as Hy. The specific directional departure from the null hypothesis
corresponding to trap-happiness (shyness) is: “For the animals known to be
alive at both 7 and 7 + 1, the probability of being seen again at ¢ 4 1 is higher
(lower) for the animals encountered at ¢ than those not encountered at i”. Test
2.CL, which is thought to possibly detect longer term trap-effects, compares
the timing of re-encounter for the animals re-encountered after ¢ + 1. The null
hypothesis for this test is defined as: “For the animals known to be alive at
both i and 42, there is no difference in the expected time of next re-encounter
between the animals encountered at ¢ and those not encountered at i”, and the

alternative is defined as H,.

Table 2.5: Contingency table for Test 3.SR at occasion ¢

Seen Again Never Seen Again

. K K
Newly released at ¢ > jmit1 Mij{00..0} Ri(00..0y — D_jmiy1 ™Migi{00...0}

. K K
Previously released Zj:iJrl Zh;ﬁ{oo...o} M, j,{n} Zh;ﬁ{oo,‘.o} Riny — Zj:i+1 My j:{h}
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Table 2.6: Contingency table for Test 3.Sm at occasion ¢

Seen Again at i + 1 Seen Again at ... Seen Again at K
Nery released at mi,iJ’,l;{OO”'O} . mLK;{OO'_'O}
Previously released Zh#{oo.uo} My i 1R} .. Zh;é{oo...o} My K (b}

Table 2.7: Contingency table for Test 2.CT at occasion ¢

Seen subsequently at ¢ 4 1 Seen subsequently at a later occasion
. K
Captured at 4 M it Zj:i+2 mij
, i—1 i—1 ~K
Not captured at 4 =1 M1 121 D jeit2 MU

Table 2.8: Contingency table for Test 2.CL at occasion ¢

Seen Again at i + 2 Seen Again at ... Seen Again at K
Captured at i My i2 e mi K
Not captured at 7 Ez;} My ito . Z;: MK

These four tests are constructed from the contingency tables presented
from Table 2.5 to 2.8 (Pradel et al., 2003; Choquet et al., 2009a). Firstly,
standard chi-square tests of homogeneity comparing expected and observed
values are derived per occasion. Then a global result may be obtained for
each of the four tests by summing the independent chi-square statistics from
each occasion. Finally, the sum of these four tests form the omnibus goodness-
of-fit test (Choquet et al., 2005).

In practice, the data can be sparse for Test 3.Sm and/or Test 2.CL, the
cells within the corresponding tables are then pooled (this does not occur for
components 2.CT and 3.SR, which are based on 2 x 2 tables). If the data are

still sparse after pooling, Fisher’s exact test is used (Choquet et al., 2005).
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As its name implies, Fisher’s exact test computes the exact probability of
obtaining the observed 2 x 2 table or a table more extreme, under the null
hypothesis of independence (see for example Upton and Cook, 2008). The di-
agnostic goodness-of-fit tests are Non Applicable (NA) when the corresponding

contingency tables have a row or column total of zero.

2.2 The test of positive association, a new ap-
proach for detecting heterogeneity in cap-
ture

The proposed approach stems from the observation that, if some animals have
a higher capture probability than others, they will be seen more often. In such
a case, at a given capture occasion 7, animals with a higher number of previous
encounters are also likely to present a higher number of future encounters. In
other words, a positive association is expected between previous and future
encounters in the presence of heterogeneity in capture.

We propose the following steps to construct the test-statistic of interest
to our objective. Firstly, the test should target heterogeneity in capture and
therefore should not be contaminated by noise due to deaths or permanent
emigration. Hence, the occasions after the last sighting, for which the presence
of the animal is uncertain, are not taken into account. Secondly, since the
CJS model conditions on first capture, the period prior to the first capture
and the first capture occasion itself are not informative; thus these occasions
are not taken into account for the test. Similarly, the last capture occasion
is not taken into account either since it does not provide any information to
discriminate between the animals in terms of capture intensity. Thirdly, the
occasions of first and last capture can differ amongst animals, leading to an

artificial difference between them: the earlier (the later) the animals are first
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(last) seen, the more possible encounters they have. Therefore, the information
relative to the encounters is standardised by dividing the number of previous
(future) encounters by the maximum number of possible previous (future)
encounters. Fourthly, the raw proportions of previous and future encounters
per animal at a given occasion are not of interest per se. Rather, we are
interested in how animals fare relatively to one another: are animals that are
seen more (less) often before i also seen more (less) often after i? Therefore,
the ranks of these proportions constitute the final information retained from
the data to test for heterogeneity in capture. Finally, since the range of ranks
is limited and that we expect many ties, Goodman-Kruskal’s gamma is used
to test for a positive association between the ranks of previous and future
encounters (Siegel and Castellan Jr., 1988, p. 291). Since the test is based on
previous and future encounters with respect to a given capture occasion 1, it is
reasonable to require a minimum of two informative occasions (i.e. excluding
the first and last sightings) both before and after i. As a result, the test is
restricted to animals known to be alive at least at :+3 and released before i —1;
so it can only be computed for capture-recapture experiments with at least
six capture occasions. Note that the capture history information at occasion
1 could be counted in either the future or previous encounters; as there is no
strong argument in favour of either side and we decided to count it in the
previous encounters.

We use a toy example comprising three capture histories (see Table 2.9)
to illustrate the construction of the test at a given occasion ¢ = 5. In our
example, animal ID 98 is not included within the test construction because it
is released before occasion 4, but never seen again, so not known to be alive
at occasion 8. The numbers of previous (future) encounters (denoted m),
proportions (denoted pr) and maximum possible number of previous (future)
encounters, denoted max, are shown in Table 2.9 for our example animals ID

99 and ID 100.
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The gamma measure of positive association, denoted by G, is estimated by

v, which is based on the pairs of discordant D and concordant C' observations:

C—-D

A pair of observations is concordant if the observation ranking higher (lower)
for the previous encounters, also ranks higher (lower) for the future encoun-
ters; and discordant if the observation ranking higher (lower) for the previous
encounters ranks lower (higher) for the future encounters. In our example
from Table 2.9, animal ID 99 is ranked higher than animal ID 100 for both
previous encounters and future encounters. Thus, animals ID 99 and ID 100
form a concordant pair. Animals who are ranked the same for either previous
encounters or future encounters form ties and are not taken into account by
the gamma measure.

In the case of heterogeneity in capture, we expect a high number of con-
cordant pairs. Hence, we use a one-sided test with the null hypothesis defined
as “G< 07 and the alternative as “G> 0”. With this test, we hope to detect
the specific departure of heterogeneity in capture resulting from differences in
the animals’ behaviour, when some present a higher capture probability than
others. When the subset of animals considered for the test at occasion i, n, is
relatively large, under the null hypothesis of no association, the distribution of
the test-statistic v/ \/W is approximately a standard normal (Siegel and
Castellan Jr., 1988). In order to be conservative regarding this approximation,
we propose to restrict n to at least 30. If n < 30, we state that the test is not
applicable (NA).

We examined two versions of the test, based on different approaches to the
variance estimation. The true variance of v is known to be smaller than the
upper bound [n(1 —~?)] /[C + D] (Siegel and Castellan Jr., 1988); and using

this upper bound as variance estimate leads to a conservative test. We also
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used an estimate of the asymptotic variance derived by Brown and Benedetti
(1977), 132,37, aij(Aij — Dij)? — (4(C — D)?/n)| / [(C + D)?], where a;; de-
notes the frequency cell from the contingency table of rank of proportions of
previous encounters x rank of proportions of future encounters, with A;; =
D ki Doty Okt + D 2opsg AN Dij =3 0050 skt + D ki D s -
The subsets of animals used for the test at different occasions ¢ are not
independent, which means the results from each occasion cannot be pooled.
However, if not much temporal variation is expected for the capture probabil-
ity, one may consider a global test using the middle occasion between first and
last capture which allows for an optimal balance between information brought
by the previous and future occasions. The test procedure and restrictions are
the same as the test for a given occasion i, only ¢ will be replaced by the
middle occasion and each animal used only once within the test. The global

test of positive association is also illustrated for our toy example in Table 2.9.

2.3 Other tests investigated

2.3.1 Adapted versions of the diagnostic tests

Pradel et al. (2005) observed that, based on the contingency tables used for
Test 3.SR and Test 2.CT, directional tests could be used to detect transience
and trap-happiness or shyness since these phenomena lead to an expected
direction of departure from the CJS assumption. For instance, if there is
trap-happiness, one would expect the contingency table associated with Test
2.CT to be consistently unbalanced, with more animals captured at ¢ and
seen again at ¢ + 1 than expected. Tables 2.10 and 2.11 show the signs of
expected unbalances in the associated contingency tables under, respectively,
transience and trap-happiness. The directional components by occasion z; are

obtained by using the square-root of the chi-square statistics by occasion from
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Test 2.CT or Test 3.SR, and signing them, for all occasions, according to the
unbalance of interest : for example, using a positive sign if there are more
animals captured at ¢ and seen again at ¢ + 1 than expected. Recall that
the contingency tables per occasion for Tests 2.CT and 3.SR are 2 x 2, the
associated chi-square statistic has therefore one degree of freedom and the z;s
follow a standard normal distribution. An overall directional component z may
be derived for both tests with z = >~7 | 2;/,/p following a standard normal

distribution, with p the number of directional components per occasion z;.

Table 2.10: Directional test 3.SR, expected direction of departure under tran-
sience, occasion ¢

Seen Again Never Seen Again

Newly released at ¢ - +

Previously released -+ -

Table 2.11: Directional test 2.CT, expected direction of departure under trap-
happiness, occasion

Seen subsequently at i + 1 Seen later

Captured at ¢ -+ -

Not captured at ¢ - +

When there is heterogeneity in detection, it is known that Tests 2.CT and
3.SR tend to generate significant results (Péron et al., 2010) but they do not
provide a specific diagnostic of this phenomenon. For instance, a combina-
tion of trap-dependence and transience may also yield significant results for
these two tests. Péron et al. (2010) suggested removing the squared over-
all directional components 235z and zoor of Test 3.SR and Test 2.CT from

the overall omnibus chi-square statistic and using the remainder to test for
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heterogeneity in capture. Denoting by Tot the omnibus statistic and do f,¢
the associated degrees of freedom, the test-statistic suggested by Péron et al.
(2010) is TotC = Tot — 22¢r — 2557, which follows a chi-square distribution

with (dofp,; —2) degrees of freedom.

2.3.2 The Leslie test for equal catchability

The Leslie test for equal catchability tests whether the sampling of marked
animals is random (Orians and Leslie, 1958). It is based on the frequency of
recaptures, within each group of animals with the same first release occasion
and last capture occasions. Using terminology from Carothers (1971), these
groups are named blocks and denoted by b; and an animal may only belong
to one block. As for the test of positive association, the information before
and after these occasions (first and last included) is not taken into account for
the test. The test requires that animals be potentially recaptured at least 3
times between their first and last capture occasion; it can therefore be used
for capture-recapture experiments with at least 5 sampling occasions. The
conception of the Leslie test rests on a different way of modelling the data,
than the usual product-multinomial approach presented in Section 2.1.2. Ori-
ans and Leslie (1958) observed that there are two possible outcomes for each
capture occasion, “recaptured (1)” or “not seen (0)”; it follows that the capture
occasions constitute independent Bernoulli trials. Within each block b, the
probability of success (here recapture) at each capture occasion i is the pro-
portion of recaptures at i: p;p = S vty CHy(k,1)/Ny, with CHy(k, 1) denoting
the ¢th element of the capture history of animal k£ belonging to block b and N,
the number of animals in that block. Let f and [ respectively denote the first
and last contribution times to the test of animals from a given block. (Here,
f and [ will respectively be the occasion following the first capture and the

one preceding the last capture.) Consequently, the number of recaptures per
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individual %k, within b, denoted by Sy, follows a Poisson-Binomial distribution
. !
with mean Zi:f Dip-
Orians and Leslie (1958) use the ratio of observed variance over expected

variance as their test-statistic per block:

N, =\ 2 N
L, — Zb (Sko—Sb) with 5, — el Sk (2.6)
k=1 Zﬁ:f pis(1 —pip) Ny

The distribution of L, was not formally proven in Orians and Leslie (1958).
However, Carothers (1971) established an equivalence between Leslie’s test
and Cochran’s Q, thus showing that a corrected version of L, has a proven
asymptotic distribution. Cochran’s Q is used to test whether matched sam-
ples of proportions differ (Siegel and Castellan Jr., 1988, p. 170). Applied to
the Leslie-test framework, within block b, the animals constitute the “matched
samples” whilst the capture occasions (between first and last) constitute the
“subjects”, since the aim is to assess whether the capture probability differs
between animals. The animals are “matched” because they all present “re-
sponses” for each of the capture occasions (re-captured or not seen). The

test-statistic for Cochran’s (Q is then given below:

_ No(Ny = 1) 370 (Skp — Sb)?
Ny S S CHy (ki) — S S (CHy(k, i)

Q (2.7)

Recall that p;, = S_nt, CHy(k,1)/Ny, hence:

=\ 2
. (Sks = 5)
b = N, N,
l b CHy(ki b CHy(k,i
=t [zk_le b(k) (1 _ T >)}
=\ 2
all (S — Sb)

:sz

~ No (CH, (k)2
k=1 Zﬁzf { N CHy(k,i) — w]
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From this, it follows that, for each block,

N, -1

Q N,

Ly, (2.8)

Since Q’s asymptotic distribution was proven to be asymptotically X?Vb—l (see
for example Siegel and Castellan Jr., 1988, p. 170), we use this corrected
version of the Leslie-test (or in other words Cochran’s QQ), keeping the original
sample size recommendation of N, > 20 per group (Orians and Leslie, 1958).

One drawback of the Leslie test is that it discards a lot of data; Carothers
(1971) builds on Cochran’s Q as defined above in a capture-recapture context,
and extends it to make it more efficient by using more data. This extension is

described in Section 2.3.3.

2.3.3 Carothers’ extension

The extension of Carothers (1971) consists in making Leslie’s test more effi-
cient by using the data from all blocks instead of having one test per block.
As for Leslie’s test, the testable data will consist only of the segments of cap-
ture histories comprised between first and last occasion. The testable data is
shown for an example capture history matrix, in Table 2.12. Carothers (1971)
required that only occasions presenting a number of testable animals, H;, of
at least 20 or above, be considered to ensure the validity of the asymptotic
distributions used. Note here the major difference from Leslie’s test with re-
spect to the data discarded. Indeed, Leslie’s test discarded all blocks with
less than 20 animals, whereas Carothers’ extension only discards the capture
occasions presenting less than 20 animals with testable data. The informa-
tion from these discarded occasions is not taken into account in any of the
quantities calculated for the test, as shown in Table 2.12 (greyed out in the
table). Basically, those occasions are considered as non-existent. Similarly to

Leslie’s test, the animals from the testable data (minus sparse occasions) are
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grouped into blocks. Only the grouping criterion differs slightly since animals
are grouped by their first and last times of contribution to the test data f
and [; this can differ from the grouping by first and last occasions due to the
elimination of the sparse occasions. For instance, the last animal from block
1 has a different first capture occasion (2) than the other animals in the block
(1), but it contributes to the test from occasion 3 to 4 as do all the other
animals from this same block.

Since the test-statistic used by Carothers (1971) is not a straightforward
product of the raw data, its construction steps are presented in detail in this
section. Carothers (1971) considers the testable data after discarding the oc-
casions as appropriate and makes use of yet another perspective on the CJS
data. Under the assumption of equal recapture probability for all marked
animals known to be alive, all the 1’s occurring at a specific occasion ¢ have
the same probability of occurring across individuals (these probabilities may
vary across the capture occasions). The total number of recaptures per oc-
casion SO; is fixed; thus the number of recaptures per occasion follows a
hypergeometric distribution (sampling without replacement). Let p; denote
the recapture probability at occasion i, or in other words, the probability that
element C'H(k,i) (ith element of the capture history of animal k) is equal
to 1: p; = P[CH(k,i) = 1] = SO;/H;. These quantities are calculated for
our example in Table 2.12. Based on the properties of the hypergeometric
distribution (see for example Lecoutre, 2006), we obtain: E[CH (k,i)] = p;
and Var[CH(k,7)] = pi(1 — p;). Since the sampling occasions are indepen-
dent, Cov[CH (k,i),CH(k,j)] = 0 for i # j. However, since the number of
recaptures per occasion is fixed, the sampling between individuals is not inde-

pendent and the covariance between 2 animals k; and ko for a given capture
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Table 2.12: Extracting the testable data and computing the quantities nec-
essary to Carothers’ test, from a raw individual capture history matrix: an
example. ¢ denotes the capture occasion, the testable data is denoted in bold
and blue and the quantities calculated from the data are denoted in green.

Block b Capture occasion % Sepy No  Sp €p o

4

7 1.57 1.35 0.660

8 1.63 1.35 0.660

10 1.7 2.06 0.801

O OO | = OO O = O b et ot | o e e | e e e e e e OO e = O W
= o = e O el O O b e O O = = | Ok Ot O bt et ok |k e pd O e e [ O
—_ O O | O - O ik QOMFOMK| OO C O |k ko b pd pd pd | R = R RO O
O O NN o W NN N | e e N REDNEDNDNNINDNDNOMNDN

5 3 0.33 - -
H; 21 25 21
SO; 15 16 15

w

Di 0.71 0.64 0.71
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occasion 17 is:

Cov[CH(ky, i), CH(ky,i)] = E[CH (ky,i), CH(ky,1)] — E[CH (ki) E[CH (ks,1)]
80,50, -1 S02

 H; Hi—1 H?
_ S0;(50; —1)H; — SO}(H; — 1)

H?(H; — 1)
B SO; _Hi — SO, 1
- H; H; H;—1
Hence,
_pi<1 — pi)

Cov[CH(ky, 1), CH(ky, i)] = (2.9)

H, -1

Recall from Section 2.3.2 that S} follows a Poisson-binomial distribution.
Cochran (1950) and Carothers (1971) show that the asymptotic joint distri-
bution of the Sy, is a multivariate normal. Within a block, all the Sy, follow

a joint multivariate distribution with common expectation and variance; since

Sib = iy CHy(k, i), it follows that:

l

E[Sks] = Y _pi (2.10)

i=f

and

Var[Sep] = > pi(l—pi). (2.11)
i=f

Also, for animals k; and ks (who may belong to different blocks b, and by),

the covariance 1is:

min(ly, ’lbb)

— Vi 1— )
COV[SkLbaySkg,bb] = Z % . (212)

i=maz(fy, ,fo,)

In order to simplify notations, Carothers (1971) denoted E[Sk ] by €5, Var[Sk ]

by o2; and Cov[Sk, b, s Sk by] DY Pbe.byTbs Oby» introducing the correlation between
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blocks py, b, Using Walsh’s theorem, Carothers (1971) deduced that

Ny

1 _
Ob = ) Z<Sk’b - Sb)2 ~ X%Nb—l) (2.13)

a oy (1= pry o1

with p,; denoting the correlation within block b; the distributions of Oy being
independent between blocks as well as from the mean number of recaptures
per individual in block b, S,. He showed that the S, have an asymptotic mul-
tivariate normal distribution and that B — 1 of them are linearly independent

hence,

Ogr = (Sb — €b>TE_1(§b — Eb) ~ X%B—l) (2.14)

with B denoting the number of blocks and 3 the variance-covariance matrix

of the S, for b =1 to B — 1. The off-diagonal elements of ¥ are
Cov[Sy, Se] = pyeopo. for b # c, (2.15)
and the diagonal elements

Var[S,] =

o2 Np,—1
ZVCLT’Skb +ZZCOV Skb,Slb :Nb—i- b]V pb,bag.
k=1 k#l b b

(2.16)

Finally, the test-statistic used by Carothers (1971) for equal catchability is
Or = Zle O, + Op, which follows a y? distribution with ZbB:l(Nb -1+
B—-1= (Zszl Nb> — 1 degrees of freedom. Again, for reasons of asymptotic
validity, Carothers (1971) recommends using only the blocks with S, > 1.5 for
the computation of the test-statistic; for our example from Table 2.12, blocks
3 and 5 are ignored. The quantities ¢, and o3, are computed using Equations

2.10 and 2.11, and presented in Table 2.12 for blocks 1, 2 and 4. For example,
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for block 1,

o1 = /ps(1 — p3) + pa(1 — py) = /0.71(1 — 0.71) + 0.64(1 — 0.64) = 0.660

The correlation matrix between (off-diagonal terms) and within blocks (diag-

onal terms) is computed for the example from Table 2.12, based on Equations

2.11 and 2.12:

1 2 4
1| —0.044 —-0.023 —-0.036
P=2| -0023 —0.044 —0.036
4| —0.036 —0.036 —0.045

For example, the correlation between blocks 1 and 2 is computed as

—p4a(1—p4)
Hy—1
0102
—0.64(1—0.64)

25—1
=Bl _023.
0.660 x 0.660 V%

P12 =

And the correlation within block 1 from

—p3(1—p3) + —pa(1—p4)

prg = — Ml 044
0101

In the same way, applying Equation 2.13, O; = 8.17, O, = 4.12 and O4 = 6.12.
To preserve linear independence, a block needs to be set aside. We follow the

example from Carothers (1971) and set aside the smallest one: block 1. From

Equation 2.16, Var(S;) = 0.038, Var(S;) = 0.038 and from Equation 2.15,
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_ 35.29 17.56
Cov(Ss,S;)=-0.019 resulting in: X! =

17.56 34.91
Finally, from Equation 2.14, Or = 3.75, and we have all the elements

needed to compute the test statistic: Op = 8.17 4+ 4.12 + 6.12 4 3.75 = 22.16,
which produces a p-value of 0.57 for a x? with 24 degrees of freedom (N, +
N5 + Ny — 1). There is no significant evidence for heterogeneity in capture in

our example dataset.

2.4 Simulation study

We used simulation to assess and compare the performance of the tests de-

scribed in Sections 2.2 and 2.3.

2.4.1 Simulation scenarios

A subset of the different scenarios simulated to investigate the methods consid-
ered are shown in Table 2.13. The tests’ performances were evaluated in good
conditions for survival (¢ = 0.9). We considered control datasets (scenarios
denoted by C1 and C2), generated by a CJS model with constant capture
and survival probabilities, in order to check the Type I error rate obtained.
Then, we assessed whether, in good conditions, the tests were powerful to
detect heterogeneity in capture. Our basic heterogeneity scenarios had two
groups of animals with contrasting capture probabilities of 0.35 and 0.82 and
a proportion of 0.3 for either one of the groups; p1, p2, ¢1 and ¢, respectively
denote the capture and survival probabilities in groups 1 and 2, 7m; denotes
the proportion of individuals in group 1. Based on these discrete hetero-
geneous capture scenarios, denoted by HC1 and HC2, we also considered a
slight temporal dependence, by adding a uniform term U[-0.20,0.17| to the
original capture probabilities at each time-point; we denote these scenarios by

HC1t and HC2t. The discrete scenarios aimed to represent situations where
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animals had intrinsically different behaviours in terms of capture (e.g. domi-
nants and subordinates), thus movement between groups was not allowed. We
also considered different cases of continuous heterogeneity in capture, with the

capture probability, p, following a beta distribution:

e HCcl, symmetric around the mean, generated by a 5(5,5): mean 0.5

and standard deviation (sd) 0.15.

e HCc2, positive skew (most animals with low capture probabilities), gen-

erated by a (4, 12): mean(sd) = 0.25(0.11).

e HCc3, negative skew (most animals with high capture probability), gen-
erated by a 3(12,4): mean(sd) = 0.75(0.11).

e HCcl1F, symmetric around the mean, generated by a 3(2,2):
mean(sd) = 0.50(0.22).

e HCc2F, positive skew (most animals with low capture probabilities),

generated by a ($(2.4,4.3): mean(sd) = 0.36(0.17).

e HCc3F, negative skew (most animals with high capture probability),
generated by a ($(4.3,2.4): mean(sd) = 0.64(0.17).

The distributions of p for the capture heterogeneity scenarios considered are
illustrated in Figure 2.3.

Finally, we wish our test to be specifically sensitive to heterogeneity in
capture (represented by the scenarios described previously). Therefore, to
assess the tests’ specificity to heterogeneity in capture, other situations causing
a violation of the CJS model assumptions were considered: short-term trap-
dependence (respectively denoted by TH and TS for trap-happiness and trap-
shyness), transience (denoted by TR) and heterogeneity in survival (denoted

by HS), as well a combination of trap-dependence and transience (denoted by
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Figure 2.3: Distribution of p for heterogeneity scenarios: histograms and den-

sity plots
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TSTR for trap-shyness and THTR for trap-happiness). We hope the test of
positive association will be insensitive to these departures.

The scenarios of transience and short-term trap-dependence considered are
described in Table 2.13: ¢, denotes survival of newly marked animals, ¢, the
survival of previously marked animals; pr4 and pyra respectively denote the
probability of capture of a trap-aware and non-trap-aware animal. Recall that
an animal is trap-aware at a given occasion ¢ if it has been captured at ¢ — 1.

For each scenario, 250 datasets were simulated for a capture-recapture ex-

periment with 10 capture occasions, under two different sample size conditions:

N = 2000 and N = 500.

2.4.2 Results

The simulation results presented are the percentage of significant test results

(out of the number of cases where the test was applicable), using a 5% level.

Test of positive association

The results of the tests per occasion are presented for both the conservative
version and the version based on Brown and Benedetti (1977)’s estimate of
the variance, using two informative occasions before and after the occasion
tested for, in Tables 2.14 to 2.17. We also explored the effect of using only
one informative occasion before and after the occasion tested for, and those
results are displayed in Tables 2.18 and 2.19. The results of the global test per
dataset, are shown in Table 2.20 for all the test versions mentioned above.
Table 2.14 shows that, for N = 2000, the conservative test per occasion
using two informative occasions presents a very small Type I error rate (lower
than 5% as expected, but also close to 0). This test has very high power
at all occasions for situations with discrete heterogeneity in capture (around

100% of significant results per occasion). It is also powerful for scenarios
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Table 2.13: Parameter values for the simulation scenarios considered. p1, pa, ¢1
and ¢9, respectively denote the capture and survival probabilities in groups 1
and 2, m; denotes the proportion of individuals in group 1. ¢,; denotes survival
of newly marked animals, ¢,5 the survival of previously marked animals. prx
and pyra denote the probability of capture of a trap-aware and non-trap-aware
animal

Scenario D1 P2 P11 P2 T Pal Da2 DPrA DPNTA

Control:
C1 035 035 09 0.9 - - - - -
C2 0.82 0.82 0.9 0.9 - - - - -
Heterogeneous

capture (2 groups):

HC1 0.35 0.82 09 09 0.3 - - - -
HC2 035 0.82 09 09 0.7 - - - -
Heterogeneous

survival (2 groups):

HS 09 09 045 09 0.3 - - - -
Trap-shyness:

TS - - 09 09 - - - 062 0.82
Trap-happiness:

TH - - 09 09 - - - 055 0.35
Transience:

TR 0.82 0.82 - - - 04 09 - -
Trap-Shyness & Transience

TSTR - - - - - 04 09 062 0.82
Trap-Happiness & Transience

THTR - - - - - 04 09

o
Ut
Ut
o
w
(&1
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of continuous heterogeneity, for scenarios HCclF, HCc2F and HCc3F (i.e.
when heterogeneity is strong) with around 70 to 100% of significant results
(apart from occasion 3, for HCc2F: 47.20%). It does not perform as well
for weaker scenarios of continuous heterogeneity (12 to 76.4% of significant
results for scenarios HCcl, HCc¢2 and HCc3), although it does retain good
power at several occasions for HCcl and HCc3. For a smaller sample size
(see Table 2.15), this test presents adequate power for scenarios with discrete
heterogeneity (approximately 50 to 90% of significant results per occasion), but
it does not perform well for continuous scenarios (mostly 10-20 % of significant
results per occasion, except for HCc1F: around 60% and HCc2: consistently
under 5%).

The test is only slightly sensitive to short-term trap-happiness for a couple
of occasions: for example, there are 8% of significant results at occasion 7.
Considering the conservative nature of this test, it is much higher than the
type I error but we note that it is close to the 5% level that would be used in
practice. Importantly, the test is not affected by transience or heterogeneity
in survival, nor is it affected by trap-shyness. It is slightly affected by a
combination of transience and trap-happiness. This is expected considering
that trap-happiness on its own affects the test.

To sum up, the conservative test is powerful at detecting situations of
strong heterogeneity in capture and shows promising results to specifically
detect this phenomenon.

Tables 2.16 and 2.17 show that the version of this test based on the Brown
& Benedetti variance estimate presents a Type I error close to the 5% level for
N = 2000. It is slightly higher for N = 500 (around 6-7% for all occasions), this
could be due to the distribution being slightly less well approximated than for
the larger sample size of N = 2000. For N = 2000, the test based on the Brown
& Benedetti variance estimate is very powerful at detecting heterogeneity in

capture for the discrete cases (around 100% for all occasions) as well as most
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Table 2.14: Test of positive association, conservative version, using two infor-
mative occasions, per occasion, N = 2000 animals, percentage of significant
results (number of applicable tests), high percentage of significant results in
bold (> 50%)

Capture occasion 3 4 5 6 7

C1 0.40 (250) 0.00 (250) 0.00 (250) 0.00 (250) 0.40 (250)
C2 0.80 (250) 0.00 (250) 0.00 (250) 0.00 (250) 0.40 (250)
HC1 86.40 (250) 98.80 (250) 100.00 (250) 100.00 (250) 98.40 (250)
HC2 96.00 (250) 99.60 (250) 100.00 (250) 100.00 (250) 100.00 (250)
HC1t 92.80 (250) 100.00 (250) 100.00 (250) 100.00 (250) 100.00 (250)
HC2t 96.40 (250) 100.00 (250) 100.00 (250) 100.00 (250) 100.00 (250)
HCcl 29.60 (250) 54.40 (250) 76.40 (250) 73.20 (250) 62.80 (250)
HCc2 11.60 (250)  11.20 (250) 17.20 (250) 14.40 (250) 12.00 (250)
HCc3 14.80 (250)  33.60 (250) 53.20 (250) 57.20 (250)  45.60 (250)
HCcl1F 89.60 (250) 99.60 (250) 100.00 (250) 100.00 (250) 100.00 (250)
HCc2F 47.20 (250)  75.60 (250)  90.40 (250) 85.60 (250)  77.20 (250)
HCc3F 70.00 (250) 88.00 (250) 98.40 (250)  98.80 (250)  98.00 (250)
HS 1.20 (250) 0.40 (250) 0.40 (250) 0.40 (250) 0.40 (250)
TS 0.00 (250) 0.00 (250) 0.00 (250) 0.00 (250) 0.00 (250)
TH 3.20 (250) 1.60 (250) 00 (250) 5.20 (250) 8.00 (250)
TR 0.80 (250) 0.80 (250) 0.40 (250) 0.00 (250) 0.40 (250)
TSTR 0.00 (250) 0.00 (250) 0.00 (250) 0.00 (250) 0.00 (250)
THTR 1.21 (248) 0.80 (250) 0.40 (250) 5.60 (250) 4.40 (250)
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Table 2.15: Test of positive association, conservative version, using two in-
formative occasions, per occasion, N = 500 animals, percentage of significant
results (number of applicable tests), high percentage of significant results in

bold (> 50%)

Capture occasion 3 4 5 6 7

C1 0.00 (57) 0.40 (250) 0.40 (250) 0.00 (250) 1.21 (248)

C2 1.20 (167) 1.20 (250) 0.80 (250) 0.40 (250) 0.80 (250)

HC1 36.03 (136) 47.60 (250) 65.60 (250) 58.80 (250)  44.00 (250)
HC2 37.21 (86)  62.00 (250) 82.00 (250) 90.40 (250) 88.80 (250)
HC1t 64.74 (156) 86.40 (250) 79.20 (250) 83.60 (250) 71.60 (250)
HC2¢t 48.72 (39) 60.32 (247) 80.40 (250) 79.60 (250) 56.05 (248)
HCcl 6.86 (102) 8.40 (250)  12.80 (250)  12.40 (250) 12.80 (250)
HCc2 0.00 (7) 4.61 (217) 3.21 (249) 2.40 (250) 3.93 (178)

HCc3 9.38 (160) 6.40 (250)  10.00 (250)  11.60 (250) 9.20 (250)

HCclF 31.94 (72)  43.60 (250) 64.00 (250) 66.00 (250) 60.40 (250)
HCc2F 12.50 (24)  13.31 (248)  20.00 (250)  19.60 (250)  21.20 (250)
HCc3F 17.83 (129)  25.60 (250)  38.00 (250)  34.00 (250)  33.20 (250)
HS 0.00 (25) 2.82 (248) 1.20 (250) 0.40 (250) 1.20 (250)

TS 0.62 (161) 0.00 (250) 0.00 (250) 0.00 (250) 0.00 (250)

TH 1.52 (66) 0.40 (250) 0.80 (250) 3.20 (250) 2.40 (250)

TR NA (0) 0.00 (71) 0.85 (236) 0.40 (249) 1.20 (250)

TSTR NA (0) 0.00 (72) 0.00 (231) 0.00 (248) 0.00 (242)

THTR NA (0) 0.00 (15) 0.88 (114) 1.28 (156) 2.99 (67)
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of the continuous scenarios (around 100 % for strong heterogeneity scenarios
HCc1F, HCc2F, HCc3F and generally more than 50% for HCcl, HCc¢2 and
HCec3). It retains very good power for all the scenarios with strong heterogene-
ity for N = 500 (more than 50% for all scenarios at all occasions). Its power is
lower for the continuous scenarios with weaker heterogeneity (approximately
20 to 50% for HCcl, HCc2 and HCc3).

This version of the test is also sensitive to trap-happiness (20 to 60% of
significant results per occasion for N = 2000 and around 20% for N = 500),
whilst it is not affected by trap-shyness. The percentage of significant results
for both transience and heterogeneity in survival is close to the Type I error
rate. Finally the test does not react to a combination of trap-shyness and tran-
sience but is moderately sensitive to a transience and trap-happiness combined
(around 15 to 20% of significant results for both N = 2000 and N = 500).

In conclusion, the Brown & Benedetti version of the test is more powerful
than the conservative test for detecting situations with weaker heterogeneity in
capture. However, it also reacts strongly to trap-happiness, making it difficult
to distinguish between both phenomena.

We note that the use of two informative occasions for past and future
encounters results in a non-negligible loss of data for the tests of positive asso-
ciation: see the low number of applicable tests in the presence of transience in
Table 2.15 for instance; and Figure 2.4, which presents boxplots of the number
of animals actually used for the tests for simulated datasets under HC1, for
both N = 2000 and N = 500. However, this restriction seems optimal for de-
tecting heterogeneity in capture specifically, particularly with the conservative
test. Indeed, if only one informative occasion is used, Tables 2.18 and 2.19
shows that the tests are much more sensitive to short-term trap-happiness (ap-
proximately 30-40% significant results per occasion for the conservative test,
for N = 2000 versus a maximum of 8% on one occasion for the test with two

informative occasions; 60-80% for Brown & Benedetti with one informative
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Table 2.16: Test of positive association based on Brown & Benedetti’s variance
estimate, using two informative occasions, per occasion, N = 2000 animals,
percentage of significant results (number of applicable tests), high percentage

of significant results in bold (> 50%)

Capture occasion 3 4 5 6 7

C1 4.40 (250) 3.60 (250) 6.80 (250) 6.40 (250) 4.80 (250)
C2 4.00 (250) 6.00 (250) 2.80 (250) 4.40 (250) 3.20 (250)
HC1 98.00 (250) 100.00 (250) 100.00 (250) 100.00 (250) 100.00 (250)
HC2 100.00 (250) 100.00 (250) 100.00 (250) 100.00 (250) 100.00 (250)
HC1t 98.80 (250) 100.00 (250) 100.00 (250) 100.00 (250) 100.00 (250)
HC2¢t 100.00 (250) 100.00 (250) 100.00 (250) 100.00 (250) 100.00 (250)
HCcl 76.40 (250) 90.80 (250)  98.40 (250) 98.80 (250) 94.40 (250)
HCc2 37.20 (250) 56.00 (250) 59.60 (250) 58.80 (250) 44.80 (250)
HCc3 51.20 (250)  76.40 (250)  86.80 (250)  89.20 (250)  82.80 (250)
HCclF 99.20 (250) 100.00 (250) 100.00 (250) 100.00 (250) 100.00 (250)
HCc2F 82.80 (250)  98.40 (250) 100.00 (250) 98.80 (250)  97.60 (250)
HCc3F 94.00 (250)  98.80 (250) 100.00 (250) 100.00 (250) 100.00 (250)
HS 6.40 (250) 1.60 (250) 5.20 (250) 6.80 (250) 4.80 (250)
TS 1.20 (250) 0.40 (250) 0.00 (250) 0.00 (250) 0.00 (250)
TH 19.20 (250) 30.40 (250) 34.00 (250) 45.20 (250) 44.00 (250)
TR 7.60 (250) 5.60 (250) 2.40 (250) 5.20 (250) 4.80 (250)
TSTR 2.00 (250) 2.80 (250) 0.40 (250) 0.80 (250) 0.80 (250)
THTR 11.69 (248) 18.00 (250) 24.00 (250) 23.20 (250) 28.00 (250)
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Table 2.17: Test of positive association based on Brown & Benedetti’s variance
estimate, using two informative occasions, per occasion, N = 500 animals,
percentage of significant results (number of applicable tests), high percentage
of significant results in bold (> 50%)

Scenario 3 4 5 6 7

C1 5.26 (57) 4.40 (250) 6.80 (250) 6.00 (250) 6.05 (248)
C2 6.59 (167) 6.80 (250) 5.60 (250) 6.40 (250) 7.60 (250)
HC1 60.29 (136) 84.00 (250) 92.00 (250) 90.00 (250) 79.60 (250)
HC2 81.40 (86) 95.20 (250) 98.00 (250) 99.60 (250) 97.60 (250)
HCIt  84.62 (156) 97.60 (250) 92.80 (250) 94.80 (250) 90.40 (250)
HC2t 84.62 (39) 93.52 (247) 99.20 (250) 97.60 (250) 89.92 (248)
HCc1 28.43 (102)  49.60 (250) 54.40 (250) 53.60 (250) 44.80 (250)
HCc2 0.00 (7) 22.58 (217)  24.90 (249) 20.40 (250) 17.98 (178)
HCec3 23.75 (160)  30.80 (250) 38.00 (250) 39.20 (250)  32.40 (250)
HCclF 75.00 (72) 90.00 (250) 93.20 (250) 94.40 (250) 88.80 (250)
HCc2F  62.50 (24) 54.44 (248) 66.40 (250) 66.40 (250) 58.80 (250)
HCe3F  50.39 (129) 70.80 (250) 79.60 (250) 78.40 (250) 70.80 (250)
HS 0.00 (25) 4.03 (248) 2.80 (250) 3.60 (250) 3.20 (250)
TS 2.48 (161) 0.80 (250) 3.20 (250) 0.80 (250) 0.80 (250)
TH 13.64 (66) 13.60 (250) 16.80 (250) 18.80 (250)  19.60 (250)
TR NA (0) 9.86 (71) 5.51 (236) 6.02 (249) 4.00 (250)
TSTR NA (0) 417 (72)  1.30 (231) 121 (248)  2.48 (242)
THTR NA (0) 0.00 (15)  14.91 (114) 12.18 (156)  17.91 (67)




2. Detecting heterogeneity in capture 46

occasion versus 20-60% for two informative occasions). There is no beneficial
effect of considering one informative occasion, for the tests per occasion, in
regards to identifying heterogeneity in capture specifically, thus we did not
deem it necessary to present the tables relevant to N = 500.

Table 2.20 presents the results obtained with the global positive association
test, for all the versions of the test described above, for both N = 2000 and N =
500. As expected the global test is more powerful than the test per occasion
and we find the same trends as for the tests per occasion. For the test with
two informative occasions, high power is observed for both the conservative
test and the Brown & Benedetti version to detect heterogeneity in capture,
except for the continuous scenarios of heterogeneity when N = 500, for the
conservative test. The tests are not sensitive to heterogeneity in survival nor
transience or trap-shyness but are affected by trap-happiness (moderately for
conservative 18%, strongly for Brown & Benedetti with 65.2% for N = 2000).
The results from the global test display another argument in favour of using
two informative occasions for the positive association test. Indeed when using
one informative occasion, the Type I error rate for Brown & Benedetti is
higher than expected, even for N = 2000 (11.60% for C2), whereas it is around
5% for C1 and C2 when using two informative occasions, indicating that the

distributional properties of the test-statistic are better in this case.
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Figure 2.4: Test of positive association by occasion, using 2 informative occa-
sions: boxplots of the number of animals used per test, scenario HC1
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Table 2.18: Percentage of significant results (number of applicable tests), test
of positive association per occasion, using one informative occasion, conser-
vative version, N = 2000, high percentage of significant results in bold (>

50%)

Capture occasion 2 3 4 5 6 7 8

Cl 1.60 (250) 0.00 (250) 0.00 (250) 0.80 (250) 0.00 (250) 0.40 (250) 0.40 (250)
C2 0.80 (250) 0.40 (250) 0.40 (250) 0.40 (250) 0.00 (250) 0.40 (250) 0.40 (250)
HC1 82.00 (250) 98.80 (250) 100.00 (250) 100.00 (250) 100.00 (250) 100.00 (250) 96.00 (250)
HC2 76.00 (250) 98.80 (250) 100.00 (250) 100.00 (250) 100.00 (250) 100.00 (250) 100.00 (250)
HC1t 94.80 (250) 98.80 (250) 100.00 (250) 100.00 (250) 100.00 (250) 100.00 (250) 99.60 (250)
HC2t 80.80 (250) 100.00 (250) 100.00 (250) 100.00 (250) 100.00 (250) 100.00 (250) 100.00 (250)
HCcl 18.40 (250)  41.20 (250) 59.60 (250)  69.20 (250)  74.40 (250)  72.40 (250) 42.80 (250)
HCc2 7.60 (250) 16.00 (250) 14.40 (250) 20.00 (250) 18.40 (250) 14.40 (250) 8.40 (250)
HCc3 8.80 (250) 26.80 (250) 43.20 (250) 50.40 (250)  58.00 (250)  52.80 (250) 37.20 (250)
HCclF 73.20 (250) 97.20 (250) 100.00 (250) 100.00 (250) 100.00 (250) 100.00 (250) 97.60 (250)
HCe2F 32.80 (250) 66.40 (250) 85.20 (250)  88.40 (250)  88.80 (250) 86.80 (250)  60.80 (250)
HCe3F 47.60 (250)  81.20 (250)  92.80 (250)  98.40 (250)  98.40 (250)  98.40 (250)  89.20 (250)
HS 0.40 (250) 0.00 (250) 0.40 (250) 0.00 (250) 0.00 (250) 0.80 (250) 0.80 (250)
TS .00 (250) 0.00 (250) 0.00 (250) 0.00 (250) 0.00 (250) 0.00 (250) 0.00 (250)
TH 5.60 (250) 16.00 (250) 16.40 (250) 27.60 (250) 32.80 (250) 46.80 (250) 42.40 (250)
TR 0.40 (250) 0.00 (250) 0.00 (250) 0.40 (250) 0.40 (250) 0.40 (250) 0.00 (250)
TSTR 0.00 (250) 0.00 (250) 0 (250) 0.00 (250) 0.00 (250) 0.00 (250) 0.00 (250)
THTR 6.40 (250) 3.60 (250) 5.20 (250) 9.20 (250) 12.00 (250) 16.80 (250) 18.80 (250)

Table 2.19: Percentage of significant results (number of applicable tests), test
of positive association per occasion using Brown and Benedetti’s asymptotic
variance and 1 informative occasion, N = 2000, high percentage of significant

results in bold (> 50%)

Capture occasion 2 3 4 5 6 7 8

C1 5.20 (250) 4.40 (250) 4.80 (250) 5.60 (250) 4.00 (250) 3.60 (250) 4.40 (250)
C2 1.60 (250) 4.00 (250) 4.00 (250) 4.00 (250) 6.40 (250) 2.80 (250) 4.00 (250)
HCI1 95.60 (250) 100.00 (250) 100.00 (250)  100.00 (250) 100.00 (250) 100.00 (250)  99.60 (250)
HC2 98.80 (250)  99.60 (250)  100.00 (250) 100.00 (250) 100.00 (250) 100.00 (250) 100.00 (250)
HC1t 98.80 (250) 100.00 (250) 100.00 (250)  100.00 (250) 100.00 (250) 100.00 (250)  99.60 (250)
HC2t 97.60 (250) 100.00 (250) 100.00 (250) 100.00 (250) 100.00 (250) 100.00 (250) 100.00 (250)
HCcl 51.20 (250)  83.20 (250) 94.00 (250) 96.40 (250) 97.60 (250) 96.80 (250) 80.80 (250)
HCc2 31.20 (250)  50.00 (250)  54.80 (250)  60.00 (250)  60.80 (250)  53.60 (250)  30.80 (250)
HCc3 34.40 (250)  64.00 (250) 80.40 (250) 85.20 (250) 86.00 (250)  80.80 (250) 72.40 (250)
HCc1F 93.20 (250)  99.60 (250) 100.00 (250) 100.00 (250) 100.00 (250) 100.00 (250) 100.00 (250)
HCc2F 68.40 (250)  92.40 (250) 98.40 (250) 99.60 (250) 99.60 (250)  98.80 (250) 88.40 (250)
HCc3F 82.00 (250) 97.60 (250) 100.00 (250) 100.00 (250) 100.00 (250) 100.00 (250) 98.80 (250)
HS 2.40 (250) 5.60 (250) 1.20 (250) 5.60 (250) 4.00 (250) 4.40 (250) 3.20 (250)
TS 0.00 (250) 0.40 (250) 0.00 (250) 0.00 (250) 0.00 (250) 0.00 (250) 0.00 (250)
TH 34.80 (250)  56.80 (250) 65.20 (250) 78.00 (250) 81.60 (250) 85.20 (250) 80.80 (250)
TR 6.80 (250) 3.60 (250) 4.80 (250) 3.60 (250) 6.00 (250) 2.40 (250) 3.60 (250)
TSTR 0.00 (250) 0.00 (250) 0.00 (250) 0.00 (250) 0.00 (250) 0.00 (250) 0.00 (250)
THTR 24.40 (250) 38.00 (250) 41.20 (250) 41.60 (250) 45.60 (250) 52.00 (250) 55.20 (250)
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Diagnostic goodness-of-fit components

The results obtained using the existing diagnostic GOF components (3.SR,
2.CT, 3.Sm, 2.CL) and total chi-square (denoted Total), as well as the cor-
rected tests described in Section 2.3.1 (denoted by 3.SRC, 2.CTC and TotalC)
are presented in Tables 2.21 and 2.22. The Type I error rate is close to the
chosen 5% level for the control situations considered, both for N = 2000 and
N = 500. Tests 3.SR and 2.CT are very powerful to detect the phenomena
they were designed for. Indeed, the scenarios of short-term trap-dependence
and transience display around 100% of significant results for Tests 2.CT and
3.SR respectively for both N = 2000 and N = 500. Note that Test 3.SR also
reacts very strongly to heterogeneity in survival (100 % and 86.8 % of signif-
icant results for N = 2000 and N = 500, respectively). Furthermore, none of
the other diagnostic test-components are affected for these scenarios. On the
other hand, heterogeneity in capture seems to impact all of the GOF compo-
nents: for example, scenario HC1 displays more than 50 % significant results
for all four of diagnostic tests, for N = 2000 (see Table 2.21). A combina-
tion of trap-dependence and transience strongly impacts both Tests 3.SR and
2.CT (100 % of significant results for both TSTR and THTR, for N = 2000).
Also, amongst all the scenarios considered, Tests 3.5Sm and 2.CL are impacted
only for heterogeneity in capture (e.g. respectively 67.20 % and 84% of signif-
icant results for HC1 for N = 2000). However they have only little power for
datasets with 500 animals (see Table 2.22), and Test 2.CL has low power for
scenario HC2, even with 2000 animals (only 18.8% of significant results).
Finally, based on the simulation scenarios considered, the corrected ap-
proach suggested by Péron et al. (2010) does not result in clear-cut conclu-
sions regarding heterogeneity in capture: for N = 2000, the corrected total
chi-square is highly significant for heterogeneity in capture as well as scenarios

including transience (TR and TSTR). The corrected test-components taken
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individually also react similarly for different phenomena. Test 3.SRC presents
15.6% of significant results for HC2, 27.20 % for HS; and Test 2.CTC 22% for
HC2 and 26.80% for TS.

Because the examined tests did not have a particularly high power for
detecting even discrete heterogeneity in capture, scenarios of continuous het-
erogeneity were not considered here.

To sum up, Tests 3.SR and 2.CT both tend to generate significant results
when there is heterogeneity in capture, but they also tend to generate signif-
icant results for combinations of trap-dependence and transience. Tests 2.CL
and 3.Sm are specifically affected by heterogeneity in capture, but lack power

to detect this violation.

Leslie’s test of equal catchability

We present the results of the modified Leslie test described in Section 2.3.2
pooled by first release occasion (if there is at least a non-missing test result
for one of those groups, otherwise the pooled test is considered NA). The
results obtained with the modified version of the Leslie test are shown in
Tables 2.23 and Table 2.24. The Type I error is slightly lower than 5% for
the control datasets. The test is very powerful for detecting heterogeneity in
capture for N = 2000, but it is also very sensitive to trap-happiness. Also,
it is impractical to use for smaller datasets, since the number of applicable
tests is most often null or low (see Table 2.24). This test is not sensitive to

trap-shyness, heterogeneity in survival or transience.

Carothers’ test

The results of the Carothers test are presented in Tables 2.25 and 2.26. In
common with Leslie’s test it is powerful at detecting heterogeneity in capture,
whether discrete or continuous, trap-happiness and the combination of trap-

happiness and transience (around 90 to 100% significant results for all the
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Table 2.21: Existing GOF components and corrected tests, N = 2000 animals,
percentage of significant results (number of applicable tests), high percentage
of significant results in bold (> 50%)

Scenario 3.5R 2.CT 2.CL 3.Sm Total 3.SRC 2.CTC TotalC

C1 5.60 (250) 5.20 (250)  6.80 (250)  4.40 (250)  5.20 (250)  6.00 (250)  4.40 (250)  5.20 (250)
C2 6.80 (250) 4.40 (250)  2.00 (250)  4.40 (250)  4.00 (250)  6.00 (250)  4.00 (250)  3.20 (250)
HC1 58.80 (250) 100.00 (250) 84.00 (250) 67.20 (250) 100.00 (250) 10.40 (250) 21.20 (250) 95.20 (250)
HC2 76.80 (250) 100.00 (250) 18.80 (250) 68.00 (250) 100.00 (250) 15.60 (250) 22.00 (250) 71.20 (250)
HS 100.00 (250)  4.40 (250)  0.80 (250)  4.80 (250) 100.00 (250) 27.20 (250) 4.00 (250) 11.60 (250)
TS 6.00 (250)  100.00 (250) 5.20 (250)  4.40 (250) 100.00 (250) 6.00 (250) 26.80 (250) 12.00 (250)
TH 5.20 (250)  100.00 (250) 6.40 (250)  6.40 (250) 100.00 (250) 6.40 (250) 30.80 (250) 14.40 (250)
TR 100.00 (250)  2.40 (250)  0.00 (250)  4.00 (250) 100.00 (250) 93.60 (250) 3.20 (250) 56.00 (250)
TSTR  100.00 (250) 100.00 (250) 2.00 (250)  5.20 (250) 100.00 (250) 96.00 (250) 11.20 (250) 62.00 (250)
THTR  100.00 (250) 100.00 (250) 6.00 (250)  4.40 (250) 100.00 (250) 28.00 (250) 16.40 (250) 21.60 (250)

Table 2.22: Percentage of significant results (number of applicable tests), ex-
isting GOF components and corrected tests, N = 500 animals, high percentage
of significant results in bold (> 50%)

Scenario 3.SR 2.CT 2.CL 3.Sm Total 3.SRC 2.CTC TotalC
C1 4.00 (250) 5.60 (250)  0.00 (250) 5.20 (250)  4.00 (250)  5.20 (250) 6.00 (250) 3.60 (250)
2 6.00 (250)  5.20 (250)  3.60 (250) 6.80 (250)  4.80 (250)  6.40 (250) 5.20 (250) 4.40 (250)

HC1 24.00 (250)  90.00 (250) 29.60 (250) 16.40 (250) 87.20 (: 8.80 (250) 11.60 (250) 34.40 (250)
( (

(250)
HC2 27.20 (250)  82.80 (250) 8.40 (250) 21.60 (250) 78.40 (250) 10.00 (250) 7.20 (250) 18.80 (250)
HS 86.80 (250)  1.20 (250)  0.00 (225) 5.20 (250) 51.20 (250) 10.80 (250) 0.40 (250) 2.40 (250)
TS 520 (250)  100.00 (250) 0.40 (250) 6.80 (250) 98.00 (250) 440 (250) 4.80 (250) 2.40 (250)
TH 400 (250)  99.60 (250) 5.60 (250) 6.00 (250) 93.60 (250) 3.60 (250) 10.00 (250) 8.00 (250)
TR 100.00 (250)  0.80 (250)  0.82 (244) 440 (250) 100.00 (250) 20.80 (250) 160 (250) 3.20 (250)
TSTR  100.00 (250) 87.20 (250) 0.40 (250) 6.80 (250) 100.00 (250) 24.40 (250) 3.20 (250) 7.60 (250)
THTR  100.00 (250) 84.00 (250) 440 (250) 4.80 (250) 100.00 (250) 3.60 (250) 4.80 (250) 4.40 (250)
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Table 2.23: Modified Leslie’s test, N = 2000 animals, percentage of significant

results (number of applicable tests), high percentage of significant results in
bold (> 50%)

1st release occasion 1 2 3 4 5 6

C1 3.21 (249) 2.40 (250) 4.00 (250) 2.40 (250) 2.00 (250) 1.60 (250)
C2 1.60 (250) 4.80 (250) 2.40 (250) 2.00 (250) 2.40 (250) 1.20 (250)
HC1 99.20 (250)  99.20 (250)  99.60 (250) 97.20 (250) 90.80 (250) 70.80 (250)
HC2 100.00 (250) 99.60 (250) 100.00 (250) 99.60 (250) 99.60 (250) 86.00 (250)
HC1t 99.60 (250) 100.00 (250) 98.00 (250) 97.60 (250) 95.20 (250) 74.40 (250)
HC2t 100.00 (250) 100.00 (250) 100.00 (250) 99.60 (250) 96.80 (250) 80.40 (250)
HCcl 85.60 (250)  82.80 (250)  74.40 (250) 60.80 (250) 42.40 (250) 22.80 (250)
HCc2 36.06 (208) 31.12 (241) 28.11 (249) 22.80 (250) 17.60 (250)  8.00 (250)
HCe3 70.80 (250)  63.60 (250)  58.00 (250)  47.20 (250) 27.60 (250) 18.00 (250)
HCclF 98.80 (250)  99.20 (250)  99.20 (250) 97.60 (250) 91.20 (250) 58.80 (250)
HCc2F 87.45 (247)  88.00 (250)  82.00 (250) 70.00 (250) 48.40 (250) 23.60 (250)
HCc3F 96.80 (250)  98.00 (250)  96.80 (250) 88.00 (250) 75.60 (250) 44.80 (250)
HS 5.20 (250) 4.00 (250) 4.00 (250) 1.20 (250) 1.20 (250) 1.60 (250)
TS 0.00 (250) 0.00 (250) 0.00 (250) 0.00 (250) 0.00 (250) 0.00 (250)
TH 62.40 (250)  74.40 (250)  79.20 (250) 74.40 (250) 67.60 (250) 38.80 (250)
TR 2.02 (248) 2.80 (250) 2.80 (250) 3.60 (250) 2.00 (250) 2.80 (250)
TSTR 0.00 (227) 0.00 (240) 0.00 (249) 0.00 (250) 0.00 (250) 0.00 (250)
THTR 35.94 (64) 40.78 (103) 34.18 (158) 35.52 (183) 24.12 (228)  25.51 (247)

corresponding scenarios for N = 2000). It is not sensitive to trap-shyness nor
transience alone, or heterogeneity in survival. Unlike Leslie’s test, it retains a
very high power for a smaller sample size (see Table 2.26). Finally, the Type I
error rate was around 5% or less depending on the control scenario considered,
for N = 2000, but it was 10.40% for N = 500 (scenario C1). Again, this might
be indicative of the asymptotic distributions involved in the test might not be

as well approximated for N = 500.

2.5 Applications

We applied the tests examined in this chapter to two real-life datasets: Great
cormorants and Sandwich terns. For demonstrative purposes, we present the
results of both the test of positive association per occasion and the global test.

However, since these tests are not independent, a choice should be made in
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Table 2.24: Percentage of significant results (number of applicable tests), mod-
ified Leslie’s test, N = 500 animals, high percentage of significant results in
bold (> 50%)

1st release occasion 1 2 3 4 5 6

C1 0.00 (1) NA (0) NA (0) 0.00 (1) 0.00 (2) 0.00 (14)
C2 2.63 (76) 3.25 (123) 5.68 (176) 3.47 (202) 3.83 (235) 2.87 (244)
HC1 82.14 (28) 66.67 (42) 67.62 (105) 56.12 (139) 42.86 (189) 19.53 (215)
HC?2 NA (0) NA (0) A (0)  100.00 (1) 100.00 (1) 100.00 (2)
HC1t 92.22 (90) 79.53 (127) 81.77 (181) 69.01 (213) 57.85 (242) 35.12 (242)
HC2t NA (0) NA (0) A (0) A (0) 100.00 (3) 0.00 (2)
HCcl NA (0) NA (0) 100.00 (1) A (0) 0.00 (2) 0.00 (2)
HCc2 NA (0) NA (0) A (0) A (0) A (0) NA (0)
HCe3 28.57 (49) 17.33 (75)  15.89 (151) 18.67 (166) 11.26 (222)  6.96 (230)
HCclF 83.33 (6) 100.00 (4) 76.92 (13) 63.64 (33) 49.02 (51) 24.05 (79)
HCe2F NA (0) NA (0) 0.00 (1) 0.00 (1) 40.00 (5) 8.33 (12)
HCc3F 72.73 (11) 37.04 (27) 53.85 (65) 32.76 (116) 23.64 (165) 14.29 (203)
HS 0.00 (7) 20.00 (15) 0.00 (22) 0.00 (46) 1.59 (63) 2.50 (80)
TS 0.00 (15) 0.00 (31) 0.00 (39) 0.00 (82) 0.00 (107) 0.00 (120)
TH NA (0) NA (0) 0.00 (4) 46.15 (13) 28.57 (28) 16.67 (48)
TR NA (0) NA (0) 0.00 (1) .00 (1) 0.00 (6) 12.50 (8)
TSTR NA (0) NA (0) A (0) A (0) A (0) 0.00 (5)
THTR NA (0) NA (0) A (0) A (0) A (0) NA (0)

Table 2.25: Carothers’ test, N = 2000 animals, percentage of significant results
(number of applicable tests), high percentage of significant results in bold (>

50%)

Scenario %(N)

C1 5.20 (250)
2 1.20 (250)
Hc1 100.00 (250)
HC2 100.00 (250)
HC1t 99.20 (250)
HC2t 100.00 (250)
HCcl 100.00 (250)
HCc2 87.60 (250)
HCc3 95.20 (250)
HCc1F  100.00 (250)
HCc2F  100.00 (250)
HCc3F  100.00 (250)
HS 3.31 (242)
TS 0.00 (250)
TH 100.00 (250)
TR 1.20 (250)
TSTR 0.40 (250)
THTR 99.20 (250)
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Table 2.26: Percentage of significant results (number of applicable tests),
Carothers’ test, N = 500 animals, high percentage of significant results in
bold (> 50%)

Scenario % (N)
c1 10.40 (250)
C2 2.40 (250)
HC1 95.20 (250)
HC2 100.00 (250)
HC1t 96.40 (250)
HC2t 99.60 (250)
HCecl 82.40 (250)
HCc2 63.20 (250)
HCc3 46.80 (250)
HCcl 99.60 (250)
HCc2 94.40 (250)
HCc3 96.80 (250)
HS 4.00 (250)
TS 1.60 (250)
TH 85.60 (250)
TR 2.80 (250)
TSTR 4.40 (250)

THTR 58.40 (250)

practice and the global test run if only little temporal variation is expected or
if the data is too sparse to run the test per occasion. We chose to present only
the results for the conservative version of the positive association test, since
the Brown & Benedetti version essentially presents the same properties as the

Carothers test.

2.5.1 Great cormorants

The data on Great cormorants were collected by the National Environmen-
tal Research Institute at Aarhus University, Denmark. We use the data on
breeders only, from the period 1981-1993, collected from six different colonies
(McCrea and Morgan, 2014, p. 3). Resighting effort is known to be highest at
the largest colony: Vorso (VO), where the resighting conditions were the best
(Hénaux et al., 2007). Therefore, we use the data pooled on all colonies as an

artificial example to check whether the tests detect heterogeneity in capture,
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in real-life conditions. We then focus on the cormorants first released and
only ever resighted in VO during the period of interest, in order to investigate
the presence of heterogeneity in capture within this colony, using the different
approaches.

The results obtained using the different approaches, with a 5% level, are
presented in Table 2.27 for all colonies pooled and for birds first captured
and only ever resighted in VO. For all colonies pooled, the test of positive
association yields a significant result at all occasions, the global positive as-
sociation test result is also significant. Both approaches agree and indicate
heterogeneity in capture. The diagnostic GOF tests indicate that the dataset
presents transience and trap-dependence. Also, the Test 3.Sm result is signif-
icant while the Test 2.CL result is at the limit of significance. This suggests
possible heterogeneity in capture. Leslie’s test is NA in most cases due to
sample size issues. Carothers’ test result is significant, suggesting that the

dataset presents trap-happiness or heterogeneity in capture.

For VO only, the test of positive association yields a significant result at
occasion 7 and a result close to significance at occasion 6. Since the test
is conservative, this suggests some heterogeneity in capture within VO. The
significant result obtained for the global test also supports this conclusion. The
results of the GOF tests are similar to those for the pooled colonies, except
that the component 2.CL is no longer close to significance. Again, Leslie’s
test is NA in most cases and Carothers’ test indicative of trap-happiness or
heterogeneity in capture.

While the detection of heterogeneity within the pooled data is probably
largely explained by the difference in detectability on the different colonies
and by the fact that the birds tend to use the colonies unequally, the con-
servative test of positive association indicates that heterogeneity in capture is

also present within VO. Hence, models accounting for heterogeneity in cap-
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ture should be considered at the colony level. Such models have not been

previously considered for these data.

2.5.2 Sandwich terns

The data on Sandwich terns were collected by the National Environmental
Research Institute at Aarhus University together with the Copenhagen Bird
Ringing Centre at the Danish Zoological Museum. The study took place on
Hirsholm, a 15 ha inhabited island in northern Kattegat, Denmark (7 km NE
of Frederikshavn; 57°29’N-10°37'E). The study of Sandwich terns is based on
summarised yearly resighting data, over the period 2003-2012, of individuals
ringed with small metal-rings engraved with unique numbers. The reading of
the codes on this type of ring requires optimal conditions, i.e. proximity and
good light. The ring-readings were not made inside the breeding colony of the
Sandwich terns because the birds were nesting at a very high density inside a
large colony of black-headed gulls (Chroicocephalus ridibundus). Instead the
codes on the rings were read when the birds were roosting or preening in the
immediate proximity of the colony. The major disadvantage of carrying out
the resightings on these birds was that not all of these individuals were actively
engaged in a breeding attempt in the local colony. Thus some of the individuals
were non-breeding birds that visited the colony, e.g. as prospectors, others
were individuals that had stopped over before moving on to settle as breeders
in another colony and others were individuals that turned up as visitors after
having failed their breeding attempt in another colony. One of the goals of the
study was to estimate survival in order to explore whether survival increased
after the introduction of a control programme of large gulls, which predated
on breeding adult Sandwich terns, their eggs and their chicks. Due to the large
array of possible behaviours of the terns on which ring-readings were made,

heterogeneity in capture was considered extremely likely; it was important
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to reveal its presence so as to avoid drawing erroneous conclusions regarding
survival.

The results obtained using the different approaches, with a 5% level, are
presented in Table 2.28 for the Sandwich tern dataset. The test of positive
association yields a significant result at all occasions except for year 7, the
global positive association test result is also significant. This is indicative of
heterogeneity in capture. The diagnostic GOF tests indicate that the dataset
presents transience and trap- dependence. Also, the Test 3.Sm result is signif-
icant while the Test 2.CL result is at the limit of significance. This, again, is
indicative of heterogeneity in capture. Leslie’s test is NA in most cases due to
sample size issues. Carothers’ test result is significant, suggesting the presence
of trap-happiness or heterogeneity in capture.

The results obtained confirm the initial expectation of heterogeneous re-
capture within the Sandwich terns. In practice, different selection criteria were
applied to the data in order to focus on more homogeneous groups of birds, for
instance by minimising the risk of including individuals that were not engaged

in a breeding attempt in the study colony in the specific year of study.

2.6 Discussion

In this chapter, we proposed a test of positive association based on Goodman-
Kruskal’s gamma as a new method for specifically detecting heterogeneity in
capture, within a CJS framework. We examined different versions of the test:
per occasion and global, using an upper bound variance estimate or the asymp-
totic variance estimate derived by Brown & Benedetti. We also investigated
the effects of heterogeneity in capture on the current routinely used diagnostic
goodness-of-fit tests associated with the CJS model: Tests 2.CT, 2.CL, 3.SR
and 3.Sm. Finally, we also considered the Leslie and Carothers’ tests of equal

catchability.
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Table 2.28: Sandwich terns test results (NA for Leslie’s test if number of
animals per group lower than 20, NA for positive association test if number of
animals at given occasion lower than 30), d.o.f. denotes degrees of freedom, n
denotes the number of animals used for the positive association test, significant

results in bold.

Test Sandwich terns results
Positive association capture occasion test-statistic n p-value
3 1.98 97 0.024
4 2.10 115 0.018
5 1.92 121 0.027
6 1.87 119 0.031
7 0.70 89 0.243
Global positive association 0.36 182 0.002
Diagnostic GOF component test-statistic d.o.f. p-value
3.SR 127.27 8 <0.001
3.Sm 38.13 17 0.002
2.CT 140.02 7 <0.001
2.CL 21.66 14 0.086
Total 327.08 46 <0.001
3.SR corrected 8.10 7 0.32
2.CT corrected 8.58 0.20
Total corrected 76.47 44 0.002
Leslie’s test 1st capture occasion test-statistic d.o.f. p-value
1 200.92 96 <0.001
2 NA NA NA
3 NA NA NA
4 NA NA NA
5 NA NA NA
6 66.71 35 <0.001
Carothers’ test test-statistic d.o.f. p-value
- 519.56 262  <0.001
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The simulation results show that none of the tests considered reacted to
transience alone or heterogeneity in survival (apart from component 3.SR). As
expected, the Leslie test was impractical because it discarded too much data.
The interpretation of the existing diagnostic GOF tests was not straightfor-
ward when attempting to diagnose heterogeneity in capture. Indeed, accord-
ing to the simulated scenarios examined, the simultaneous significance of Tests
2.CT, 2.CL, 3.SR and 3.Sm may indicate heterogeneity in capture. However,
simulation has shown that there is relatively good power only when the sample
size is very large and even then, Test 2.CL can lack power for certain situations
of strong discrete heterogeneity.

Carothers’ test and the Brown & Benedetti version of the test of positive
association were both very powerful at detecting heterogeneity in capture,
even for weak heterogeneity scenarios. However, they did not allow to distin-
guish between immediate trap-happiness and heterogeneity in capture. The
conservative version of the test of positive association, on the other hand,
performed well for scenarios of strong heterogeneity but not for scenarios of
weaker heterogeneity. However, it reacted much more strongly to heterogene-
ity in capture than short-term trap-happiness. Thus, it seemed to us at this
stage, to be the optimal compromise for diagnosing heterogeneity in capture
specifically. The test of positive association is advantageous in that, unlike
other approaches based on model comparison (Cubaynes et al., 2012), there
is no need to make any assumptions about the model nor about the form of
heterogeneity considered. It is also easier to understand from a theoretical
point of view than, say, the Carothers test.

Based on the results obtained, there seems to be a trade-off between power
to detect heterogeneity in capture and sensitivity to trap-happiness. Trap-
happiness increases the chances of concordant pairs whilst trap-shyness in-
creases the chances of discordant pairs, especially for short sequences of previ-

ous and future encounters. Thus trap-happiness increases the chance of pos-
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itive association and trap-shyness diminishes it. As a result, trap-happiness
may be confounded with heterogeneity, whilst the test is not sensitive to trap-
shyness.

If not much temporal variation is expected in capture, it is advisable to
use the global test of positive association since it provides a single result while
being more powerful than the tests per occasion. The global test behaved well
under a couple of specific scenarios of discrete heterogeneity involving additive
time dependence. However, more investigation is warranted to determine how
the global test might be affected by temporal variation, in particular whether
strong time-dependence could affect the test in the same way as heterogene-
ity in capture. Therefore if strong temporal variation in capture is expected
throughout the experiment (and that the sample size allows it), the test per
occasion should be used.

If the test of positive association yields a significant result (even at just
one occasion in the case of the test per occasion), models accounting for het-
erogeneity in capture should be considered at the model-building and model
selection stage. Some possible techniques to incorporate heterogeneity in cap-
ture are: using observed covariates for modelling the capture probability, using
a latent structure: finite mixture models, (Pledger et al., 2003) or hierarchical
classes of animals with proportional capture probabilities (Oliver et al., 2011);
Corkrey et al. (2012) provide a method to incorporate heterogeneity in capture
in a Bayesian framework.

Also, the causes of heterogeneity in capture should be investigated from a
biological perspective. This may lead to the identification of individuals with
different behavioural patterns or indicate whether an adjustment to sampling
is necessary. For example, a high degree of heterogeneity in capture may
indicate that mixtures of breeders and non breeders are being sampled. If
the group of interest is the breeders, the sampling process might be adjusted

(e.g. sub-site or years selected to maximize the representation of breeders),
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or the data might be cleaned post-hoc by applying strict criteria. Another
possibility would be to create a smaller pilot study and adjust the sampling
process accordingly on the final large study.

The discrete simulation scenarios have focused on clear situations of het-
erogeneity with no movements between groups. However, in real life, hetero-
geneity scenarios can be more complex, sampling may interact with behaviour
in complex ways which blur the line between trap-dependence and hetero-
geneity in capture. For instance, when the cause of heterogeneous capture is
the location, such as for the black-headed gulls (Prévot-Julliard et al., 1998),
the birds may move between groups with low or high resighting propensity,
and this would be statistically indistinguishable from trap-happiness if the
location information is unavailable. If the locations are known, then spatial
capture-recapture models can be considered.

Regarding the positive association test itself, note that we standardised the
information regarding intensity of capture by using proportions of previous
and future encounters. It might be of interest to explore a weighting system
that would take into account the amount information brought by the animal.
This would especially allow to distinguish between the extreme proportions:
for instance a proportion of 1/1 from a proportion of 5/5, which is more
informative. In this chapter we have focused on the significance of tests, we
could also investigate the relationship between degree of heterogeneity and
gamma estimate values.

In addition to this, the number of animals used for the test per occasion
is relatively low compared to the original sample size, we therefore propose to
derive an empirical p-value from a non-parametric permutation test when the
data is too sparse to use the normal approximation. For the analysed dataset,
the ranks of previous encounter proportions are fixed, and the gamma test-
statistic computed on 10 000 distinct permutations of the ranks of future en-

counter proportions, in order to compute the empirical probability of obtaining
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a result as extreme or more extreme than the one observed on the analysed
dataset. Note that if it is not possible to obtain 10 000 distinct permutations
due to low numbers, the maximum number of distinct permutations is used
and we then derive the exact probability of obtaining a result as extreme or
more extreme than the observed one. Based on 250 simulated datasets of
smaller sample size (150 animals) under control scenario C2, using a 5% level,
the permutation test per occasion results in a Type I error rate close to the
expected 5%, with, respectively for occasions 3 to 7: 11.69%, 4.40%, 6.07%,
1.62% and 6.43%. For 250 simulated datasets of the same sample size, based on
the heterogeneity in capture scenario HC2, the percentage of significant results
obtained for occasions 3 to 7 is, respectively: 37.5%, 58.00%, 71.49%, 74.66%
and 59%. Hence, based on the situations considered, the permutation test
shows promising results for smaller sample sizes, behaving as expected under
the control scenario C2 and showing adequate power to detect heterogeneity
in capture under scenario HC2; and it should be explored further.

The test of positive association was explored for open populations in a CJS
framework. But it could also be used in a context of population abundance
estimation. Indeed the Jolly-Seber (JS) model, used to estimate abundance,
assumes that unmarked and marked animals behave the same (McCrea and
Morgan, 2014, p.149). Applied to a JS context, if the test of positive asso-
ciation for marked animals yields a significant result, then the assumption of
equal catchability is violated. Therefore the population as a whole may exhibit
heterogeneous behaviour.

Finally, the test of positive association and the Carothers test can both be
used for closed population models, which do not allow for births or deaths.
In this case, the animals are known to be alive during the whole experiment.
Therefore, the whole encounter history becomes informative, including the
information prior to the first capture occasion and after the last capture oc-

casion.
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A limitation of the test of positive association is that in a multi-state
context, it could not be easily extended to detect heterogeneity in capture when
the capture probabilities are state-dependent. However, it extends naturally to
the study of transition probabilities between states, and this will be addressed

in Chapter 3.



Chapter 3

Detecting a mover-stayer

structure

3.1 Introduction

The CJS model described in Chapter 2 can be too restrictive in its assump-
tions, and limited in its biological scope because it utilises only the information
of whether the animal is captured or not (Lebreton et al., 2009). But ecolo-
gists can be interested in aspects such as the geographic location for migratory
birds, or their breeding status (see for example Hénaux et al., 2007). Such in-
formation is easily collected upon the animals’ capture and recorded as states.

States are defined by Lebreton and Pradel (2002) as ‘any mutually exclusive
and identifiable events in the life cycle of the population under study’. They
can be static, in which case they remain the same throughout the individual
history: for example, sex (although occasionally it may change over time, for
certain species of fish or plants for example). States can also be dynamic,
in which case they either follow a deterministic (e.g. age) or stochastic (e.g.
health status) process. For static and deterministic states, information is

available as long as the animal is captured at least once (Lebreton et al.,
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2009). The general definition of states allows multi-state models to tackle a
large array of biological questions, they also have the ability to handle the
more complex stochastic dynamic states.

The information of interest is collected when the animal is captured, re-
sulting in individual capture histories that follow the same structure as in the
CJS framework. The 1s are replaced by the state in which the animal is cap-
tured. For example A B (0 C' C codes the information: “captured at occasion
1 in state A, recaptured at 2 in B, not captured at 3, recaptured in C at 4 and
5”. The data may be summarised by a multi-state m-array (see Figure 3.1),
which is a natural extension of the CJS m-array (McCrea and Morgan, 2014,
p.88).

The Arnason-Schwarz model is the direct multi-state extension of the CJS
model from a biological perspective (Pradel et al., 2003). It is conditional on
the first release of individuals and relies on the same assumptions of homo-
geneity of the survival and recapture probabilities, for all animals in a given
state . Thus, all animals in state r at time ¢ are assumed to have equal
probability of surviving from occasion ¢ to ¢ + 1, and it is denoted by ¢]. All
animals in state r at time ¢ are also assumed to have the same recapture prob-
ability, denoted by p]. Furthermore, multi-state models also involve transition
or movement probabilities between states; these are denoted by 7°, and rep-
resent the probability of moving to state s by occasion i 4+ 1 for an animal in
state r at time i. The processes of survival and transition are separated under
the assumption that survival only depends on the state of the animal at time ¢
(Cooch and White, 2014, Chapter 10); in simpler terms, animals survive first
and then move. Animals in a given state at a given occasion are assumed to
also have homogeneous behaviour in terms of transitions; the process govern-
ing the transition between states is assumed to be first-order Markovian i.e.
the future state depends only on the current state (no memory). In addition

to the states defined in the experiment, “dead” constitutes a state of its own
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Table 3.1: Reduced multi-state m-array example, for a capture-recapture ex-
periment with 3 states and 4 occasions; the terms m;’; denote animals released
at 7 in state r and next recaptured at j in state s and the v terms denote the
animals released at ¢ in state r and never seen again

AA AB AC AA AB AC AA AB AC A
e My Mg g Mg Mg My, My My Vi
BA BB BC BA BB BC BA BB BC B
My Myp- My Mmypz” Myzs My My, My My Vi
CA CB cc CA CB cc CA CB cc C
Mg~ Myy~  Myy myg" Myg~  IMyy myy My My Vi
AA AB AC AA AB AC A

- - - Mag  Mpz~ Mg Myg My My Vo
BA BB BC BA BB BC B

- - - Mog™ Moz~ 1Moy Moy~ Moy Mgy Vo
CcA CB cc CA CB cc C

- - - Mog™ Mgz~ IMgg Moy Moy Mgy Va
AA AB AC A

- - - - - - mzy  Myy Mgy V3
BA BB BC B

- - - - - - Mgy~ Mgy Mgy V3
CA CB cc C

- - - - - - mg - Igy Mgy Vs

and is not observable in a capture-mark-recapture context; the CJS model can
then be expressed as a multi-state model with states “alive” and “dead”. For
convenience, the parameters of a multi-state model are usually presented in
a matrix format, each time-dependent parameter being an (S + 1) x (S + 1)
matrix for an experiment with S “live” states: ®; denotes the survival matrix,
W, the transition matrix and P; the capture matrix. All these matrices are
row-stochastic, meaning that the sum of probabilities in each row sums to one.

An illustration is given below (“dead” is represented by T):

W @ ) 6 i o @ ) (8) t
w e 0o o0 1-9 ] w [ert el 1o 0]
@ |0 ¢ i 0 1-¢ @ | vPt et 1= 0
e = () ' W= () ' ;
© ] 0 0 ... ¢ 1—¢F © | Pt et 1=y o
t Lo 0 .0 1 | o I 0 1
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1 0 0 ... 0 1

Due to the complex nature of multi-state models, possible departures from
model assumptions are numerous. The current diagnostic goodness-of-fit suite
developed by Pradel et al. (2003) consists of Test 3G and Test M. Test 3G
is partitioned into components used to detect memory (Test WBWA) and
transience (Test 3G.SR) (Pradel et al., 2005). Memory occurs when the state
reached at ¢ + 1 is influenced by the state at ¢ — 1. Test M is used to detect
trap-effects.

This chapter focusses on a particular case of heterogeneous transition be-
haviour, where animals exhibit a mover-stayer structure, with some animals
that have a tendency to move whilst the others tend to remain where they are.
The mover-stayer structure was first introduced in social studies, to describe
different patterns of industrial mobility (see for example Spilerman, 1972).
It was originally defined as the existence of two types of individuals: some
who stay where they are and others who move homogeneously. We define it
more loosely here as some individuals being more likely to move (movers) than
others (stayers). We assume that this behaviour is an intrinsic characteristic
of the animals and therefore does not change over time. To the best of our
knowledge, this phenomenon has rarely been analysed in a capture-recapture
framework; but could provide new insight into biological processes such as
migration patterns or disease progression stages. The detection of a mover-
stayer structure naturally lends itself to an extension of the test of positive
association developed in Chapter 2, to a multi-state framework.

Amongst the existing diagnostic tests, only Test WBWA is related to tran-
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sitions, and it is presented in detail alongside Test 3G, from which it derives,
in Section 3.2. Test M is used to test whether animals not captured at ¢ and
known to be alive are consistent with being a mixture of the animals observed
in any of the states at the same occasion and known to be alive (Pradel et al.,
2003). This test will be presented in detail in Chapter 4. It is not relevant to
the current chapter’s objective, which pertains to information on movement
and therefore requires animals to be captured. Section 3.3 describes the test
of positive association derived to detect a mover-stayer structure. We assess
the performance of this test in detecting and identifying a mover-stayer struc-
ture using simulation and compare it to Test WBWA in Section 3.4. We find
from the simulation study that our test of positive association is sensitive to
memory, whereas Test WBWA reacts to phenomena other than memory. Con-
sequently, we adapt the tests considered to make them more specific and in
doing so, devise a combination of tests that allows a mover-stayer structure
to be distinguished from short-term memory. The explored adaptations and
their simulation results are presented in Section 3.5. The tests examined in this
chapter are then applied, in Section 3.6, to the famous Canada geese (Branta
canadensis) dataset (Hestbeck et al., 1991), which has often been used as a

case study to illustrate memory. Finally we conclude in Section 3.7.

3.2 Test WBWA, a subcomponent of test 3G

Unlike the CJS model, the likelihood of the Arnason-Schwarz model cannot
be expressed as a simple product: indeed if an animal is known to survive
after ¢ but is not captured at that occasion, one has to account for all the
possible states to/from which it could have moved, thus introducing more
complex terms in the likelihood. This can be easily illustrated through a simple
example: suppose an individual presents encounter history A 0 A in a multi-

state format, which is equivalent to 7 0 1 in a CJS format. The associated
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likelihood using a CJS model would be ¢ (1 —py)pops whereas for a multi-state
framework, it becomes ¢1' [0 (1 — pg)gg g + B (1 — pB)pPuB4] pi.
The diagnostic tests derived for multi-state models are based on the Jolly-
Movement model (see for example McCrea and Morgan, 2014, p.175), rather
than the Arnason-Schwarz model. Indeed, it is a more natural extension of
the CJS model from a methodological point-of-view (Pradel et al., 2003). The
Jolly-Movement model is only slightly different from the Arnason-Schwarz
model, with the capture probabilities depending not only on the state in which
the animal is captured, but also on its previous state. Test 3 (described in
Chapter 2) is extended to the multi-state framework in a very straightforward
manner, giving rise to Test 3G which examines whether previously marked
animals and newly marked animals encountered in a given state, at a given
occasion, behave in the same way. Test 3G is based on animals encountered
in a given state r at a given occasion ¢, this test was partitioned into different
informative components by Pradel et al. (2005): Test 3G.SR is associated
with transience, Test WBWA is indicative of memory, and Test 3G.Sm is
formed from the tables left over after partitioning (Choquet et al., 2005). The
partitioning of the contingency tables associated with Test 3G is illustrated
in Figures 3.1 and 3.2. As for the CJS model, Test 3G.SR examines whether
previously marked and newly marked animals are as likely to be seen again.
The null hypothesis associated to this test for occasion ¢ and state r is Hy:
“For animals encountered in a given state r at a given occasion i, there is
no difference in the probability of being seen again later between previously
marked and newly marked animals”. The alternative hypothesis is defined
as H, and the specific departure of interest for transience is: “For animals
encountered in a given state r at a given occasion 7, the probability of being
seen again later is lower for newly marked animals than for previously marked
animals” (Choquet et al., 2005). Test WBWA assesses whether animals are

more likely to be next re-encountered in the same state as the one they were
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last seen in. The null hypothesis associated to this test for occasion ¢ and
state r is Hp:"For animals encountered in a given state r at a given occasion
i, there is no difference in the expected state of next re-encounter between
the animals last seen in the different states”. The alternative hypothesis is
defined as H, and the specific departure of interest for memory is “For animals
encountered in a given state r at a given occasion i, the probability of being
next re-encountered in the same state as the one they were last seen in is
higher than the probability of being next re-encountered in other states”. The
tests performed on the contingency tables are the usual chi-square tests of
independence and Fisher’s exact test is used in cases of small numbers.
Alternatively, Pradel et al. (2005) proposed using Cohen’s kappa to detect
memory. Cohen’s kappa is typically used as a measure of agreement between
two raters classifying subjects according to the same scale, taking into account
the agreement that can occur by chance; it is applied to data formatted as a
square contingency table (Everitt, 1992, p.146). In the memory context, the
kappa is used to measure the agreement between previous and future state for
animals seen at occasion ¢ in a given state r. It is applied to the square S x .S
contingency tables WBWA (i,r) presented in Figure 3.2. Let a5 denote the cell
frequencies of table WBWA(i,r), a, the row sums and a the column sums,
and n the total number of animals in the contingency table. The proportion
of agreement observed is derived from the diagonal elements of the table:
PA:ZZS:I a;;/n. The proportion of agreement that may occur by chance is
computed from the row and column sums: Po=|(35 ai.a,i)/n] n. Finally,

Cohen’s Kappa is defined as k=(P4-P¢)/(1-P¢) (Everitt, 1992, p.148).
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Figure 3.1: An illustration of the partitioning of Test 3G for animals encoun-
tered at occasion ¢ in state r (denoted 3G(i,r)) into the informative component
3G.SR(i,r) and left-over 3G.Sm.a(i,r) components, for a capture-recapture ex-
periment with K sampling occasions and S observable states
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Figure 3.2: An illustration of the partitioning of Test 3G for animals encoun-
tered at occasion i in state r (denoted 3G(i,r)) into the informative compo-
nent WBWA (i,r) and left-over 3G.Sm.b(i,r) and 3G.Sm.c(i,r) components, for
a capture-recapture experiment with K sampling occasions and S observable
states
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3.3 A test to detect a mover-stayer structure
within multi-state capture-recapture data

The existence of a mover-stayer structure in the population lends itself natu-
rally to an extension of the test of positive association developed in Chapter
2. Indeed, if some individuals move more than others, we expect that, at a
given occasion, animals who move more (less) before are also likely to move
more (less) after. Since the question of interest is movement, occasions where
the animal is not captured are not considered (they are uninformative); our
test is conditional on capture. The first step is therefore to consider only the
non-zero part of the capture history. We position ourselves at the optimal
occasion within the non-zero capture history, in terms of information brought
by previous and future movements: the middle occasion 7. The capture his-
tories are then grouped by the state in which the animal is captured at ¢ in
order to reduce noise due to state-specific properties of the animals. Also
we keep only animals with at least one informative movement on each side
of i; this means animals have to be captured at least three times to be part
of the tested data. Then, the number of observed movements between first
release occasion and the middle occasion ¢ and the number of observed move-
ments between ¢ and the last capture occasion are both counted. In order
to standardise this information, we use the proportion of previous and future
movements, using as denominator the maximum number of previous/future
possible movements conditional on capture i.e. the maximum number of pre-
vious/future movements that we could potentially observe. Finally, the ranks
of these proportions are used to represent the intensity of movement of the
animals relative to one another. We present a worked example of test con-
struction in Table 3.3, based on a toy example of multi-state capture histories
presented in Table 3.2. Note that animals with IDs 3 and 5 are not used for

the test because they are captured less than three times.
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Table 3.2: Example capture histories

Occasion 1 2 3 4 5 6 7 & 9 10

ID1 303 3 3 03 00 0
ID 2 113 3 3 3 3 3 3 3
ID 3 300 0 0 00 O0O0 O
ID 4 211 31 2 1 3 2 1
ID 5 3200000 O0O0 0
ID 6 321 0112 3 2 0

Table 3.3: Example capture histories: extracting the information required for
the positive association test by state at the middle occasion. The middle
occasion is denoted in bold for each capture history. NM denotes the number
of movements, maxr the maximum possible number of observed movements,
pr the proportion and r the rank.

Non-zero Capture History Previous movements Future movements

NM max pr r NM max pr r

State 1

1D 6 3 2 1 11 2 3 2 3 2/3 1 3 4 3/4 1
ID 4 211 3 1213 21 3 4 3/4 2 ) 5 1 2
State 2

No capture histories

State 3

ID1 3 3 3 3 3 0 2 0 1 0 2 0 1
ID 2 1 1 3 3 3 3 3 3 1 4 1/4 2 ) 1
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In the same way as for Chapter 2, the range of ranks is limited and many
ties are expected, so Goodman-Kruskal’s gamma is used as a measure of pos-
itive association between previous and future movements. For the worked
example presented in Table 3.3, the gamma estimate is not applicable for
state 2 as there are no capture histories with state 2 at the middle occasion,
and state 3 which presents only one tied pair. The individuals in state 1 form
a concordant pair.

Similarly to Chapter 2, we expect a high number of concordant pairs for a
mover-stayer structure and hence use a one-sided test with the null hypothesis
defined as “G< 0” and the alternative as “G> 0. The test-statistic used is
Zs = W’ where s denotes the state in which the animal is at the middle
occasion. In the same way as for heterogeneity in capture, we investigated
both the conservative version of the test and the Brown & Benedetti version.
In order to be conservative regarding the distributional approximation of the
test-statistic, the number of animals used for the test at each state was required
to be at least 30 for the test to be applicable.

We investigated different versions of a positive association test between

ranks of previous movements and ranks of future movements, split by state:

e Using animals with at least 1 informative movement on each side of the

middle occasion, i.e. captured at least 3 times (see Table 3.3).

e Using animals with at least 2 informative movements on each side of the

middle occasion, i.e. captured at least 5 times.

We also investigated the performance of two global versions of the test per

state:

e A test over all states using the middle occasion of the capture histories,
without grouping the data by state, which we expected to be sensitive

to state-specific properties and thus, non optimal.
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e A summary test over the states, based on the standardised sum of the

independent test-statistics obtained from the test by state, with S de-

noting the number of states: zg = Zle \Z/g

3.4 Simulation study

3.4.1 Simulation scenarios

Different scenarios were explored in order to assess the performance of the dif-
ferent versions of the test. For each simulation scenario explored, 250 datasets
of 2500 animals were simulated, with 10 capture occasions (250 animals re-
leased per occasion) and 3 live states, all equally likely to be the state at first
capture. The survival probability was constant over time and states, and set to
¢ = 0.9 for all scenarios, the same applies to the capture probability (p = 0.9).
The simulated datasets were all generated using R.

First, we simulated simple homogeneous scenarios: only animals who tended
to move (denoted M, and MO for a more extreme situation with a null prob-
ability of remaining in the same state), or only animals who tended to remain
where they were (S). We then investigated whether the test could potentially
react to more complex homogeneous scenarios, such as: preference (P) for
one state (e.g. very high probability of moving to or remaining in State 2),
avoidance (A) for one state (e.g. very high probability of moving from State
2), strongly state-dependent transition probabilities (SD1 and SD3). All these
homogeneous scenarios constituted controls, used to check the Type I error
rate. The transition matrices for these homogeneous scenarios are detailed in
Table 3.4.

Afterwards we investigated heterogeneous scenarios with 2 groups of ani-
mals per dataset presenting different behaviours in terms of transitions. The

transition matrices corresponding to these scenarios are presented in Table 3.5.
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Our target was the mover-stayer structure: 2 scenarios were simulated, MS1
with a proportion m = 0.3 of stayers and MS2 with a proportion m; = 0.7 of
stayers. We also investigated how the test could be affected by animals pre-
ferring different states (P2G: one group prefers state 1, the other prefers state
2) or avoiding different states (A2G: one group avoids state 1 whilst the other
avoids state 2). Finally, a scenario of heterogeneity in movement (HM) was
also examined, where the animals had different movement patterns but had
the same movement rate, and therefore did not present a mover-stayer struc-
ture. Apart from the mover-stayer scenarios, the heterogeneous scenarios were
simulated with an equal proportion of animals from each group (m = 0.5).

In addition to these heterogeneous scenarios, the more complex memory
phenomenon was also examined in scenarios Mem1 and Mem2. For both Mem1
and Mem?2, the probability of being at 41 in the same state as at +—1 is higher
than others, Mem?2 differs from Meml in that, for animals in a given site s,
the probability of being in the same site twice within the triplet (previous site,
current site, future site) is also higher than being in each site only once. The
transition matrices generating the datasets with memory under both scenarios
considered are presented in Table 3.6. All these scenarios constitute violations
of the multi-state model assumption of homogeneity in transitions; and their
object was to assess the specificity of the test of positive association to a
mover-stayer structure. Indeed, we wish our test to be sensitive to the specific
departure from the null hypothesis corresponding to a mover-stayer structure,
and insensitive to all other departures.

Since the transition matrix generating datasets with memory is less straight-
forward than the other situations, its structure is presented below, in the case
of 3 live states, for transitions constant over time. Note that instead of the
usual 1"*, the transition probabilities are denoted by ¥*™* since the transition
probability to state s at ¢ + 1 also depends on the state b where the animal

was at ¢ — 1. The rows of the transition matrix are the couples of (b,r) and
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the columns the couples of (r,s), whilst t represents the state “dead” (see for

example Rouan et al., 2009):

@y 12 13 @) (22 @3 6D (62 (33 t

an | (1w gy g2 gis o 0 0 0 o0 0 0]
a2 0 0 0 W (I-g-gB) @B 0 0 0 0
1) 0 0 0 o0 0 0 B g (1 - gl - ) 0
en | (1—ygH2 —g23) g2z 423 0 0 0 0 0 0
22 0 0 0 @B (1—y2l—yg2B) ¢ 0 0 0 0
" e 0 0 0 0 0 0 gL gBE2 (1— gl —yB2) 0
G | (1= g2 — i) g2 g3 0 0 0 0 0 0
(3,2) 0 0 0 WP (1—P2t — 32 32 0 0 0
(3,3) 0 0 0 0 0 0 Bl 3T (1 — 33 —P32) 0

il 0 0 0 o0 0 0 0 0 0 1]

Finally, for some of the scenarios, we examined the potential effect of
state-dependent capture probabilities (setting p* = 0.9, p* = 0.35, p* = 0.7
with the superscripts corresponding to the states), lower capture probability
(p = 0.5), or slightly time-dependent probabilities (adding a random uniform
term [—0.075;0.075] to the probabilities of moving from a particular state).

These scenarios were respectively denoted by subscripts ps, pr, or t.

3.4.2 Main results
Test of positive association

In this section, we present the results obtained using 2 versions of the conser-
vative positive association test split by state (simple upper bound for variance
estimate): based on one informative movement on each side (i.e. animals cap-
tured at least 3 times) in Table 3.7 and based on 2 informative movements
on each side in Table 3.8 (i.e. animals captured at least 5 times). We also
present the results obtained using the summary test in Table 3.9, based on
both versions of the test by state. All the versions of the test were coded using

R. The results are presented in terms of percentage of significant test results,
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Table 3.4: Transition matrices for the homogeneous simulation scenarios con-
sidered

Transition Matrices for homogeneous simulation scenarios

Movers only/Stayers only

MO M S
0 05 05 0 02 04 04 0 09 0.05 0.05 0
05 0 05 0 035 03 035 0 0.1 0.8 01 O
05 05 0 0 045 045 0.1 O 0.075 0.075 0.85 0
0 0 0 1 0 0 0 1 0 0 0 1

Preference/Avoidance for one of the states

P A
0.1 08 01 0 04 01 05 0
0.06 0.92 0.02 0 0.6 0.06 0.34 0
02 07 01 0 0.55 0.1 035 0
0 0 0 1 0 0 0 1
Strongly state-dependent transitions
SD1 SD3
0.1 045 0.45 0 08 02 0 0
01 08 01 0 0.1 0.7 02 O
025 025 05 0 0 05 05 0
0 0 0 1 0 0 0 1
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Table 3.5: Transition matrices for heterogeneous scenarios considered

Transition Matrices for heterogeneous simulation scenarios

Mover-Stayer structure

Stayers Movers
0.9 0.05 0.05 0 02 04 04 0
0.1 08 01 0 0.35 03 035 0
MS1,
MS2: 0.075 0.075 0.85 0 045 045 0.1 0
0 0 0 1 0 0 0 1
Preference: 2 groups
Prefer 1 Prefer 2
0.91 0.05 0.04 0 0.1 075 0.15 0
07 02 01 0 0.04 09 0.06 0
P2G:
0.84 0.08 0.08 0 0.06 0.82 0.12 0
0 0 0 1 0 0 0 1
Avoidance: 2 groups
Avoid 1 Avoid 2
0.1 055 045 0 06 0.15 025 0
0.05 0.35 0.60 0 042 0.08 0.5 0
A2G:
0.15 0.45 0.40 0 040 0.22 038 0
0 0 0 1 0 0 0 1

Heterogeneity in movement: 2 groups

Group 1 Group 2
03 04 03 0 0.3 0.1 0.6 O
. . 1 .1 0. 4
HIM: 0.35 0.5 015 0 0.1 05 04 0
045 045 0.1 0 0.8 0.1 0.1 0
0 0 0 1 0 0 0 1
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Table 3.6: Transition matrices for memory scenarios considered

Transition Matrices for memory simulation scenarios

Memory
Mem1:
07 015 015 0 0 0 0 0 0 o0
0O 0 0 06 02 02 0 0 0 0
O 0 0 0 0 0 065 02 015 0
022 058 020 0 0 0 0 0 0
O 0 0 01 08 01 0 0 0
O 0 0 0 0 0 02 062 018 0
009 02 071 0 0 0 0 0 0
0O 0 0 02 015065 0 0 0
O 0 0 0 0 0 0l 01 08 0
o 0o 0 0 0 0 0 0 0 1
Mem?2:
[0.7 015 015 0 o0 0 0 0 0
0O 0 06 03 01 0 0 0
0 0 0 0 065 01 0250
0.27 0.58 0.15 0O 0 0 0 0
0O 0 01 08 01 0 0 0
0O 0 0 0 0 012 0.62 026 0
009 02 071 0 0 0 0 0 0
0O 0 008 017 065 0 0 0
o 0 0 0 0 01 01 08 0
I o 0o 0 0 0 0 0 0 1




3. Detecting a mover-stayer structure 83

using a level of 5%.

Both the one and two informative movement tests have a very high power
to detect a mover-stayer structure. Table 3.7 shows that, when one informative
movement is used, 100% of the results for the tests split by state are significant
for MS1 and MS2 as well as MS1; and MS2,, and around 90 to 100% for the
versions of these scenarios with a state-dependent or lower capture probability.
However, it is slightly too sensitive in some of the control situations (e.g. 16.8%
for SD1, state 1; 13.6% for P, state 1) and it does not allow us to distinguish
a mover-stayer structure from short-term memory, which also results in 100%
of significant results, for both Mem1 and Mem?2.

When using two informative movements (see Table 3.8), the Type I error
is under 5% for all control scenarios. Again, around 100% of the results for the
tests split by state are significant for MS1 and MS2 as well as MS1; and MS2,,
the same is observed for most of the mover-stayer scenarios with a state-
dependent or lower capture probability. Amongst the other heterogeneous
scenarios considered, the test does not react in most cases, it is slightly sensitive
only to heterogeneity in preference (6.4% for state 1) but, like the test using
one informative movement, it is extremely sensitive to memory.

The results presented in Table 3.9 show that the summarised test presents
the same characteristics: very powerful at detecting a mover-stayer structure
and also very sensitive to memory (100% of significant results for all situations,
whether one or two informative movements are used). Note that the control
datasets present a Type I error lower than 5% (apart from M: 7.2% when only
one informative occasion is used). Both versions of the summarised tests do
not react to most of the other scenarios of heterogeneity, apart from hetero-
geneity in preferences scenario P2G: 17.2% for the test using two informative
movements; whilst the summarised test with one informative movement is
affected by time-dependence for scenario S;: 14.0% of significant results.

Since short-term memory is a more local phenomenon than the mover-
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stayer behaviour, we attempted to use animals with at least 3 informative
previous and future movements (animals captured at least 7 times). However
this resulted in a very high loss of data (only 150 animals used on average per
dataset, out of 2500) while only marginally decreasing the sensitivity of the test
to memory. The percentage of significant results obtained were respectively

for states 1, 2 and 3
e 48.4 (250), 92 (250) and 92 (250) for scenario Mem1
e 24.4 (250), 44.8 (250) and 68.8 (250) for scenario Mem2

The loss in data resulting from using animals with at least two or three in-
formative movements is not outweighed by any significant gain in terms of
identifying the mover-stayer structure separately from memory. At this stage,
the summarised test using animals with at least one informative previous and
future movement seems to be the preferred option.

The results from the global test performed using the middle occasion with-
out prior grouping of the animals by their state at that occasion, are not
presented here due to its poor performance. Indeed it reacted strongly to
control scenarios such as state-dependent transition scenario SD1 for example
(54.4% using two informative movements, 80% using only one). Hence this
test was not adequate for our objective.

Likewise, the results of the tests version using the Brown & Benedetti
estimates are not presented in the thesis, although they were investigated.
Again, these tests were sensitive to phenomena other than mover-stayer and
memory: for example 56.8% of significant results for homogeneous scenario
SD1, for state 1, when using the test split by state with one informative
movement and 27.6% for the summarised test; 54.4% for the summarised test

for P2@G, using two informative movements.
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Table 3.7: Test of positive association (conservative variance estimate), split by
state, 1 informative movement (animal captured at least 3 times) , percentage
of significant results (number of applicable tests), high percentage of significant
results in bold (> 50%)

scenario % (N)

State 1 State 2 State 3
M 2.0 (250) 1.2 (250) 5.2 (250)
S 2.0 (250) 1.2 (250) 0.8 (250)
MO 0.0 (250) 0.4 (250) 0.4 (250)
P 13.6 (250) 0 (250) 0.0 (250)
A 0.4 (250) 4 (250) 0.4 (250)
SD1 16.8 (250) 0 (250) 0.4 (250)
SD3 3.2 (250) (250) 0.0 (250)
Mem1 100.0 (250) 100.0 (250) 100.0 (250)
Mem?2 100.0 (250) 100.0 (250) 100.0 (250)
MS1 100.0 (250) 100.0 (250) 100.0 (250)
MS2 100.0 (250) 100.0 (250) 100.0 (250)
P2G 0.0 (250) 0.0 (250) 4.0 (250)
A2G 7.2 (250) 1.2 (250) 0.4 (250)
HM 0.8 (250) 0.0 (250) 10.8 (250)
M, 0.4 (250) 1.2 (250) 2.8 (250)
Sps 0.0 (250) 1.2 (250) 0.8 (250)
MS1,, 100.0 (250) 93.2 (250) 100.0 (250)
MS2,, 100.0 (250) 98.8 (250) 100.0 (250)
M, 0.8 (250) 0.4 (250) 0.4 (250)
SpL 0.4 (250) 1.2 (250) 1.2 (250)
MS1,,, 100.0 (250) 89.2 (250) 100.0 (250)
MS2,., 100.0 (250) 98.0 (250) 100.0 (250)
M, 0.4 (250) 0.4 (250) 1.6 (250)
Sy 5.2 (250) 5.6 (250) 3.2 (250)
MS1; 100.0 (250) 100.0 (250) 100.0 (250)
MS2, 100.0 (250) 100.0 (250) 100.0 (250)
SD1, 15.2 (250) 0.0 (250) 0.0 (250)
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Table 3.8: Test of positive association (conservative variance estimate), split by
state, 2 informative movements (animal captured at least 5 times) , percentage
of significant results (number of applicable tests), high percentage of significant
results in bold (> 50%)

scenario % (N)

State 1 State 2 State 3
M 0.4 (250) 0.0 (250) 1.2 (250)
S 0.8 (250) 0.4 (250) 0.0 (250)
MO 0.0 (250) 0.4 (250) 0.8 (250)
P 4.0 (250) 0.0 (250) 0.4 (250)
A 0.0 (250) 0.0 (250) 0.4 (250)
SD1 0.4 (250) 4 (250) 0.0 (250)
SD3 0.4 (250) 0.0 (250) 0.0 (250)
Mem1 97.6 (250) 100.0 (250) 100.0 (250)
Mem?2 85.2 (250) 99.2 (250) 99.2 (250)
MS1 100.0 (250) 100.0 (250) 100.0 (250)
MS2 100.0 (250) 100.0 (250) 100.0 (250)
P2G 6.4 (250) 2.8 (250) 3.2 (250)
A2G 4.8 (250) 0.0 (250) 0.0 (250)
HM 0.0 (250) 0.0 (250) 0.4 (250)
M, 0.0 (250) 0.0 (250) 1.2 (250)
Sps 0.0 (250) 0.4 (250) 2.0 (250)
MS1,, 100.0 (250) 58.8 (250) 100.0 (250)
MS2,, 100.0 (250) 94.8 (250) 100.0 (250)
M, 0.0 (250) 0.4 (250) 0.8 (250)
SpL 0.4 (250) 0.4 (250) 0.4 (250)
MS1,,, 98.4 (250) 75.6 (250) 99.2 (250)
MS2,., 98.8 (250) 92.4 (250) 98.8 (250)
M, 0.0 (250) 0.4 (250) 0.0 (250)
Sy 0.8 (250) 0.8 (250) 0.4 (250)
MS1; 100.0 (250) 100.0 (250) 100.0 (250)
MS2, 100.0 (250) 98.4 (250) 100.0 (250)
SD1, 0.4 (250) 0.0 (250) 0.0 (250)
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Table 3.9: Summarised conservative test of positive association based on 1
informative movement (denoted by 1 IM, animals captured at least 3 times)
and 2 informative movements (denoted by 2 IM, animals captured at least
5 times),percentage of significant results (number of applicable tests), high
percentage of significant results in bold (> 50%)

Scenario % C, 1IM (N) % C, 2IM (N)

M 7.2 (250) 0.8 (250)
S 4.0 (250) 0.8 (250)
MO 0.0 (250) 0.0 (250)
P 0.8 (250) 0.4 (250)
A 1.2 (250) 0.0 (250)
SD1 3.2 (250) 0.4 (250)
SD3 0.4 (250) 0.4 (250)
Mem1 100.0 (250) 100.0 (250)
Mem?2 100.0 (250) 100.0 (250)
MS1 100.0 (250) 100.0 (250)
MS2 100.0 (250) 100.0 (250)
P2G 0.4 (250) 17.2 (250)
A2G 5.6 (250) 2.4 (250)
HM 5.2 (250) 0.0 (250)
M, 0.4 (250) 0.0 (250)
Sps 0.0 (250) 0.8 (250)
MS1,, 100.0 (250) 100.0 (250)
MS2,, 100.0 (250) 100.0 (250)
M, 1.2 (250) 0.8 (250)
S,L 0.4 (250) 0.8 (250)
MS1,;, 100.0 (250) 100.0 (250)
MS2, 100.0 (250) 100.0 (250)
M, 0.4 (250) 0.4 (250)
S, 14.0 (250) 0.4 (250)
MS1, 100.0 (250) 100.0 (250)
MS2, 100.0 (250) 100.0 (250)
SD1, 2.4 (250) 0.4 (250)
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Existing memory tests

We investigated the tests currently used to detect memory, in order to assess
whether they were actually specific to memory. For these tests, time-dependent
scenarios were not considered since the tests are based on independent compo-
nents by state at each occasion. Test WBWA was coded by adapting MATLAB
code provided by R. Choquet; we used the Kappa function from R package vcd
to obtain the kappa estimate, its asymptotic standard error and the resulting
z-statistic (Meyer et al., 2016). We used both a one-sided test correspond-
ing to k > 0: more agreement than expected by chance (which is the case
for memory) and a two-sided test which also adds to the alternative x < 0
(less agreement than expected by chance, which would correspond to animals
avoiding the site where they were last seen) (see for example Everitt, 1992,
p.148).

Table 3.10 showed that the global WBWA test (formed by summing the
WBWA tests by occasion and state) reacts strongly not only to memory, but
also to the existence of a mover-stayer structure, heterogeneity in preferences
or avoidance as well as heterogeneity in movement, with close to 100% of
significant results for all these situations. In Tables 3.11 to 3.14, we show the
results obtained using test WBWA split by state and occasion. As expected,
the split WBWA test shows similar reactions as the global test, though not
always as strong or for all states (e.g. see Table 3.13).

The results obtained using the kappa statistic by occasion and state are
displayed, for informative purposes, in Tables 3.15 to 3.18; they are very similar
to the results obtained with Test WBWA: the test reacts strongly to both
memory and a mover-stayer structure; it is also sensitive to 2 groups with
different preferences and to heterogeneity in movement. Due to the similarities
between the results from Test WBWA and Cohen’s kappa, we stopped here

and did not deem it necessary to pursue this route further.
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Table 3.10: Global Test WBWA, percentage of significant results (number of
applicable tests), high percentage of significant results in bold (> 50%)

Scenario % (N)

M 3.6 (250)
S 4.8 (250)
MO 4.0 (250)
p 3.2 (250)
A 6.0 (250)
SD1 3.2 (250)
SD3 6.4 (250)
Meml  100.0 (250)
Mem2 100.0 (250)
MS1 100.0 (250)
MS2 100.0 (250)
P2G 100.0 (250)
A2G 98.4 (250)
HM 96.4 (250)
M, 5.6 (250)
Sy 1.2 (250)

MS1,, 100.0 (250)
MS2,, 100.0 (250)

M, 4.0 (250)
SuL 1.6 (250)
MS1,,  100.0 (250)
MS2,,  100.0 (250)
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centage of significant results (number of applicable tests), high percentage of

significant results in bold (> 50%)

Table 3.11: Test WBWA by occasion and state, homogeneous scenarios, per-
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Table 3.12: Test WBWA by occasion, memory scenarios, percentage of signifi-
cant results (number of applicable tests), high percentage of significant results

in bold (> 50%)

Scenario Occasion  S1 (N) S2 (N) S3 (N)

Meml 2 99.2 (250)  99.6 (250) 100 (250)
Mem1 3 100.0 (250) 100.0 (250) 100 (250)
Meml 1 100.0 (250) 100.0 (250) 100 (250)
Mem1 5 100.0 (250) 100.0 (250) 100 (250)
Mem1 6 100.0 (250) 100.0 (250) 100 (250)
Mem1 7 100.0 (250) 100.0 (250) 100 (250)
Mem1 8 100.0 (250) 100.0 (250) 100 (250)
Mem1 9 100.0 (250) 100.0 (250) 100 (250)
Mem?2 2 95.2 (250)  98.0 (250)  99.2 (250)
Mem2 3 100.0 (250) 100.0 (250) 100 (250)
Mem?2 1 100.0 (250) 100.0 (250) 100 (250)
Mem?2 5 100.0 (250) 100.0 (250) 100 (250)
Mem2 6 100.0 (250) 100.0 (250) 100 (250)
Mem?2 7 100.0 (250) 100.0 (250) 100 (250)
Mem?2 8 100.0 (250) 100.0 (250) 100 (250)
Mem?2 9 100.0 (250) 100.0 (250) 100.0 (250)
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Table 3.13: Test WBWA by occasion, heterogeneous scenarios, part 1, per-
centage of significant results (number of applicable tests), high percentage of
significant results in bold (> 50%)

Scenario Occasion  S1 (N) S2 (N) S3 (N)
MS1 2 69.6 (250) 28.8 (250)  86.4 (250)
MS1 3 92.8 (250)  42.0 (250) 100.0 (250)
MS1 4 98.8 (250) 56.8 (250) 100.0 (250)
MS1 5 99.6 (250) 64.8 (250) 100.0 (250)
MS1 6 100.0 (250) 77.6 (250) 100.0 (250)
MS1 7 100.0 (250) 75.2 (250) 100.0 (250)
MS1 8 100.0 (250) 77.2 (250) 100.0 (250)
MS1 9 100.0 (250) 77.2 (250) 100.0 (250)
MS2 2 82.8 (250)  49.2 (250)  92.0 (250)
MS2 3 98.0 (250) 64.4 (250) 98.4 (250)
MS2 4 99.2 (250) 79.6 (250) 100.0 (250)
MS2 5 100.0 (250) 86.0 (250) 100.0 (250)
MS2 6 100.0 (250) 90.4 (250) 100.0 (250)
MS2 7 100.0 (250) 92.4 (250) 100.0 (250)
MS2 8 100.0 (250) 95.6 (250) 100.0 (250)
MS2 9 100.0 (250) 95.6 (250) 100.0 (250)
P2G 2 8.0 (250) 8.8 (250)  12.0 (250)
P2G 3 10.0 (250) 8.4 (250) 5.2 (250)
P2G 4 31.2 (250)  29.6 (250)  10.0 (250)
P2G 5 55.6 (250) 54.8 (250)  22.0 (250)
P2G 6 75.6 (250) 74.8 (250)  31.6 (250)
P2G 7 84.4 (250)  90.0 (250)  41.6 (250)
P2G 8 91.6 (250) 92.4 (250) 51.2 (250)
P2G 9 92.4 (250) 96.8 (250) 59.6 (250)
A2G 2 9.2 (250) 7.6 (250) 3.6 (250)
A2G 3 12.0 (250)  10.8 (250) 6.4 (250)
A2G 4 16.8 (250) 152 (250) 9.6 (250)
A2G 5 26.4 (250)  20.0 (250)  10.8 (250)
A2G 6 32.0 (250)  20.2 (250)  18.4 (250)
A2G 7 36.0 (250)  40.8 (250)  21.2 (250)
A2G 8 45.2 (250)  45.6 (250)  22.8 (250)
A2G 9 40.6 (250)  45.6 (250)  20.0 (250)
HM 2 112 (250) 7.2 (250) 7.2 (250)
HM 3 98.4 (250) 6.4 (250) 5.6 (250)
HM 4 412 (250)  7.2(250) 5.6 (250)
HM 5 48.4 (250) 8.8 (250) 7.2 (250)
HM 6 58.4 (250) 8.4 (250) 6.8 (250)
HM 7 66.4 (250) 8.0 (250) 5.6 (250)
HM 8 72.0 (250) 9.2 (250) 6.8 (250)
HM 9 74.4 (250) 5.6 (250) 9.2 (250)
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Table 3.14: Test WBWA by occasion, heterogeneous scenarios, part 2, per-
centage of significant results (number of applicable tests), high percentage of
significant results in bold (> 50%)

Scenario Occasion  S1 (N) S2 (N) S3 (N)

M, 2 4.4 (250)  3.6(250) 5.2 (250)
M, 3 4.8 (250) 4.0 (250) 1.2 (250)
M, 4 4.8 (250) 5.6 (250) 6.0 (250)
M, 5 6.4 (250) 6.4 (250) 5.2 (250)
M, 6 5.2 (250) 6.8 (250) 4.4 (250)
My 7 5.2 (250)  28(250) 4.0 (250)
M, 8 3.2/(250)  3.2(250) 5.6 (250)
M, 9 3.6 (250) 4.8 (250) 5.6 (250)
Sps 2 1.6 (250) 1.2 (250) 3.6 (250)
Sps 3 5.2 (250)  3.2(250) 3.6 (250)
Sps 4 5.2 (250) 4.8 (250) 6.0 (250)
Sps 5 4.4 (250) 6.4 (250) 6.0 (250)
Sps 6 4.0 (250) 6.4 (250) 4.0 (250)
Sps 7 4.4 (250)  5.2(250) 4.8 (250)
Sps 8 6.4 (250)  2.8(250) 2.8 (250)
Sps 9 4.0 (250) 4.4 (250) 1.6 (250)
MS1,, 2 45.6 (250)  13.2 (250)  60.4 (250)
MS1,, 3 70.8 (250) 15.6 (250)  83.2 (250)
MS1,, 4 83.6 (250) 20.0 (250)  90.8 (250)
MS1,, 5 87.2 (250) 22.4 (250) 96.8 (250)
MS1,, 6 91.6 (250) 28.4 (250)  99.2 (250)
MST1,, 7 94.8 (250)  30.0 (250) 100.0 (250)
MS1,, 8 98.0 (250)  29.2 (250) 100.0 (250)
MS1,, 9 100.0 (250) 19.6 (250) 100.0 (250)
MS2,, 2 250) 74 (250)
MS2,, 3 . 250)  90.4 (250)
MS2,, 4 88.4 (250) 24.0 (250)  95.2 (250)
MS2,,, 5 97.6 (250) 34.8 (250)  97.6 (250)
MS2,,, 6 98.8 (250)  36.0 (250) 100.0 (250)
MS2,, 7 250) .2 (250)  99.6 (250)
MS2,, 8 2! 32.4 (250) 100.0 (250)
MS2,, 9 99.6 (250)  39.2 (250) 100.0 (250)
M,r, 2 6.4 (250) 4.0 (250) 5.6 (250)
M,r, 3 6.0 (250) 2.4 (250) 4.8 (250)
M, 4 6.0 (250) 5.6 (250) 6.4 (250)
M, 5 4.0 (250)  7.2(250) 5.6 (250)
M, 6 4.0 (250)  5.2(250) 4.8 (250)
M,r, 7 4.0 (250)  4.8(250) 7.2 (250)
M, 8 4.4 (250)  5.2(250) 5.6 (250)
M, 9 3.2/(250)  5.2(250) 5.2 (250)
SpL 2 0.8 (250) 2.4 (250) 3.2 (250)
Spr. 3 3.2(250) 6.4 (250) 3.2 (250)
S 4 3.6 (250) 7.6 (250) 3.6 (250)
SpL 5 4.4 (250) 2.4 (250) 3.6 (250)
S 6 4.8 (250) 6.0 (250) 5.2 (250)
SpL 7 4.4 (250) 6.4 (250) 4.8 (250)
Spr 8 5.2 (250) 4.8 (250) 2.8 (250)
S 9 2 (250) 2.4 (250) 6.4 (250)
MS1,, 2 33.6 (250) 116 (250)  32.8 (250)
MS1,;, 3 43.6 (250)  13.6 (250)  45.6 (250)
MS1,, 4 61.2 (250) 14.0 (250) 67.6 (250)
MS1,, 5 66.4 (250) 14.4 (250) 74.8 (250)
MS1,,, 6 73.6 (250) 19.6 (250)  76.0 (250)
MS1,, 7 82.4 (250) 18.4 (250)  82.0 (250)
MS1,,, 8 84.4 (250) 20.4 (250) 88.8 (250)
MS1,, 9 80.4 (250) 18.8 (250) 88.8 (250)
MS2,,, 2 41.2 (250)  20.8 (250)  46.8 (250)
MS2,;, 3 61.6 (250) 19.2 (250)  52.0 (250)
MS2,,, 4 71.6 (250) 28.0 (250) 62.4 (250)
MS2,, 5 73.2 (250) 28.8 (250)  72.4 (250)
MS2,,, 6 82.0 (250)  29.6 (250) 77.6 (250)
MS2,,, 7 83.6 (250) 316 (250) 81.6 (250)
MS2,;, 8 89.6 (250) 31.6 (250) 87.2 (250)
MS2,,, 9 86.4 (250) 42.4 (250) 89.6 (250)
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2-sided (x # 0)
S2 (N) S3 (N)

S1(N)

S2(N)  S3(N)

1-sided (x > 0)

S1(N)

3. Detecting a mover-stayer structure

Scenario  Occasion

Table 3.15: Kappa test by occasion, homogeneous scenarios, percentage of
significant results (number of applicable tests), high percentage of significant

results in bold (> 50%)
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Table 3.16: Kappa test by occasion, memory scenarios, percentage of signifi-
cant results (number of applicable tests), high percentage of significant results
in bold (> 50%)

Scenario Occasion 1-sided (k > 0) 2-sided (x # 0)
S1 (N) S2 (N) S3 (N) S1 (N) 2 (N) S3 (N)

Mem1 2 100.0 (250) 100.0 (250) 100.0 (250)  100.0 (250) 99.6 (250) 100.0 (250)
Meml 3 100.0 (250) 100.0 (250) 100.0 (250)  100.0 (250) 100.0 (250) 100.0 (250)
Mem1 1 100.0 (250) 100.0 (250) 100.0 (250)  100.0 (250) 100.0 (250) 100.0 (250)
Meml 5 100.0 (250) 100.0 (250) 100.0 (250)  100.0 (250) 100.0 (250) 100.0 (250)
Meml1 6 100.0 (250) 100.0 (250) 100.0 (250)  100.0 (250) 100.0 (250) 100.0 (250)
Meml 7 100.0 (250) 100.0 (250) 100.0 (250)  100.0 (250) 100.0 (250) 100.0 (250)
Mem1 8 100.0 (250) 100.0 (250) 100.0 (250)  100.0 (250) 100.0 (250) 100.0 (250)
Meml 9 100.0 (250) 100.0 (250) 100.0 (250)  100.0 (250) 100.0 (250) 100.0 (250)
Mem?2 2 99.2 (250)  99.6 (250) 100.0 (250)  98.4 (250)  99.6 (250) 100.0 (250)
Mem2 3 100.0 (250) 100.0 (250) 100.0 (250)  100.0 (250) 100.0 (250) 100.0 (250)
Mem2 1 100.0 (250) 100.0 (250) 100.0 (250)  100.0 (250) 100.0 (250) 100.0 (250)
Mem2 5 100.0 (250) 100.0 (250) 100.0 (250)  100.0 (250) 100.0 (250) 100.0 (250)
Mem2 6 100.0 (250) 100.0 (250) 100.0 (250)  100.0 (250) 100.0 (250) 100.0 (250)
Mem2 7 100.0 (250) 100.0 (250) 100.0 (250)  100.0 (250) 100.0 (250) 100.0 (250)
Mem2 8 100.0 (250) 100.0 (250) 100.0 (250)  100.0 (250) 100.0 (250) 100.0 (250)
Mem2 9 100.0 (250) 100.0 (250) 100.0 (250)  100.0 (250) 100.0 (250) 100.0 (250)
Conclusions

Our simulation results show that the significance of the WBWA test, currently
used as a test for memory, could actually be indicative of animals with dif-
ferent preferences, with heterogeneous movement patterns, or a mover-stayer
structure. Based on the simulation scenarios considered, the test of positive
association reacts to a smaller subset of situations: mainly memory and mover-
stayer. Therefore in Section 3.5, we attempt to construct adaptations of both
Test WBWA and the positive association test that would allow us to identify
specifically either the existence of a mover-stayer structure or the presence of

short-term memory.
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Table 3.17: Kappa test by occasion, heterogeneous scenarios, part 1, per-

centage of significant results (number of applicable tests), high percentage of

significant results in bold (> 50%)

2-sided (x # 0)

1-sided (k > 0)

Occasion

Scenario

S2 (N) S3 (N) S1 (N) S2 (N) S3 (N)

S1 (N)

78.4 (250)
95.6 (250)
99.6 (250)
99.2 (250)
100.0 (250)
100.0 (250)

29.2 (250)
43.2 (250)
58.4 (250)
60.8 (250)
67.2 (250)
65.2 (250)
76.4 (250)
77.2 (250)

64.8 (250)
88.8 (250)
97.2 (250)
99.2 (250)
100.0 (250)
100.0 (250)

86.4 (250)
98.0 (250)
100.0 (250)

42.8 (250)

74 (250)
93.2 (250)
98.8 (250)
99.6 (250)
100.0 (250)
100.0 (250)
100.0 (250)

MS1
MS1
MS1

250)

250)

100 (250)
100.0 (250)
100.0 (250)

250)

250)

250)

100 (250)
100.0 (250)

100 (250)
100.0 (250)

100 (250)
100.0 (250)

250)

250)

NN N N

56.4

3
4

69.2

73.2

MS1
MS1
MS1
MS1
MS1

78.8

6
7
8
9

78.4

84.4

86.8

100 (250)

88.4 (250)
98.8 (250)
100.0 (250)
100.0 (250)
100.0 (250)
100.0 (250)
100.0 (250)
100.0 (250)

44.0 (250)
70.4 (250)
80.4 (250)
89.2 (250)
91.6 (250)
94.8 (250)
94.8 (250)
96.0 (250)

76.8 (250)
97.2 (250)
99.6 (250)
100.0 (250)
100.0 (250)
100.0 (250)
100.0 (250)
100.0 (250)

93.6 (250)
99.6 (2

250)

50)

250)

250)

250)

250)

250)

250)

250)

N )

100.0
100.0
100.0
100.0
100.0
100.0

250)

250)

250)

250)

250)

250)

NN N N

57.2

83.6 (250)
99.2 (250)

99.6 (2

2
3
4
5
6
7
8
9

MS2
MS2
MS2
MS2
MS2
MS2
MS2
MS2

80.0

89.6

50)

90.4

250)

95.2

250)

97.6

250)

96.8

250)

97.6

250)

N N

100.0
100.0
100.0
100.0
100.0

22.8 (250)
8.4 (250)
14.0 (250)
29.6 (250)
44 (250)
50.0 (250)
59.2 (250)
69.6 (250)

11.6 (250)

7.2 (250)
8.0 (250)
27.6 (250)
46.8 (250)
67.2 (250)
80.0 (250)
88.4 (250)
87.6 (250)

0.0 (250)
4.4 (250)
20.0 (250)

0.4 (250)
9.2 (250)
30.4 (250)
53.6 (250)
77.6 (250)
86.0 (250)
92.4 (250)

2.0 (250)
16.0 (250)
39.6 (250)
60.8 (250)
79.2 (250)
88.4 (250)
93.2 (250)
94 (250)

P2G
P2G
P2G
P2G
P2G
P2G
P2G
P2G

6.8 (250)
22.0 (250)
42.0 (250)
64.4 (250)
74.8 (250)
83.6 (250)

3
4

250)

250)

250)

250)

86 (250)

250)

NN N =

40.0

54.4

62.4

7

69.6

79.2

96 (250)

8.4 (250)
4.8 (250)
8.4 (250)
8.8 (250)
13.2 (250)
18.0 (250)

6.4 (250)
6.4 (250)
10 (250)
10.4 (250)

8.8 (250)
8.4 (250)
11.6 (250)
20.8 (250)
24.4 (250)
27.2 (250)
30.4 (250)
38.4 (250)

3.2 (250)
8.0 (250)
13.6 (250)
12.0 (250)
21.2 (250)
30.4 (250)
25.2 (250)
19.6 (250)

4.8 (250)
9.2 (250)
15.2 (250)
19.2 (250)
21.2 (250)
27.2 (250)
26.0 (250)
32.8 (250)

9.2 (250)
13.6 (250)
17.6 (250)
30.8 (250)
36.4 (250)
37.6 (250)
40.8 (250)
48 (250)

A2G
A2G
A2G
A2G
A2G
A2G
A2G
A2G

3
4

5
6
7
8

14 (250)
18.4 (250)
15.6 (250)
20.8 (250)

2 (250)
12.4 (250)

8 (250)
7.2 (250)
6.4 (250)
8.4 (250)
9.6 (250)
8.4 (250)
10.0 (250)
13.2 (250)

7.2 (250)
3.6 (250)
4.8 (250)
6.4 (250)
6.8 (250)
3.6 (250)
8.8 (250)
4.0 (250)

9.2 (250)
19.6 (250)
30.0 (250)
38 (250)
42.4 (250)
52.4 (250)
59.6 (250)
59.6 (250)

o~ o~ o~ o~~~ o~ —

HM
HM
HM
HM
HM
HM
HM
HM
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Table 3.18: Kappa test by occasion, heterogeneous scenarios, part 2, per-
centage of significant results (number of applicable tests), high percentage of
significant results in bold (> 50%)

Scenario  Occasion 1-sided (x > 0) 2-sided (k # 0)
S1(N) S2 (N) S3 (N) S1(N) S2 (N) S3 (N)

M, 2 44 (250) 5.6 (250) 0 (250) 5.6 (250) 8.4 (250) 0 (250)
M, 3 48 (250) 4.4 (250) 6 (250) 48 (250) 6.8 (250) 0 (250)
M, 4 5.2 (250) 4.8 (250) 2 (250) 6.8 (250) 6.8 (250) 4.8 (250)
M, 5 2.8 (250) 5.6 (250) 6 (250) 6.4 (250) 6.4 (250) 6.4 (250)
M, 6 3.2 (250) 5.6 (250) 8 (250) 52 (250) 6.0 (250) 5.6 (250)
M, 7 8.0 (250) 4.4 (250) 6 (250) 8.8 (250)  5.6(250) 4.8 (250)
M, 8 24 (250) 4.0 (250) 8 (250) 56(250) 4.8 (250) 4.8 (250)
My, 9 6.0 (250) 4.0 (250) 1(250) 14(250) 4.8 (250) 2.4 (250)
Spe 2 1.2(250) 2.8 (250) 3.6 (250) 316 (250) 9.2 (250) 280 (250)
Spe 3 28(250)  3.6(250) 1.6 (250) 20.0 (250) 12,8 (250)  10.4 (250)
Spe 4 40 (250) 2.8 (250) 2.8 (250) 156 (250) 8.0 (250) 9.6 (250)
Spe 5 24(250) 3.6 (250) 3.2 (250) 100 (250) 6.4 (250) 6.4 (250)
Spe 6 16 (250) 4.0 (250) 2.0 (250) 15.2 (250) 5.6 (250)  13.2 (250)
Sps 7 2.4 (250) 5.2 (250) 3.6 (250) 11.2 (250) 8.0 (250) 8.8 (250)
Spe 8 28 (250) 2.0 (250) 1.6 (250) 10.8 (250) 7.2 (250) 6.8 (250)
Spe 9 1.6 (250) 2.8 (250) 0.8 (250) 124 (250) 8.8 (250) 112 (250)
MS1,, 2 58.0 (250) 21.2 (250)  69.6 (250) 44.8 (250)  12.4 (250)  57.2 (250)
MS1,, 3 82.0 (250) 24.4 (250)  89.2 (250) 73.2 (250) 13.6 (250)  83.2 (250)
MS1,, 4 91.2 (250) 29.2 (250)  94.0 (250) 85.6 (250) 156 (250)  89.2 (250)
MS1,,, 5 93.2 (250) 20.2 (250) 98 (250) 88.0 (250) 204 (250)  95.6 (250)
MS1,, 6 95.6 (250)  32.8 (250)  99.2 (250) 91.6 (250) 21.6 (250) 98 (250)
MS1,, 7 98.0 (250) 34.8 (250)  99.6 (250) 95.6 (250) 26.4 (250)  98.8 (250)
MS1,, 8 99.6 (250) 356 (250) 100.0 (250)  98.4 (250) 24.4 (250)  99.2 (250)
MS1,, 9 100.0 (250) 21.6 (250) 100.0 (250)  100.0 (250) 12.4 (250)  100.0 (250)
MS2,, 2 74.8 (250) 26.4 (250)  75.6 (250) 63.2 (250) 18.0 (250)  68.0 (250)
MS2,, 3 90.4 (250)  39.6 (250)  94.4 (250) 80.8 (250) 24.8 (250)  87.2 (250)
MS2,, 4 93.6 (250) 41.2 (250)  98.4 (250) 89.6 (250) 28.0 (250)  96.4 (250)
MS2,, 5 99.2 (250) 47.2 (250) 99.2 (250)  97.2 (250) 37.6 (250)  98.4 (250)
MS2,, 6 98.8 (250) 55.6 (250) 100.0 (250)  97.6 (250) 41.6 (250) 100.00 (250)
MS2,, 7 99.2 (250) 54.0 (250) 99.6 (250)  98.4 (250) 40.8 (250)  99.6 (250)
MS2,, 8 99.6 (250) 51.6 (250) 100.0 (250)  98.8 (250) 38.4 (250)  100.0 (250)
MS2,, 9 100.0 (250) 47.2 (250) 100.0 (250)  99.6 (250) 35.6 (250)  100.0 (250)
M, 2 2.8 (250) 4.4 (250) 4.4 (250) 7.6(250) 5.6 (250) 7.2 (250)
M, 3 44 (250) 4.4 (250) 3.6 (250) 7.2(250) 6.8 (250) 4.8 (250)
M, 4 72(250) 4.4 (250) 6.4 (250) 5.6(250) 6.0 (250)  10.0 (250)
M, 5 3.6 (250) 4.0 (250) 6.8 (250) 10(250) 6.0 (250) 6.4 (250)
M, 6 5.2(250) 44 (250) 5.2 (250) 48(250) 7.6 (250) 6.8 (250)
M, 7 3.6 (250) 2.8 (250) 4.8 (250) 32(250) 52 (250) 5.6 (250)
M, 8 32(250) 4.8 (250) 4.0 (250) 5.6(250)  32(250) 5.2 (250)
M, 9 6.0 (250) 3.6 (250) 6.0 (250) 6.4(250) 4.0 (250) 4.0 (250)
Sp 2 20 (250) 4.4 (250) 2.4 (250) 32.0 (250)  21.2 (250)  24.4 (250)
Sz 3 1.6(250) 5.6 (250) 2.4 (250) 10.6 (250) 124 (250)  15.2 (250)
Sor 4 28 (250) 52 (250) 2.0 (250) 12.0 (250) 100 (250)  10.8 (250)
Spr 5 28 (250) 2.8 (250) 1.2 (250) 9.6 (250) 7.6 (250) 4 (250)
S, 6 3.2(250) 4.8 (250) 3.6 (250) 13.2 (250) 9.6 (250) 0 (250)
S, 7 40 (250) 2.4 (250) 3.2 (250) 14.0 (250) 6.4 (250) 112 (250)
Spe 8 1.6 (250) 2.8 (250) 4.0 (250) 13.2 (250) 4.4 (250)  12.0 (250)
Spe 9 20 (250) 2.4 (250) 2.4 (250) 124 (250)  12.0 (250)  12.8 (250)
MS1,, 2 440 (250)  16.4 (250) 42,0 (250) 340 (250) 13.2 (250) 316 (250)
MS1,, 3 540 (250)  24.0 (250)  56.0 (250) 44.0 (250) 6(250)  43.2 (250)
MS1,, 1 69.2 (250) 23.6 (250) 66 (250) 58.8 (250) 14.8 (250)  59.6 (250)
MS1,, 5 74.4 (250) 252 (250)  75.6 (250) 65.6 (250) 15.6 (250)  63.6 (250)
MS1,, 6 77.2 (250)  29.6 (250)  78.8 (250) 71.6 (250) 17.2 (250)  69.2 (250)
MS1,, 7 84.8 (250) 352 (250) 86.8 (250) 74.8 (250) 26.4 (250)  77.2 (250)
MS1,, 8 89.2 (250) 32.8 (250) 87.2 (250) 82 (250) 224 (250)  7T8.8 (250)
MS1,, 9 82.8 (250) 32.8 (250)  85.2 (250) 73.2 (250) 22 (250)  74.4 (250)
MS2,, 2 476 (250)  32.8 (250)  48.4 (250) 332 (250) 10.6 (250)  37.2 (250)
MS2,. 3 70.8 (250) 27.2 (250)  64.0 (250) 56 (250)  17.2 (250)  48.8 (250)
MS2,, 4 76.8 (250) 41.2 (250) 74 (250) 66.0 (250) 312 (250)  63.2 (250)
MS2,, 5 81.6 (250)  39.2 (250)  80.8 (250) 73.2 (250) 272 (250)  70.0 (250)
MS2,, 6 89.6 (250) 44.4 (250)  86.4 (250) 81.2 (250) 34.0 (250)  80.8 (250)
MS2,, 7 94.8 (250) 52.4 (250) 89.6 (250) 86.0 (250) 37.6 (250)  85.6 (250)
MS2,, 8 94.8 (250)  49.6 (250)  92.8 (250) 87.2 (250) 332 (250)  87.6 (250)
MS2,, 9 90.4 (250) 58.4 (250) 92.8 (250) 85.2 (250) 46.0 (250)  87.2 (250)
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3.5 Adapted tests to distinguish a mover-stayer

structure from memory

3.5.1 Test WBWA adapted for memory

We first attempted to adapt Test WBWA so that it would not react to a
mover-stayer structure. The usual WBWA(i,r) contingency tables by state
and occasion are modified by removing the animals who are in the same state
at the previous and current occasions or at the current and future occasions
since they could be potential stayers. In other words, the row and column
corresponding to the current state are deleted from the original WBWA (ir)
contingency table (recall Figure 3.2). Consequently, this adapted test can
only be used for a capture-recapture experiment with at least 3 live states.
The results of the adapted test are shown in Table 3.19 for the global test
(obtained as usual, by summing up the chi-square statistics resulting from the
adapted tests by state and occasion, which are not presented here since they
do not provide additional information). The adapted WBWA is no longer
sensitive to a mover-stayer structure (around 5% of significant results), whilst
it retains its high power to detect memory (100% of significant results for
the considered scenarios). However it still lacks specificity since it remains
sensitive to heterogeneity in preferences (64.8% for P2G, 72% for A2G) and

heterogeneity in movement (100% of significant results).

3.5.2 Test of positive association adaptations
Not taking into account potential memory

We modified the test of positive association so that it would target a mover-
stayer structure more specifically and not react to memory: our first solution
is to not take into account the occasions before and after the middle occasion if

the animal is in the same state at these 2 occasions, since this could potentially
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Table 3.19: Global Test WBWA adapted for memory, high percentage of sig-
nificant results in bold (> 50%)

Scenario % (N)

M 6.0 (250)
S 0.0 (250)
MO 4.8 (250)
P 0.0 (250)
A 3.6 (250)
SD1 4.8 (250)
SD2 3.2 (250)
SD3 0.0 (250)

Meml  100.0 (250)
Mem?2 100.0 (250)

MS1 5.2 (250)
MS2 1.8 (250)
P2G 64.8 (250)
A2G 72.0 (250)
HM 100.0 (250)
M, 2.4 (250)
S, s 0.0 (250)
MS1,s 3.6 (250)
Ms2,s 0.4 (250)
M, L 6.4 (250)
S, L 0.0 (250)
MSL,L 3.6 (250)
MS2,L 1.2 (250)
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be reflective of memory. This movement is also removed from the number of
possible movements. This modification is illustrated in Table 3.20 for a toy
example. Note that this test was performed on animals captured at least 5
times in order to avoid situations with 0 possible movements. The results of
this adaptation are shown in Tables 3.21 for the summarised test. This first
adaptation of the test of positive association does not seem successful since the
test is still sensitive to memory (78.4% of significant results for Mem1). We
note however, that the adapted test is sensitive to none of scenarios considered
apart from the mover-stayer and memory scenarios, which is an improvement

compared to the non adapted test.

Not taking into account memory, but keeping potential stayer infor-

mation

Our second proposed solution is to not take into account the occasions before
and after the middle occasion if the animal is in the same state at these 2
occasions, when the state at the middle occasion is different (potential mem-
ory). However, these occasions are retained if the animal is at the same state
at the three occasions since this is potentially reflective of stayers. Again, we
use only animals captured at least 5 times in order to make sure that we have
at least one informative previous and future movement. A toy example of this
second adaptation is given in Table 3.22.

Table 3.20: Toy example, modified positive association test, version 1, NM

denotes the number of movements and Max the maximum number of possible
movements.

ID Non-zero capture history Previous movements Future movements
NM Max NM Max

1 32331 2 2 1 2

3 111131 0 1 2 2

11 212111 1 1 0 2
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Table 3.21: Summarised test of positive association,adapted, conservative, at
least 2 informative movements (animals captured at least 5 times), version 1,

high percentage of significant results in bold (> 50%)

Scenario % (N)
M 0.0 (250)
S 0.0 (250)
MO 0.0 (250)
P 0.0 (250)
A 0.0 (250)
SD1 0.0 (250)
SD3 0.0 (250)
Meml  78.4 (250)
Mem?2 4.0 (250)
MS1 100.0 (250)
MS2 100.0 (250)
P2G 0.0 (250)
A2G 0.0 (250)
HM 0.0 (250)
M,, 0.0 (250)
Sps 0.0 (250)
MS1,,  100.0 (250)
MS2,,  100.0 (250)
M, 0.0 (250)
S, 0.0 (250)
MS1,,  90.0 (250)
MS2,,  95.2 (250)
M, 0.0 (250)
S, 0.0 (250)
MS1,  100.0 (250)
MS2,  100.0 (250)
SD1, 0.0 (250)
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Table 3.22: Toy example, modified positive association test, version 2, NM
denotes the number of movements and Max the maximum number of possible
movermnents.

ID Non-zero capture history Previous movements Future movements
NM Max NM Max

1 32313 2 2 2 2

3 111131 0 2 2 3

11 212111 1 1 0

The results obtained with this strategy are given, for the summarised test,
in Table 3.23. Like the first proposed adaptation, this second adaptation is
very powerful at detecting mover-stayer structures (100% of significant results
in all considered situations) and very sensitive to memory (around 100% too).
Hence, it does not allow a mover-stayer structure to be differentiated from
memory. One again, the adapted test is not sensitive at all to all other scenarios

considered.

3.5.3 The solution to detecting a mover-stayer structure:

using two adapted tests in conjunction

Based on the results from Sections 3.5.1 and 3.5.2, a possible solution for
detecting a mover-stayer structure would be to combine the adapted WBWA
with the second adaptation of the test of positive association. Indeed, the
adapted WBWA is not affected by a mover-stayer scenario, and reacts strongly
to heterogeneity in movement and preferences as well as memory; whilst the
second adaptation of the positive association test is sensitive only to memory
and a mover-stayer structure (note that we chose the second adaptation rather
than the first because it was slightly more powerful). The possible outcomes
are shown in Table 3.24. Both tests used together facilitate the detection of
a mover-stayer structure, and the presence of memory, separately from other

phenomena such as heterogeneous groups of preference or movement among
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Table 3.23: Summarised test of positive association, conservative, adapted,

version 2, high percentage of significant results in bold (> 50%)

Scenario % (N)
M 0.4 (250)
S 0.0 (250)
MO 0.0 (250)
P 0.4 (250)
A 0.0 (250)
SD1 0.0 (250)
SD3 0.0 (250)
Meml1 100.0 (250)
Mem2  91.2 (250)
MS1 100.0 (250)
MS2 100.0 (250)
P2G 1.2 (250)
A2G 0.0 (250)
HM 0.0 (250)
M,s 0.0 (250)
S,s 0.0 (250)
MSl,s  100.0 (250)
MS2,5  100.0 (250)
M,L 0.4 (250)
S, L 0.4 (250)
MSI,L  100.0 (250)
MS2,I  100.0 (250)
M, 0.0 (250)
S, 0.0 (250)
MSI,  100.0 (250)
MS2,  100.0 (250)
SD1, 0.0 (250)
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the animals. Indeed, if both tests yield significant results, this is indicative
of memory. A significant result for the adapted WBWA alone is indicative
of heterogeneity in movement or preferences; whilst a significant result for
only the adapted test of positive association is indicative of the existence of a

mover-stayer structure.

Table 3.24: Test results’ significance and possible conclusions

Adapted WBWA (Y/N) Adapted positive association, version 2 (Y/N) Conclusion
Y N Heterogeneity in movement /preferences
Y Y Memory
N Y Mover-stayer structure

3.6 Application: Canada geese

The famous Canada geese dataset from Hestbeck et al. (1991) is very often
used as an illustration of memory (see for example Pradel et al., 2005; Rouan
et al., 2009); it consists of 21,435 migrant geese individually marked with neck-
bands and re-observed at their wintering locations each year, between 1984
and 1989 (Hestbeck et al., 1991; Rouan et al., 2009). These wintering sites
constituted the states in the capture-recapture experiment: 1 denoted mid-
Atlantic (New York, Pennsylvania, New Jersey), 2 Chesapeake (Delaware,
Maryland, Virginia), and 3 Carolinas (North and South Carolina). Due to
the new findings regarding the conclusions drawn from Test WBWA, we re-
examine the geese dataset, using the combination of adapted tests to determine
whether we still reach the same conclusion of memory.

Table 3.25 shows that the adapted test of positive association yields a
significant result (p = 0.01); we have also detailed the test split by state,
mainly to show how many animals were used for the adapted test, which is

based on animals captured at least 5 times and we note that the number
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of animals effectively used for the test is quite low compared to the size of
the original dataset. The adapted WBWA test also yields a significant result
(p < 0.001). According to Table 3.24, there is significant evidence that the
geese display memory, which confirms the previous findings.

As a simple verification, we fitted a few simple models with different set-
tings of survival and capture, for both memory and a mover-stayer structure,
in order to check whether, for equivalent parametrisation of survival and cap-
ture probabilities, the model with memory was selected as a better model than
the mover-stayer model. Note that we did not go through an exhaustive model
fitting process since we aimed only to compare a memory model and a mover-
stayer model fitted to the geese dataset. The models were fitted using program
E-SURGE (MultiEvent SURvival Generalized Estimation) (Choquet et al.,
2009b).

Both the memory model and the mover-stayer model are not multi-state
models. Rather, they are both more general multievent models, which we
briefly touched upon in Chapter 1 (Section 1.2). Multievent models will be
presented in detail in Chapter 4; however we give here a brief overview of the
tools necessary to comprehend the model fitting performed in this section.

Multievent models are more general than multi-state models in that they
allow uncertainty in the state assignment: the observations upon capture con-
stitute events while the states are underlying. For example, being a mover or
a stayer is not a characteristic observable upon capture of the animal, and the
observation “seen in colony 3” will be modelled as possibly resulting from an
animal in states “mover in colony 3” or “stayer in colony 3”. Multievent models
are conditioned on first capture (McCrea and Morgan, 2014, p.100) and defined
by the following parameters (again, further explanation will follow in Chapter
4): initial state probabilities, survival and transition probabilities, and event
probabilities. Program E-SURGE is based on a general multi-event formu-

lation of the model structured by the user and constrained using a language
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Table 3.25: Canada geese: adapted test of positive association(version 2) for
a mover-stayer structure, by state and summarised; 4 denotes the gamma
estimate, z(C) and pval (C) respectively denote the test-statistic and p-value
for the adapted test of positive association with C reminding that this test is
conservative, n denotes the number of animals used for the test, S in the state
column indicates the summarised test.

¥ z(C) pval (C) n state

0.36 0.85 0.20 66 1
0.72 222 0.01 81
NA NA NA 21 3

- 2.17 0.01 - S

GEMACO (see Choquet and Nogue, 2006, for details).

Various models have been proposed to account for memory, we chose to fit
the Pradel memory model (Pradel, 2005), where the initial probabilities of the
animals are dependent on their previous (unknown) site (Rouan et al., 2009), so
that all animals follow the same survival-transition matrix. To fit the memory
models in E-SURGE, we followed the step-by-step tutorial given in the web-
appendix from Rouan et al. (2009), available at https://static-content.
springer.com/esm/art%3A10.1198%2F jabes.2009.06108/Medialbjects/13253_
2009_140300338_MOESM1_ESM.pdf, only separating the steps of survival and
transitions, as per Choquet et al. (2009b). Recall that the structure of the
transition matrix for a memory model was given in Section 3.4.1, the initial
states probability vector II;, the survival matrix ®; and the event matrix
B, are given below. For notation purposes, we follow the convention used
in E-SURGE of denoting by * the probabilities equal to one minus the row-
sum of the remaining terms. The labels of the columns and rows are denoted
explicitly for clarity: for II; the columns represent the initial states, for ®,
the rows and columns represent the pairs of previous and current sites and
finally for B, the rows represent the underlying state of the animal whereas

the columns represent the observations or in other words, the data collected
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from a capture-recapture experiment.
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For the mover-stayer model, we used a mixture model with two groups of

animals characterised by different transition structures. Movement between

groups is not allowed since animals are assumed to be intrinsically either

movers or stayers. The six live states resulting from this definition are: Stayer

in location 1, 2, or 3 and Mover in 1, 2, or 3, respectively denoted by S1, S2,
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S3, M1, M2, and M3. The characteristic matrices of the mover-stayer model

are given below.
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It should be noted that a model with two groups of animals characterised
by different transition matrices is actually appropriate for a broader spec-
trum of models than just mover-stayer, they can be used for other situa-
tions of heterogeneity in movement or preferences. However, fitting a strictly
mover-stayer model would require additional constraints of the form {¢%1 >
MU and 1522 > pM22 and 932 > pM33} that are not necessarily straight-
forward to implement in pre-existing software such as E-SURGE. Thus it is
less likely to be routinely fitted in practice than the more general mixture
model.

We are aware that fitting memory models involves numerous identifiability
issues (Rouan et al., 2009; Cole et al., 2014), this issue is out of the scope of
this thesis and we did not dwell on it. Note however, that E-SURGE uses a
built-in tool which provides a numerical estimate of the number of estimable
parameters in the model (Choquet and Nogue, 2006).

The models fitted are presented in Table 3.26, they are defined follow-
ing the GEMACO terminology used in program E-SURGE (Choquet et al.,
2009b): c¢ indicates that the probabilities are constant over time and states,
to indicates that the probabilities are different along the columns, from in-
dicates that the probabilities are different along the rows, from.to indicates
that they differ along both rows and columns (used to constrain the transition
probabilities to be dependent on both the state of departure and the state of
arrival). The initial probabilities are conventionally fitted as both state and
time-dependent: to.t. The best model was chosen using Akaike’s information
criterion, the AIC, defined as —2log{L()} + 2d, log{L(0)} denotes the log-
likelihood evaluated at its maximum and d denotes the number of estimable
parameters (Burnham and Anderson, 2002, p.61). We were concerned about
using the AIC because the memory models and the mover-stayer models are
both based on a different number of underlying states, which also have differ-

ent meanings. However these models are all fitted to the same representation
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of the dataset (no conditional likelihood or different grouping), therefore the
AIC can be used for model comparison(Burnham and Anderson, 2002, p.81).
For reassurance, we fitted both a memory model and a mover-stayer model
to a randomly chosen simulated dataset from scenario MS2 (with all proba-
bilities constant except for the state-dependent transition probabilities). The
best model chosen by the AIC was the mover-stayer model (AIC=26979.19,
versus AIC—27318.27 for the memory model).

For the goose dataset, the memory model was consistently found to be
better than the mixture model, for equivalent types of parameter dependencies,

which is in agreement with the results of the tests presented in Table 3.25.

3.7 Discussion

To summarise, this chapter extended the scope of existing Test WBWA, which
is currently used as a test for memory. We showed that the test is actually sen-
sitive to other violations of the homogeneity in transition assumption, such as
heterogeneity in movement patterns, or in preference/avoidance, and a mover-
stayer structure. Thus, when Test WBWA produces a significant result, these
alternative models should be considered and fitted if they are biologically sen-
sible in addition to the memory model.

We also examined the properties of a positive association test to detect a

mover-stayer structure, directly extending the test for heterogeneity in capture

Table 3.26: Model fitting: Memory and mixture, Canada Geese dataset

Model N parameters Deviance AIC Delta(AIC)
Memory: 7(to.t), p(to), (from), ¥ (from.to) 72 115904.47 116048.47 0.00
Memory: 7(to.t),p(c), o(from),¥(from.to) 70 115968.92 116108.92 60.45
Mixture: 7(to.t), p(to), ¢(from),¥(from.to) 48 116023.92 116119.92 71.45
Mixture: 7(to.t), p(c), d(from),¥(from.to) 46 116053.91 116145.91 97.44

Memory: 7(to.t), p(c), ¢
Mixture: 7(to.t), p(c), ¢

¢), Y(from.to) 62 116077.41 116201.41 152.93
¢), ¥ (from.to) 41 116135.08 116217.08  168.61

—
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derived in Chapter 2. However, this test lacked specificity, and was very
sensitive to both memory and mover-stayer structure, whilst also being slightly
affected by some of the other scenarios.

Consequently, we modified the current Test WBWA to derive a test that
was no longer sensitive to a mover-stayer structure. We also adapted the
test of positive association, so that it became sensitive only to memory and
a mover-stayer structure. Finally we used both the adapted Test WBWA
and the adapted test of positive association to detect and distinguish between
memory, mover-stayer structure and heterogeneity in movement or preferences.
This combined tool can be used for a capture-recapture experiment with at
least 3 live states and 5 capture occasions. The level of dependence between the
adapted WBWA test and the adapted test of positive association is unclear
at this stage. To be cautious, we would recommend using a correction for
multiple testing, such as the Bonferroni correction which consists of dividing
the chosen level by the number of hypotheses tested (see for example Sokal
and Rohlf, 2012, p.239).

The main advantage of the new tool is that it provides more specific in-
formation, without needing any model fitting and is very powerful in good
conditions. Its main limitation at the current stage is the requirement for
large sample sizes so that there is enough testable data, particularly for the
test of positive association. Further investigations are needed in order to adapt
this tool for smaller sample sizes. For instance, in the same way as for Chapter
2, a permutation test could be explored.

Finally, we keep in mind that biological behaviours are, by essence, more
complex than simulated scenarios involving only a clear-cut phenomenon. For
instance, animals could present long-term memory; they could also change
their moving behaviour over time, if for example, they scout until they find a
nice colony to settle in, they would first be movers and then stayers. It would

be of interest to research how the existing tests and the new tool react in these
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types of situation.



Chapter 4

Testing the underlying state
structure for partially

observed multi-state data

4.1 Introduction

The states defined in a multi-state model are observable and assigned with
certainty (Kendall, 2004). Partial observations occur when the state cannot
be determined for a proportion of animals at a given sampling occasion (Conn
and Cooch, 2009). In monomorphic species, male and female individuals do
not present obvious physical differences. As a result, individuals need to be
directly handled or genetically tested to determine their gender. This is not
always possible and then, the sex needs to be inferred based solely on the
animal’s behaviour (Genovart et al., 2012). If, at a given occasion, there are
individuals for which the sex cannot be ascertained and is left as “unknown”,
these constitute partial observations. For other individuals, sex may be as-
signed with uncertainty. In animal epidemiology, where health status con-

stitutes the states, such as the study of avian malaria (Lachish et al., 2011)
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or conjunctivitis in Carpodacus mezicanus Miiller house finches (Conn and
Cooch, 2009), some animals’ health status cannot be determined when direct
testing via blood samples, for instance, is not possible.

As mentioned previously in Section 3.6 from Chapter 3, multievent models
were developed by Pradel (2005) in order to take into account state uncer-
tainty: events are observed whilst the states are underlying. Multievent mod-
els are Hidden Markov Models, they are layered: a hidden Markov process,
generally assumed of order 1, governs the movement between the underlying
states and the events are generated by these states. Note that the set of under-
lying states, although not directly observable, is defined by the user according
to their expertise and the question of interest. Multievent models condition on
first capture and form a general framework which allow the relaxation of stan-
dard multi-state or CJS model assumptions. Example situations that can be
modelled by multievent models include transience, heterogeneity or memory.

The likelihood of a multievent model is given in Equation 4.1, using the

following notation:
e N the number of observed individuals,
e R the number of states defined by the user (including the state “dead”),

e F the number of events (including the event “not captured”),

D(0) the diagonal matrix with diagonal elements equal to the elements

of 9,

fr the first encounter occasion for animal £,

T the number of occasions in the capture-recapture experiment,

1z a column vector of R ones,

II; the 1 x R vector of initial state probabilities, with the rth element
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being the probability that an individual is in state r» when initially en-

countered at occasion t,

e &, the R x R survival matrix, with the diagonal terms ¢; denoting the
probability that an animal in state r at time ¢ survives until ¢ + 1 for
r < R. For R, the “dead” state, diagonal element ¢* = 1 and the Rth

column is formed of the terms 1 — ¢} for each row r < R.

e W, the R x R transition matrix, with the (7, s)th element being v,, the
probability that an animal is in state s at time ¢+ 1, given it was in state

r at t and that it is alive at ¢ + 1.

e B; the Rx E event matrix with the (r, e)th element being the probability
of observing event e for an animal in state r at time ¢. The notation
B.(., ex+) refers to the column of By corresponding to the event observed

at time t for animal k.

The matrices II;, ®;, ¥y and B, are all row-stochastic and recall that they

were illustrated for various examples in Chapter 3, Section 3.6.

N

L= H (kaD(Bfk('7€fk)) [ H (I)t—llIlt—lD(Bt("ekﬂf))] 1R> (41)

t=fr+1

This chapter focusses on multi-state capture-recapture data with partial
observations (i.e. captured/sighted with state unknown), assuming that when
states are assigned to observed animals, this is done without error/uncertainty.
These data can be modelled as a special case of multievent model, and this
chapter proposes a new diagnostic tool to assess whether the partial observa-
tions are actually generated from the states directly observed in the capture-
recapture experiment.

Consider a capture-recapture experiment designed to study avian malaria,
with the underlying states being defined as “healthy” (H), “infected with malaria”

(I) and “dead”(}); the events recorded are “not captured” (NC), “observed
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as healthy” (H), “observed as infected with malaria” (I) and “observed with
health status unknown” (U), which constitutes the partial observations. If an
animal is observed as healthy or infected with malaria, then this is actually in
the corresponding underlying state. If an animal’s health status is unknown,
it could actually be either healthy or infected with malaria. Finally, when
an animal is not captured, it could be in any of the three underlying states.
This is a situation where partial observations are generated from the observed
states; and it is illustrated for a given occasion in Figure 4.1.

An example of alternative scenario is represented in Figure 4.2, for the
same health status example. Only this time, the partial observations corre-
spond to animals who are actually in State C which represents “infected with
conjunctivitis”. For clarity purposes, Figure 4.2 zooms in on the observations

made, leaving out the event “not captured” (and by extension the state “dead”).

The test developed in this chapter builds on the approach utilised by Test
M in the multi-state framework (Pradel et al., 2003). Test M is presented in
Section 4.2. In Section 4.3, we show that if partial observations are generated
only by the directly observable states, then animals partially observed at time
¢ are a mixture of the animals observed in any of the observable states at that
occasion. Based on this mixture property, a new test is developed to assess
whether partial observations are actually generated by the observable states.
The properties of this test are assessed using simulation in Section 4.4. Finally,
in Section 4.5 the test is applied to the Canada geese dataset used in Chapter 3
as well as a dataset of greater flamingoes (Phoenicopterus roseus), to explore
its performance in real-life situations. Finally, we conclude and discuss the

findings in Section 4.6.
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Figure 4.1: Underlying state structure illustration at a given occasion for a
capture-recapture experiment with two live states H and I, directly observed
without error and partial observations corresponding to animals that can be in
either of these states; U denotes partial observations, ¢" denotes the survival
probability in state r and ¢"® the transition probabilities from state r to state
s.
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Figure 4.2: Tllustration of the underlying state structure at a given occasion for
a capture-recapture experiment with two live states H and I directly observed
without error and partial observations corresponding to the additional state C
which is never directly observable; U denotes partial observations, ¢" denotes
the survival probability in state r and " the transition probabilities from
state r to state s.
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4.2 Test M

In a multi-state framework, it is not possible to naturally extend Test 2, de-
scribed in Chapter 2, which compares animals captured at time i to those not
captured at time . This is due to the fact that, in a multi-state setting, when
an animal is not captured, its state is unknown. However, if the assumption of
equal recapture probability at a given occasion for all animals in the same state
is true, Pradel et al. (2003) noted that, amongst the animals still alive, those
that are not captured at occasion i must be in one of the live states defined
in the experiment. Thus, Pradel et al. (2003) demonstrated that the number
of animals not captured at i, previously released and known to be alive after
1, follows a conditional multinomial distribution, which is a finite mixture of
the conditional multinomials followed by the number of animals seen at 7 in
the different states and re-observed at least once. Pradel et al. (2003) also
noted that although this mixture property is verified for the Arnason-Schwarz
model, it is actually characteristic of the more general Jolly-Movement model.
This is why the goodness-of-fit suite for the multi-state model assesses the fit
of a Jolly-Movement model rather than an Arnason-Schwarz model, as men-
tioned in Chapter 3 (Section 3.2). Based on this mixture property, Pradel
et al. (2003) used pooling strategies to derive a general mixture test at a given
occasion i: Test M. At each occasion, Test M assesses whether animals pre-
viously released in a given state r, not captured at ¢ and known to still be
alive after ¢ are consistent with being a mixture of the animals in the same
conditions captured in either of the states at 7. Table 4.1 shows the m-array
terms constitutive of the table associated with Test M.

The probability density function of a finite mixture is defined as
g(z) = ¢ 7w fo(x) (see for example Everitt and Hand, 1981, p. 4); C is
the number of mixture components, f.(r) the probability density function of

component ¢, also termed basis distribution by Yantis et al. (1991), and 7, the
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Table 4.1: Table of the m-array terms associated with Test M at occasion 1,
for a capture-recapture experiment with K occasions and R live states denoted
by A to R. The mixtures M; to Mg, are each a mixture of the bases By to Bg.

Ciamif o Eomif o Yhmig . Tomig My
ShmA L SmER L Slgmy sl g
m e mift, e mly e my}g By
mIR/i L m{iﬁ N m]R[? mlf'[{‘ B R

mixing probabilities associated with each component (3>, 7. = 1). Yantis
et al. (1991) developed the Multinomial Maximum Likelihood Mixture ap-
proach (MMLM), which, as its name implies, is targeted to mixtures of multi-
nomial distributions. The context of the MMLM approach is slightly different
from the more common mixture model problems, in which only mixtures are
sampled from and there is no direct information available from the underlying
mixture components (Everitt and Hand, 1981, p. 2). In the MMLM setting,
independent samples are available from both the mixtures and the compo-
nents. Note that from here onwards, we will be using the terminology from
Yantis et al. (1991) and Pradel et al. (2003), and terming these components
bases.

The model structure corresponding to a MMLM setting is shown in Ta-
ble 4.2 with the mixing probabilities denoted in blue and the bases cell-
probabilities in red. The MMLM approach consists of two steps: estimat-
ing the bases cell probabilities and the mixing probabilities via maximum-
likelihood. (Recall that each row represents a multinomial so the cell proba-
bilities sum to 1 for each row.) The second step is assessing the goodness-of-
fit of the hypothesised model structure (mixtures and bases) using a classical
measure of comparison between observed and expected frequencies.

Test M is essentially an application of the MMLM approach to a capture-

recapture setting, as illustrated by the m-array terms in Table 4.1, where the
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Table 4.2: MMLM approach, Mixture and bases model structure associated
with Table 4.1
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mixtures are denoted by M and the bases by B. The associated model struc-
ture corresponds to the cell-probabilities given in Table 4.2 for the different
mixtures and bases. Pradel et al. (2005) then partitioned Test M into two com-
ponents: Test M.ITEC, which detects a short-term trap effect, by confronting
the animals first re-observed at i+ 1 and those first re-observed at later times;
and Test M.LTEC. In case of sparse data, the mixture rows may be pooled
together, unlike the bases rows, which should never be pooled so that the hy-
pothesised model structure is conserved. The table may also be pooled across
the columns in any manner except for Test M.ITEC, where animals seen again
at ¢ + 1 and those seen later should be kept separated (Choquet et al., 2005).
Finally, note that Test M is not a test of independence so Fisher’s exact test

cannot be used in this case.
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4.3 Testing the mixture property for partial ob-

servations

4.3.1 The mixture property of partial observations gen-

erated by only the observable states

If partial observations stem from the states directly observed in the experiment,
then the set of underlying states is formed only of the observable states plus the
dead state. In this section, we show that, in this case, the number of animals
partially observed at i and seen again in a known state afterwards, fol