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Abstract

Capture-recapture models have increased in complexity over the last decades

and goodness-of-�t assessment is crucial to ensure that considered models pro-

vide an adequate �t to the data. In this thesis, my primary emphasis is to

develop new diagnostic tools for capture-recapture models in order to target

possible reasons of lack-of-�t, which might provide biological insights and point

towards better-�tting candidate models.

Starting with the basic Cormack-Jolly-Seber model, I develop a new tool

for detecting heterogeneity in capture. I then progress to the more complex

multi-state models, for which I propose a test for detecting a mover-stayer

structure within the population. Finally, I move on to more general models

presenting additional levels of uncertainty: �rst partial observations and then

unobservable states. In the presence of partial observations, part of the obser-

vations are assigned to states with certainty whereas others are not. I develop

a new test for the underlying state-structure of the partial observations, this

test detects that the partial observations are not generated by the observable

states de�ned in the experiment. In the presence of unobservable states, the

additional level of uncertainty relates only to the non-captures. I present a

procedure to test whether one or two unobservable states need to be de�ned

in order for the model to provide an adequate �t to the data.

Lastly, I explore the use of multi-state models to incorporate individual

time-varying covariates, based on a �ne discretisation of the covariate space.
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Chapter 1

Introduction

In the current context of global climate change, environmental issues are the

object of many government policies. Measuring and understanding environ-

mental change, and its impact is key to generating suitable and e�cient poli-

cies. This is an incredibly vast puzzle, spanning several areas such as climate

change modelling, pollution measurement, or more generally ecosystems' un-

derstanding; and studying the dynamics of animal populations is a piece of

this puzzle.

1.1 Capture-mark-recapture

Unlike humans, for whom census is (generally) straightforward, speci�c data

collection techniques have to be used to monitor animal populations. One of

the techniques used to study a species consists of marking animals from a pop-

ulation of interest uniquely and then recording whether they are recaptured

or re-sighted at subsequent sampling (capture) occasions, which are generally

made at equal time intervals. The resulting data are known as capture-mark-

recapture (CMR) data (Williams et al., 2002). Note that the vocabulary re-

lating to capture, sighting, encounter will be used interchangeably throughout

this thesis.
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Figure 1.1: Capture-mark-recapture of slender-billed gulls.

Di�erent kinds of markings are used depending on the species of inter-

est: rings are commonly used for birds (e.g. �amingoes, gulls), ear tags for

ibex, pen-markings for lizards, and so forth. Figure 1.1 illustrates the CMR

technique conducted on slender-billed gulls (Chroicocephalus genei). Marking

can be unnecessary for some species that already present natural individual

marks, akin to human �ngerprints: for instance, Great crested newts' (Tritu-

rus cristatus) belly pattern (McCrea and Morgan, 2014, p.3), or the dorsal �n

and scars for various whale species (see for example Hammond et al., 1990).

The CMR technique is not restricted to ecological applications. It is widely

used in other areas where populations are di�cult to follow such as forced

labour (van der Heijden et al., 2015) or drug use (Mastro et al., 1994).

1.2 Capture-recapture models' increasing com-

plexity

The capture-recapture models used to understand the mechanisms underlying

data collected from a CMR experiment have become increasingly complex over

the years, in order to be more biologically realistic and thus result in more

accurate inference. This thesis focusses on models aiming to estimate survival
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and/or movement within an open population, allowing for birth/immigration

and death/emigration (McCrea and Morgan, 2014, p.57).

The most basic capture-recapture model is the Cormack-Jolly-Seber (CJS)

model, which estimates the apparent survival probability within the analysed

population, whilst accounting for imperfect detection (Lebreton et al., 1992).

The survival is termed as apparent because permanent emigration and death

are confounded.

However, other demographic parameters are also of interest such as prob-

abilities of movement between colonies for migratory birds, or transitions be-

tween physiological states like health status. Hence, multi-state models were

introduced, to estimate state-dependent survival probabilities and the proba-

bility of moving between states, whilst accounting for imperfect detection in

each of the states (McCrea and Morgan, 2014, p.87) . The process governing

movement between the di�erent states is a Markov chain, usually assumed

to be of �rst-order; meaning that the future state depends on the past only

through the current state. Or, in other words, there is no memory. This is

not always realistic since animals such as Canada Geese have been shown to

display memory (Hestbeck et al., 1991). The order of the Markov chain can

be increased to account for this kind of issue, using for example a second-order

Markov process (i.e. the future state depends on the past through both present

and previous state) (see for example McCrea and Morgan, 2014, p.96) .

If the states of interest are animal locations (e.g. to study migration pat-

terns), states are easily assigned during �eldwork: when an animal is captured,

its state is clearly visible and recorded. However, when these states are phys-

iological, like health status, inference often has to be made based strictly on

the behaviour of the animals as it is often impossible to perform medical tests

on them. In this case, the state assignment is prone to error and more com-

plex models were developed to account for this uncertainty: multievent mod-

els (Pradel, 2005). They form a general umbrella model, encompassing the
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multi-state and CJS models, which can both be easily expressed as multievent

models.

Finally, the model parameters can be time-dependent and/or state-dependent,

or constant overall; they can also be expressed as functions of covariates that

may be relevant (e.g. gender, climate) (Lebreton et al., 1992).

Hence, the set of potential models which can be �tted to a single dataset

is very large.

1.3 The necessity for diagnostic tools

`Essentially, all models are wrong, but some are useful' (Box and Draper,

1987).

Statistical models are, by de�nition, based on assumptions and subsequent

inference is only valid under those assumptions. In other words, unrealistic

assumptions can lead to �awed inferences. The increasing complexity from

CJS to multievent models, is due to a relaxation of some of the more strict

assumptions, in order to obtain more informative and accurate biological con-

clusions.

Many competing models are generally �tted to a dataset. In order to draw

biological conclusions and make inference, a selection must be made. This is

usually done using information criteria such as the AIC (Akaike's Information

Criterion), or tests for nested models such as the likelihood-ratio test or the

score test. In certain cases, it is not necessary to select only one model and

model averaging may be performed. This procedure should however be used

with caution as only compatible models should be averaged together (New-

man et al., 2014, Chapter 5). At this stage, the best model(s) among the �tted

models is chosen. The candidate models most often do not exhaustively repre-

sent the set of all possible models. Particularly for complex models, it would

be too time-consuming to explore all possibilities, the likelihood optimisation
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might also prove problematic for some models (McCrea and Morgan, 2011).

Thus, the model selected by information criteria is the least worst among the

investigated candidates, whilst the likelihood ratio test and score test also as-

sess the relative �t of examined models. It is crucial that at least one of the

candidate models should provide an adequate �t to the data (Pradel et al.,

2003): if the selected best model does not �t the data adequately, erroneous

conclusions may result, which in turn can be misused by decision-makers.

Assessing whether a model �ts data adequately is termed absolute goodness-

of-�t assessment. It is usually measured overall, based on the distance between

expected values under the model and observed values. The statistic most com-

monly considered, for data grouped into K cells, is Pearson's χ2 (Cressie and

Read, 1988, page 10). Let Ok and Ek respectively denote the observed and

expected frequencies in cell k. The test-statistic is then de�ned by:

χ2 =
K∑
k=1

(Ok − Ek)2

Ek
. (1.1)

Capture-recapture data can be viewed as multinomial data, with all the

possible capture histories representing the outcomes, and the number of ani-

mals with each capture history following a multinomial distribution. Hence,

one way of examining goodness-of-�t would be to compare expected and ob-

served values for these frequencies. This general goodness-of-�t assessment is

straightforward to understand and easily implemented, but not optimal for a

capture-recapture framework. Indeed, the number of possible capture histories

increases exponentially with the number of capture occasions: (S + 1)K−1− 1

histories for an experiment with K capture occasions and S states, and this,

in turn, leads to very sparse data for goodness-of-�t purposes (Lebreton and

Pradel, 2002; Pradel et al., 2005; Lebreton et al., 2009). In addition to this,

Burnham (1991) also noted that the omnibus test has low power.

More importantly, even in perfect conditions, an overall goodness-of-�t test
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does not provide enough information. Indeed, if the omnibus test is rejected,

we can conclude that the model does not �t the data adequately, but there

is no indication as to why it does not �t (Pradel et al., 2005). Diagnostic

tests on the other hand, are speci�c to model assumptions, and thus provide

information regarding possible reasons for lack-of-�t. This guides the model-

building process by pointing towards more appropriate models for the analysed

data and can also provide new ecological insight. Hence, diagnostic tools are

particularly valuable for capture-recapture models.

Note that lack-of-�t may also result from over dispersion (Amstrup et al.,

2005, p.19) (higher residual variance than expected under a multinomial model)

and this is usually accounted for by using a variance in�ation factor, the ĉ,

which is the ratio of the chi-square statistic divided by the number of degrees

of freedom (McCrea and Morgan, 2014, p.174).

1.4 Thesis structure

The main motivation of this thesis is to develop new diagnostic tools for

capture-recapture models, that are relatively easy to implement and inter-

pret. Their performance is generally evaluated using simulation and they are

also applied to real-life datasets. This thesis explores potential reasons of

structural lack-of-�t of the models and does not consider over dispersion as-

sessment. Also, the aim of this thesis is to develop goodness-of-�t tools for

capture-recapture models, and thus we do not present the technicalities of

parameter estimation.

Diagnostic tools currently exist for the CJS model as well as for multi-

state models (Pradel et al., 2005). They detect speci�c phenomena that cause

a breakdown of the model assumptions such as trap e�ects and transience.

These concepts will be explained in Chapter 2, alongside the CJS model and

its existing diagnostic tests.
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Other phenomena might also violate model assumptions and it would be

of interest to be able to detect these and identify them speci�cally. Chapter 2

focusses on heterogeneity in capture within a CJS framework and introduces a

test of positive association, based on Goodman-Kruskal's gamma (Siegel and

Castellan Jr., 1988) as a new tool for detecting heterogeneity in capture.

Chapter 3 progresses to multi-state capture-recapture models and naturally

extends the test of positive association to the area of transition probabilities,

which have generally not been given much attention in the literature. Details

are then provided for the only existing diagnostic test related to the transition

probabilities: Test WBWA, currently used to detect memory. Finally, Chapter

3 gives rise to a new tool to detect the existence of a mover-stayer structure

within the analysed population by combining the existing Test WBWA and

the test of positive association.

There are currently no diagnostic tests for the more complex multievent

capture-recapture models, which account for uncertainty in state assignment.

We approach the area of uncertainty by examining two speci�c cases: partial

observations in Chapter 4, and unobservable states in Chapter 5. Partial

observations occur when the state cannot be determined upon capture for some

animals (i.e. state uncertainty for some observations); whereas unobservable

states present an additional level of uncertainty only on the non-captures. We

developed tests of the model structure in terms of underlying states for both

these cases; and our main aim was to assess whether they could work. Their

performance was therefore assessed using simulation under extremely good

conditions, i.e. very large sample sizes.

Chapter 4 presents the multievent framework and the existing mixture test,

Test M, currently used for multi-state models. We show that a mixture test

can also be de�ned for partial observations. This new test detects whether

there is evidence that partial observations are actually generated by other

states than those directly observable in the experiment.
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Chapter 5 develops a procedure to test for unobservable states. In order

to do so, it was necessary to examine a more general framework of mixtures

of multinomials, which we present in detail. We were then faced with the

obstacle of parameter redundancy, which is de�ned and explored in detail for

our situation. We derive general parameter redundancy results for mixtures

of multinomials in the presence of unobservable components. We �nally im-

plement a procedure for the general framework of mixtures of multinomials

to test for unobservable components. We then apply this procedure within a

capture-recapture framework, to test whether there is statistical support for

de�ning unobservable states.

Chapter 6 constitutes a separate but related piece of work. We mentioned

previously that covariates can be incorporated in capture-recapture models.

However, this is particularly challenging for time-varying individual covariates

such as weight, since on each occasion the animal is not captured, its weight

value is unknown. Di�erent methods have been proposed to handle this prob-

lem, and Chapter 6 explores the use of multi-state models with a large number

of states representing discretised values of the covariate.

Finally Chapter 7 summarises the contributions of this thesis and further

research paths that can be explored.



Chapter 2

A new tool for detecting

heterogeneity in capture

This chapter proposes a new method to detect and identify heterogeneity in

capture within a Cormack-Jolly-Seber (CJS) framework. In Section 2.1, we

describe the CJS model and associated data, we also detail the existing di-

agnostic tests derived for this model. The CJS model is based on relatively

restrictive assumptions, which are detailed in Section 2.1. This chapter fo-

cusses on the assumption of equal recapture probability at each occasion for

all marked animals known to be in the population.

This assumption is violated when there is a trap-e�ect (i.e. capture at

a given occasion a�ecting capture probability at the following occasion); but

also more generally when the animals demonstrate heterogeneous behaviour

in terms of capture. This is very common in animals with a social structure,

where dominant animals are more likely to be resighted than subordinates

(Cubaynes et al., 2010), or if some animals are located in places that are

di�cult to access.

It is important to identify and account for heterogeneity in capture when

it occurs: �rstly, not accounting for it can lead to biases in estimates of demo-
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graphic parameters such as survival. Although survival estimates have been

shown to be fairly robust, even small biases can lead to �awed inference or have

an impact on management strategies (Prévot-Julliard et al., 1998; Cubaynes

et al., 2010; Fletcher et al., 2012; Abadi et al., 2013). Secondly, the presence

of heterogeneity in capture will warrant further investigations as to its causes,

this may in turn lead to identifying individuals with di�erent behavioural pat-

terns such as breeders/non-breeders, bold/timid, dominant/subordinates or

animals with di�erent feeding strategies (Corkrey et al., 2012). Finally, het-

erogeneity in capture can also be a result of the study design (Oliver et al.,

2011; Corkrey et al., 2012), and identifying it would give directions to possible

adjustments. Indeed, heterogeneity in capture can be related to the sampling

process, or stem from resighting errors, in which case additional data collec-

tion rules may be speci�ed: for example, it is more or less standard practice to

require at least two observations for neck-banded geese (Madsen et al., 2014).

It is currently di�cult to identify heterogeneity in capture separately from

other phenomena, particularly trap-dependence, that could cause a break-

down in the CJS model assumptions. In Section 2.2, we introduce a new

tool to detect heterogeneity in capture, based on Goodman-Kruskal's gamma

(Siegel and Castellan Jr., 1988). Other methods which have been proposed to

identify this phenomenon are presented in Section 2.3: an adapted version of

the existing diagnostic tests, suggested by Péron et al. (2010), Leslie's equal

catchability test (Orians and Leslie, 1958) and Carothers' extension of the

Leslie test (Carothers, 1971).

A simulation study is conducted in Section 2.4 to assess the performance of

the new approach in detecting heterogeneity in capture speci�cally, compara-

tively to the other methods. In Section 2.5 we apply the tests to a dataset of

Great cormorants (Phalacrocorax carbo sinensis) and a dataset of Sandwich

terns (Thalasseus sandvicensis). Finally, we conclude and discuss the results

obtained in Section 2.6.
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2.1 The Cormack-Jolly-Seber framework

2.1.1 Data summaries

Capture-recapture data in its simplest form consists of records of whether each

animal is seen (coded as 1) or not seen (coded as 0), at each sampling occasion

i of a capture-recapture experiment (see for example Lebreton et al., 1992).

This produces a set of encounter or capture histories, as illustrated in Table

2.1. In this example, animal Z321 was �rst captured, marked and released at

occasion 1, not seen from occasions 2 to 5 and was seen again at occasion K.

The data can be compressed in a capture history matrix, by pooling animals

with the same capture history, as shown in Table 2.2. The encounter histories

can be further summarised by considering pairs of release and subsequent

recapture: the full m-array, which classi�es the animals by previous capture

history, and the reduced m-array which conditions only on current capture

(Burnham et al., 1987). All animals released at the same occasion form a

cohort, and the animals from the same cohort, which share the same previous

capture history, form subcohorts . Table 2.3 provides an example of a full m-

array; it contains the number of animals released at occasion i and recaptured

for the �rst time at occasion j, or never seen again, grouped by their previous

capture history {h}. Table 2.4 presents a reduced m-array m, with elements

mi,j and vi de�ned as the animals released at occasion i and �rst recaptured

at occasion j, and those never seen again, respectively.
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Table 2.1: Example capture histories for a capture-recapture experiment with
K encounter occasions

Animal ID Encounter occasion

1 2 3 4 5 . . . K

Z321 1 0 0 0 0 . . . 1

C324 1 1 0 1 0 . . . 1

K114 0 1 0 0 0 . . . 0
...

...
...

...
...

...
...

Z124 0 0 1 1 0 . . . 0

Table 2.2: An example of summarised capture history matrix with 6 encounter
occasions

Capture history Number of animals

1 1 1 1 1 1 10

1 0 1 0 1 0 15

1 0 0 0 0 1 22
...

...
...

...
...

...
...

0 0 0 1 1 0 28

0 0 0 1 0 0 4

0 0 0 0 1 1 36

Table 2.3: Full m-array example: i denotes the release occasion, j denotes the
�rst subsequent recapture occasion, and {h} denotes the previous history of
the animals

j Never seen again

2 3 4 5 6

i{h} 1{-} 10 15 0 0 22 0

2 {1} - 10 0 0 0 0

{0} - 0 0 0 0 0
... - -

...
...

...
...

5 {1 1 1 1} - - - - 10 0

{1 0 1 0} - - - - 0 15
... - -

...
...

...
...

{0 0 0 1} - - - - 0 28

{0 0 0 0} - - - - 36 0
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Table 2.4: Reduced m-array: i denotes the release occasion, j denotes the �rst
subsequent recapture occasion

j Never seen again

i 2 3 4 5 6

1 19 20 3 0 22 0

2 - 19 11 35 0 0

3 - - 47 29 6 0

4 - - - 50 49 7

5 - - - - 46 104

2.1.2 The CJS model

Capture-recapture data consisting of 1s and 0s, as presented in Section 2.1.1,

are typically modelled using a CJS model, which conditions on �rst capture.

It allows the estimation of the apparent survival probability from occasion i to

i + 1, φi (the model does not distinguish death from permanent emigration),

as well as the imperfect recapture probabilities at occasion i, denoted pi (see

for example McCrea and Morgan, 2014, p. 70).

As stated in Chapter 1, the CJS model is based on relatively restrictive

assumptions. They are listed below, as de�ned in Williams et al. (2002).

1. Every marked animal present in the population at sampling period i has

the same probability pi of being recaptured or resighted.

2. Every marked animal present in the population immediately following

the sampling period i has the same probability φi of surviving until

sampling period i+ 1.

3. Marks are neither lost nor overlooked, and are recorded correctly.

4. Sampling periods are instantaneous.

5. All emigration from the sampling area is permanent.
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6. The fate of each animal with respect to capture and survival probability

is independent of the fate of any other animal.

The reduced m-array is a su�cient statistic for this model, meaning it

contains all the information necessary to estimate the model parameters. Let

vi denote the number of animals released at i and never seen again, πi,j and χi

the cell-probabilities respectively associated to the reduced m-array terms mi,j

and vi, and K the number of capture occasions. It follows that πi,j = φj−1pj

for j = i + 1, πi,j =
[∏j−2

t=i φt(1− pt+1)
]
φj−1pj for j > i + 1, whilst χK = 1

and χi = 1 −
∑K

j=i+1 πi,j for i < K (see for example Lebreton et al., 1992).

The likelihood of the CJS model can then be expressed as:

L(φ,p; {mi,j, vi}) =
K−1∏
i=1

(∑K
j=i+1mi,j + vi

)
!

(mi,i+1)! . . . (mi,K)!(vi)!

K∏
j=i+1

π
mi,j

i,j χvii (2.1)

Burnham (1991) showed that the �rst two model assumptions are testable

through a factorisation of the CJS likelihood. They are respectively the object

of existing diagnostic Test 2 and Test 3, which are implemented in software

such as programs RELEASE or U-CARE (Cooch and White, 2014, Chapter

5). These informative components result from the pooling-peeling algorithm

adopted by Burnham (1991), that was later extended to multi-state models

by Pradel et al. (2003).

2.1.3 Existing diagnostic tests

Figure 2.1 summarises the factorisation steps used by Burnham (1991), which

result in two separate goodness-of-�t components and one parameter estima-

tion component based on the minimal su�cient statistics (i.e. the minimal

information needed to estimate the model parameters). The following colour

coding will be used throughout this subsection for the di�erent components:
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red for parameter estimation, blue for Test 3 and green for Test 2.

The �rst two likelihood components, relating to �rst captures and losses/gains

on captures, are only meaningful when simultaneously estimating abundance

in an open population (see for example McCrea and Morgan, 2014, p.150).

The CJS model, however, conditions on �rst capture and its likelihood corre-

sponds to the probability of the recaptures given the releases. The detail of

the pooling-peeling steps resulting in the �nal factorisation are illustrated in

Figure 2.2, using an example m-array.

The notations used to express the factorised likelihood components in prob-

abilistic terms are as follows:

• K: the number of capture occasions in the experiment,

• {h}: the previous capture history of a speci�c subcohort of animals,

• Ri: the number of animals released at a given occasion i,

• ri: the number of animals released at i who are re-captured,

• mi,j and πi,j: respectively the elements of the reduced m-array and their

associated cell-probabilities as de�ned previously,

• mP
i,j =

∑i
k=1mk,j: the partial column sums for i < j,

• mP
j =

∑j−1
i=1 mij, for j = 2, ..., K − 1: the terms peeled out during the

last step of the pooling-peeling algorithm. Indeed, the �rst term peeled

out (see Figure 2.2) is mP
2 = m1,2, at the next stage, the second term

peeled out is mP
3 = m1,3 +m2,3 and so forth.

• Cj = Cj−1 − mP
j−1 + rj−1, for j > 2, with C2 = r1: the total number

of animals from which the mP
j terms are peeled out (i.e. total of the

conditional multinomials pooled prior to the current peeling step). For

the example used in Figure 2.2, C2 = r1 = 19 + 20 + 3 + 0 + 22 = 64,

C3 = (64− 19) + (19 + 11 + 35 + 0) = 110
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Figure 2.1: Burnham's likelihood factorisation of the CJS model, resulting in
separate goodness-of-�t (GOF) and parameter estimation components, MSS
denotes the minimal su�cient statistics

• τj = [φj−1pj] /
[∑K

k=j π(j−1),k

]
: the conditional probabilities of the peeled

bits mP
j , for j = 2, ..., K − 1.

The MSS for the CJS model are de�ned by Burnham (1991) as the ri

terms, with i = 1, ..., K − 1 and the mP
i terms, with i = 2, ...K − 1. The �nal

components of the factorised likelihood are presented below in probabilistic

terms: .

K−1∏
i=1

∏
{h}
(

Ri;{h}
mi,i+1;{h},...,mi,K;{h},Ri;{h}−ri;{h}

)(
Ri

mi,i+1,...,mi,K ,Ri−ri

) (2.2)

K−1∏
i=1

(
Ri

ri

)( K∑
j=i+1

πij

)ri (
1−

K∑
j=i+1

πij

)Ri−ri

(2.3)

K−1∏
j=2

(
Cj
mP
j

)
(τj)

mP
j (1− τj)Cj−mP

j (2.4)
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Figure 2.2: An illustration of the pooling-peeling steps leading to components
Test 2 and Test 3
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K−2∏
i=2

( Ci−mP
i

mP
i−1,i+1,...,m

P
i−1,K

)(
ri

mi,i+1,...,mi,K

)
( Ci+1

mP
i,i+1,...,m

P
i,K

) (2.5)

Equation 2.2 represents the conditional distribution of the subcohorts given

the cohorts, they consist of K − 1 multivariate hypergeometrics and give rise

to Test 3 (Burnham et al., 1987). Equation 2.3 and 2.4 denote the likelihood

components used for parameter estimation: the probability of the minimal

su�cient statistics. More precisely, Equation 2.3 refers to the binomials peeled

o� in the very �rst step P (ri | Ri) whilst Equation 2.4 refers to the binomials

peeled at each occasion in the last step P (mP
i | Ci). Equation 2.5 represents

the conditional distribution of the cohorts given the MSS, they consist of K−3

hypergeometrics (Pradel et al., 2003). This component is used for Test 2, to

test the homogeneity between cohorts.

Test 3 and Test 2 can both be divided in subcomponents, their description

and associated hypotheses are given below, based on the detailed description

given in Choquet et al. (2005). Test 3 is subdivided into two components: Test

3.SR detects transience, which occurs when animals are just passing through

the sampling site and hence only seen once. At each occasion, Test 3.SR com-

pares, for animals encountered at occasion i, the newly marked animals to

previously marked animals with respect to whether they are seen again. The

null hypothesis for this test is H0: �There is no di�erence in the probability of

being seen again between newly and previously marked animals encountered

at occasion i� and the alternative hypothesis is de�ned as H̄0. The speci�c

directional departure from the null hypothesis corresponding to transience is:

�Amongst the animals encountered at occasion i, the newly marked animals

present a lower probability of being seen again than previously marked ani-

mals�. The second component, Test 3.Sm has a less clear interpretation, it

compares, for animals encountered at occasion i, the timing of recapture of

the newly marked animals seen again and of the previously marked animals
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that are seen again. The null hypothesis for this test is H0: �There is no di�er-

ence in the expected time of �rst re-encounter between newly and previously

marked animals encountered at occasion i�, and the alternative is de�ned as

H̄0. In the same way, Test 2 is subdivided into Test 2.CT and Test 2.CL.

Test 2.CT detects short-term trap-e�ects, which occur when capture at the

current occasion a�ects the probability of being captured at the next occasion:

trap-shyness if it decreases and trap-happiness if it increases. To identify this

trap-dependence phenomenon, Test 2.CT compares animals captured at i and

those not captured at i, in terms of whether they were recaptured at i+ 1 or

later (given that the animals are alive at both i and i+1). The null hypothesis

for this test is H0: �For the animals known to be alive at both i and i + 1,

there is no di�erence in the probability of being seen again at i+1 between the

animals encountered at i and those not encountered at i�, and the alternative

is de�ned as H̄0. The speci�c directional departure from the null hypothesis

corresponding to trap-happiness (shyness) is: �For the animals known to be

alive at both i and i+ 1, the probability of being seen again at i+ 1 is higher

(lower) for the animals encountered at i than those not encountered at i�. Test

2.CL, which is thought to possibly detect longer term trap-e�ects, compares

the timing of re-encounter for the animals re-encountered after i+ 1. The null

hypothesis for this test is de�ned as: �For the animals known to be alive at

both i and i+2, there is no di�erence in the expected time of next re-encounter

between the animals encountered at i and those not encountered at i�, and the

alternative is de�ned as H̄0.

Table 2.5: Contingency table for Test 3.SR at occasion i

Seen Again Never Seen Again

Newly released at i
∑K

j=i+1mi,j;{00...0} Ri;{00...0} −
∑K

j=i+1mi,j;{00...0}

Previously released
∑K

j=i+1

∑
h6={00...0}mi,j;{h}

∑
h6={00...0}Ri;{h} −

∑K
j=i+1mi,j;{h}
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Table 2.6: Contingency table for Test 3.Sm at occasion i

Seen Again at i+ 1 Seen Again at . . . Seen Again at K

Newly released at i mi,i+1;{00...0} . . . mi,K;{00...0}

Previously released
∑

h6={00...0}mi,i+1;{h} . . .
∑

h6={00...0}mi,K;{h}

Table 2.7: Contingency table for Test 2.CT at occasion i

Seen subsequently at i+ 1 Seen subsequently at a later occasion

Captured at i mi,i+1

∑K
j=i+2mi,j

Not captured at i
∑i−1

l=1ml,i+1

∑i−1
l=1

∑K
j=i+2ml,j

Table 2.8: Contingency table for Test 2.CL at occasion i

Seen Again at i+ 2 Seen Again at . . . Seen Again at K

Captured at i mi,i+2 . . . mi,K

Not captured at i
∑i−1

l=1ml,i+2 . . .
∑i−1

l=1ml,K

These four tests are constructed from the contingency tables presented

from Table 2.5 to 2.8 (Pradel et al., 2003; Choquet et al., 2009a). Firstly,

standard chi-square tests of homogeneity comparing expected and observed

values are derived per occasion. Then a global result may be obtained for

each of the four tests by summing the independent chi-square statistics from

each occasion. Finally, the sum of these four tests form the omnibus goodness-

of-�t test (Choquet et al., 2005).

In practice, the data can be sparse for Test 3.Sm and/or Test 2.CL, the

cells within the corresponding tables are then pooled (this does not occur for

components 2.CT and 3.SR, which are based on 2× 2 tables). If the data are

still sparse after pooling, Fisher's exact test is used (Choquet et al., 2005).
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As its name implies, Fisher's exact test computes the exact probability of

obtaining the observed 2 × 2 table or a table more extreme, under the null

hypothesis of independence (see for example Upton and Cook, 2008). The di-

agnostic goodness-of-�t tests are Non Applicable (NA) when the corresponding

contingency tables have a row or column total of zero.

2.2 The test of positive association, a new ap-

proach for detecting heterogeneity in cap-

ture

The proposed approach stems from the observation that, if some animals have

a higher capture probability than others, they will be seen more often. In such

a case, at a given capture occasion i, animals with a higher number of previous

encounters are also likely to present a higher number of future encounters. In

other words, a positive association is expected between previous and future

encounters in the presence of heterogeneity in capture.

We propose the following steps to construct the test-statistic of interest

to our objective. Firstly, the test should target heterogeneity in capture and

therefore should not be contaminated by noise due to deaths or permanent

emigration. Hence, the occasions after the last sighting, for which the presence

of the animal is uncertain, are not taken into account. Secondly, since the

CJS model conditions on �rst capture, the period prior to the �rst capture

and the �rst capture occasion itself are not informative; thus these occasions

are not taken into account for the test. Similarly, the last capture occasion

is not taken into account either since it does not provide any information to

discriminate between the animals in terms of capture intensity. Thirdly, the

occasions of �rst and last capture can di�er amongst animals, leading to an

arti�cial di�erence between them: the earlier (the later) the animals are �rst
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(last) seen, the more possible encounters they have. Therefore, the information

relative to the encounters is standardised by dividing the number of previous

(future) encounters by the maximum number of possible previous (future)

encounters. Fourthly, the raw proportions of previous and future encounters

per animal at a given occasion are not of interest per se. Rather, we are

interested in how animals fare relatively to one another: are animals that are

seen more (less) often before i also seen more (less) often after i? Therefore,

the ranks of these proportions constitute the �nal information retained from

the data to test for heterogeneity in capture. Finally, since the range of ranks

is limited and that we expect many ties, Goodman-Kruskal's gamma is used

to test for a positive association between the ranks of previous and future

encounters (Siegel and Castellan Jr., 1988, p. 291). Since the test is based on

previous and future encounters with respect to a given capture occasion i, it is

reasonable to require a minimum of two informative occasions (i.e. excluding

the �rst and last sightings) both before and after i. As a result, the test is

restricted to animals known to be alive at least at i+3 and released before i−1;

so it can only be computed for capture-recapture experiments with at least

six capture occasions. Note that the capture history information at occasion

i could be counted in either the future or previous encounters; as there is no

strong argument in favour of either side and we decided to count it in the

previous encounters.

We use a toy example comprising three capture histories (see Table 2.9)

to illustrate the construction of the test at a given occasion i = 5. In our

example, animal ID 98 is not included within the test construction because it

is released before occasion 4, but never seen again, so not known to be alive

at occasion 8. The numbers of previous (future) encounters (denoted m),

proportions (denoted pr) and maximum possible number of previous (future)

encounters, denoted max, are shown in Table 2.9 for our example animals ID

99 and ID 100.



2. Detecting heterogeneity in capture 23

T
ab
le

2.
9:

A
to
y
ex
am

p
le

fo
r
ex
tr
ac
ti
n
g
th
e
in
fo
rm

at
io
n
re
q
u
ir
ed

fo
r
th
e
te
st

of
p
os
it
iv
e
as
so
ci
at
io
n
:
fo
r
th
e
te
st

p
er

o
cc
as
io
n
,
at

o
cc
as
io
n
i=

5
an
d
fo
r
th
e
gl
ob
al

te
st
.
F
or

th
e
te
st

p
er

o
cc
as
io
n
,
th
e
o
cc
as
io
n
of

in
te
re
st

(h
er
e
i=

5)
is
d
en
ot
ed

in
b
ol
d
.
F
or

th
e
gl
ob
al

te
st
,
th
e
m
id
d
le
o
cc
as
io
n
is
d
en
ot
ed

in
b
ol
d
.
m

d
en
ot
es

th
e
n
u
m
b
er

of
en
co
u
n
te
rs
,
m
a
x
th
e
m
ax
im
u
m

p
os
si
b
le
n
u
m
b
er

of
en
co
u
n
te
rs
,

an
d
pr

th
e
p
ro
p
or
ti
on
.
T
h
e
in
fo
rm

at
io
n
re
la
te
d
to

p
re
v
io
u
s
en
co
u
n
te
rs
an
d
fu
tu
re

en
co
u
n
te
rs
is
re
sp
ec
ti
ve
ly

d
en
ot
ed

in
re
d
an
d
gr
ee
n
.

T
es
t
of

p
os
it
iv
e
as
so
ci
at
io
n
p
er

o
cc
as
io
n

C
ap
tu
re

H
is
to
ry

P
re
v
io
u
s
en
co
u
n
te
rs

F
u
tu
re

en
co
u
n
te
rs

O
cc
as
io
n
i

1
2

3
4

5
6

7
8

9
10

m
m
a
x

p
r

r
a
n
k

m
m
a
x

p
r

r
a
n
k

ID
98

0
1

0
0

0
0

0
0

0
0

N
ot

ta
ke
n
in
to

ac
co
u
n
t
fo
r
te
st

(n
ot

k
n
ow

n
to

b
e
al
iv
e
at

o
cc
as
io
n
8)

ID
99

1
0

0
1

1
1

1
1

0
0

2
4

2
/
4

2
2

2
2
/
2

2
ID

10
0

0
0

1
0

0
0

1
0

1
0

0
2

0
/
2

1
1

3
1
/
3

1

G
lo
b
al

te
st

of
p
os
it
iv
e
as
so
ci
at
io
n

C
ap
tu
re

H
is
to
ry

P
re
v
io
u
s
en
co
u
n
te
rs

F
u
tu
re

en
co
u
n
te
rs

O
cc
as
io
n
i

1
2

3
4

5
6

7
8

9
10

m
m
a
x

p
r

r
a
n
k

m
m
a
x

p
r

r
a
n
k

ID
98

0
1

0
0

0
0

0
0

0
0

gl
ob
al

te
st

of
p
os
it
iv
e
as
so
ci
at
io
n
n
ot

ap
p
li
ca
b
le

ID
99

1
0

0
1

1
1

1
1

0
0

1
3

1
/
3

2
3

3
3
/
3

2
ID

10
0

0
0

1
0

0
0

1
0

1
0

0
3

0
/
3

1
1

2
1
/
2

1



2. Detecting heterogeneity in capture 24

The gamma measure of positive association, denoted by G, is estimated by

γ, which is based on the pairs of discordant D and concordant C observations:

γ =
C −D
C +D

A pair of observations is concordant if the observation ranking higher (lower)

for the previous encounters, also ranks higher (lower) for the future encoun-

ters; and discordant if the observation ranking higher (lower) for the previous

encounters ranks lower (higher) for the future encounters. In our example

from Table 2.9, animal ID 99 is ranked higher than animal ID 100 for both

previous encounters and future encounters. Thus, animals ID 99 and ID 100

form a concordant pair. Animals who are ranked the same for either previous

encounters or future encounters form ties and are not taken into account by

the gamma measure.

In the case of heterogeneity in capture, we expect a high number of con-

cordant pairs. Hence, we use a one-sided test with the null hypothesis de�ned

as �G≤ 0� and the alternative as �G> 0�. With this test, we hope to detect

the speci�c departure of heterogeneity in capture resulting from di�erences in

the animals' behaviour, when some present a higher capture probability than

others. When the subset of animals considered for the test at occasion i, n, is

relatively large, under the null hypothesis of no association, the distribution of

the test-statistic γ/
√
V ar(γ) is approximately a standard normal (Siegel and

Castellan Jr., 1988). In order to be conservative regarding this approximation,

we propose to restrict n to at least 30. If n < 30, we state that the test is not

applicable (NA).

We examined two versions of the test, based on di�erent approaches to the

variance estimation. The true variance of γ is known to be smaller than the

upper bound [n(1− γ2)] / [C +D] (Siegel and Castellan Jr., 1988); and using

this upper bound as variance estimate leads to a conservative test. We also
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used an estimate of the asymptotic variance derived by Brown and Benedetti

(1977),
[∑

i

∑
j aij(Aij −Dij)

2 − (4(C −D)2/n)
]
/ [(C +D)2], where aij de-

notes the frequency cell from the contingency table of rank of proportions of

previous encounters × rank of proportions of future encounters, with Aij =∑
k<i

∑
l<j akl +

∑
k>i

∑
l>j akl and Dij =

∑
k>i

∑
l<j akl +

∑
k<i

∑
l>j akl.

The subsets of animals used for the test at di�erent occasions i are not

independent, which means the results from each occasion cannot be pooled.

However, if not much temporal variation is expected for the capture probabil-

ity, one may consider a global test using the middle occasion between �rst and

last capture which allows for an optimal balance between information brought

by the previous and future occasions. The test procedure and restrictions are

the same as the test for a given occasion i, only i will be replaced by the

middle occasion and each animal used only once within the test. The global

test of positive association is also illustrated for our toy example in Table 2.9.

2.3 Other tests investigated

2.3.1 Adapted versions of the diagnostic tests

Pradel et al. (2005) observed that, based on the contingency tables used for

Test 3.SR and Test 2.CT, directional tests could be used to detect transience

and trap-happiness or shyness since these phenomena lead to an expected

direction of departure from the CJS assumption. For instance, if there is

trap-happiness, one would expect the contingency table associated with Test

2.CT to be consistently unbalanced, with more animals captured at i and

seen again at i + 1 than expected. Tables 2.10 and 2.11 show the signs of

expected unbalances in the associated contingency tables under, respectively,

transience and trap-happiness. The directional components by occasion zi are

obtained by using the square-root of the chi-square statistics by occasion from
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Test 2.CT or Test 3.SR, and signing them, for all occasions, according to the

unbalance of interest : for example, using a positive sign if there are more

animals captured at i and seen again at i + 1 than expected. Recall that

the contingency tables per occasion for Tests 2.CT and 3.SR are 2 × 2, the

associated chi-square statistic has therefore one degree of freedom and the zis

follow a standard normal distribution. An overall directional component z may

be derived for both tests with z =
∑p

i=1 zi/
√
p following a standard normal

distribution, with p the number of directional components per occasion zi.

Table 2.10: Directional test 3.SR, expected direction of departure under tran-
sience, occasion i

Seen Again Never Seen Again

Newly released at i - +

Previously released + -

Table 2.11: Directional test 2.CT, expected direction of departure under trap-
happiness, occasion i

Seen subsequently at i+ 1 Seen later

Captured at i + -

Not captured at i - +

When there is heterogeneity in detection, it is known that Tests 2.CT and

3.SR tend to generate signi�cant results (Péron et al., 2010) but they do not

provide a speci�c diagnostic of this phenomenon. For instance, a combina-

tion of trap-dependence and transience may also yield signi�cant results for

these two tests. Péron et al. (2010) suggested removing the squared over-

all directional components z3SR and z2CT of Test 3.SR and Test 2.CT from

the overall omnibus chi-square statistic and using the remainder to test for
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heterogeneity in capture. Denoting by Tot the omnibus statistic and dofTot

the associated degrees of freedom, the test-statistic suggested by Péron et al.

(2010) is TotC = Tot − z23SR − z22CT , which follows a chi-square distribution

with (dofTot − 2) degrees of freedom.

2.3.2 The Leslie test for equal catchability

The Leslie test for equal catchability tests whether the sampling of marked

animals is random (Orians and Leslie, 1958). It is based on the frequency of

recaptures, within each group of animals with the same �rst release occasion

and last capture occasions. Using terminology from Carothers (1971), these

groups are named blocks and denoted by b; and an animal may only belong

to one block. As for the test of positive association, the information before

and after these occasions (�rst and last included) is not taken into account for

the test. The test requires that animals be potentially recaptured at least 3

times between their �rst and last capture occasion; it can therefore be used

for capture-recapture experiments with at least 5 sampling occasions. The

conception of the Leslie test rests on a di�erent way of modelling the data,

than the usual product-multinomial approach presented in Section 2.1.2. Ori-

ans and Leslie (1958) observed that there are two possible outcomes for each

capture occasion, �recaptured (1)� or �not seen (0)�; it follows that the capture

occasions constitute independent Bernoulli trials. Within each block b, the

probability of success (here recapture) at each capture occasion i is the pro-

portion of recaptures at i: pi,b =
∑Nb

k=1CHb(k, i)/Nb, with CHb(k, i) denoting

the ith element of the capture history of animal k belonging to block b and Nb

the number of animals in that block. Let f and l respectively denote the �rst

and last contribution times to the test of animals from a given block. (Here,

f and l will respectively be the occasion following the �rst capture and the

one preceding the last capture.) Consequently, the number of recaptures per
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individual k, within b, denoted by Sk,b follows a Poisson-Binomial distribution

with mean
∑l

i=f pi,b.

Orians and Leslie (1958) use the ratio of observed variance over expected

variance as their test-statistic per block:

Lb =

Nb∑
k=1

(
Sk,b − S̄b

)2∑l
i=f pi,b(1− pi,b)

, with S̄b =

∑Nb

k=1 Sk,b
Nb

(2.6)

The distribution of Lb was not formally proven in Orians and Leslie (1958).

However, Carothers (1971) established an equivalence between Leslie's test

and Cochran's Q, thus showing that a corrected version of Lb has a proven

asymptotic distribution. Cochran's Q is used to test whether matched sam-

ples of proportions di�er (Siegel and Castellan Jr., 1988, p. 170). Applied to

the Leslie-test framework, within block b, the animals constitute the �matched

samples� whilst the capture occasions (between �rst and last) constitute the

�subjects�, since the aim is to assess whether the capture probability di�ers

between animals. The animals are �matched� because they all present �re-

sponses� for each of the capture occasions (re-captured or not seen). The

test-statistic for Cochran's Q is then given below:

Q =
Nb(Nb − 1)

∑Nb

k=1(Sk,b − S̄b)2

Nb

∑l−1
i=f+1

∑Nb

k=1CHb(k, i)−
∑l−1

i=f+1

∑Nb

k=1 (CHb(k, i))
2

(2.7)

Recall that pi,b =
∑Nb

k=1CHb(k, i)/Nb, hence:

Lb =

Nb∑
k=1

(
Sk,b − S̄b

)2
∑l

i=f

[∑Nb
k=1 CHb(k,i)

Nb

(
1−

∑Nb
k=1 CHb(k,i)

Nb

)]
= Nb

Nb∑
k=1

(
Sk,b − S̄b

)2
∑l

i=f

[∑Nb

k=1CHb(k, i)−
∑Nb

k=1(CHb(k,i))
2

Nb

]
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From this, it follows that, for each block,

Q =
Nb − 1

Nb

Lb (2.8)

Since Q's asymptotic distribution was proven to be asymptotically χ2
Nb−1 (see

for example Siegel and Castellan Jr., 1988, p. 170), we use this corrected

version of the Leslie-test (or in other words Cochran's Q), keeping the original

sample size recommendation of Nb ≥ 20 per group (Orians and Leslie, 1958).

One drawback of the Leslie test is that it discards a lot of data; Carothers

(1971) builds on Cochran's Q as de�ned above in a capture-recapture context,

and extends it to make it more e�cient by using more data. This extension is

described in Section 2.3.3.

2.3.3 Carothers' extension

The extension of Carothers (1971) consists in making Leslie's test more e�-

cient by using the data from all blocks instead of having one test per block.

As for Leslie's test, the testable data will consist only of the segments of cap-

ture histories comprised between �rst and last occasion. The testable data is

shown for an example capture history matrix, in Table 2.12. Carothers (1971)

required that only occasions presenting a number of testable animals, Hi, of

at least 20 or above, be considered to ensure the validity of the asymptotic

distributions used. Note here the major di�erence from Leslie's test with re-

spect to the data discarded. Indeed, Leslie's test discarded all blocks with

less than 20 animals, whereas Carothers' extension only discards the capture

occasions presenting less than 20 animals with testable data. The informa-

tion from these discarded occasions is not taken into account in any of the

quantities calculated for the test, as shown in Table 2.12 (greyed out in the

table). Basically, those occasions are considered as non-existent. Similarly to

Leslie's test, the animals from the testable data (minus sparse occasions) are
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grouped into blocks. Only the grouping criterion di�ers slightly since animals

are grouped by their �rst and last times of contribution to the test data f

and l; this can di�er from the grouping by �rst and last occasions due to the

elimination of the sparse occasions. For instance, the last animal from block

1 has a di�erent �rst capture occasion (2) than the other animals in the block

(1), but it contributes to the test from occasion 3 to 4 as do all the other

animals from this same block.

Since the test-statistic used by Carothers (1971) is not a straightforward

product of the raw data, its construction steps are presented in detail in this

section. Carothers (1971) considers the testable data after discarding the oc-

casions as appropriate and makes use of yet another perspective on the CJS

data. Under the assumption of equal recapture probability for all marked

animals known to be alive, all the 1's occurring at a speci�c occasion i have

the same probability of occurring across individuals (these probabilities may

vary across the capture occasions). The total number of recaptures per oc-

casion SOi is �xed; thus the number of recaptures per occasion follows a

hypergeometric distribution (sampling without replacement). Let pi denote

the recapture probability at occasion i, or in other words, the probability that

element CH(k, i) (ith element of the capture history of animal k) is equal

to 1: pi = P [CH(k, i) = 1] = SOi/Hi. These quantities are calculated for

our example in Table 2.12. Based on the properties of the hypergeometric

distribution (see for example Lecoutre, 2006), we obtain: E[CH(k, i)] = pi

and Var[CH(k, i)] = pi(1 − pi). Since the sampling occasions are indepen-

dent, Cov[CH(k, i), CH(k, j)] = 0 for i 6= j. However, since the number of

recaptures per occasion is �xed, the sampling between individuals is not inde-

pendent and the covariance between 2 animals k1 and k2 for a given capture
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Table 2.12: Extracting the testable data and computing the quantities nec-
essary to Carothers' test, from a raw individual capture history matrix: an
example. i denotes the capture occasion, the testable data is denoted in bold
and blue and the quantities calculated from the data are denoted in green.

Block b Capture occasion i Sk,b Nb S̄b εb σb

1 2 3 4 5 6 7

0 1 0 0 0 0 0 - - - - -

1

1 1 1 1 1 0 0 2

7 1.57 1.35 0.660

1 1 1 1 1 0 0 2
1 0 0 1 1 0 0 1
1 1 0 0 1 0 0 0
1 1 1 1 1 0 0 2
1 0 1 1 1 0 0 2
0 1 1 1 1 0 0 2

2

0 0 1 1 1 1 0 2

8 1.63 1.35 0.660

0 0 1 1 1 1 0 2
0 0 1 1 1 1 0 2
0 0 1 0 1 1 0 1
0 0 1 1 1 1 0 2
0 0 1 0 1 1 0 1
0 0 1 1 1 1 0 2
0 0 1 0 1 1 0 1

3

0 1 1 1 0 0 0 1

4 1 - -
0 1 1 1 0 0 0 1
0 1 1 1 0 0 0 1
0 1 1 1 0 0 0 1

4

1 0 1 0 1 1 0 2

10 1.7 2.06 0.801

1 0 1 1 0 1 0 2
1 1 1 0 1 1 0 2
1 1 0 1 0 1 0 1
1 1 1 1 1 1 0 3
1 1 0 0 1 1 0 1
1 1 0 0 1 1 0 1
1 1 0 1 0 1 0 1
1 1 1 0 1 1 0 2
1 1 1 1 0 1 0 2

5
0 0 0 1 0 1 0 0

3 0.33 - -0 0 0 1 0 1 0 0
0 0 0 1 1 1 0 1

Hi 0 16 21 25 21 0 0
SOi - - 15 16 15 - -
pi - - 0.71 0.64 0.71 - -
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occasion i is:

Cov[CH(k1, i), CH(k2, i)] = E[CH(k1, i), CH(k2, i)]− E[CH(k1, i)]E[CH(k2, i)]

=
SOi

Hi

SOi − 1

Hi − 1
− SO2

i

H2
i

=
SOi(SOi − 1)Hi − SO2

i (Hi − 1)

H2
i (Hi − 1)

=
SOi

Hi

[
−Hi − SOi

Hi

]
1

Hi − 1

Hence,

Cov[CH(k1, i), CH(k2, i)] = −pi(1− pi)
Hi − 1

(2.9)

Recall from Section 2.3.2 that Sk,b follows a Poisson-binomial distribution.

Cochran (1950) and Carothers (1971) show that the asymptotic joint distri-

bution of the Sk,b is a multivariate normal. Within a block, all the Sk,b follow

a joint multivariate distribution with common expectation and variance; since

Sk,b =
∑l

i=f CHb(k, i), it follows that:

E[Sk,b] =
l∑

i=f

pi (2.10)

and

Var[Sk,b] =
l∑

i=f

pi(1− pi) . (2.11)

Also, for animals k1 and k2 (who may belong to di�erent blocks ba and bb),

the covariance is:

Cov[Sk1,ba , Sk2,bb ] =

min(lba ,lbb )∑
i=max(fba ,fbb )

−pi(1− pi)
Hi − 1

. (2.12)

In order to simplify notations, Carothers (1971) denoted E[Sk,b] by εb, Var[Sk,b]

by σ2
b ; and Cov[Sk1,ba , Sk2,bb ] by ρba,bbσbaσbb , introducing the correlation between
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blocks ρba,bb . Using Walsh's theorem, Carothers (1971) deduced that

Ob =
1

σ2
b (1− ρb,b)

Nb∑
k=1

(Sk,b − S̄b)2 ∼ χ2
(Nb−1) (2.13)

with ρb,b denoting the correlation within block b; the distributions of Ob being

independent between blocks as well as from the mean number of recaptures

per individual in block b, S̄b. He showed that the S̄b have an asymptotic mul-

tivariate normal distribution and that B− 1 of them are linearly independent

hence,

OR = (S̄b − εb)TΣ−1(S̄b − εb) ∼ χ2
(B−1) (2.14)

with B denoting the number of blocks and Σ the variance-covariance matrix

of the S̄b for b = 1 to B − 1. The o�-diagonal elements of Σ are

Cov[S̄b, S̄c] = ρb,cσbσc for b 6= c , (2.15)

and the diagonal elements

Var[S̄b] =
1

N2
b

[
Nb∑
k=1

V ar[Sk,b] +

Nb∑
k=1

∑
k 6=l

Cov(Sk,b, Sl,b)

]
=
σ2
b

Nb

+
Nb − 1

Nb

ρb,bσ
2
b .

(2.16)

Finally, the test-statistic used by Carothers (1971) for equal catchability is

OT =
∑B

b=1Ob + OR, which follows a χ2 distribution with
∑B

b=1(Nb − 1) +

B − 1 =
(∑B

b=1Nb

)
− 1 degrees of freedom. Again, for reasons of asymptotic

validity, Carothers (1971) recommends using only the blocks with S̄b ≥ 1.5 for

the computation of the test-statistic; for our example from Table 2.12, blocks

3 and 5 are ignored. The quantities εb and σb are computed using Equations

2.10 and 2.11, and presented in Table 2.12 for blocks 1, 2 and 4. For example,
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for block 1,

ε1 = p3 + p4 = 0.71 + 0.64 = 1.35

σ1 =
√
p3(1− p3) + p4(1− p4) =

√
0.71(1− 0.71) + 0.64(1− 0.64) = 0.660

The correlation matrix between (o�-diagonal terms) and within blocks (diag-

onal terms) is computed for the example from Table 2.12, based on Equations

2.11 and 2.12:

P =



1 2 4

1 −0.044 −0.023 −0.036

2 −0.023 −0.044 −0.036

4 −0.036 −0.036 −0.045

 .
For example, the correlation between blocks 1 and 2 is computed as

ρ1,2 =

−p4(1−p4)
H4−1

σ1σ2

=

−0.64(1−0.64)
25−1

0.660× 0.660
= −0.023 .

And the correlation within block 1 from

ρ1,1 =

−p3(1−p3)
H3−1 + −p4(1−p4)

H4−1

σ1σ1
= −0.044 .

In the same way, applying Equation 2.13, O1 = 8.17, O2 = 4.12 and O4 = 6.12.

To preserve linear independence, a block needs to be set aside. We follow the

example from Carothers (1971) and set aside the smallest one: block 1. From

Equation 2.16, Var(S̄2) = 0.038, Var(S̄4) = 0.038 and from Equation 2.15,
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Cov(S̄2, S̄4)=-0.019 resulting in: Σ−1 =

35.29 17.56

17.56 34.91


Finally, from Equation 2.14, OR = 3.75, and we have all the elements

needed to compute the test statistic: OT = 8.17 + 4.12 + 6.12 + 3.75 = 22.16,

which produces a p-value of 0.57 for a χ2 with 24 degrees of freedom (N1 +

N2 +N4 − 1). There is no signi�cant evidence for heterogeneity in capture in

our example dataset.

2.4 Simulation study

We used simulation to assess and compare the performance of the tests de-

scribed in Sections 2.2 and 2.3.

2.4.1 Simulation scenarios

A subset of the di�erent scenarios simulated to investigate the methods consid-

ered are shown in Table 2.13. The tests' performances were evaluated in good

conditions for survival (φ = 0.9). We considered control datasets (scenarios

denoted by C1 and C2), generated by a CJS model with constant capture

and survival probabilities, in order to check the Type I error rate obtained.

Then, we assessed whether, in good conditions, the tests were powerful to

detect heterogeneity in capture. Our basic heterogeneity scenarios had two

groups of animals with contrasting capture probabilities of 0.35 and 0.82 and

a proportion of 0.3 for either one of the groups; p1, p2, φ1 and φ2 respectively

denote the capture and survival probabilities in groups 1 and 2, π1 denotes

the proportion of individuals in group 1. Based on these discrete hetero-

geneous capture scenarios, denoted by HC1 and HC2, we also considered a

slight temporal dependence, by adding a uniform term U[-0.20,0.17] to the

original capture probabilities at each time-point; we denote these scenarios by

HC1t and HC2t. The discrete scenarios aimed to represent situations where
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animals had intrinsically di�erent behaviours in terms of capture (e.g. domi-

nants and subordinates), thus movement between groups was not allowed. We

also considered di�erent cases of continuous heterogeneity in capture, with the

capture probability, p, following a beta distribution:

• HCc1, symmetric around the mean, generated by a β(5, 5): mean 0.5

and standard deviation (sd) 0.15.

• HCc2, positive skew (most animals with low capture probabilities), gen-

erated by a β(4, 12): mean(sd) = 0.25(0.11).

• HCc3, negative skew (most animals with high capture probability), gen-

erated by a β(12, 4): mean(sd) = 0.75(0.11).

• HCc1F, symmetric around the mean, generated by a β(2, 2):

mean(sd) = 0.50(0.22).

• HCc2F, positive skew (most animals with low capture probabilities),

generated by a β(2.4, 4.3): mean(sd) = 0.36(0.17).

• HCc3F, negative skew (most animals with high capture probability),

generated by a β(4.3, 2.4): mean(sd) = 0.64(0.17).

The distributions of p for the capture heterogeneity scenarios considered are

illustrated in Figure 2.3.

Finally, we wish our test to be speci�cally sensitive to heterogeneity in

capture (represented by the scenarios described previously). Therefore, to

assess the tests' speci�city to heterogeneity in capture, other situations causing

a violation of the CJS model assumptions were considered: short-term trap-

dependence (respectively denoted by TH and TS for trap-happiness and trap-

shyness), transience (denoted by TR) and heterogeneity in survival (denoted

by HS), as well a combination of trap-dependence and transience (denoted by
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TSTR for trap-shyness and THTR for trap-happiness). We hope the test of

positive association will be insensitive to these departures.

The scenarios of transience and short-term trap-dependence considered are

described in Table 2.13: φa1 denotes survival of newly marked animals, φa2 the

survival of previously marked animals; pTA and pNTA respectively denote the

probability of capture of a trap-aware and non-trap-aware animal. Recall that

an animal is trap-aware at a given occasion i if it has been captured at i− 1.

For each scenario, 250 datasets were simulated for a capture-recapture ex-

periment with 10 capture occasions, under two di�erent sample size conditions:

N = 2000 and N = 500.

2.4.2 Results

The simulation results presented are the percentage of signi�cant test results

(out of the number of cases where the test was applicable), using a 5% level.

Test of positive association

The results of the tests per occasion are presented for both the conservative

version and the version based on Brown and Benedetti (1977)'s estimate of

the variance, using two informative occasions before and after the occasion

tested for, in Tables 2.14 to 2.17. We also explored the e�ect of using only

one informative occasion before and after the occasion tested for, and those

results are displayed in Tables 2.18 and 2.19. The results of the global test per

dataset, are shown in Table 2.20 for all the test versions mentioned above.

Table 2.14 shows that, for N = 2000, the conservative test per occasion

using two informative occasions presents a very small Type I error rate (lower

than 5% as expected, but also close to 0). This test has very high power

at all occasions for situations with discrete heterogeneity in capture (around

100% of signi�cant results per occasion). It is also powerful for scenarios
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Table 2.13: Parameter values for the simulation scenarios considered. p1, p2, φ1

and φ2, respectively denote the capture and survival probabilities in groups 1
and 2, π1 denotes the proportion of individuals in group 1. φa1 denotes survival
of newly marked animals, φa2 the survival of previously marked animals. pTA
and pNTA denote the probability of capture of a trap-aware and non-trap-aware
animal

Scenario p1 p2 φ1 φ2 π1 φa1 φa2 pTA pNTA

Control:
C1 0.35 0.35 0.9 0.9 - - - - -
C2 0.82 0.82 0.9 0.9 - - - - -

Heterogeneous
capture (2 groups):
HC1 0.35 0.82 0.9 0.9 0.3 - - - -
HC2 0.35 0.82 0.9 0.9 0.7 - - - -

Heterogeneous
survival (2 groups):
HS 0.9 0.9 0.45 0.9 0.3 - - - -

Trap-shyness:
TS - - 0.9 0.9 - - - 0.62 0.82

Trap-happiness:
TH - - 0.9 0.9 - - - 0.55 0.35

Transience:
TR 0.82 0.82 - - - 0.4 0.9 - -

Trap-Shyness & Transience
TSTR - - - - - 0.4 0.9 0.62 0.82

Trap-Happiness & Transience
THTR - - - - - 0.4 0.9 0.55 0.35
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of continuous heterogeneity, for scenarios HCc1F, HCc2F and HCc3F (i.e.

when heterogeneity is strong) with around 70 to 100% of signi�cant results

(apart from occasion 3, for HCc2F: 47.20%). It does not perform as well

for weaker scenarios of continuous heterogeneity (12 to 76.4% of signi�cant

results for scenarios HCc1, HCc2 and HCc3), although it does retain good

power at several occasions for HCc1 and HCc3. For a smaller sample size

(see Table 2.15), this test presents adequate power for scenarios with discrete

heterogeneity (approximately 50 to 90% of signi�cant results per occasion), but

it does not perform well for continuous scenarios (mostly 10-20 % of signi�cant

results per occasion, except for HCc1F: around 60% and HCc2: consistently

under 5%).

The test is only slightly sensitive to short-term trap-happiness for a couple

of occasions: for example, there are 8% of signi�cant results at occasion 7.

Considering the conservative nature of this test, it is much higher than the

type I error but we note that it is close to the 5% level that would be used in

practice. Importantly, the test is not a�ected by transience or heterogeneity

in survival, nor is it a�ected by trap-shyness. It is slightly a�ected by a

combination of transience and trap-happiness. This is expected considering

that trap-happiness on its own a�ects the test.

To sum up, the conservative test is powerful at detecting situations of

strong heterogeneity in capture and shows promising results to speci�cally

detect this phenomenon.

Tables 2.16 and 2.17 show that the version of this test based on the Brown

& Benedetti variance estimate presents a Type I error close to the 5% level for

N = 2000. It is slightly higher for N = 500 (around 6-7% for all occasions), this

could be due to the distribution being slightly less well approximated than for

the larger sample size of N = 2000. For N = 2000, the test based on the Brown

& Benedetti variance estimate is very powerful at detecting heterogeneity in

capture for the discrete cases (around 100% for all occasions) as well as most
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Table 2.14: Test of positive association, conservative version, using two infor-
mative occasions, per occasion, N = 2000 animals, percentage of signi�cant
results (number of applicable tests), high percentage of signi�cant results in
bold (> 50%)

Capture occasion 3 4 5 6 7

C1 0.40 (250) 0.00 (250) 0.00 (250) 0.00 (250) 0.40 (250)

C2 0.80 (250) 0.00 (250) 0.00 (250) 0.00 (250) 0.40 (250)

HC1 86.40 (250) 98.80 (250) 100.00 (250) 100.00 (250) 98.40 (250)

HC2 96.00 (250) 99.60 (250) 100.00 (250) 100.00 (250) 100.00 (250)

HC1t 92.80 (250) 100.00 (250) 100.00 (250) 100.00 (250) 100.00 (250)

HC2t 96.40 (250) 100.00 (250) 100.00 (250) 100.00 (250) 100.00 (250)

HCc1 29.60 (250) 54.40 (250) 76.40 (250) 73.20 (250) 62.80 (250)

HCc2 11.60 (250) 11.20 (250) 17.20 (250) 14.40 (250) 12.00 (250)

HCc3 14.80 (250) 33.60 (250) 53.20 (250) 57.20 (250) 45.60 (250)

HCc1F 89.60 (250) 99.60 (250) 100.00 (250) 100.00 (250) 100.00 (250)

HCc2F 47.20 (250) 75.60 (250) 90.40 (250) 85.60 (250) 77.20 (250)

HCc3F 70.00 (250) 88.00 (250) 98.40 (250) 98.80 (250) 98.00 (250)

HS 1.20 (250) 0.40 (250) 0.40 (250) 0.40 (250) 0.40 (250)

TS 0.00 (250) 0.00 (250) 0.00 (250) 0.00 (250) 0.00 (250)

TH 3.20 (250) 1.60 (250) 4.00 (250) 5.20 (250) 8.00 (250)

TR 0.80 (250) 0.80 (250) 0.40 (250) 0.00 (250) 0.40 (250)

TSTR 0.00 (250) 0.00 (250) 0.00 (250) 0.00 (250) 0.00 (250)

THTR 1.21 (248) 0.80 (250) 0.40 (250) 5.60 (250) 4.40 (250)
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Table 2.15: Test of positive association, conservative version, using two in-
formative occasions, per occasion, N = 500 animals, percentage of signi�cant
results (number of applicable tests), high percentage of signi�cant results in
bold (> 50%)

Capture occasion 3 4 5 6 7

C1 0.00 (57) 0.40 (250) 0.40 (250) 0.00 (250) 1.21 (248)

C2 1.20 (167) 1.20 (250) 0.80 (250) 0.40 (250) 0.80 (250)

HC1 36.03 (136) 47.60 (250) 65.60 (250) 58.80 (250) 44.00 (250)

HC2 37.21 (86) 62.00 (250) 82.00 (250) 90.40 (250) 88.80 (250)

HC1t 64.74 (156) 86.40 (250) 79.20 (250) 83.60 (250) 71.60 (250)

HC2t 48.72 (39) 60.32 (247) 80.40 (250) 79.60 (250) 56.05 (248)

HCc1 6.86 (102) 8.40 (250) 12.80 (250) 12.40 (250) 12.80 (250)

HCc2 0.00 (7) 4.61 (217) 3.21 (249) 2.40 (250) 3.93 (178)

HCc3 9.38 (160) 6.40 (250) 10.00 (250) 11.60 (250) 9.20 (250)

HCc1F 31.94 (72) 43.60 (250) 64.00 (250) 66.00 (250) 60.40 (250)

HCc2F 12.50 (24) 13.31 (248) 20.00 (250) 19.60 (250) 21.20 (250)

HCc3F 17.83 (129) 25.60 (250) 38.00 (250) 34.00 (250) 33.20 (250)

HS 0.00 (25) 2.82 (248) 1.20 (250) 0.40 (250) 1.20 (250)

TS 0.62 (161) 0.00 (250) 0.00 (250) 0.00 (250) 0.00 (250)

TH 1.52 (66) 0.40 (250) 0.80 (250) 3.20 (250) 2.40 (250)

TR NA (0) 0.00 (71) 0.85 (236) 0.40 (249) 1.20 (250)

TSTR NA (0) 0.00 (72) 0.00 (231) 0.00 (248) 0.00 (242)

THTR NA (0) 0.00 (15) 0.88 (114) 1.28 (156) 2.99 (67)
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of the continuous scenarios (around 100 % for strong heterogeneity scenarios

HCc1F, HCc2F, HCc3F and generally more than 50% for HCc1, HCc2 and

HCc3). It retains very good power for all the scenarios with strong heterogene-

ity for N = 500 (more than 50% for all scenarios at all occasions). Its power is

lower for the continuous scenarios with weaker heterogeneity (approximately

20 to 50% for HCc1, HCc2 and HCc3).

This version of the test is also sensitive to trap-happiness (20 to 60% of

signi�cant results per occasion for N = 2000 and around 20% for N = 500),

whilst it is not a�ected by trap-shyness. The percentage of signi�cant results

for both transience and heterogeneity in survival is close to the Type I error

rate. Finally the test does not react to a combination of trap-shyness and tran-

sience but is moderately sensitive to a transience and trap-happiness combined

(around 15 to 20% of signi�cant results for both N = 2000 and N = 500).

In conclusion, the Brown & Benedetti version of the test is more powerful

than the conservative test for detecting situations with weaker heterogeneity in

capture. However, it also reacts strongly to trap-happiness, making it di�cult

to distinguish between both phenomena.

We note that the use of two informative occasions for past and future

encounters results in a non-negligible loss of data for the tests of positive asso-

ciation: see the low number of applicable tests in the presence of transience in

Table 2.15 for instance; and Figure 2.4, which presents boxplots of the number

of animals actually used for the tests for simulated datasets under HC1, for

both N = 2000 and N = 500. However, this restriction seems optimal for de-

tecting heterogeneity in capture speci�cally, particularly with the conservative

test. Indeed, if only one informative occasion is used, Tables 2.18 and 2.19

shows that the tests are much more sensitive to short-term trap-happiness (ap-

proximately 30-40% signi�cant results per occasion for the conservative test,

for N = 2000 versus a maximum of 8% on one occasion for the test with two

informative occasions; 60-80% for Brown & Benedetti with one informative
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Table 2.16: Test of positive association based on Brown & Benedetti's variance
estimate, using two informative occasions, per occasion, N = 2000 animals,
percentage of signi�cant results (number of applicable tests), high percentage
of signi�cant results in bold (> 50%)

Capture occasion 3 4 5 6 7

C1 4.40 (250) 3.60 (250) 6.80 (250) 6.40 (250) 4.80 (250)

C2 4.00 (250) 6.00 (250) 2.80 (250) 4.40 (250) 3.20 (250)

HC1 98.00 (250) 100.00 (250) 100.00 (250) 100.00 (250) 100.00 (250)

HC2 100.00 (250) 100.00 (250) 100.00 (250) 100.00 (250) 100.00 (250)

HC1t 98.80 (250) 100.00 (250) 100.00 (250) 100.00 (250) 100.00 (250)

HC2t 100.00 (250) 100.00 (250) 100.00 (250) 100.00 (250) 100.00 (250)

HCc1 76.40 (250) 90.80 (250) 98.40 (250) 98.80 (250) 94.40 (250)

HCc2 37.20 (250) 56.00 (250) 59.60 (250) 58.80 (250) 44.80 (250)

HCc3 51.20 (250) 76.40 (250) 86.80 (250) 89.20 (250) 82.80 (250)

HCc1F 99.20 (250) 100.00 (250) 100.00 (250) 100.00 (250) 100.00 (250)

HCc2F 82.80 (250) 98.40 (250) 100.00 (250) 98.80 (250) 97.60 (250)

HCc3F 94.00 (250) 98.80 (250) 100.00 (250) 100.00 (250) 100.00 (250)

HS 6.40 (250) 1.60 (250) 5.20 (250) 6.80 (250) 4.80 (250)

TS 1.20 (250) 0.40 (250) 0.00 (250) 0.00 (250) 0.00 (250)

TH 19.20 (250) 30.40 (250) 34.00 (250) 45.20 (250) 44.00 (250)

TR 7.60 (250) 5.60 (250) 2.40 (250) 5.20 (250) 4.80 (250)

TSTR 2.00 (250) 2.80 (250) 0.40 (250) 0.80 (250) 0.80 (250)

THTR 11.69 (248) 18.00 (250) 24.00 (250) 23.20 (250) 28.00 (250)
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Table 2.17: Test of positive association based on Brown & Benedetti's variance
estimate, using two informative occasions, per occasion, N = 500 animals,
percentage of signi�cant results (number of applicable tests), high percentage
of signi�cant results in bold (> 50%)

Scenario 3 4 5 6 7

C1 5.26 (57) 4.40 (250) 6.80 (250) 6.00 (250) 6.05 (248)

C2 6.59 (167) 6.80 (250) 5.60 (250) 6.40 (250) 7.60 (250)

HC1 60.29 (136) 84.00 (250) 92.00 (250) 90.00 (250) 79.60 (250)

HC2 81.40 (86) 95.20 (250) 98.00 (250) 99.60 (250) 97.60 (250)

HC1t 84.62 (156) 97.60 (250) 92.80 (250) 94.80 (250) 90.40 (250)

HC2t 84.62 (39) 93.52 (247) 99.20 (250) 97.60 (250) 89.92 (248)

HCc1 28.43 (102) 49.60 (250) 54.40 (250) 53.60 (250) 44.80 (250)

HCc2 0.00 (7) 22.58 (217) 24.90 (249) 20.40 (250) 17.98 (178)

HCc3 23.75 (160) 30.80 (250) 38.00 (250) 39.20 (250) 32.40 (250)

HCc1F 75.00 (72) 90.00 (250) 93.20 (250) 94.40 (250) 88.80 (250)

HCc2F 62.50 (24) 54.44 (248) 66.40 (250) 66.40 (250) 58.80 (250)

HCc3F 50.39 (129) 70.80 (250) 79.60 (250) 78.40 (250) 70.80 (250)

HS 0.00 (25) 4.03 (248) 2.80 (250) 3.60 (250) 3.20 (250)

TS 2.48 (161) 0.80 (250) 3.20 (250) 0.80 (250) 0.80 (250)

TH 13.64 (66) 13.60 (250) 16.80 (250) 18.80 (250) 19.60 (250)

TR NA (0) 9.86 (71) 5.51 (236) 6.02 (249) 4.00 (250)

TSTR NA (0) 4.17 (72) 1.30 (231) 1.21 (248) 2.48 (242)

THTR NA (0) 0.00 (15) 14.91 (114) 12.18 (156) 17.91 (67)
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occasion versus 20-60% for two informative occasions). There is no bene�cial

e�ect of considering one informative occasion, for the tests per occasion, in

regards to identifying heterogeneity in capture speci�cally, thus we did not

deem it necessary to present the tables relevant to N = 500.

Table 2.20 presents the results obtained with the global positive association

test, for all the versions of the test described above, for both N = 2000 and N =

500. As expected the global test is more powerful than the test per occasion

and we �nd the same trends as for the tests per occasion. For the test with

two informative occasions, high power is observed for both the conservative

test and the Brown & Benedetti version to detect heterogeneity in capture,

except for the continuous scenarios of heterogeneity when N = 500, for the

conservative test. The tests are not sensitive to heterogeneity in survival nor

transience or trap-shyness but are a�ected by trap-happiness (moderately for

conservative 18%, strongly for Brown & Benedetti with 65.2% for N = 2000).

The results from the global test display another argument in favour of using

two informative occasions for the positive association test. Indeed when using

one informative occasion, the Type I error rate for Brown & Benedetti is

higher than expected, even for N = 2000 (11.60% for C2), whereas it is around

5% for C1 and C2 when using two informative occasions, indicating that the

distributional properties of the test-statistic are better in this case.

(a) HC1, N = 2000, number of animals
tested

(b) HC1, N = 500, number of animals
tested

Figure 2.4: Test of positive association by occasion, using 2 informative occa-
sions: boxplots of the number of animals used per test, scenario HC1
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Table 2.18: Percentage of signi�cant results (number of applicable tests), test
of positive association per occasion, using one informative occasion, conser-
vative version, N = 2000, high percentage of signi�cant results in bold (>
50%)

Capture occasion 2 3 4 5 6 7 8

C1 1.60 (250) 0.00 (250) 0.00 (250) 0.80 (250) 0.00 (250) 0.40 (250) 0.40 (250)

C2 0.80 (250) 0.40 (250) 0.40 (250) 0.40 (250) 0.00 (250) 0.40 (250) 0.40 (250)

HC1 82.00 (250) 98.80 (250) 100.00 (250) 100.00 (250) 100.00 (250) 100.00 (250) 96.00 (250)

HC2 76.00 (250) 98.80 (250) 100.00 (250) 100.00 (250) 100.00 (250) 100.00 (250) 100.00 (250)

HC1t 94.80 (250) 98.80 (250) 100.00 (250) 100.00 (250) 100.00 (250) 100.00 (250) 99.60 (250)

HC2t 80.80 (250) 100.00 (250) 100.00 (250) 100.00 (250) 100.00 (250) 100.00 (250) 100.00 (250)

HCc1 18.40 (250) 41.20 (250) 59.60 (250) 69.20 (250) 74.40 (250) 72.40 (250) 42.80 (250)

HCc2 7.60 (250) 16.00 (250) 14.40 (250) 20.00 (250) 18.40 (250) 14.40 (250) 8.40 (250)

HCc3 8.80 (250) 26.80 (250) 43.20 (250) 50.40 (250) 58.00 (250) 52.80 (250) 37.20 (250)

HCc1F 73.20 (250) 97.20 (250) 100.00 (250) 100.00 (250) 100.00 (250) 100.00 (250) 97.60 (250)

HCc2F 32.80 (250) 66.40 (250) 85.20 (250) 88.40 (250) 88.80 (250) 86.80 (250) 60.80 (250)

HCc3F 47.60 (250) 81.20 (250) 92.80 (250) 98.40 (250) 98.40 (250) 98.40 (250) 89.20 (250)

HS 0.40 (250) 0.00 (250) 0.40 (250) 0.00 (250) 0.00 (250) 0.80 (250) 0.80 (250)

TS 0.00 (250) 0.00 (250) 0.00 (250) 0.00 (250) 0.00 (250) 0.00 (250) 0.00 (250)

TH 5.60 (250) 16.00 (250) 16.40 (250) 27.60 (250) 32.80 (250) 46.80 (250) 42.40 (250)

TR 0.40 (250) 0.00 (250) 0.00 (250) 0.40 (250) 0.40 (250) 0.40 (250) 0.00 (250)

TSTR 0.00 (250) 0.00 (250) 0.00 (250) 0.00 (250) 0.00 (250) 0.00 (250) 0.00 (250)

THTR 6.40 (250) 3.60 (250) 5.20 (250) 9.20 (250) 12.00 (250) 16.80 (250) 18.80 (250)

Table 2.19: Percentage of signi�cant results (number of applicable tests), test
of positive association per occasion using Brown and Benedetti's asymptotic
variance and 1 informative occasion, N = 2000, high percentage of signi�cant
results in bold (> 50%)

Capture occasion 2 3 4 5 6 7 8

C1 5.20 (250) 4.40 (250) 4.80 (250) 5.60 (250) 4.00 (250) 3.60 (250) 4.40 (250)

C2 1.60 (250) 4.00 (250) 4.00 (250) 4.00 (250) 6.40 (250) 2.80 (250) 4.00 (250)

HC1 95.60 (250) 100.00 (250) 100.00 (250) 100.00 (250) 100.00 (250) 100.00 (250) 99.60 (250)

HC2 98.80 (250) 99.60 (250) 100.00 (250) 100.00 (250) 100.00 (250) 100.00 (250) 100.00 (250)

HC1t 98.80 (250) 100.00 (250) 100.00 (250) 100.00 (250) 100.00 (250) 100.00 (250) 99.60 (250)

HC2t 97.60 (250) 100.00 (250) 100.00 (250) 100.00 (250) 100.00 (250) 100.00 (250) 100.00 (250)

HCc1 51.20 (250) 83.20 (250) 94.00 (250) 96.40 (250) 97.60 (250) 96.80 (250) 80.80 (250)

HCc2 31.20 (250) 50.00 (250) 54.80 (250) 60.00 (250) 60.80 (250) 53.60 (250) 30.80 (250)

HCc3 34.40 (250) 64.00 (250) 80.40 (250) 85.20 (250) 86.00 (250) 80.80 (250) 72.40 (250)

HCc1F 93.20 (250) 99.60 (250) 100.00 (250) 100.00 (250) 100.00 (250) 100.00 (250) 100.00 (250)

HCc2F 68.40 (250) 92.40 (250) 98.40 (250) 99.60 (250) 99.60 (250) 98.80 (250) 88.40 (250)

HCc3F 82.00 (250) 97.60 (250) 100.00 (250) 100.00 (250) 100.00 (250) 100.00 (250) 98.80 (250)

HS 2.40 (250) 5.60 (250) 1.20 (250) 5.60 (250) 4.00 (250) 4.40 (250) 3.20 (250)

TS 0.00 (250) 0.40 (250) 0.00 (250) 0.00 (250) 0.00 (250) 0.00 (250) 0.00 (250)

TH 34.80 (250) 56.80 (250) 65.20 (250) 78.00 (250) 81.60 (250) 85.20 (250) 80.80 (250)

TR 6.80 (250) 3.60 (250) 4.80 (250) 3.60 (250) 6.00 (250) 2.40 (250) 3.60 (250)

TSTR 0.00 (250) 0.00 (250) 0.00 (250) 0.00 (250) 0.00 (250) 0.00 (250) 0.00 (250)

THTR 24.40 (250) 38.00 (250) 41.20 (250) 41.60 (250) 45.60 (250) 52.00 (250) 55.20 (250)
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Diagnostic goodness-of-�t components

The results obtained using the existing diagnostic GOF components (3.SR,

2.CT, 3.Sm, 2.CL) and total chi-square (denoted Total), as well as the cor-

rected tests described in Section 2.3.1 (denoted by 3.SRC, 2.CTC and TotalC)

are presented in Tables 2.21 and 2.22. The Type I error rate is close to the

chosen 5% level for the control situations considered, both for N = 2000 and

N = 500. Tests 3.SR and 2.CT are very powerful to detect the phenomena

they were designed for. Indeed, the scenarios of short-term trap-dependence

and transience display around 100% of signi�cant results for Tests 2.CT and

3.SR respectively for both N = 2000 and N = 500. Note that Test 3.SR also

reacts very strongly to heterogeneity in survival (100 % and 86.8 % of signif-

icant results for N = 2000 and N = 500, respectively). Furthermore, none of

the other diagnostic test-components are a�ected for these scenarios. On the

other hand, heterogeneity in capture seems to impact all of the GOF compo-

nents: for example, scenario HC1 displays more than 50 % signi�cant results

for all four of diagnostic tests, for N = 2000 (see Table 2.21). A combina-

tion of trap-dependence and transience strongly impacts both Tests 3.SR and

2.CT (100 % of signi�cant results for both TSTR and THTR, for N = 2000).

Also, amongst all the scenarios considered, Tests 3.Sm and 2.CL are impacted

only for heterogeneity in capture (e.g. respectively 67.20 % and 84% of signif-

icant results for HC1 for N = 2000). However they have only little power for

datasets with 500 animals (see Table 2.22), and Test 2.CL has low power for

scenario HC2, even with 2000 animals (only 18.8% of signi�cant results).

Finally, based on the simulation scenarios considered, the corrected ap-

proach suggested by Péron et al. (2010) does not result in clear-cut conclu-

sions regarding heterogeneity in capture: for N = 2000, the corrected total

chi-square is highly signi�cant for heterogeneity in capture as well as scenarios

including transience (TR and TSTR). The corrected test-components taken
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individually also react similarly for di�erent phenomena. Test 3.SRC presents

15.6% of signi�cant results for HC2, 27.20 % for HS; and Test 2.CTC 22% for

HC2 and 26.80% for TS.

Because the examined tests did not have a particularly high power for

detecting even discrete heterogeneity in capture, scenarios of continuous het-

erogeneity were not considered here.

To sum up, Tests 3.SR and 2.CT both tend to generate signi�cant results

when there is heterogeneity in capture, but they also tend to generate signif-

icant results for combinations of trap-dependence and transience. Tests 2.CL

and 3.Sm are speci�cally a�ected by heterogeneity in capture, but lack power

to detect this violation.

Leslie's test of equal catchability

We present the results of the modi�ed Leslie test described in Section 2.3.2

pooled by �rst release occasion (if there is at least a non-missing test result

for one of those groups, otherwise the pooled test is considered NA). The

results obtained with the modi�ed version of the Leslie test are shown in

Tables 2.23 and Table 2.24. The Type I error is slightly lower than 5% for

the control datasets. The test is very powerful for detecting heterogeneity in

capture for N = 2000, but it is also very sensitive to trap-happiness. Also,

it is impractical to use for smaller datasets, since the number of applicable

tests is most often null or low (see Table 2.24). This test is not sensitive to

trap-shyness, heterogeneity in survival or transience.

Carothers' test

The results of the Carothers test are presented in Tables 2.25 and 2.26. In

common with Leslie's test it is powerful at detecting heterogeneity in capture,

whether discrete or continuous, trap-happiness and the combination of trap-

happiness and transience (around 90 to 100% signi�cant results for all the
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Table 2.21: Existing GOF components and corrected tests, N = 2000 animals,
percentage of signi�cant results (number of applicable tests), high percentage
of signi�cant results in bold (> 50%)

Scenario 3.SR 2.CT 2.CL 3.Sm Total 3.SRC 2.CTC TotalC

C1 5.60 (250) 5.20 (250) 6.80 (250) 4.40 (250) 5.20 (250) 6.00 (250) 4.40 (250) 5.20 (250)

C2 6.80 (250) 4.40 (250) 2.00 (250) 4.40 (250) 4.00 (250) 6.00 (250) 4.00 (250) 3.20 (250)

HC1 58.80 (250) 100.00 (250) 84.00 (250) 67.20 (250) 100.00 (250) 10.40 (250) 21.20 (250) 95.20 (250)

HC2 76.80 (250) 100.00 (250) 18.80 (250) 68.00 (250) 100.00 (250) 15.60 (250) 22.00 (250) 71.20 (250)

HS 100.00 (250) 4.40 (250) 0.80 (250) 4.80 (250) 100.00 (250) 27.20 (250) 4.00 (250) 11.60 (250)

TS 6.00 (250) 100.00 (250) 5.20 (250) 4.40 (250) 100.00 (250) 6.00 (250) 26.80 (250) 12.00 (250)

TH 5.20 (250) 100.00 (250) 6.40 (250) 6.40 (250) 100.00 (250) 6.40 (250) 30.80 (250) 14.40 (250)

TR 100.00 (250) 2.40 (250) 0.00 (250) 4.00 (250) 100.00 (250) 93.60 (250) 3.20 (250) 56.00 (250)

TSTR 100.00 (250) 100.00 (250) 2.00 (250) 5.20 (250) 100.00 (250) 96.00 (250) 11.20 (250) 62.00 (250)

THTR 100.00 (250) 100.00 (250) 6.00 (250) 4.40 (250) 100.00 (250) 28.00 (250) 16.40 (250) 21.60 (250)

Table 2.22: Percentage of signi�cant results (number of applicable tests), ex-
isting GOF components and corrected tests, N = 500 animals, high percentage
of signi�cant results in bold (> 50%)

Scenario 3.SR 2.CT 2.CL 3.Sm Total 3.SRC 2.CTC TotalC

C1 4.00 (250) 5.60 (250) 0.00 (250) 5.20 (250) 4.00 (250) 5.20 (250) 6.00 (250) 3.60 (250)

C2 6.00 (250) 5.20 (250) 3.60 (250) 6.80 (250) 4.80 (250) 6.40 (250) 5.20 (250) 4.40 (250)

HC1 24.00 (250) 90.00 (250) 29.60 (250) 16.40 (250) 87.20 (250) 8.80 (250) 11.60 (250) 34.40 (250)

HC2 27.20 (250) 82.80 (250) 8.40 (250) 21.60 (250) 78.40 (250) 10.00 (250) 7.20 (250) 18.80 (250)

HS 86.80 (250) 1.20 (250) 0.00 (225) 5.20 (250) 51.20 (250) 10.80 (250) 0.40 (250) 2.40 (250)

TS 5.20 (250) 100.00 (250) 0.40 (250) 6.80 (250) 98.00 (250) 4.40 (250) 4.80 (250) 2.40 (250)

TH 4.00 (250) 99.60 (250) 5.60 (250) 6.00 (250) 93.60 (250) 3.60 (250) 10.00 (250) 8.00 (250)

TR 100.00 (250) 0.80 (250) 0.82 (244) 4.40 (250) 100.00 (250) 20.80 (250) 1.60 (250) 3.20 (250)

TSTR 100.00 (250) 87.20 (250) 0.40 (250) 6.80 (250) 100.00 (250) 24.40 (250) 3.20 (250) 7.60 (250)

THTR 100.00 (250) 84.00 (250) 4.40 (250) 4.80 (250) 100.00 (250) 3.60 (250) 4.80 (250) 4.40 (250)
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Table 2.23: Modi�ed Leslie's test, N = 2000 animals, percentage of signi�cant
results (number of applicable tests), high percentage of signi�cant results in
bold (> 50%)

1st release occasion 1 2 3 4 5 6

C1 3.21 (249) 2.40 (250) 4.00 (250) 2.40 (250) 2.00 (250) 1.60 (250)

C2 1.60 (250) 4.80 (250) 2.40 (250) 2.00 (250) 2.40 (250) 1.20 (250)

HC1 99.20 (250) 99.20 (250) 99.60 (250) 97.20 (250) 90.80 (250) 70.80 (250)

HC2 100.00 (250) 99.60 (250) 100.00 (250) 99.60 (250) 99.60 (250) 86.00 (250)

HC1t 99.60 (250) 100.00 (250) 98.00 (250) 97.60 (250) 95.20 (250) 74.40 (250)

HC2t 100.00 (250) 100.00 (250) 100.00 (250) 99.60 (250) 96.80 (250) 80.40 (250)

HCc1 85.60 (250) 82.80 (250) 74.40 (250) 60.80 (250) 42.40 (250) 22.80 (250)

HCc2 36.06 (208) 31.12 (241) 28.11 (249) 22.80 (250) 17.60 (250) 8.00 (250)

HCc3 70.80 (250) 63.60 (250) 58.00 (250) 47.20 (250) 27.60 (250) 18.00 (250)

HCc1F 98.80 (250) 99.20 (250) 99.20 (250) 97.60 (250) 91.20 (250) 58.80 (250)

HCc2F 87.45 (247) 88.00 (250) 82.00 (250) 70.00 (250) 48.40 (250) 23.60 (250)

HCc3F 96.80 (250) 98.00 (250) 96.80 (250) 88.00 (250) 75.60 (250) 44.80 (250)

HS 5.20 (250) 4.00 (250) 4.00 (250) 1.20 (250) 1.20 (250) 1.60 (250)

TS 0.00 (250) 0.00 (250) 0.00 (250) 0.00 (250) 0.00 (250) 0.00 (250)

TH 62.40 (250) 74.40 (250) 79.20 (250) 74.40 (250) 67.60 (250) 38.80 (250)

TR 2.02 (248) 2.80 (250) 2.80 (250) 3.60 (250) 2.00 (250) 2.80 (250)

TSTR 0.00 (227) 0.00 (240) 0.00 (249) 0.00 (250) 0.00 (250) 0.00 (250)

THTR 35.94 (64) 40.78 (103) 34.18 (158) 35.52 (183) 24.12 (228) 25.51 (247)

corresponding scenarios for N = 2000). It is not sensitive to trap-shyness nor

transience alone, or heterogeneity in survival. Unlike Leslie's test, it retains a

very high power for a smaller sample size (see Table 2.26). Finally, the Type I

error rate was around 5% or less depending on the control scenario considered,

for N = 2000, but it was 10.40% for N = 500 (scenario C1). Again, this might

be indicative of the asymptotic distributions involved in the test might not be

as well approximated for N = 500.

2.5 Applications

We applied the tests examined in this chapter to two real-life datasets: Great

cormorants and Sandwich terns. For demonstrative purposes, we present the

results of both the test of positive association per occasion and the global test.

However, since these tests are not independent, a choice should be made in
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Table 2.24: Percentage of signi�cant results (number of applicable tests), mod-
i�ed Leslie's test, N = 500 animals, high percentage of signi�cant results in
bold (> 50%)

1st release occasion 1 2 3 4 5 6

C1 0.00 (1) NA (0) NA (0) 0.00 (1) 0.00 (2) 0.00 (14)

C2 2.63 (76) 3.25 (123) 5.68 (176) 3.47 (202) 3.83 (235) 2.87 (244)

HC1 82.14 (28) 66.67 (42) 67.62 (105) 56.12 (139) 42.86 (189) 19.53 (215)

HC2 NA (0) NA (0) NA (0) 100.00 (1) 100.00 (1) 100.00 (2)

HC1t 92.22 (90) 79.53 (127) 81.77 (181) 69.01 (213) 57.85 (242) 35.12 (242)

HC2t NA (0) NA (0) NA (0) NA (0) 100.00 (3) 0.00 (2)

HCc1 NA (0) NA (0) 100.00 (1) NA (0) 0.00 (2) 0.00 (2)

HCc2 NA (0) NA (0) NA (0) NA (0) NA (0) NA (0)

HCc3 28.57 (49) 17.33 (75) 15.89 (151) 18.67 (166) 11.26 (222) 6.96 (230)

HCc1F 83.33 (6) 100.00 (4) 76.92 (13) 63.64 (33) 49.02 (51) 24.05 (79)

HCc2F NA (0) NA (0) 0.00 (1) 0.00 (1) 40.00 (5) 8.33 (12)

HCc3F 72.73 (11) 37.04 (27) 53.85 (65) 32.76 (116) 23.64 (165) 14.29 (203)

HS 0.00 (7) 20.00 (15) 0.00 (22) 0.00 (46) 1.59 (63) 2.50 (80)

TS 0.00 (15) 0.00 (31) 0.00 (39) 0.00 (82) 0.00 (107) 0.00 (120)

TH NA (0) NA (0) 0.00 (4) 46.15 (13) 28.57 (28) 16.67 (48)

TR NA (0) NA (0) 0.00 (1) 0.00 (1) 0.00 (6) 12.50 (8)

TSTR NA (0) NA (0) NA (0) NA (0) NA (0) 0.00 (5)

THTR NA (0) NA (0) NA (0) NA (0) NA (0) NA (0)

Table 2.25: Carothers' test, N = 2000 animals, percentage of signi�cant results
(number of applicable tests), high percentage of signi�cant results in bold (>
50%)

Scenario %(N)

C1 5.20 (250)

C2 1.20 (250)

HC1 100.00 (250)

HC2 100.00 (250)

HC1t 99.20 (250)

HC2t 100.00 (250)

HCc1 100.00 (250)

HCc2 87.60 (250)

HCc3 95.20 (250)

HCc1F 100.00 (250)

HCc2F 100.00 (250)

HCc3F 100.00 (250)

HS 3.31 (242)

TS 0.00 (250)

TH 100.00 (250)

TR 1.20 (250)

TSTR 0.40 (250)

THTR 99.20 (250)
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Table 2.26: Percentage of signi�cant results (number of applicable tests),
Carothers' test, N = 500 animals, high percentage of signi�cant results in
bold (> 50%)

Scenario % (N)

C1 10.40 (250)

C2 2.40 (250)

HC1 95.20 (250)

HC2 100.00 (250)

HC1t 96.40 (250)

HC2t 99.60 (250)

HCc1 82.40 (250)

HCc2 63.20 (250)

HCc3 46.80 (250)

HCc1 99.60 (250)

HCc2 94.40 (250)

HCc3 96.80 (250)

HS 4.00 (250)

TS 1.60 (250)

TH 85.60 (250)

TR 2.80 (250)

TSTR 4.40 (250)

THTR 58.40 (250)

practice and the global test run if only little temporal variation is expected or

if the data is too sparse to run the test per occasion. We chose to present only

the results for the conservative version of the positive association test, since

the Brown & Benedetti version essentially presents the same properties as the

Carothers test.

2.5.1 Great cormorants

The data on Great cormorants were collected by the National Environmen-

tal Research Institute at Aarhus University, Denmark. We use the data on

breeders only, from the period 1981-1993, collected from six di�erent colonies

(McCrea and Morgan, 2014, p. 3). Resighting e�ort is known to be highest at

the largest colony: Vörso (VO), where the resighting conditions were the best

(Hénaux et al., 2007). Therefore, we use the data pooled on all colonies as an

arti�cial example to check whether the tests detect heterogeneity in capture,
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in real-life conditions. We then focus on the cormorants �rst released and

only ever resighted in VO during the period of interest, in order to investigate

the presence of heterogeneity in capture within this colony, using the di�erent

approaches.

The results obtained using the di�erent approaches, with a 5% level, are

presented in Table 2.27 for all colonies pooled and for birds �rst captured

and only ever resighted in VO. For all colonies pooled, the test of positive

association yields a signi�cant result at all occasions, the global positive as-

sociation test result is also signi�cant. Both approaches agree and indicate

heterogeneity in capture. The diagnostic GOF tests indicate that the dataset

presents transience and trap-dependence. Also, the Test 3.Sm result is signif-

icant while the Test 2.CL result is at the limit of signi�cance. This suggests

possible heterogeneity in capture. Leslie's test is NA in most cases due to

sample size issues. Carothers' test result is signi�cant, suggesting that the

dataset presents trap-happiness or heterogeneity in capture.

For VO only, the test of positive association yields a signi�cant result at

occasion 7 and a result close to signi�cance at occasion 6. Since the test

is conservative, this suggests some heterogeneity in capture within VO. The

signi�cant result obtained for the global test also supports this conclusion. The

results of the GOF tests are similar to those for the pooled colonies, except

that the component 2.CL is no longer close to signi�cance. Again, Leslie's

test is NA in most cases and Carothers' test indicative of trap-happiness or

heterogeneity in capture.

While the detection of heterogeneity within the pooled data is probably

largely explained by the di�erence in detectability on the di�erent colonies

and by the fact that the birds tend to use the colonies unequally, the con-

servative test of positive association indicates that heterogeneity in capture is

also present within VO. Hence, models accounting for heterogeneity in cap-
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ture should be considered at the colony level. Such models have not been

previously considered for these data.

2.5.2 Sandwich terns

The data on Sandwich terns were collected by the National Environmental

Research Institute at Aarhus University together with the Copenhagen Bird

Ringing Centre at the Danish Zoological Museum. The study took place on

Hirsholm, a 15 ha inhabited island in northern Kattegat, Denmark (7 km NE

of Frederikshavn; 57◦29′N-10◦37′E). The study of Sandwich terns is based on

summarised yearly resighting data, over the period 2003-2012, of individuals

ringed with small metal-rings engraved with unique numbers. The reading of

the codes on this type of ring requires optimal conditions, i.e. proximity and

good light. The ring-readings were not made inside the breeding colony of the

Sandwich terns because the birds were nesting at a very high density inside a

large colony of black-headed gulls (Chroicocephalus ridibundus). Instead the

codes on the rings were read when the birds were roosting or preening in the

immediate proximity of the colony. The major disadvantage of carrying out

the resightings on these birds was that not all of these individuals were actively

engaged in a breeding attempt in the local colony. Thus some of the individuals

were non-breeding birds that visited the colony, e.g. as prospectors, others

were individuals that had stopped over before moving on to settle as breeders

in another colony and others were individuals that turned up as visitors after

having failed their breeding attempt in another colony. One of the goals of the

study was to estimate survival in order to explore whether survival increased

after the introduction of a control programme of large gulls, which predated

on breeding adult Sandwich terns, their eggs and their chicks. Due to the large

array of possible behaviours of the terns on which ring-readings were made,

heterogeneity in capture was considered extremely likely; it was important
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to reveal its presence so as to avoid drawing erroneous conclusions regarding

survival.

The results obtained using the di�erent approaches, with a 5% level, are

presented in Table 2.28 for the Sandwich tern dataset. The test of positive

association yields a signi�cant result at all occasions except for year 7, the

global positive association test result is also signi�cant. This is indicative of

heterogeneity in capture. The diagnostic GOF tests indicate that the dataset

presents transience and trap- dependence. Also, the Test 3.Sm result is signif-

icant while the Test 2.CL result is at the limit of signi�cance. This, again, is

indicative of heterogeneity in capture. Leslie's test is NA in most cases due to

sample size issues. Carothers' test result is signi�cant, suggesting the presence

of trap-happiness or heterogeneity in capture.

The results obtained con�rm the initial expectation of heterogeneous re-

capture within the Sandwich terns. In practice, di�erent selection criteria were

applied to the data in order to focus on more homogeneous groups of birds, for

instance by minimising the risk of including individuals that were not engaged

in a breeding attempt in the study colony in the speci�c year of study.

2.6 Discussion

In this chapter, we proposed a test of positive association based on Goodman-

Kruskal's gamma as a new method for speci�cally detecting heterogeneity in

capture, within a CJS framework. We examined di�erent versions of the test:

per occasion and global, using an upper bound variance estimate or the asymp-

totic variance estimate derived by Brown & Benedetti. We also investigated

the e�ects of heterogeneity in capture on the current routinely used diagnostic

goodness-of-�t tests associated with the CJS model: Tests 2.CT, 2.CL, 3.SR

and 3.Sm. Finally, we also considered the Leslie and Carothers' tests of equal

catchability.
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Table 2.28: Sandwich terns test results (NA for Leslie's test if number of
animals per group lower than 20, NA for positive association test if number of
animals at given occasion lower than 30), d.o.f. denotes degrees of freedom, n
denotes the number of animals used for the positive association test, signi�cant
results in bold.

Test Sandwich terns results

Positive association capture occasion test-statistic n p-value

3 1.98 97 0.024

4 2.10 115 0.018

5 1.92 121 0.027

6 1.87 119 0.031

7 0.70 89 0.243

Global positive association - 0.36 182 0.002

Diagnostic GOF component test-statistic d.o.f. p-value

3.SR 127.27 8 <0.001

3.Sm 38.13 17 0.002

2.CT 140.02 7 <0.001

2.CL 21.66 14 0.086

Total 327.08 46 <0.001

3.SR corrected 8.10 7 0.32

2.CT corrected 8.58 6 0.20

Total corrected 76.47 44 0.002

Leslie's test 1st capture occasion test-statistic d.o.f. p-value

1 200.92 96 <0.001

2 NA NA NA

3 NA NA NA

4 NA NA NA

5 NA NA NA

6 66.71 35 <0.001

Carothers' test test-statistic d.o.f. p-value

- 519.56 262 <0.001
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The simulation results show that none of the tests considered reacted to

transience alone or heterogeneity in survival (apart from component 3.SR). As

expected, the Leslie test was impractical because it discarded too much data.

The interpretation of the existing diagnostic GOF tests was not straightfor-

ward when attempting to diagnose heterogeneity in capture. Indeed, accord-

ing to the simulated scenarios examined, the simultaneous signi�cance of Tests

2.CT, 2.CL, 3.SR and 3.Sm may indicate heterogeneity in capture. However,

simulation has shown that there is relatively good power only when the sample

size is very large and even then, Test 2.CL can lack power for certain situations

of strong discrete heterogeneity.

Carothers' test and the Brown & Benedetti version of the test of positive

association were both very powerful at detecting heterogeneity in capture,

even for weak heterogeneity scenarios. However, they did not allow to distin-

guish between immediate trap-happiness and heterogeneity in capture. The

conservative version of the test of positive association, on the other hand,

performed well for scenarios of strong heterogeneity but not for scenarios of

weaker heterogeneity. However, it reacted much more strongly to heterogene-

ity in capture than short-term trap-happiness. Thus, it seemed to us at this

stage, to be the optimal compromise for diagnosing heterogeneity in capture

speci�cally. The test of positive association is advantageous in that, unlike

other approaches based on model comparison (Cubaynes et al., 2012), there

is no need to make any assumptions about the model nor about the form of

heterogeneity considered. It is also easier to understand from a theoretical

point of view than, say, the Carothers test.

Based on the results obtained, there seems to be a trade-o� between power

to detect heterogeneity in capture and sensitivity to trap-happiness. Trap-

happiness increases the chances of concordant pairs whilst trap-shyness in-

creases the chances of discordant pairs, especially for short sequences of previ-

ous and future encounters. Thus trap-happiness increases the chance of pos-
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itive association and trap-shyness diminishes it. As a result, trap-happiness

may be confounded with heterogeneity, whilst the test is not sensitive to trap-

shyness.

If not much temporal variation is expected in capture, it is advisable to

use the global test of positive association since it provides a single result while

being more powerful than the tests per occasion. The global test behaved well

under a couple of speci�c scenarios of discrete heterogeneity involving additive

time dependence. However, more investigation is warranted to determine how

the global test might be a�ected by temporal variation, in particular whether

strong time-dependence could a�ect the test in the same way as heterogene-

ity in capture. Therefore if strong temporal variation in capture is expected

throughout the experiment (and that the sample size allows it), the test per

occasion should be used.

If the test of positive association yields a signi�cant result (even at just

one occasion in the case of the test per occasion), models accounting for het-

erogeneity in capture should be considered at the model-building and model

selection stage. Some possible techniques to incorporate heterogeneity in cap-

ture are: using observed covariates for modelling the capture probability, using

a latent structure: �nite mixture models, (Pledger et al., 2003) or hierarchical

classes of animals with proportional capture probabilities (Oliver et al., 2011);

Corkrey et al. (2012) provide a method to incorporate heterogeneity in capture

in a Bayesian framework.

Also, the causes of heterogeneity in capture should be investigated from a

biological perspective. This may lead to the identi�cation of individuals with

di�erent behavioural patterns or indicate whether an adjustment to sampling

is necessary. For example, a high degree of heterogeneity in capture may

indicate that mixtures of breeders and non breeders are being sampled. If

the group of interest is the breeders, the sampling process might be adjusted

(e.g. sub-site or years selected to maximize the representation of breeders),
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or the data might be cleaned post-hoc by applying strict criteria. Another

possibility would be to create a smaller pilot study and adjust the sampling

process accordingly on the �nal large study.

The discrete simulation scenarios have focused on clear situations of het-

erogeneity with no movements between groups. However, in real life, hetero-

geneity scenarios can be more complex, sampling may interact with behaviour

in complex ways which blur the line between trap-dependence and hetero-

geneity in capture. For instance, when the cause of heterogeneous capture is

the location, such as for the black-headed gulls (Prévot-Julliard et al., 1998),

the birds may move between groups with low or high resighting propensity,

and this would be statistically indistinguishable from trap-happiness if the

location information is unavailable. If the locations are known, then spatial

capture-recapture models can be considered.

Regarding the positive association test itself, note that we standardised the

information regarding intensity of capture by using proportions of previous

and future encounters. It might be of interest to explore a weighting system

that would take into account the amount information brought by the animal.

This would especially allow to distinguish between the extreme proportions:

for instance a proportion of 1/1 from a proportion of 5/5, which is more

informative. In this chapter we have focused on the signi�cance of tests, we

could also investigate the relationship between degree of heterogeneity and

gamma estimate values.

In addition to this, the number of animals used for the test per occasion

is relatively low compared to the original sample size, we therefore propose to

derive an empirical p-value from a non-parametric permutation test when the

data is too sparse to use the normal approximation. For the analysed dataset,

the ranks of previous encounter proportions are �xed, and the gamma test-

statistic computed on 10 000 distinct permutations of the ranks of future en-

counter proportions, in order to compute the empirical probability of obtaining
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a result as extreme or more extreme than the one observed on the analysed

dataset. Note that if it is not possible to obtain 10 000 distinct permutations

due to low numbers, the maximum number of distinct permutations is used

and we then derive the exact probability of obtaining a result as extreme or

more extreme than the observed one. Based on 250 simulated datasets of

smaller sample size (150 animals) under control scenario C2, using a 5% level,

the permutation test per occasion results in a Type I error rate close to the

expected 5%, with, respectively for occasions 3 to 7: 11.69%, 4.40%, 6.07%,

1.62% and 6.43%. For 250 simulated datasets of the same sample size, based on

the heterogeneity in capture scenario HC2, the percentage of signi�cant results

obtained for occasions 3 to 7 is, respectively: 37.5%, 58.00%, 71.49%, 74.66%

and 59%. Hence, based on the situations considered, the permutation test

shows promising results for smaller sample sizes, behaving as expected under

the control scenario C2 and showing adequate power to detect heterogeneity

in capture under scenario HC2; and it should be explored further.

The test of positive association was explored for open populations in a CJS

framework. But it could also be used in a context of population abundance

estimation. Indeed the Jolly-Seber (JS) model, used to estimate abundance,

assumes that unmarked and marked animals behave the same (McCrea and

Morgan, 2014, p.149). Applied to a JS context, if the test of positive asso-

ciation for marked animals yields a signi�cant result, then the assumption of

equal catchability is violated. Therefore the population as a whole may exhibit

heterogeneous behaviour.

Finally, the test of positive association and the Carothers test can both be

used for closed population models, which do not allow for births or deaths.

In this case, the animals are known to be alive during the whole experiment.

Therefore, the whole encounter history becomes informative, including the

information prior to the �rst capture occasion and after the last capture oc-

casion.
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A limitation of the test of positive association is that in a multi-state

context, it could not be easily extended to detect heterogeneity in capture when

the capture probabilities are state-dependent. However, it extends naturally to

the study of transition probabilities between states, and this will be addressed

in Chapter 3.



Chapter 3

Detecting a mover-stayer

structure

3.1 Introduction

The CJS model described in Chapter 2 can be too restrictive in its assump-

tions, and limited in its biological scope because it utilises only the information

of whether the animal is captured or not (Lebreton et al., 2009). But ecolo-

gists can be interested in aspects such as the geographic location for migratory

birds, or their breeding status (see for example Hénaux et al., 2007). Such in-

formation is easily collected upon the animals' capture and recorded as states.

States are de�ned by Lebreton and Pradel (2002) as `any mutually exclusive

and identi�able events in the life cycle of the population under study'. They

can be static, in which case they remain the same throughout the individual

history: for example, sex (although occasionally it may change over time, for

certain species of �sh or plants for example). States can also be dynamic,

in which case they either follow a deterministic (e.g. age) or stochastic (e.g.

health status) process. For static and deterministic states, information is

available as long as the animal is captured at least once (Lebreton et al.,
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2009). The general de�nition of states allows multi-state models to tackle a

large array of biological questions, they also have the ability to handle the

more complex stochastic dynamic states.

The information of interest is collected when the animal is captured, re-

sulting in individual capture histories that follow the same structure as in the

CJS framework. The 1s are replaced by the state in which the animal is cap-

tured. For example A B 0 C C codes the information: �captured at occasion

1 in state A, recaptured at 2 in B, not captured at 3, recaptured in C at 4 and

5�. The data may be summarised by a multi-state m-array (see Figure 3.1),

which is a natural extension of the CJS m-array (McCrea and Morgan, 2014,

p.88).

The Arnason-Schwarz model is the direct multi-state extension of the CJS

model from a biological perspective (Pradel et al., 2003). It is conditional on

the �rst release of individuals and relies on the same assumptions of homo-

geneity of the survival and recapture probabilities, for all animals in a given

state r. Thus, all animals in state r at time i are assumed to have equal

probability of surviving from occasion i to i + 1, and it is denoted by φri . All

animals in state r at time i are also assumed to have the same recapture prob-

ability, denoted by pri . Furthermore, multi-state models also involve transition

or movement probabilities between states; these are denoted by ψrsi , and rep-

resent the probability of moving to state s by occasion i + 1 for an animal in

state r at time i. The processes of survival and transition are separated under

the assumption that survival only depends on the state of the animal at time i

(Cooch and White, 2014, Chapter 10); in simpler terms, animals survive �rst

and then move. Animals in a given state at a given occasion are assumed to

also have homogeneous behaviour in terms of transitions; the process govern-

ing the transition between states is assumed to be �rst-order Markovian i.e.

the future state depends only on the current state (no memory). In addition

to the states de�ned in the experiment, �dead� constitutes a state of its own
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Table 3.1: Reduced multi-state m-array example, for a capture-recapture ex-
periment with 3 states and 4 occasions; the terms mr,s

i,j denote animals released
at i in state r and next recaptured at j in state s and the vri terms denote the
animals released at i in state r and never seen again

mAA
12 mAB

12 mAC
12 mAA

13 mAB
13 mAC

13 mAA
14 mAB

14 mAC
14 vA1

mBA
12 mBB

12 mBC
12 mBA

13 mBB
13 mBC

13 mBA
14 mBB

14 mBC
14 vB1

mCA
12 mCB

12 mCC
12 mCA

13 mCB
13 mCC

13 mCA
14 mCB

14 mCC
14 vC1

- - - mAA
23 mAB

23 mAC
23 mAA

24 mAB
24 mAC

24 vA2

- - - mBA
23 mBB

23 mBC
23 mBA

24 mBB
24 mBC

24 vB2

- - - mCA
23 mCB

23 mCC
23 mCA

24 mCB
24 mCC

24 vC2

- - - - - - mAA
34 mAB

34 mAC
34 vA3

- - - - - - mBA
34 mBB

34 mBC
34 vB3

- - - - - - mCA
34 mCB

34 mCC
34 vC3

and is not observable in a capture-mark-recapture context; the CJS model can

then be expressed as a multi-state model with states �alive� and �dead�. For

convenience, the parameters of a multi-state model are usually presented in

a matrix format, each time-dependent parameter being an (S + 1) × (S + 1)

matrix for an experiment with S �live� states: Φt denotes the survival matrix,

Ψt the transition matrix and Pt the capture matrix. All these matrices are

row-stochastic, meaning that the sum of probabilities in each row sums to one.

An illustration is given below (�dead� is represented by †):

Φt =



(1) (2) (...) (S) †

(1) φ1
t 0 . . . 0 1− φ1

t

(2) 0 φ2
t

... 0 1− φ2
t

(...)
... . . .

. . .
...

...

(S) 0 0 . . . φSt 1− φSt

† 0 0 . . . 0 1


, Ψt =



(1) (2) (...) (S) †

(1) ψ1,1
t ψ1,2

t . . . 1−
∑S−1

s=1 ψ
1,s
t 0

(2) ψ2,1
t ψ2,2

t . . . 1−
∑S−1

s=1 ψ
2,s
t 0

(...)
... . . . . . .

...
...

(S) ψS,1t ψS,2t . . . 1−
∑S−1

s=1 ψ
S,s
t 0

† 0 0 . . . 0 1


,
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Pt =



(1) (2) (...) (S) 0

(1) p1t 0 . . . 0 1− p1t

(2) 0 p2t
... 0 1− p2t

(...)
... . . .

. . .
...

...

(S) 0 0 . . . pSt 1− pSt

† 0 0 . . . 0 1


.

Due to the complex nature of multi-state models, possible departures from

model assumptions are numerous. The current diagnostic goodness-of-�t suite

developed by Pradel et al. (2003) consists of Test 3G and Test M. Test 3G

is partitioned into components used to detect memory (Test WBWA) and

transience (Test 3G.SR) (Pradel et al., 2005). Memory occurs when the state

reached at i + 1 is in�uenced by the state at i − 1. Test M is used to detect

trap-e�ects.

This chapter focusses on a particular case of heterogeneous transition be-

haviour, where animals exhibit a mover-stayer structure, with some animals

that have a tendency to move whilst the others tend to remain where they are.

The mover-stayer structure was �rst introduced in social studies, to describe

di�erent patterns of industrial mobility (see for example Spilerman, 1972).

It was originally de�ned as the existence of two types of individuals: some

who stay where they are and others who move homogeneously. We de�ne it

more loosely here as some individuals being more likely to move (movers) than

others (stayers). We assume that this behaviour is an intrinsic characteristic

of the animals and therefore does not change over time. To the best of our

knowledge, this phenomenon has rarely been analysed in a capture-recapture

framework; but could provide new insight into biological processes such as

migration patterns or disease progression stages. The detection of a mover-

stayer structure naturally lends itself to an extension of the test of positive

association developed in Chapter 2, to a multi-state framework.

Amongst the existing diagnostic tests, only Test WBWA is related to tran-
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sitions, and it is presented in detail alongside Test 3G, from which it derives,

in Section 3.2. Test M is used to test whether animals not captured at i and

known to be alive are consistent with being a mixture of the animals observed

in any of the states at the same occasion and known to be alive (Pradel et al.,

2003). This test will be presented in detail in Chapter 4. It is not relevant to

the current chapter's objective, which pertains to information on movement

and therefore requires animals to be captured. Section 3.3 describes the test

of positive association derived to detect a mover-stayer structure. We assess

the performance of this test in detecting and identifying a mover-stayer struc-

ture using simulation and compare it to Test WBWA in Section 3.4. We �nd

from the simulation study that our test of positive association is sensitive to

memory, whereas Test WBWA reacts to phenomena other than memory. Con-

sequently, we adapt the tests considered to make them more speci�c and in

doing so, devise a combination of tests that allows a mover-stayer structure

to be distinguished from short-term memory. The explored adaptations and

their simulation results are presented in Section 3.5. The tests examined in this

chapter are then applied, in Section 3.6, to the famous Canada geese (Branta

canadensis) dataset (Hestbeck et al., 1991), which has often been used as a

case study to illustrate memory. Finally we conclude in Section 3.7.

3.2 Test WBWA, a subcomponent of test 3G

Unlike the CJS model, the likelihood of the Arnason-Schwarz model cannot

be expressed as a simple product: indeed if an animal is known to survive

after i but is not captured at that occasion, one has to account for all the

possible states to/from which it could have moved, thus introducing more

complex terms in the likelihood. This can be easily illustrated through a simple

example: suppose an individual presents encounter history A 0 A in a multi-

state format, which is equivalent to 1 0 1 in a CJS format. The associated
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likelihood using a CJS model would be φ1(1−p2)φ2p3 whereas for a multi-state

framework, it becomes φA1
[
ψAA1 (1− pA2 )φA2 ψ

AA
2 + ψAB1 (1− pB2 )φB2 ψ

BA
2

]
pA3 .

The diagnostic tests derived for multi-state models are based on the Jolly-

Movement model (see for example McCrea and Morgan, 2014, p.175), rather

than the Arnason-Schwarz model. Indeed, it is a more natural extension of

the CJS model from a methodological point-of-view (Pradel et al., 2003). The

Jolly-Movement model is only slightly di�erent from the Arnason-Schwarz

model, with the capture probabilities depending not only on the state in which

the animal is captured, but also on its previous state. Test 3 (described in

Chapter 2) is extended to the multi-state framework in a very straightforward

manner, giving rise to Test 3G which examines whether previously marked

animals and newly marked animals encountered in a given state, at a given

occasion, behave in the same way. Test 3G is based on animals encountered

in a given state r at a given occasion i, this test was partitioned into di�erent

informative components by Pradel et al. (2005): Test 3G.SR is associated

with transience, Test WBWA is indicative of memory, and Test 3G.Sm is

formed from the tables left over after partitioning (Choquet et al., 2005). The

partitioning of the contingency tables associated with Test 3G is illustrated

in Figures 3.1 and 3.2. As for the CJS model, Test 3G.SR examines whether

previously marked and newly marked animals are as likely to be seen again.

The null hypothesis associated to this test for occasion i and state r is H0:

�For animals encountered in a given state r at a given occasion i, there is

no di�erence in the probability of being seen again later between previously

marked and newly marked animals�. The alternative hypothesis is de�ned

as H̄0 and the speci�c departure of interest for transience is: �For animals

encountered in a given state r at a given occasion i, the probability of being

seen again later is lower for newly marked animals than for previously marked

animals� (Choquet et al., 2005). Test WBWA assesses whether animals are

more likely to be next re-encountered in the same state as the one they were
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last seen in. The null hypothesis associated to this test for occasion i and

state r is H0:�For animals encountered in a given state r at a given occasion

i, there is no di�erence in the expected state of next re-encounter between

the animals last seen in the di�erent states�. The alternative hypothesis is

de�ned as H̄0 and the speci�c departure of interest for memory is �For animals

encountered in a given state r at a given occasion i, the probability of being

next re-encountered in the same state as the one they were last seen in is

higher than the probability of being next re-encountered in other states�. The

tests performed on the contingency tables are the usual chi-square tests of

independence and Fisher's exact test is used in cases of small numbers.

Alternatively, Pradel et al. (2005) proposed using Cohen's kappa to detect

memory. Cohen's kappa is typically used as a measure of agreement between

two raters classifying subjects according to the same scale, taking into account

the agreement that can occur by chance; it is applied to data formatted as a

square contingency table (Everitt, 1992, p.146). In the memory context, the

kappa is used to measure the agreement between previous and future state for

animals seen at occasion i in a given state r. It is applied to the square S ×S

contingency tables WBWA(i,r) presented in Figure 3.2. Let abs denote the cell

frequencies of table WBWA(i,r), ab. the row sums and a.s the column sums,

and n the total number of animals in the contingency table. The proportion

of agreement observed is derived from the diagonal elements of the table:

PA=
∑S

i=1 aii/n. The proportion of agreement that may occur by chance is

computed from the row and column sums: PC=
[
(
∑S

i=1 ai.a.i)/n
]
n. Finally,

Cohen's Kappa is de�ned as κ=(PA-PC)/(1-PC) (Everitt, 1992, p.148).
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Figure 3.1: An illustration of the partitioning of Test 3G for animals encoun-
tered at occasion i in state r (denoted 3G(i,r)) into the informative component
3G.SR(i,r) and left-over 3G.Sm.a(i,r) components, for a capture-recapture ex-
periment with K sampling occasions and S observable states
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Figure 3.2: An illustration of the partitioning of Test 3G for animals encoun-
tered at occasion i in state r (denoted 3G(i,r)) into the informative compo-
nent WBWA(i,r) and left-over 3G.Sm.b(i,r) and 3G.Sm.c(i,r) components, for
a capture-recapture experiment with K sampling occasions and S observable
states
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3.3 A test to detect a mover-stayer structure

within multi-state capture-recapture data

The existence of a mover-stayer structure in the population lends itself natu-

rally to an extension of the test of positive association developed in Chapter

2. Indeed, if some individuals move more than others, we expect that, at a

given occasion, animals who move more (less) before are also likely to move

more (less) after. Since the question of interest is movement, occasions where

the animal is not captured are not considered (they are uninformative); our

test is conditional on capture. The �rst step is therefore to consider only the

non-zero part of the capture history. We position ourselves at the optimal

occasion within the non-zero capture history, in terms of information brought

by previous and future movements: the middle occasion i. The capture his-

tories are then grouped by the state in which the animal is captured at i in

order to reduce noise due to state-speci�c properties of the animals. Also

we keep only animals with at least one informative movement on each side

of i; this means animals have to be captured at least three times to be part

of the tested data. Then, the number of observed movements between �rst

release occasion and the middle occasion i and the number of observed move-

ments between i and the last capture occasion are both counted. In order

to standardise this information, we use the proportion of previous and future

movements, using as denominator the maximum number of previous/future

possible movements conditional on capture i.e. the maximum number of pre-

vious/future movements that we could potentially observe. Finally, the ranks

of these proportions are used to represent the intensity of movement of the

animals relative to one another. We present a worked example of test con-

struction in Table 3.3, based on a toy example of multi-state capture histories

presented in Table 3.2. Note that animals with IDs 3 and 5 are not used for

the test because they are captured less than three times.
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Table 3.2: Example capture histories

Occasion 1 2 3 4 5 6 7 8 9 10

ID 1 3 0 3 3 3 0 3 0 0 0

ID 2 1 1 3 3 3 3 3 3 3 3

ID 3 3 0 0 0 0 0 0 0 0 0

ID 4 2 1 1 3 1 2 1 3 2 1

ID 5 3 2 0 0 0 0 0 0 0 0

ID 6 3 2 1 0 1 1 2 3 2 0

Table 3.3: Example capture histories: extracting the information required for
the positive association test by state at the middle occasion. The middle
occasion is denoted in bold for each capture history. NM denotes the number
of movements, max the maximum possible number of observed movements,
pr the proportion and r the rank.

Non-zero Capture History Previous movements Future movements

NM max pr r NM max pr r

State 1

ID 6 3 2 1 1 1 2 3 2 2 3 2/3 1 3 4 3/4 1

ID 4 2 1 1 3 1 2 1 3 2 1 3 4 3/4 2 5 5 1 2

State 2

No capture histories

State 3

ID 1 3 3 3 3 3 0 2 0 1 0 2 0 1

ID 2 1 1 3 3 3 3 3 3 3 3 1 4 1/4 2 0 5 0 1
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In the same way as for Chapter 2, the range of ranks is limited and many

ties are expected, so Goodman-Kruskal's gamma is used as a measure of pos-

itive association between previous and future movements. For the worked

example presented in Table 3.3, the gamma estimate is not applicable for

state 2 as there are no capture histories with state 2 at the middle occasion,

and state 3 which presents only one tied pair. The individuals in state 1 form

a concordant pair.

Similarly to Chapter 2, we expect a high number of concordant pairs for a

mover-stayer structure and hence use a one-sided test with the null hypothesis

de�ned as �G≤ 0� and the alternative as �G> 0�. The test-statistic used is

zs = γs√
Var(γs)

, where s denotes the state in which the animal is at the middle

occasion. In the same way as for heterogeneity in capture, we investigated

both the conservative version of the test and the Brown & Benedetti version.

In order to be conservative regarding the distributional approximation of the

test-statistic, the number of animals used for the test at each state was required

to be at least 30 for the test to be applicable.

We investigated di�erent versions of a positive association test between

ranks of previous movements and ranks of future movements, split by state:

• Using animals with at least 1 informative movement on each side of the

middle occasion, i.e. captured at least 3 times (see Table 3.3).

• Using animals with at least 2 informative movements on each side of the

middle occasion, i.e. captured at least 5 times.

We also investigated the performance of two global versions of the test per

state:

• A test over all states using the middle occasion of the capture histories,

without grouping the data by state, which we expected to be sensitive

to state-speci�c properties and thus, non optimal.
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• A summary test over the states, based on the standardised sum of the

independent test-statistics obtained from the test by state, with S de-

noting the number of states: zG =
∑S

s=1
zs√
S

3.4 Simulation study

3.4.1 Simulation scenarios

Di�erent scenarios were explored in order to assess the performance of the dif-

ferent versions of the test. For each simulation scenario explored, 250 datasets

of 2500 animals were simulated, with 10 capture occasions (250 animals re-

leased per occasion) and 3 live states, all equally likely to be the state at �rst

capture. The survival probability was constant over time and states, and set to

φ = 0.9 for all scenarios, the same applies to the capture probability (p = 0.9).

The simulated datasets were all generated using R.

First, we simulated simple homogeneous scenarios: only animals who tended

to move (denoted M, and MO for a more extreme situation with a null prob-

ability of remaining in the same state), or only animals who tended to remain

where they were (S). We then investigated whether the test could potentially

react to more complex homogeneous scenarios, such as: preference (P) for

one state (e.g. very high probability of moving to or remaining in State 2),

avoidance (A) for one state (e.g. very high probability of moving from State

2), strongly state-dependent transition probabilities (SD1 and SD3). All these

homogeneous scenarios constituted controls, used to check the Type I error

rate. The transition matrices for these homogeneous scenarios are detailed in

Table 3.4.

Afterwards we investigated heterogeneous scenarios with 2 groups of ani-

mals per dataset presenting di�erent behaviours in terms of transitions. The

transition matrices corresponding to these scenarios are presented in Table 3.5.
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Our target was the mover-stayer structure: 2 scenarios were simulated, MS1

with a proportion π1 = 0.3 of stayers and MS2 with a proportion π1 = 0.7 of

stayers. We also investigated how the test could be a�ected by animals pre-

ferring di�erent states (P2G: one group prefers state 1, the other prefers state

2) or avoiding di�erent states (A2G: one group avoids state 1 whilst the other

avoids state 2). Finally, a scenario of heterogeneity in movement (HM) was

also examined, where the animals had di�erent movement patterns but had

the same movement rate, and therefore did not present a mover-stayer struc-

ture. Apart from the mover-stayer scenarios, the heterogeneous scenarios were

simulated with an equal proportion of animals from each group (π1 = 0.5).

In addition to these heterogeneous scenarios, the more complex memory

phenomenon was also examined in scenarios Mem1 and Mem2. For both Mem1

and Mem2, the probability of being at i+1 in the same state as at i−1 is higher

than others, Mem2 di�ers from Mem1 in that, for animals in a given site s,

the probability of being in the same site twice within the triplet (previous site,

current site, future site) is also higher than being in each site only once. The

transition matrices generating the datasets with memory under both scenarios

considered are presented in Table 3.6. All these scenarios constitute violations

of the multi-state model assumption of homogeneity in transitions; and their

object was to assess the speci�city of the test of positive association to a

mover-stayer structure. Indeed, we wish our test to be sensitive to the speci�c

departure from the null hypothesis corresponding to a mover-stayer structure,

and insensitive to all other departures.

Since the transition matrix generating datasets with memory is less straight-

forward than the other situations, its structure is presented below, in the case

of 3 live states, for transitions constant over time. Note that instead of the

usual ψr,s, the transition probabilities are denoted by ψb,r,s since the transition

probability to state s at i + 1 also depends on the state b where the animal

was at i − 1. The rows of the transition matrix are the couples of (b, r) and



3. Detecting a mover-stayer structure 79

the columns the couples of (r, s), whilst † represents the state �dead� (see for

example Rouan et al., 2009):

Ψt



(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) †

(1,1) (1− ψ112
t − ψ113

t ) ψ112
t ψ113

t 0 0 0 0 0 0 0

(1,2) 0 0 0 ψ121
t (1− ψ121

t − ψ123
t ) ψ123

t 0 0 0 0

(1,3) 0 0 0 0 0 0 ψ131 ψ132
t (1− ψ131

t − ψ132
t ) 0

(2,1) (1− ψ212
t − ψ213

t ) ψ212
t ψ213

t 0 0 0 0 0 0 0

(2,2) 0 0 0 ψ221
t (1− ψ221

t − ψ223
t ) ψ223

t 0 0 0 0

(2,3) 0 0 0 0 0 0 ψ231
t ψ232

t (1− ψ231
t − ψ232

t ) 0

(3,1) (1− ψ312
t − ψ313

t ) ψ312
t ψ313

t 0 0 0 0 0 0 0

(3,2) 0 0 0 ψ321
t (1− ψ321

t − ψ323
t ) ψ323

t 0 0 0 0

(3,3) 0 0 0 0 0 0 ψ331
t ψ332

t (1− ψ331
t − ψ332

t ) 0

† 0 0 0 0 0 0 0 0 0 1



.

Finally, for some of the scenarios, we examined the potential e�ect of

state-dependent capture probabilities (setting p1 = 0.9, p2 = 0.35, p3 = 0.7

with the superscripts corresponding to the states), lower capture probability

(p = 0.5), or slightly time-dependent probabilities (adding a random uniform

term [−0.075; 0.075] to the probabilities of moving from a particular state).

These scenarios were respectively denoted by subscripts ps, pL or t.

3.4.2 Main results

Test of positive association

In this section, we present the results obtained using 2 versions of the conser-

vative positive association test split by state (simple upper bound for variance

estimate): based on one informative movement on each side (i.e. animals cap-

tured at least 3 times) in Table 3.7 and based on 2 informative movements

on each side in Table 3.8 (i.e. animals captured at least 5 times). We also

present the results obtained using the summary test in Table 3.9, based on

both versions of the test by state. All the versions of the test were coded using

R. The results are presented in terms of percentage of signi�cant test results,
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Table 3.4: Transition matrices for the homogeneous simulation scenarios con-
sidered

Transition Matrices for homogeneous simulation scenarios

Movers only/Stayers only

MO M S
0 0.5 0.5 0

0.5 0 0.5 0

0.5 0.5 0 0

0 0 0 1




0.2 0.4 0.4 0

0.35 0.3 0.35 0

0.45 0.45 0.1 0

0 0 0 1




0.9 0.05 0.05 0

0.1 0.8 0.1 0

0.075 0.075 0.85 0

0 0 0 1



Preference/Avoidance for one of the states

P A
0.1 0.8 0.1 0

0.06 0.92 0.02 0

0.2 0.7 0.1 0

0 0 0 1




0.4 0.1 0.5 0

0.6 0.06 0.34 0

0.55 0.1 0.35 0

0 0 0 1


Strongly state-dependent transitions

SD1 SD3
0.1 0.45 0.45 0

0.1 0.8 0.1 0

0.25 0.25 0.5 0

0 0 0 1




0.8 0.2 0 0

0.1 0.7 0.2 0

0 0.5 0.5 0

0 0 0 1
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Table 3.5: Transition matrices for heterogeneous scenarios considered

Transition Matrices for heterogeneous simulation scenarios

Mover-Stayer structure

Stayers Movers

MS1,
MS2:


0.9 0.05 0.05 0

0.1 0.8 0.1 0

0.075 0.075 0.85 0

0 0 0 1




0.2 0.4 0.4 0

0.35 0.3 0.35 0

0.45 0.45 0.1 0

0 0 0 1


Preference: 2 groups

Prefer 1 Prefer 2

P2G:


0.91 0.05 0.04 0

0.7 0.2 0.1 0

0.84 0.08 0.08 0

0 0 0 1




0.1 0.75 0.15 0

0.04 0.9 0.06 0

0.06 0.82 0.12 0

0 0 0 1


Avoidance: 2 groups

Avoid 1 Avoid 2

A2G:


0.1 0.55 0.45 0

0.05 0.35 0.60 0

0.15 0.45 0.40 0

0 0 0 1




0.6 0.15 0.25 0

0.42 0.08 0.5 0

0.40 0.22 0.38 0

0 0 0 1


Heterogeneity in movement: 2 groups

Group 1 Group 2

HM:


0.3 0.4 0.3 0

0.35 0.5 0.15 0

0.45 0.45 0.1 0

0 0 0 1




0.3 0.1 0.6 0

0.1 0.5 0.4 0

0.8 0.1 0.1 0

0 0 0 1





3. Detecting a mover-stayer structure 82

Table 3.6: Transition matrices for memory scenarios considered

Transition Matrices for memory simulation scenarios

Memory

Mem1:

0.7 0.15 0.15 0 0 0 0 0 0 0

0 0 0 0.6 0.2 0.2 0 0 0 0

0 0 0 0 0 0 0.65 0.2 0.15 0

0.22 0.58 0.20 0 0 0 0 0 0 0

0 0 0 0.1 0.8 0.1 0 0 0 0

0 0 0 0 0 0 0.2 0.62 0.18 0

0.09 0.2 0.71 0 0 0 0 0 0 0

0 0 0 0.2 0.15 0.65 0 0 0 0

0 0 0 0 0 0 0.1 0.1 0.8 0

0 0 0 0 0 0 0 0 0 1


Mem2:

0.7 0.15 0.15 0 0 0 0 0 0 0

0 0 0 0.6 0.3 0.1 0 0 0 0

0 0 0 0 0 0 0.65 0.1 0.25 0

0.27 0.58 0.15 0 0 0 0 0 0 0

0 0 0 0.1 0.8 0.1 0 0 0 0

0 0 0 0 0 0 0.12 0.62 0.26 0

0.09 0.2 0.71 0 0 0 0 0 0 0

0 0 0 0.08 0.17 0.65 0 0 0 0

0 0 0 0 0 0 0.1 0.1 0.8 0

0 0 0 0 0 0 0 0 0 1
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using a level of 5%.

Both the one and two informative movement tests have a very high power

to detect a mover-stayer structure. Table 3.7 shows that, when one informative

movement is used, 100% of the results for the tests split by state are signi�cant

for MS1 and MS2 as well as MS1t and MS2t, and around 90 to 100% for the

versions of these scenarios with a state-dependent or lower capture probability.

However, it is slightly too sensitive in some of the control situations (e.g. 16.8%

for SD1, state 1; 13.6% for P, state 1) and it does not allow us to distinguish

a mover-stayer structure from short-term memory, which also results in 100%

of signi�cant results, for both Mem1 and Mem2.

When using two informative movements (see Table 3.8), the Type I error

is under 5% for all control scenarios. Again, around 100% of the results for the

tests split by state are signi�cant for MS1 and MS2 as well as MS1t and MS2t,

the same is observed for most of the mover-stayer scenarios with a state-

dependent or lower capture probability. Amongst the other heterogeneous

scenarios considered, the test does not react in most cases, it is slightly sensitive

only to heterogeneity in preference (6.4% for state 1) but, like the test using

one informative movement, it is extremely sensitive to memory.

The results presented in Table 3.9 show that the summarised test presents

the same characteristics: very powerful at detecting a mover-stayer structure

and also very sensitive to memory (100% of signi�cant results for all situations,

whether one or two informative movements are used). Note that the control

datasets present a Type I error lower than 5% (apart from M: 7.2% when only

one informative occasion is used). Both versions of the summarised tests do

not react to most of the other scenarios of heterogeneity, apart from hetero-

geneity in preferences scenario P2G: 17.2% for the test using two informative

movements; whilst the summarised test with one informative movement is

a�ected by time-dependence for scenario St: 14.0% of signi�cant results.

Since short-term memory is a more local phenomenon than the mover-
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stayer behaviour, we attempted to use animals with at least 3 informative

previous and future movements (animals captured at least 7 times). However

this resulted in a very high loss of data (only 150 animals used on average per

dataset, out of 2500) while only marginally decreasing the sensitivity of the test

to memory. The percentage of signi�cant results obtained were respectively

for states 1, 2 and 3

• 48.4 (250), 92 (250) and 92 (250) for scenario Mem1

• 24.4 (250), 44.8 (250) and 68.8 (250) for scenario Mem2

The loss in data resulting from using animals with at least two or three in-

formative movements is not outweighed by any signi�cant gain in terms of

identifying the mover-stayer structure separately from memory. At this stage,

the summarised test using animals with at least one informative previous and

future movement seems to be the preferred option.

The results from the global test performed using the middle occasion with-

out prior grouping of the animals by their state at that occasion, are not

presented here due to its poor performance. Indeed it reacted strongly to

control scenarios such as state-dependent transition scenario SD1 for example

(54.4% using two informative movements, 80% using only one). Hence this

test was not adequate for our objective.

Likewise, the results of the tests version using the Brown & Benedetti

estimates are not presented in the thesis, although they were investigated.

Again, these tests were sensitive to phenomena other than mover-stayer and

memory: for example 56.8% of signi�cant results for homogeneous scenario

SD1, for state 1, when using the test split by state with one informative

movement and 27.6% for the summarised test; 54.4% for the summarised test

for P2G, using two informative movements.
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Table 3.7: Test of positive association (conservative variance estimate), split by
state, 1 informative movement (animal captured at least 3 times) , percentage
of signi�cant results (number of applicable tests), high percentage of signi�cant
results in bold (> 50%)

scenario % (N)

State 1 State 2 State 3

M 2.0 (250) 1.2 (250) 5.2 (250)

S 2.0 (250) 1.2 (250) 0.8 (250)

MO 0.0 (250) 0.4 (250) 0.4 (250)

P 13.6 (250) 0.0 (250) 0.0 (250)

A 0.4 (250) 0.4 (250) 0.4 (250)

SD1 16.8 (250) 0.0 (250) 0.4 (250)

SD3 3.2 (250) 0.0 (250) 0.0 (250)

Mem1 100.0 (250) 100.0 (250) 100.0 (250)

Mem2 100.0 (250) 100.0 (250) 100.0 (250)

MS1 100.0 (250) 100.0 (250) 100.0 (250)

MS2 100.0 (250) 100.0 (250) 100.0 (250)

P2G 0.0 (250) 0.0 (250) 4.0 (250)

A2G 7.2 (250) 1.2 (250) 0.4 (250)

HM 0.8 (250) 0.0 (250) 10.8 (250)

Mps 0.4 (250) 1.2 (250) 2.8 (250)

Sps 0.0 (250) 1.2 (250) 0.8 (250)

MS1ps 100.0 (250) 93.2 (250) 100.0 (250)

MS2ps 100.0 (250) 98.8 (250) 100.0 (250)

MpL 0.8 (250) 0.4 (250) 0.4 (250)

SpL 0.4 (250) 1.2 (250) 1.2 (250)

MS1pL 100.0 (250) 89.2 (250) 100.0 (250)

MS2pL 100.0 (250) 98.0 (250) 100.0 (250)

Mt 0.4 (250) 0.4 (250) 1.6 (250)

St 5.2 (250) 5.6 (250) 3.2 (250)

MS1t 100.0 (250) 100.0 (250) 100.0 (250)

MS2t 100.0 (250) 100.0 (250) 100.0 (250)

SD1t 15.2 (250) 0.0 (250) 0.0 (250)
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Table 3.8: Test of positive association (conservative variance estimate), split by
state, 2 informative movements (animal captured at least 5 times) , percentage
of signi�cant results (number of applicable tests), high percentage of signi�cant
results in bold (> 50%)

scenario % (N)

State 1 State 2 State 3

M 0.4 (250) 0.0 (250) 1.2 (250)

S 0.8 (250) 0.4 (250) 0.0 (250)

MO 0.0 (250) 0.4 (250) 0.8 (250)

P 4.0 (250) 0.0 (250) 0.4 (250)

A 0.0 (250) 0.0 (250) 0.4 (250)

SD1 0.4 (250) 0.4 (250) 0.0 (250)

SD3 0.4 (250) 0.0 (250) 0.0 (250)

Mem1 97.6 (250) 100.0 (250) 100.0 (250)

Mem2 85.2 (250) 99.2 (250) 99.2 (250)

MS1 100.0 (250) 100.0 (250) 100.0 (250)

MS2 100.0 (250) 100.0 (250) 100.0 (250)

P2G 6.4 (250) 2.8 (250) 3.2 (250)

A2G 4.8 (250) 0.0 (250) 0.0 (250)

HM 0.0 (250) 0.0 (250) 0.4 (250)

Mps 0.0 (250) 0.0 (250) 1.2 (250)

Sps 0.0 (250) 0.4 (250) 2.0 (250)

MS1ps 100.0 (250) 58.8 (250) 100.0 (250)

MS2ps 100.0 (250) 94.8 (250) 100.0 (250)

MpL 0.0 (250) 0.4 (250) 0.8 (250)

SpL 0.4 (250) 0.4 (250) 0.4 (250)

MS1pL 98.4 (250) 75.6 (250) 99.2 (250)

MS2pL 98.8 (250) 92.4 (250) 98.8 (250)

Mt 0.0 (250) 0.4 (250) 0.0 (250)

St 0.8 (250) 0.8 (250) 0.4 (250)

MS1t 100.0 (250) 100.0 (250) 100.0 (250)

MS2t 100.0 (250) 98.4 (250) 100.0 (250)

SD1t 0.4 (250) 0.0 (250) 0.0 (250)
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Table 3.9: Summarised conservative test of positive association based on 1
informative movement (denoted by 1 IM, animals captured at least 3 times)
and 2 informative movements (denoted by 2 IM, animals captured at least
5 times),percentage of signi�cant results (number of applicable tests), high
percentage of signi�cant results in bold (> 50%)

Scenario % C, 1IM (N) % C, 2IM (N)

M 7.2 (250) 0.8 (250)

S 4.0 (250) 0.8 (250)

MO 0.0 (250) 0.0 (250)

P 0.8 (250) 0.4 (250)

A 1.2 (250) 0.0 (250)

SD1 3.2 (250) 0.4 (250)

SD3 0.4 (250) 0.4 (250)

Mem1 100.0 (250) 100.0 (250)

Mem2 100.0 (250) 100.0 (250)

MS1 100.0 (250) 100.0 (250)

MS2 100.0 (250) 100.0 (250)

P2G 0.4 (250) 17.2 (250)

A2G 5.6 (250) 2.4 (250)

HM 5.2 (250) 0.0 (250)

Mps 0.4 (250) 0.0 (250)

Sps 0.0 (250) 0.8 (250)

MS1ps 100.0 (250) 100.0 (250)

MS2ps 100.0 (250) 100.0 (250)

MpL 1.2 (250) 0.8 (250)

SpL 0.4 (250) 0.8 (250)

MS1pL 100.0 (250) 100.0 (250)

MS2pL 100.0 (250) 100.0 (250)

Mt 0.4 (250) 0.4 (250)

St 14.0 (250) 0.4 (250)

MS1t 100.0 (250) 100.0 (250)

MS2t 100.0 (250) 100.0 (250)

SD1t 2.4 (250) 0.4 (250)
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Existing memory tests

We investigated the tests currently used to detect memory, in order to assess

whether they were actually speci�c to memory. For these tests, time-dependent

scenarios were not considered since the tests are based on independent compo-

nents by state at each occasion. Test WBWAwas coded by adapting MATLAB

code provided by R. Choquet; we used the Kappa function from R package vcd

to obtain the kappa estimate, its asymptotic standard error and the resulting

z-statistic (Meyer et al., 2016). We used both a one-sided test correspond-

ing to κ > 0: more agreement than expected by chance (which is the case

for memory) and a two-sided test which also adds to the alternative κ < 0

(less agreement than expected by chance, which would correspond to animals

avoiding the site where they were last seen) (see for example Everitt, 1992,

p.148).

Table 3.10 showed that the global WBWA test (formed by summing the

WBWA tests by occasion and state) reacts strongly not only to memory, but

also to the existence of a mover-stayer structure, heterogeneity in preferences

or avoidance as well as heterogeneity in movement, with close to 100% of

signi�cant results for all these situations. In Tables 3.11 to 3.14, we show the

results obtained using test WBWA split by state and occasion. As expected,

the split WBWA test shows similar reactions as the global test, though not

always as strong or for all states (e.g. see Table 3.13).

The results obtained using the kappa statistic by occasion and state are

displayed, for informative purposes, in Tables 3.15 to 3.18; they are very similar

to the results obtained with Test WBWA: the test reacts strongly to both

memory and a mover-stayer structure; it is also sensitive to 2 groups with

di�erent preferences and to heterogeneity in movement. Due to the similarities

between the results from Test WBWA and Cohen's kappa, we stopped here

and did not deem it necessary to pursue this route further.
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Table 3.10: Global Test WBWA, percentage of signi�cant results (number of
applicable tests), high percentage of signi�cant results in bold (> 50%)

Scenario % (N)

M 3.6 (250)

S 4.8 (250)

MO 4.0 (250)

P 3.2 (250)

A 6.0 (250)

SD1 3.2 (250)

SD3 6.4 (250)

Mem1 100.0 (250)

Mem2 100.0 (250)

MS1 100.0 (250)

MS2 100.0 (250)

P2G 100.0 (250)

A2G 98.4 (250)

HM 96.4 (250)

Mps 5.6 (250)

Sps 1.2 (250)

MS1ps 100.0 (250)

MS2ps 100.0 (250)

MpL 4.0 (250)

SpL 1.6 (250)

MS1pL 100.0 (250)

MS2pL 100.0 (250)
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Table 3.11: Test WBWA by occasion and state, homogeneous scenarios, per-
centage of signi�cant results (number of applicable tests), high percentage of
signi�cant results in bold (> 50%)

Scenario Occasion S1 (N) S2 (N) S3 (N)

M 2 5.2 (250) 6.8 (250) 5.2 (250)

M 3 5.2 (250) 6.0 (250) 5.2 (250)

M 4 5.6 (250) 4.8 (250) 6.8 (250)

M 5 4.8 (250) 4.0 (250) 3.2 (250)

M 6 3.2 (250) 3.2 (250) 4.4 (250)

M 7 3.2 (250) 4.4 (250) 4.8 (250)

M 8 4.0 (250) 6.0 (250) 5.2 (250)

M 9 6.4 (250) 5.2 (250) 6.4 (250)

S 2 2.0 (250) 1.6 (250) 4.0 (250)

S 3 1.6 (250) 5.2 (250) 4.8 (250)

S 4 3.6 (250) 5.2 (250) 6.0 (250)

S 5 3.2 (250) 6.4 (250) 4.4 (250)

S 6 5.2 (250) 1.2 (250) 5.6 (250)

S 7 2.4 (250) 5.6 (250) 5.6 (250)

S 8 4.0 (250) 6.4 (250) 6.0 (250)

S 9 4.0 (250) 6.8 (250) 6.4 (250)

MO 2 5.6 (250) 6.0 (250) 5.2 (250)

MO 3 4.0 (250) 3.2 (250) 2.0 (250)

MO 4 2.0 (250) 4.8 (250) 4.0 (250)

MO 5 6.0 (250) 4.8 (250) 1.6 (250)

MO 6 6.8 (250) 4.8 (250) 3.2 (250)

MO 7 4.0 (250) 2.8 (250) 4.4 (250)

MO 8 4.4 (250) 4.0 (250) 5.2 (250)

MO 9 4.4 (250) 5.2 (250) 6.0 (250)

P 2 2.0 (250) 5.6 (250) 3.2 (250)

P 3 6.0 (250) 2.4 (250) 3.2 (250)

P 4 4.8 (250) 7.6 (250) 2.0 (250)

P 5 4.0 (250) 2.8 (250) 4.8 (250)

P 6 5.6 (250) 5.2 (250) 5.2 (250)

P 7 3.6 (250) 2.4 (250) 2.8 (250)

P 8 4.0 (250) 6.4 (250) 4.8 (250)

P 9 5.6 (250) 5.2 (250) 2.4 (250)

A 2 6.8 (250) 2.8 (250) 5.6 (250)

A 3 6.8 (250) 6.0 (250) 4.0 (250)

A 4 4.4 (250) 6.8 (250) 9.2 (250)

A 5 6.8 (250) 3.6 (250) 5.6 (250)

A 6 4.8 (250) 5.6 (250) 7.2 (250)

A 7 5.6 (250) 3.2 (250) 4.0 (250)

A 8 6.0 (250) 5.6 (250) 6.4 (250)

A 9 4.0 (250) 6.0 (250) 4.0 (250)

SD1 2 6.0 (250) 4.8 (250) 4.0 (250)

SD1 3 3.2 (250) 6.0 (250) 4.0 (250)

SD1 4 7.6 (250) 3.2 (250) 2.8 (250)

SD1 5 8.8 (250) 4.4 (250) 5.6 (250)

SD1 6 2.8 (250) 6.0 (250) 4.4 (250)

SD1 7 3.6 (250) 2.4 (250) 5.2 (250)

SD1 8 3.6 (250) 5.6 (250) 5.2 (250)

SD1 9 3.6 (250) 4.8 (250) 6.8 (250)

SD3 2 1.6 (250) 7.2 (250) 4.4 (250)

SD3 3 4.8 (250) 8.8 (250) 3.2 (250)

SD3 4 6.8 (250) 4.4 (250) 6.0 (250)

SD3 5 4.0 (250) 3.2 (250) 4.4 (250)

SD3 6 4.4 (250) 4.4 (250) 5.2 (250)

SD3 7 3.6 (250) 5.6 (250) 4.0 (250)

SD3 8 5.2 (250) 4.8 (250) 3.2 (250)

SD3 9 2.8 (250) 5.2 (250) 6.0 (250)
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Table 3.12: Test WBWA by occasion, memory scenarios, percentage of signi�-
cant results (number of applicable tests), high percentage of signi�cant results
in bold (> 50%)

Scenario Occasion S1 (N) S2 (N) S3 (N)

Mem1 2 99.2 (250) 99.6 (250) 100 (250)

Mem1 3 100.0 (250) 100.0 (250) 100 (250)

Mem1 4 100.0 (250) 100.0 (250) 100 (250)

Mem1 5 100.0 (250) 100.0 (250) 100 (250)

Mem1 6 100.0 (250) 100.0 (250) 100 (250)

Mem1 7 100.0 (250) 100.0 (250) 100 (250)

Mem1 8 100.0 (250) 100.0 (250) 100 (250)

Mem1 9 100.0 (250) 100.0 (250) 100 (250)

Mem2 2 95.2 (250) 98.0 (250) 99.2 (250)

Mem2 3 100.0 (250) 100.0 (250) 100 (250)

Mem2 4 100.0 (250) 100.0 (250) 100 (250)

Mem2 5 100.0 (250) 100.0 (250) 100 (250)

Mem2 6 100.0 (250) 100.0 (250) 100 (250)

Mem2 7 100.0 (250) 100.0 (250) 100 (250)

Mem2 8 100.0 (250) 100.0 (250) 100 (250)

Mem2 9 100.0 (250) 100.0 (250) 100.0 (250)
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Table 3.13: Test WBWA by occasion, heterogeneous scenarios, part 1, per-
centage of signi�cant results (number of applicable tests), high percentage of
signi�cant results in bold (> 50%)

Scenario Occasion S1 (N) S2 (N) S3 (N)

MS1 2 69.6 (250) 28.8 (250) 86.4 (250)

MS1 3 92.8 (250) 42.0 (250) 100.0 (250)

MS1 4 98.8 (250) 56.8 (250) 100.0 (250)

MS1 5 99.6 (250) 64.8 (250) 100.0 (250)

MS1 6 100.0 (250) 77.6 (250) 100.0 (250)

MS1 7 100.0 (250) 75.2 (250) 100.0 (250)

MS1 8 100.0 (250) 77.2 (250) 100.0 (250)

MS1 9 100.0 (250) 77.2 (250) 100.0 (250)

MS2 2 82.8 (250) 49.2 (250) 92.0 (250)

MS2 3 98.0 (250) 64.4 (250) 98.4 (250)

MS2 4 99.2 (250) 79.6 (250) 100.0 (250)

MS2 5 100.0 (250) 86.0 (250) 100.0 (250)

MS2 6 100.0 (250) 90.4 (250) 100.0 (250)

MS2 7 100.0 (250) 92.4 (250) 100.0 (250)

MS2 8 100.0 (250) 95.6 (250) 100.0 (250)

MS2 9 100.0 (250) 95.6 (250) 100.0 (250)

P2G 2 8.0 (250) 8.8 (250) 12.0 (250)

P2G 3 10.0 (250) 8.4 (250) 5.2 (250)

P2G 4 31.2 (250) 29.6 (250) 10.0 (250)

P2G 5 55.6 (250) 54.8 (250) 22.0 (250)

P2G 6 75.6 (250) 74.8 (250) 31.6 (250)

P2G 7 84.4 (250) 90.0 (250) 41.6 (250)

P2G 8 91.6 (250) 92.4 (250) 51.2 (250)

P2G 9 92.4 (250) 96.8 (250) 59.6 (250)

A2G 2 9.2 (250) 7.6 (250) 3.6 (250)

A2G 3 12.0 (250) 10.8 (250) 6.4 (250)

A2G 4 16.8 (250) 15.2 (250) 9.6 (250)

A2G 5 26.4 (250) 20.0 (250) 10.8 (250)

A2G 6 32.0 (250) 29.2 (250) 18.4 (250)

A2G 7 36.0 (250) 40.8 (250) 21.2 (250)

A2G 8 45.2 (250) 45.6 (250) 22.8 (250)

A2G 9 49.6 (250) 45.6 (250) 20.0 (250)

HM 2 11.2 (250) 7.2 (250) 7.2 (250)

HM 3 28.4 (250) 6.4 (250) 5.6 (250)

HM 4 41.2 (250) 7.2 (250) 5.6 (250)

HM 5 48.4 (250) 8.8 (250) 7.2 (250)

HM 6 58.4 (250) 8.4 (250) 6.8 (250)

HM 7 66.4 (250) 8.0 (250) 5.6 (250)

HM 8 72.0 (250) 9.2 (250) 6.8 (250)

HM 9 74.4 (250) 5.6 (250) 9.2 (250)
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Table 3.14: Test WBWA by occasion, heterogeneous scenarios, part 2, per-
centage of signi�cant results (number of applicable tests), high percentage of
signi�cant results in bold (> 50%)

Scenario Occasion S1 (N) S2 (N) S3 (N)

Mps 2 4.4 (250) 3.6 (250) 5.2 (250)

Mps 3 4.8 (250) 4.0 (250) 1.2 (250)

Mps 4 4.8 (250) 5.6 (250) 6.0 (250)

Mps 5 6.4 (250) 6.4 (250) 5.2 (250)

Mps 6 5.2 (250) 6.8 (250) 4.4 (250)

Mps 7 5.2 (250) 2.8 (250) 4.0 (250)

Mps 8 3.2 (250) 3.2 (250) 5.6 (250)

Mps 9 3.6 (250) 4.8 (250) 5.6 (250)

Sps 2 1.6 (250) 1.2 (250) 3.6 (250)

Sps 3 5.2 (250) 3.2 (250) 3.6 (250)

Sps 4 5.2 (250) 4.8 (250) 6.0 (250)

Sps 5 4.4 (250) 6.4 (250) 6.0 (250)

Sps 6 4.0 (250) 6.4 (250) 4.0 (250)

Sps 7 4.4 (250) 5.2 (250) 4.8 (250)

Sps 8 6.4 (250) 2.8 (250) 2.8 (250)

Sps 9 4.0 (250) 4.4 (250) 1.6 (250)

MS1ps 2 45.6 (250) 13.2 (250) 60.4 (250)

MS1ps 3 70.8 (250) 15.6 (250) 83.2 (250)

MS1ps 4 83.6 (250) 20.0 (250) 90.8 (250)

MS1ps 5 87.2 (250) 22.4 (250) 96.8 (250)

MS1ps 6 91.6 (250) 28.4 (250) 99.2 (250)

MS1ps 7 94.8 (250) 30.0 (250) 100.0 (250)

MS1ps 8 98.0 (250) 29.2 (250) 100.0 (250)

MS1ps 9 100.0 (250) 19.6 (250) 100.0 (250)

MS2ps 2 72.8 (250) 21.2 (250) 74 (250)

MS2ps 3 84.8 (250) 25.2 (250) 90.4 (250)

MS2ps 4 88.4 (250) 24.0 (250) 95.2 (250)

MS2ps 5 97.6 (250) 34.8 (250) 97.6 (250)

MS2ps 6 98.8 (250) 36.0 (250) 100.0 (250)

MS2ps 7 97.6 (250) 37.2 (250) 99.6 (250)

MS2ps 8 100.0 (250) 32.4 (250) 100.0 (250)

MS2ps 9 99.6 (250) 39.2 (250) 100.0 (250)

MpL 2 6.4 (250) 4.0 (250) 5.6 (250)

MpL 3 6.0 (250) 2.4 (250) 4.8 (250)

MpL 4 6.0 (250) 5.6 (250) 6.4 (250)

MpL 5 4.0 (250) 7.2 (250) 5.6 (250)

MpL 6 4.0 (250) 5.2 (250) 4.8 (250)

MpL 7 4.0 (250) 4.8 (250) 7.2 (250)

MpL 8 4.4 (250) 5.2 (250) 5.6 (250)

MpL 9 3.2 (250) 5.2 (250) 5.2 (250)

SpL 2 0.8 (250) 2.4 (250) 3.2 (250)

SpL 3 3.2 (250) 6.4 (250) 3.2 (250)

SpL 4 3.6 (250) 7.6 (250) 3.6 (250)

SpL 5 4.4 (250) 2.4 (250) 3.6 (250)

SpL 6 4.8 (250) 6.0 (250) 5.2 (250)

SpL 7 4.4 (250) 6.4 (250) 4.8 (250)

SpL 8 5.2 (250) 4.8 (250) 2.8 (250)

SpL 9 2 (250) 2.4 (250) 6.4 (250)

MS1pL 2 33.6 (250) 11.6 (250) 32.8 (250)

MS1pL 3 43.6 (250) 13.6 (250) 45.6 (250)

MS1pL 4 61.2 (250) 14.0 (250) 67.6 (250)

MS1pL 5 66.4 (250) 14.4 (250) 74.8 (250)

MS1pL 6 73.6 (250) 19.6 (250) 76.0 (250)

MS1pL 7 82.4 (250) 18.4 (250) 82.0 (250)

MS1pL 8 84.4 (250) 20.4 (250) 88.8 (250)

MS1pL 9 80.4 (250) 18.8 (250) 88.8 (250)

MS2pL 2 41.2 (250) 20.8 (250) 46.8 (250)

MS2pL 3 61.6 (250) 19.2 (250) 52.0 (250)

MS2pL 4 71.6 (250) 28.0 (250) 62.4 (250)

MS2pL 5 73.2 (250) 28.8 (250) 72.4 (250)

MS2pL 6 82.0 (250) 29.6 (250) 77.6 (250)

MS2pL 7 83.6 (250) 31.6 (250) 81.6 (250)

MS2pL 8 89.6 (250) 31.6 (250) 87.2 (250)

MS2pL 9 86.4 (250) 42.4 (250) 89.6 (250)
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Table 3.15: Kappa test by occasion, homogeneous scenarios, percentage of
signi�cant results (number of applicable tests), high percentage of signi�cant
results in bold (> 50%)

Scenario Occasion 1-sided (κ > 0) 2-sided (κ 6= 0)

S1 (N) S2 (N) S3 (N) S1 (N) S2 (N) S3 (N)

M 2 4.4 (250) 3.6 (250) 5.2 (250) 7.6 (250) 5.2 (250) 5.2 (250)

M 3 7.6 (250) 3.6 (250) 6 (250) 7.2 (250) 5.2 (250) 6.0 (250)

M 4 6.0 (250) 5.2 (250) 6.4 (250) 7.6 (250) 6.8 (250) 9.2 (250)

M 5 4.0 (250) 4.0 (250) 4.8 (250) 4.0 (250) 4.4 (250) 4.0 (250)

M 6 4.4 (250) 3.6 (250) 4.4 (250) 2.8 (250) 4.4 (250) 6.0 (250)

M 7 4.8 (250) 6.0 (250) 2.4 (250) 5.6 (250) 4.4 (250) 3.2 (250)

M 8 6.8 (250) 4.0 (250) 3.2 (250) 5.6 (250) 3.6 (250) 4.0 (250)

M 9 8.0 (250) 4.4 (250) 3.6 (250) 6.8 (250) 3.2 (250) 5.6 (250)

S 2 2.0 (250) 2.0 (250) 2.0 (250) 30.0 (250) 24.0 (250) 25.2 (250)

S 3 1.2 (250) 2.8 (250) 2.0 (250) 14.8 (250) 12.0 (250) 17.6 (250)

S 4 3.6 (250) 2.8 (250) 5.2 (250) 8.8 (250) 9.6 (250) 14.4 (250)

S 5 0.8 (250) 4.8 (250) 2.8 (250) 7.6 (250) 9.6 (250) 11.6 (250)

S 6 3.2 (250) 3.6 (250) 3.2 (250) 15.6 (250) 8.0 (250) 10.8 (250)

S 7 2.4 (250) 3.6 (250) 3.6 (250) 10.4 (250) 6.0 (250) 6 (250)

S 8 3.2 (250) 2.4 (250) 5.2 (250) 7.6 (250) 5.6 (250) 8.4 (250)

S 9 0.4 (250) 3.6 (250) 3.2 (250) 10.4 (250) 5.2 (250) 11.2 (250)

MO 2 6.4 (250) 5.6 (250) 7.6 (250) 6.8 (250) 6.0 (250) 5.6 (250)

MO 3 2.8 (250) 4.8 (250) 5.2 (250) 6.4 (250) 4.8 (250) 2.8 (250)

MO 4 2.4 (250) 5.2 (250) 5.6 (250) 4.8 (250) 4.8 (250) 4.4 (250)

MO 5 6.8 (250) 7.2 (250) 4.4 (250) 5.2 (250) 5.6 (250) 4.4 (250)

MO 6 5.2 (250) 5.6 (250) 3.2 (250) 5.6 (250) 6.4 (250) 4.0 (250)

MO 7 4.0 (250) 4.0 (250) 6.0 (250) 2.8 (250) 3.2 (250) 6.8 (250)

MO 8 4.8 (250) 4.4 (250) 2.8 (250) 6.0 (250) 5.6 (250) 4.8 (250)

MO 9 5.6 (250) 6.0 (250) 3.6 (250) 6.0 (250) 8 (250) 1.6 (250)

P 2 3.6 (250) 4.8 (250) 5.2 (250) 2.4 (250) 5.2 (250) 3.2 (250)

P 3 5.6 (250) 2.0 (250) 3.2 (250) 4.4 (250) 6.8 (250) 4.0 (250)

P 4 5.2 (250) 3.6 (250) 4.8 (250) 6.8 (250) 6.0 (250) 4.8 (250)

P 5 6.4 (250) 2.8 (250) 4.8 (250) 7.6 (250) 6.4 (250) 6.4 (250)

P 6 3.6 (250) 2.8 (250) 7.6 (250) 6.0 (250) 8.4 (250) 10.0 (250)

P 7 5.2 (250) 2.4 (250) 4.0 (250) 7.6 (250) 6.8 (250) 3.6 (250)

P 8 2.8 (250) 4.0 (250) 3.2 (250) 8.4 (250) 8.4 (250) 3.6 (250)

P 9 4.4 (250) 3.2 (250) 4.8 (250) 12.8 (250) 8.0 (250) 7.6 (250)

A 2 4.8 (250) 4.0 (250) 5.6 (250) 6.8 (250) 7.2 (250) 6.4 (250)

A 3 2.8 (250) 3.2 (250) 6.8 (250) 4.0 (250) 6.0 (250) 6.0 (250)

A 4 2.4 (250) 5.6 (250) 3.2 (250) 4.4 (250) 6.0 (250) 7.2 (250)

A 5 4.0 (250) 4.4 (250) 4.4 (250) 5.2 (250) 5.6 (250) 7.6 (250)

A 6 2.4 (250) 6.8 (250) 7.6 (250) 1.6 (250) 6.4 (250) 6.0 (250)

A 7 4.0 (250) 2.4 (250) 5.2 (250) 4.8 (250) 4.4 (250) 6.8 (250)

A 8 8.0 (250) 2.0 (250) 2.0 (250) 6.4 (250) 4.8 (250) 4.4 (250)

A 9 3.6 (250) 5.2 (250) 6.0 (250) 4.0 (250) 5.2 (250) 5.6 (250)

SD1 2 5.2 (250) 2.8 (250) 3.6 (250) 6.4 (250) 6.4 (250) 6.0 (250)

SD1 3 2.8 (250) 4.0 (250) 5.6 (250) 4.0 (250) 5.2 (250) 7.6 (250)

SD1 4 7.2 (250) 2.4 (250) 6.8 (250) 9.6 (250) 4.4 (250) 5.6 (250)

SD1 5 6.8 (250) 5.6 (250) 4.8 (250) 4.0 (250) 5.2 (250) 5.2 (250)

SD1 6 4.4 (250) 1.6 (250) 4.0 (250) 6.0 (250) 2.4 (250) 3.6 (250)

SD1 7 4.0 (250) 2.8 (250) 4.0 (250) 5.2 (250) 7.6 (250) 4.8 (250)

SD1 8 5.2 (250) 6.0 (250) 1.6 (250) 5.2 (250) 6.4 (250) 5.6 (250)

SD1 9 6.8 (250) 3.6 (250) 4.4 (250) 4.4 (250) 4.0 (250) 4.4 (250)

SD3 2 2.0 (250) 7.6 (250) 4.0 (250) 26.0 (250) 9.2 (250) 5.6 (250)

SD3 3 3.2 (250) 4.8 (250) 4.0 (250) 10.4 (250) 6.0 (250) 2.8 (250)

SD3 4 5.2 (250) 7.2 (250) 6.0 (250) 6.8 (250) 6.4 (250) 6.0 (250)

SD3 5 3.2 (250) 2.4 (250) 6.0 (250) 4.0 (250) 5.2 (250) 6.0 (250)

SD3 6 4.8 (250) 4.4 (250) 6.0 (250) 6.0 (250) 4.4 (250) 5.6 (250)

SD3 7 4.8 (250) 4.0 (250) 6.0 (250) 4.8 (250) 4.8 (250) 4.8 (250)

SD3 8 5.2 (250) 2.0 (250) 4.4 (250) 7.2 (250) 5.6 (250) 3.2 (250)

SD3 9 1.2 (250) 4.8 (250) 7.6 (250) 5.2 (250) 4.8 (250) 6.0 (250)
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Table 3.16: Kappa test by occasion, memory scenarios, percentage of signi�-
cant results (number of applicable tests), high percentage of signi�cant results
in bold (> 50%)

Scenario Occasion 1-sided (κ > 0) 2-sided (κ 6= 0)

S1 (N) S2 (N) S3 (N) S1 (N) S2 (N) S3 (N)

Mem1 2 100.0 (250) 100.0 (250) 100.0 (250) 100.0 (250) 99.6 (250) 100.0 (250)

Mem1 3 100.0 (250) 100.0 (250) 100.0 (250) 100.0 (250) 100.0 (250) 100.0 (250)

Mem1 4 100.0 (250) 100.0 (250) 100.0 (250) 100.0 (250) 100.0 (250) 100.0 (250)

Mem1 5 100.0 (250) 100.0 (250) 100.0 (250) 100.0 (250) 100.0 (250) 100.0 (250)

Mem1 6 100.0 (250) 100.0 (250) 100.0 (250) 100.0 (250) 100.0 (250) 100.0 (250)

Mem1 7 100.0 (250) 100.0 (250) 100.0 (250) 100.0 (250) 100.0 (250) 100.0 (250)

Mem1 8 100.0 (250) 100.0 (250) 100.0 (250) 100.0 (250) 100.0 (250) 100.0 (250)

Mem1 9 100.0 (250) 100.0 (250) 100.0 (250) 100.0 (250) 100.0 (250) 100.0 (250)

Mem2 2 99.2 (250) 99.6 (250) 100.0 (250) 98.4 (250) 99.6 (250) 100.0 (250)

Mem2 3 100.0 (250) 100.0 (250) 100.0 (250) 100.0 (250) 100.0 (250) 100.0 (250)

Mem2 4 100.0 (250) 100.0 (250) 100.0 (250) 100.0 (250) 100.0 (250) 100.0 (250)

Mem2 5 100.0 (250) 100.0 (250) 100.0 (250) 100.0 (250) 100.0 (250) 100.0 (250)

Mem2 6 100.0 (250) 100.0 (250) 100.0 (250) 100.0 (250) 100.0 (250) 100.0 (250)

Mem2 7 100.0 (250) 100.0 (250) 100.0 (250) 100.0 (250) 100.0 (250) 100.0 (250)

Mem2 8 100.0 (250) 100.0 (250) 100.0 (250) 100.0 (250) 100.0 (250) 100.0 (250)

Mem2 9 100.0 (250) 100.0 (250) 100.0 (250) 100.0 (250) 100.0 (250) 100.0 (250)

Conclusions

Our simulation results show that the signi�cance of the WBWA test, currently

used as a test for memory, could actually be indicative of animals with dif-

ferent preferences, with heterogeneous movement patterns, or a mover-stayer

structure. Based on the simulation scenarios considered, the test of positive

association reacts to a smaller subset of situations: mainly memory and mover-

stayer. Therefore in Section 3.5, we attempt to construct adaptations of both

Test WBWA and the positive association test that would allow us to identify

speci�cally either the existence of a mover-stayer structure or the presence of

short-term memory.
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Table 3.17: Kappa test by occasion, heterogeneous scenarios, part 1, per-
centage of signi�cant results (number of applicable tests), high percentage of
signi�cant results in bold (> 50%)

Scenario Occasion 1-sided (κ > 0) 2-sided (κ 6= 0)

S1 (N) S2 (N) S3 (N) S1 (N) S2 (N) S3 (N)

MS1 2 74 (250) 42.8 (250) 86.4 (250) 64.8 (250) 29.2 (250) 78.4 (250)

MS1 3 93.2 (250) 56.4 (250) 98.0 (250) 88.8 (250) 43.2 (250) 95.6 (250)

MS1 4 98.8 (250) 69.2 (250) 100.0 (250) 97.2 (250) 58.4 (250) 99.6 (250)

MS1 5 99.6 (250) 73.2 (250) 100 (250) 99.2 (250) 60.8 (250) 99.2 (250)

MS1 6 100.0 (250) 78.8 (250) 100.0 (250) 100.0 (250) 67.2 (250) 100.0 (250)

MS1 7 100.0 (250) 78.4 (250) 100.0 (250) 100.0 (250) 65.2 (250) 100.0 (250)

MS1 8 100.0 (250) 84.4 (250) 100 (250) 100 (250) 76.4 (250) 100 (250)

MS1 9 100 (250) 86.8 (250) 100.0 (250) 100.0 (250) 77.2 (250) 100.0 (250)

MS2 2 83.6 (250) 57.2 (250) 93.6 (250) 76.8 (250) 44.0 (250) 88.4 (250)

MS2 3 99.2 (250) 80.0 (250) 99.6 (250) 97.2 (250) 70.4 (250) 98.8 (250)

MS2 4 99.6 (250) 89.6 (250) 100.0 (250) 99.6 (250) 80.4 (250) 100.0 (250)

MS2 5 100.0 (250) 90.4 (250) 100.0 (250) 100.0 (250) 89.2 (250) 100.0 (250)

MS2 6 100.0 (250) 95.2 (250) 100.0 (250) 100.0 (250) 91.6 (250) 100.0 (250)

MS2 7 100.0 (250) 97.6 (250) 100.0 (250) 100.0 (250) 94.8 (250) 100.0 (250)

MS2 8 100.0 (250) 96.8 (250) 100.0 (250) 100.0 (250) 94.8 (250) 100.0 (250)

MS2 9 100.0 (250) 97.6 (250) 100.0 (250) 100.0 (250) 96.0 (250) 100.0 (250)

P2G 2 2.0 (250) 0.4 (250) 0.0 (250) 7.2 (250) 11.6 (250) 22.8 (250)

P2G 3 16.0 (250) 9.2 (250) 4.4 (250) 8.0 (250) 6.8 (250) 8.4 (250)

P2G 4 39.6 (250) 30.4 (250) 20.0 (250) 27.6 (250) 22.0 (250) 14.0 (250)

P2G 5 60.8 (250) 53.6 (250) 40.0 (250) 46.8 (250) 42.0 (250) 29.6 (250)

P2G 6 79.2 (250) 77.6 (250) 54.4 (250) 67.2 (250) 64.4 (250) 44 (250)

P2G 7 88.4 (250) 86.0 (250) 62.4 (250) 80.0 (250) 74.8 (250) 50.0 (250)

P2G 8 93.2 (250) 92.4 (250) 69.6 (250) 88.4 (250) 83.6 (250) 59.2 (250)

P2G 9 94 (250) 96 (250) 79.2 (250) 87.6 (250) 86 (250) 69.6 (250)

A2G 2 9.2 (250) 4.8 (250) 3.2 (250) 8.8 (250) 6.4 (250) 8.4 (250)

A2G 3 13.6 (250) 9.2 (250) 8.0 (250) 8.4 (250) 6.4 (250) 4.8 (250)

A2G 4 17.6 (250) 15.2 (250) 13.6 (250) 11.6 (250) 10 (250) 8.4 (250)

A2G 5 30.8 (250) 19.2 (250) 12.0 (250) 20.8 (250) 10.4 (250) 8.8 (250)

A2G 6 36.4 (250) 21.2 (250) 21.2 (250) 24.4 (250) 14 (250) 13.2 (250)

A2G 7 37.6 (250) 27.2 (250) 30.4 (250) 27.2 (250) 18.4 (250) 18.0 (250)

A2G 8 40.8 (250) 26.0 (250) 25.2 (250) 30.4 (250) 15.6 (250) 15.2 (250)

A2G 9 48 (250) 32.8 (250) 19.6 (250) 38.4 (250) 20.8 (250) 12.4 (250)

HM 2 15.6 (250) 2.4 (250) 1.2 (250) 9.2 (250) 7.2 (250) 8 (250)

HM 3 30.8 (250) 4.4 (250) 4.8 (250) 19.6 (250) 3.6 (250) 7.2 (250)

HM 4 45.6 (250) 6.4 (250) 8.4 (250) 30.0 (250) 4.8 (250) 6.4 (250)

HM 5 49.2 (250) 7.6 (250) 9.2 (250) 38 (250) 6.4 (250) 8.4 (250)

HM 6 56.8 (250) 7.2 (250) 12 (250) 42.4 (250) 6.8 (250) 9.6 (250)

HM 7 62.8 (250) 4.8 (250) 12.4 (250) 52.4 (250) 3.6 (250) 8.4 (250)

HM 8 72.4 (250) 8.8 (250) 15.6 (250) 59.6 (250) 8.8 (250) 10.0 (250)

HM 9 73.6 (250) 6.0 (250) 17.6 (250) 59.6 (250) 4.0 (250) 13.2 (250)
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Table 3.18: Kappa test by occasion, heterogeneous scenarios, part 2, per-
centage of signi�cant results (number of applicable tests), high percentage of
signi�cant results in bold (> 50%)

Scenario Occasion 1-sided (κ > 0) 2-sided (κ 6= 0)

S1 (N) S2 (N) S3 (N) S1 (N) S2 (N) S3 (N)

Mps 2 4.4 (250) 5.6 (250) 4.0 (250) 5.6 (250) 8.4 (250) 6.0 (250)

Mps 3 4.8 (250) 4.4 (250) 3.6 (250) 4.8 (250) 6.8 (250) 6.0 (250)

Mps 4 5.2 (250) 4.8 (250) 3.2 (250) 6.8 (250) 6.8 (250) 4.8 (250)

Mps 5 2.8 (250) 5.6 (250) 3.6 (250) 6.4 (250) 6.4 (250) 6.4 (250)

Mps 6 3.2 (250) 5.6 (250) 4.8 (250) 5.2 (250) 6.0 (250) 5.6 (250)

Mps 7 8.0 (250) 4.4 (250) 3.6 (250) 8.8 (250) 5.6 (250) 4.8 (250)

Mps 8 2.4 (250) 4.0 (250) 4.8 (250) 5.6 (250) 4.8 (250) 4.8 (250)

Mps 9 6.0 (250) 4.0 (250) 2.4 (250) 4.4 (250) 4.8 (250) 2.4 (250)

Sps 2 1.2 (250) 2.8 (250) 3.6 (250) 31.6 (250) 9.2 (250) 28.0 (250)

Sps 3 2.8 (250) 3.6 (250) 1.6 (250) 20.0 (250) 12.8 (250) 10.4 (250)

Sps 4 4.0 (250) 2.8 (250) 2.8 (250) 15.6 (250) 8.0 (250) 9.6 (250)

Sps 5 2.4 (250) 3.6 (250) 3.2 (250) 10.0 (250) 6.4 (250) 6.4 (250)

Sps 6 1.6 (250) 4.0 (250) 2.0 (250) 15.2 (250) 5.6 (250) 13.2 (250)

Sps 7 2.4 (250) 5.2 (250) 3.6 (250) 11.2 (250) 8.0 (250) 8.8 (250)

Sps 8 2.8 (250) 2.0 (250) 1.6 (250) 10.8 (250) 7.2 (250) 6.8 (250)

Sps 9 1.6 (250) 2.8 (250) 0.8 (250) 12.4 (250) 8.8 (250) 11.2 (250)

MS1ps 2 58.0 (250) 21.2 (250) 69.6 (250) 44.8 (250) 12.4 (250) 57.2 (250)

MS1ps 3 82.0 (250) 24.4 (250) 89.2 (250) 73.2 (250) 13.6 (250) 83.2 (250)

MS1ps 4 91.2 (250) 29.2 (250) 94.0 (250) 85.6 (250) 15.6 (250) 89.2 (250)

MS1ps 5 93.2 (250) 29.2 (250) 98 (250) 88.0 (250) 20.4 (250) 95.6 (250)

MS1ps 6 95.6 (250) 32.8 (250) 99.2 (250) 91.6 (250) 21.6 (250) 98 (250)

MS1ps 7 98.0 (250) 34.8 (250) 99.6 (250) 95.6 (250) 26.4 (250) 98.8 (250)

MS1ps 8 99.6 (250) 35.6 (250) 100.0 (250) 98.4 (250) 24.4 (250) 99.2 (250)

MS1ps 9 100.0 (250) 21.6 (250) 100.0 (250) 100.0 (250) 12.4 (250) 100.0 (250)

MS2ps 2 74.8 (250) 26.4 (250) 75.6 (250) 63.2 (250) 18.0 (250) 68.0 (250)

MS2ps 3 90.4 (250) 39.6 (250) 94.4 (250) 80.8 (250) 24.8 (250) 87.2 (250)

MS2ps 4 93.6 (250) 41.2 (250) 98.4 (250) 89.6 (250) 28.0 (250) 96.4 (250)

MS2ps 5 99.2 (250) 47.2 (250) 99.2 (250) 97.2 (250) 37.6 (250) 98.4 (250)

MS2ps 6 98.8 (250) 55.6 (250) 100.0 (250) 97.6 (250) 41.6 (250) 100.00 (250)

MS2ps 7 99.2 (250) 54.0 (250) 99.6 (250) 98.4 (250) 40.8 (250) 99.6 (250)

MS2ps 8 99.6 (250) 51.6 (250) 100.0 (250) 98.8 (250) 38.4 (250) 100.0 (250)

MS2ps 9 100.0 (250) 47.2 (250) 100.0 (250) 99.6 (250) 35.6 (250) 100.0 (250)

MpL 2 2.8 (250) 4.4 (250) 4.4 (250) 7.6 (250) 5.6 (250) 7.2 (250)

MpL 3 4.4 (250) 4.4 (250) 3.6 (250) 7.2 (250) 6.8 (250) 4.8 (250)

MpL 4 7.2 (250) 4.4 (250) 6.4 (250) 5.6 (250) 6.0 (250) 10.0 (250)

MpL 5 3.6 (250) 4.0 (250) 6.8 (250) 4.0 (250) 6.0 (250) 6.4 (250)

MpL 6 5.2 (250) 4.4 (250) 5.2 (250) 4.8 (250) 7.6 (250) 6.8 (250)

MpL 7 3.6 (250) 2.8 (250) 4.8 (250) 3.2 (250) 5.2 (250) 5.6 (250)

MpL 8 3.2 (250) 4.8 (250) 4.0 (250) 5.6 (250) 3.2 (250) 5.2 (250)

MpL 9 6.0 (250) 3.6 (250) 6.0 (250) 6.4 (250) 4.0 (250) 4.0 (250)

SpL 2 2.0 (250) 4.4 (250) 2.4 (250) 32.0 (250) 21.2 (250) 24.4 (250)

SpL 3 1.6 (250) 5.6 (250) 2.4 (250) 19.6 (250) 12.4 (250) 15.2 (250)

SpL 4 2.8 (250) 5.2 (250) 2.0 (250) 12.0 (250) 10.0 (250) 10.8 (250)

SpL 5 2.8 (250) 2.8 (250) 1.2 (250) 9.6 (250) 7.6 (250) 8.4 (250)

SpL 6 3.2 (250) 4.8 (250) 3.6 (250) 13.2 (250) 9.6 (250) 8.0 (250)

SpL 7 4.0 (250) 2.4 (250) 3.2 (250) 14.0 (250) 6.4 (250) 11.2 (250)

SpL 8 1.6 (250) 2.8 (250) 4.0 (250) 13.2 (250) 4.4 (250) 12.0 (250)

SpL 9 2.0 (250) 2.4 (250) 2.4 (250) 12.4 (250) 12.0 (250) 12.8 (250)

MS1pL 2 44.0 (250) 16.4 (250) 42.0 (250) 34.0 (250) 13.2 (250) 31.6 (250)

MS1pL 3 54.0 (250) 24.0 (250) 56.0 (250) 44.0 (250) 15.6 (250) 43.2 (250)

MS1pL 4 69.2 (250) 23.6 (250) 66 (250) 58.8 (250) 14.8 (250) 59.6 (250)

MS1pL 5 74.4 (250) 25.2 (250) 75.6 (250) 65.6 (250) 15.6 (250) 63.6 (250)

MS1pL 6 77.2 (250) 29.6 (250) 78.8 (250) 71.6 (250) 17.2 (250) 69.2 (250)

MS1pL 7 84.8 (250) 35.2 (250) 86.8 (250) 74.8 (250) 26.4 (250) 77.2 (250)

MS1pL 8 89.2 (250) 32.8 (250) 87.2 (250) 82 (250) 22.4 (250) 78.8 (250)

MS1pL 9 82.8 (250) 32.8 (250) 85.2 (250) 73.2 (250) 22 (250) 74.4 (250)

MS2pL 2 47.6 (250) 32.8 (250) 48.4 (250) 33.2 (250) 19.6 (250) 37.2 (250)

MS2pL 3 70.8 (250) 27.2 (250) 64.0 (250) 56 (250) 17.2 (250) 48.8 (250)

MS2pL 4 76.8 (250) 41.2 (250) 74 (250) 66.0 (250) 31.2 (250) 63.2 (250)

MS2pL 5 81.6 (250) 39.2 (250) 80.8 (250) 73.2 (250) 27.2 (250) 70.0 (250)

MS2pL 6 89.6 (250) 44.4 (250) 86.4 (250) 81.2 (250) 34.0 (250) 80.8 (250)

MS2pL 7 94.8 (250) 52.4 (250) 89.6 (250) 86.0 (250) 37.6 (250) 85.6 (250)

MS2pL 8 94.8 (250) 49.6 (250) 92.8 (250) 87.2 (250) 33.2 (250) 87.6 (250)

MS2pL 9 90.4 (250) 58.4 (250) 92.8 (250) 85.2 (250) 46.0 (250) 87.2 (250)
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3.5 Adapted tests to distinguish a mover-stayer

structure from memory

3.5.1 Test WBWA adapted for memory

We �rst attempted to adapt Test WBWA so that it would not react to a

mover-stayer structure. The usual WBWA(i,r) contingency tables by state

and occasion are modi�ed by removing the animals who are in the same state

at the previous and current occasions or at the current and future occasions

since they could be potential stayers. In other words, the row and column

corresponding to the current state are deleted from the original WBWA (i,r)

contingency table (recall Figure 3.2). Consequently, this adapted test can

only be used for a capture-recapture experiment with at least 3 live states.

The results of the adapted test are shown in Table 3.19 for the global test

(obtained as usual, by summing up the chi-square statistics resulting from the

adapted tests by state and occasion, which are not presented here since they

do not provide additional information). The adapted WBWA is no longer

sensitive to a mover-stayer structure (around 5% of signi�cant results), whilst

it retains its high power to detect memory (100% of signi�cant results for

the considered scenarios). However it still lacks speci�city since it remains

sensitive to heterogeneity in preferences (64.8% for P2G, 72% for A2G) and

heterogeneity in movement (100% of signi�cant results).

3.5.2 Test of positive association adaptations

Not taking into account potential memory

We modi�ed the test of positive association so that it would target a mover-

stayer structure more speci�cally and not react to memory: our �rst solution

is to not take into account the occasions before and after the middle occasion if

the animal is in the same state at these 2 occasions, since this could potentially
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Table 3.19: Global Test WBWA adapted for memory, high percentage of sig-
ni�cant results in bold (> 50%)

Scenario % (N)

M 6.0 (250)

S 0.0 (250)

MO 4.8 (250)

P 0.0 (250)

A 3.6 (250)

SD1 4.8 (250)

SD2 3.2 (250)

SD3 0.0 (250)

Mem1 100.0 (250)

Mem2 100.0 (250)

MS1 5.2 (250)

MS2 4.8 (250)

P2G 64.8 (250)

A2G 72.0 (250)

HM 100.0 (250)

Mps 2.4 (250)

Sps 0.0 (250)

MS1ps 3.6 (250)

Ms2ps 0.4 (250)

MpL 6.4 (250)

SpL 0.0 (250)

MS1pL 3.6 (250)

MS2pL 1.2 (250)
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be re�ective of memory. This movement is also removed from the number of

possible movements. This modi�cation is illustrated in Table 3.20 for a toy

example. Note that this test was performed on animals captured at least 5

times in order to avoid situations with 0 possible movements. The results of

this adaptation are shown in Tables 3.21 for the summarised test. This �rst

adaptation of the test of positive association does not seem successful since the

test is still sensitive to memory (78.4% of signi�cant results for Mem1). We

note however, that the adapted test is sensitive to none of scenarios considered

apart from the mover-stayer and memory scenarios, which is an improvement

compared to the non adapted test.

Not taking into account memory, but keeping potential stayer infor-

mation

Our second proposed solution is to not take into account the occasions before

and after the middle occasion if the animal is in the same state at these 2

occasions, when the state at the middle occasion is di�erent (potential mem-

ory). However, these occasions are retained if the animal is at the same state

at the three occasions since this is potentially re�ective of stayers. Again, we

use only animals captured at least 5 times in order to make sure that we have

at least one informative previous and future movement. A toy example of this

second adaptation is given in Table 3.22.

Table 3.20: Toy example, modi�ed positive association test, version 1, NM
denotes the number of movements and Max the maximum number of possible
movements.

ID Non-zero capture history Previous movements Future movements

NM Max NM Max

1 3 2 3 3 1 2 2 1 2

3 1 1 1 1 3 1 0 1 2 2

11 2 1 2 1 1 1 1 1 0 2
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Table 3.21: Summarised test of positive association,adapted, conservative, at
least 2 informative movements (animals captured at least 5 times), version 1,
high percentage of signi�cant results in bold (> 50%)

Scenario % (N)

M 0.0 (250)

S 0.0 (250)

MO 0.0 (250)

P 0.0 (250)

A 0.0 (250)

SD1 0.0 (250)

SD3 0.0 (250)

Mem1 78.4 (250)

Mem2 4.0 (250)

MS1 100.0 (250)

MS2 100.0 (250)

P2G 0.0 (250)

A2G 0.0 (250)

HM 0.0 (250)

Mps 0.0 (250)

Sps 0.0 (250)

MS1ps 100.0 (250)

MS2ps 100.0 (250)

MpL 0.0 (250)

SpL 0.0 (250)

MS1pL 90.0 (250)

MS2pL 95.2 (250)

Mt 0.0 (250)

St 0.0 (250)

MS1t 100.0 (250)

MS2t 100.0 (250)

SD1t 0.0 (250)
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Table 3.22: Toy example, modi�ed positive association test, version 2, NM
denotes the number of movements and Max the maximum number of possible
movements.

ID Non-zero capture history Previous movements Future movements

NM Max NM Max

1 3 2 3 1 3 2 2 2 2

3 1 1 1 1 3 1 0 2 2 3

11 2 1 2 1 1 1 1 1 0 2

The results obtained with this strategy are given, for the summarised test,

in Table 3.23. Like the �rst proposed adaptation, this second adaptation is

very powerful at detecting mover-stayer structures (100% of signi�cant results

in all considered situations) and very sensitive to memory (around 100% too).

Hence, it does not allow a mover-stayer structure to be di�erentiated from

memory. One again, the adapted test is not sensitive at all to all other scenarios

considered.

3.5.3 The solution to detecting a mover-stayer structure:

using two adapted tests in conjunction

Based on the results from Sections 3.5.1 and 3.5.2, a possible solution for

detecting a mover-stayer structure would be to combine the adapted WBWA

with the second adaptation of the test of positive association. Indeed, the

adapted WBWA is not a�ected by a mover-stayer scenario, and reacts strongly

to heterogeneity in movement and preferences as well as memory; whilst the

second adaptation of the positive association test is sensitive only to memory

and a mover-stayer structure (note that we chose the second adaptation rather

than the �rst because it was slightly more powerful). The possible outcomes

are shown in Table 3.24. Both tests used together facilitate the detection of

a mover-stayer structure, and the presence of memory, separately from other

phenomena such as heterogeneous groups of preference or movement among
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Table 3.23: Summarised test of positive association, conservative, adapted,
version 2, high percentage of signi�cant results in bold (> 50%)

Scenario % (N)

M 0.4 (250)

S 0.0 (250)

MO 0.0 (250)

P 0.4 (250)

A 0.0 (250)

SD1 0.0 (250)

SD3 0.0 (250)

Mem1 100.0 (250)

Mem2 91.2 (250)

MS1 100.0 (250)

MS2 100.0 (250)

P2G 1.2 (250)

A2G 0.0 (250)

HM 0.0 (250)

Mps 0.0 (250)

Sps 0.0 (250)

MS1ps 100.0 (250)

MS2ps 100.0 (250)

MpL 0.4 (250)

SpL 0.4 (250)

MS1pL 100.0 (250)

MS2pL 100.0 (250)

Mt 0.0 (250)

St 0.0 (250)

MS1t 100.0 (250)

MS2t 100.0 (250)

SD1t 0.0 (250)
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the animals. Indeed, if both tests yield signi�cant results, this is indicative

of memory. A signi�cant result for the adapted WBWA alone is indicative

of heterogeneity in movement or preferences; whilst a signi�cant result for

only the adapted test of positive association is indicative of the existence of a

mover-stayer structure.

Table 3.24: Test results' signi�cance and possible conclusions

Adapted WBWA (Y/N) Adapted positive association, version 2 (Y/N) Conclusion

Y N Heterogeneity in movement/preferences

Y Y Memory

N Y Mover-stayer structure

3.6 Application: Canada geese

The famous Canada geese dataset from Hestbeck et al. (1991) is very often

used as an illustration of memory (see for example Pradel et al., 2005; Rouan

et al., 2009); it consists of 21,435 migrant geese individually marked with neck-

bands and re-observed at their wintering locations each year, between 1984

and 1989 (Hestbeck et al., 1991; Rouan et al., 2009). These wintering sites

constituted the states in the capture-recapture experiment: 1 denoted mid-

Atlantic (New York, Pennsylvania, New Jersey), 2 Chesapeake (Delaware,

Maryland, Virginia), and 3 Carolinas (North and South Carolina). Due to

the new �ndings regarding the conclusions drawn from Test WBWA, we re-

examine the geese dataset, using the combination of adapted tests to determine

whether we still reach the same conclusion of memory.

Table 3.25 shows that the adapted test of positive association yields a

signi�cant result (p = 0.01); we have also detailed the test split by state,

mainly to show how many animals were used for the adapted test, which is

based on animals captured at least 5 times and we note that the number
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of animals e�ectively used for the test is quite low compared to the size of

the original dataset. The adapted WBWA test also yields a signi�cant result

(p < 0.001). According to Table 3.24, there is signi�cant evidence that the

geese display memory, which con�rms the previous �ndings.

As a simple veri�cation, we �tted a few simple models with di�erent set-

tings of survival and capture, for both memory and a mover-stayer structure,

in order to check whether, for equivalent parametrisation of survival and cap-

ture probabilities, the model with memory was selected as a better model than

the mover-stayer model. Note that we did not go through an exhaustive model

�tting process since we aimed only to compare a memory model and a mover-

stayer model �tted to the geese dataset. The models were �tted using program

E-SURGE (MultiEvent SURvival Generalized Estimation) (Choquet et al.,

2009b).

Both the memory model and the mover-stayer model are not multi-state

models. Rather, they are both more general multievent models, which we

brie�y touched upon in Chapter 1 (Section 1.2). Multievent models will be

presented in detail in Chapter 4; however we give here a brief overview of the

tools necessary to comprehend the model �tting performed in this section.

Multievent models are more general than multi-state models in that they

allow uncertainty in the state assignment: the observations upon capture con-

stitute events while the states are underlying. For example, being a mover or

a stayer is not a characteristic observable upon capture of the animal, and the

observation �seen in colony 3� will be modelled as possibly resulting from an

animal in states �mover in colony 3� or �stayer in colony 3�. Multievent models

are conditioned on �rst capture (McCrea and Morgan, 2014, p.100) and de�ned

by the following parameters (again, further explanation will follow in Chapter

4): initial state probabilities, survival and transition probabilities, and event

probabilities. Program E-SURGE is based on a general multi-event formu-

lation of the model structured by the user and constrained using a language
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Table 3.25: Canada geese: adapted test of positive association(version 2) for
a mover-stayer structure, by state and summarised; γ̂ denotes the gamma
estimate, z(C) and pval (C) respectively denote the test-statistic and p-value
for the adapted test of positive association with C reminding that this test is
conservative, n denotes the number of animals used for the test, S in the state
column indicates the summarised test.

γ̂ z(C) pval (C) n state

0.36 0.85 0.20 66 1

0.72 2.22 0.01 81 2

NA NA NA 21 3

- 2.17 0.01 - S

GEMACO (see Choquet and Nogue, 2006, for details).

Various models have been proposed to account for memory, we chose to �t

the Pradel memory model (Pradel, 2005), where the initial probabilities of the

animals are dependent on their previous (unknown) site (Rouan et al., 2009), so

that all animals follow the same survival-transition matrix. To �t the memory

models in E-SURGE, we followed the step-by-step tutorial given in the web-

appendix from Rouan et al. (2009), available at https://static-content.

springer.com/esm/art%3A10.1198%2Fjabes.2009.06108/MediaObjects/13253_

2009_140300338_MOESM1_ESM.pdf, only separating the steps of survival and

transitions, as per Choquet et al. (2009b). Recall that the structure of the

transition matrix for a memory model was given in Section 3.4.1, the initial

states probability vector Πt, the survival matrix Φt and the event matrix

Bt are given below. For notation purposes, we follow the convention used

in E-SURGE of denoting by * the probabilities equal to one minus the row-

sum of the remaining terms. The labels of the columns and rows are denoted

explicitly for clarity: for Πt the columns represent the initial states, for Φt

the rows and columns represent the pairs of previous and current sites and

�nally for Bt the rows represent the underlying state of the animal whereas

the columns represent the observations or in other words, the data collected
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from a capture-recapture experiment.

Πt =

[ (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) †

π11
t π12

t π13
t π21

t π22
t π23

t π31
t π32

t ∗ 0

]
.

Φt =



(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) †

(1,1) φ11
t 0 0 0 0 0 0 0 0 ∗

(1,2) 0 φ12
t 0 0 0 0 0 0 0 ∗

(1,3) 0 0 φ13
t 0 0 0 0 0 0 ∗

(2,1) 0 0 0 φ21
t 0 0 0 0 0 ∗

(2,2) 0 0 0 0 φ22
t 0 0 0 0 ∗

(2,3) 0 0 0 0 0 φ23
t 0 0 0 ∗

(3,1) 0 0 0 0 0 0 φ31
t 0 0 ∗

(3,2) 0 0 0 0 0 0 0 φ32
t 0 ∗

(3,3) 0 0 0 0 0 0 0 0 φ33
t ∗

† 0 0 0 0 0 0 0 0 0 1



.

Bt =



0 1 2 3

(1,1) ∗ p1t 0 0

(1,2) ∗ 0 p2t 0

(1,3) ∗ 0 0 p3t

(2,1) ∗ p1t 0 0

(2,2) ∗ 0 p2t 0

(2,3) ∗ 0 0 p3t

(3,1) ∗ p1t 0 0

(3,2) ∗ 0 p2t 0

(3,3) ∗ 0 0 p3t

† ∗ 0 0 0



.

For the mover-stayer model, we used a mixture model with two groups of

animals characterised by di�erent transition structures. Movement between

groups is not allowed since animals are assumed to be intrinsically either

movers or stayers. The six live states resulting from this de�nition are: Stayer

in location 1, 2, or 3 and Mover in 1, 2, or 3, respectively denoted by S1, S2,



3. Detecting a mover-stayer structure 108

S3, M1, M2, and M3. The characteristic matrices of the mover-stayer model

are given below.

Πt =

[ (S1) (S2) (S3) (M1) (M2) (M3) †

πS1t πS2t πS3t πM1
t πM2

t ∗ 0

]
.

Φt =



(S1) (S2) (S3) (M1) (M2) (M3) †

(S1) φS1t 0 0 0 0 0 ∗

(S2) 0 φS2t 0 0 0 0 ∗

(S3) 0 0 φS3t 0 0 0 ∗

(M1) 0 0 0 φM1
t 0 0 ∗

(M2) 0 0 0 0 φM2
t 0 ∗

(M3) 0 0 0 0 0 φM3
t ∗

† 0 0 0 0 0 0 1



.

Ψt =



(S1) (S2) (S3) (M1) (M2) (M3) †

(S1) ψS1,1t ψS1,2t ∗ 0 0 0 0

(S2) ψS2,1t ψS2,2t ∗ 0 0 0 0

(S3) ψS3,1t ∗ ψS3,3t 0 0 0 0

(M1) 0 0 0 ψM1,1
t ψM1,2

t ∗ 0

(M2) 0 0 0 ψM2,1
t ψM2,2

t ∗ 0

(M3) 0 0 0 ψM3,1
t ∗ ψM3,3

t 0

† 0 0 0 0 0 0 1



.

Bt =



0 1 2 3

(S1) ∗ p1t 0 0

(S2) ∗ 0 p2t 0

(S3) ∗ 0 0 p3t

(M1) ∗ p1t 0 0

(M2 ∗ 0 p2t 0

(M3) ∗ 0 0 p3t

† ∗ 0 0 0



.
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It should be noted that a model with two groups of animals characterised

by di�erent transition matrices is actually appropriate for a broader spec-

trum of models than just mover-stayer, they can be used for other situa-

tions of heterogeneity in movement or preferences. However, �tting a strictly

mover-stayer model would require additional constraints of the form {ψS1,1 >

ψM1,1 and ψS2,2 > ψM2,2 and ψS3,3 > ψM3,3} that are not necessarily straight-

forward to implement in pre-existing software such as E-SURGE. Thus it is

less likely to be routinely �tted in practice than the more general mixture

model.

We are aware that �tting memory models involves numerous identi�ability

issues (Rouan et al., 2009; Cole et al., 2014), this issue is out of the scope of

this thesis and we did not dwell on it. Note however, that E-SURGE uses a

built-in tool which provides a numerical estimate of the number of estimable

parameters in the model (Choquet and Nogue, 2006).

The models �tted are presented in Table 3.26, they are de�ned follow-

ing the GEMACO terminology used in program E-SURGE (Choquet et al.,

2009b): c indicates that the probabilities are constant over time and states,

to indicates that the probabilities are di�erent along the columns, from in-

dicates that the probabilities are di�erent along the rows, from.to indicates

that they di�er along both rows and columns (used to constrain the transition

probabilities to be dependent on both the state of departure and the state of

arrival). The initial probabilities are conventionally �tted as both state and

time-dependent: to.t. The best model was chosen using Akaike's information

criterion, the AIC, de�ned as −2 log{L(θ̂)} + 2d, log{L(θ̂)} denotes the log-

likelihood evaluated at its maximum and d denotes the number of estimable

parameters (Burnham and Anderson, 2002, p.61). We were concerned about

using the AIC because the memory models and the mover-stayer models are

both based on a di�erent number of underlying states, which also have di�er-

ent meanings. However these models are all �tted to the same representation
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of the dataset (no conditional likelihood or di�erent grouping), therefore the

AIC can be used for model comparison(Burnham and Anderson, 2002, p.81).

For reassurance, we �tted both a memory model and a mover-stayer model

to a randomly chosen simulated dataset from scenario MS2 (with all proba-

bilities constant except for the state-dependent transition probabilities). The

best model chosen by the AIC was the mover-stayer model (AIC=26979.19,

versus AIC=27318.27 for the memory model).

For the goose dataset, the memory model was consistently found to be

better than the mixture model, for equivalent types of parameter dependencies,

which is in agreement with the results of the tests presented in Table 3.25.

3.7 Discussion

To summarise, this chapter extended the scope of existing Test WBWA, which

is currently used as a test for memory. We showed that the test is actually sen-

sitive to other violations of the homogeneity in transition assumption, such as

heterogeneity in movement patterns, or in preference/avoidance, and a mover-

stayer structure. Thus, when Test WBWA produces a signi�cant result, these

alternative models should be considered and �tted if they are biologically sen-

sible in addition to the memory model.

We also examined the properties of a positive association test to detect a

mover-stayer structure, directly extending the test for heterogeneity in capture

Table 3.26: Model �tting: Memory and mixture, Canada Geese dataset

Model N parameters Deviance AIC Delta(AIC)

Memory: π(to.t), p(to), φ(from), ψ(from.to) 72 115904.47 116048.47 0.00

Memory: π(to.t), p(c), φ(from), ψ(from.to) 70 115968.92 116108.92 60.45

Mixture: π(to.t), p(to), φ(from), ψ(from.to) 48 116023.92 116119.92 71.45

Mixture: π(to.t), p(c), φ(from), ψ(from.to) 46 116053.91 116145.91 97.44

Memory: π(to.t), p(c), φ(c), ψ(from.to) 62 116077.41 116201.41 152.93

Mixture: π(to.t), p(c), φ(c), ψ(from.to) 41 116135.08 116217.08 168.61
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derived in Chapter 2. However, this test lacked speci�city, and was very

sensitive to both memory and mover-stayer structure, whilst also being slightly

a�ected by some of the other scenarios.

Consequently, we modi�ed the current Test WBWA to derive a test that

was no longer sensitive to a mover-stayer structure. We also adapted the

test of positive association, so that it became sensitive only to memory and

a mover-stayer structure. Finally we used both the adapted Test WBWA

and the adapted test of positive association to detect and distinguish between

memory, mover-stayer structure and heterogeneity in movement or preferences.

This combined tool can be used for a capture-recapture experiment with at

least 3 live states and 5 capture occasions. The level of dependence between the

adapted WBWA test and the adapted test of positive association is unclear

at this stage. To be cautious, we would recommend using a correction for

multiple testing, such as the Bonferroni correction which consists of dividing

the chosen level by the number of hypotheses tested (see for example Sokal

and Rohlf, 2012, p.239).

The main advantage of the new tool is that it provides more speci�c in-

formation, without needing any model �tting and is very powerful in good

conditions. Its main limitation at the current stage is the requirement for

large sample sizes so that there is enough testable data, particularly for the

test of positive association. Further investigations are needed in order to adapt

this tool for smaller sample sizes. For instance, in the same way as for Chapter

2, a permutation test could be explored.

Finally, we keep in mind that biological behaviours are, by essence, more

complex than simulated scenarios involving only a clear-cut phenomenon. For

instance, animals could present long-term memory; they could also change

their moving behaviour over time, if for example, they scout until they �nd a

nice colony to settle in, they would �rst be movers and then stayers. It would

be of interest to research how the existing tests and the new tool react in these
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types of situation.



Chapter 4

Testing the underlying state

structure for partially

observed multi-state data

4.1 Introduction

The states de�ned in a multi-state model are observable and assigned with

certainty (Kendall, 2004). Partial observations occur when the state cannot

be determined for a proportion of animals at a given sampling occasion (Conn

and Cooch, 2009). In monomorphic species, male and female individuals do

not present obvious physical di�erences. As a result, individuals need to be

directly handled or genetically tested to determine their gender. This is not

always possible and then, the sex needs to be inferred based solely on the

animal's behaviour (Genovart et al., 2012). If, at a given occasion, there are

individuals for which the sex cannot be ascertained and is left as �unknown�,

these constitute partial observations. For other individuals, sex may be as-

signed with uncertainty. In animal epidemiology, where health status con-

stitutes the states, such as the study of avian malaria (Lachish et al., 2011)



4. Test for partial observations 114

or conjunctivitis in Carpodacus mexicanus Müller house �nches (Conn and

Cooch, 2009), some animals' health status cannot be determined when direct

testing via blood samples, for instance, is not possible.

As mentioned previously in Section 3.6 from Chapter 3, multievent models

were developed by Pradel (2005) in order to take into account state uncer-

tainty: events are observed whilst the states are underlying. Multievent mod-

els are Hidden Markov Models, they are layered: a hidden Markov process,

generally assumed of order 1, governs the movement between the underlying

states and the events are generated by these states. Note that the set of under-

lying states, although not directly observable, is de�ned by the user according

to their expertise and the question of interest. Multievent models condition on

�rst capture and form a general framework which allow the relaxation of stan-

dard multi-state or CJS model assumptions. Example situations that can be

modelled by multievent models include transience, heterogeneity or memory.

The likelihood of a multievent model is given in Equation 4.1, using the

following notation:

• N the number of observed individuals,

• R the number of states de�ned by the user (including the state �dead�),

• E the number of events (including the event �not captured�),

• D(θ) the diagonal matrix with diagonal elements equal to the elements

of θ,

• fk the �rst encounter occasion for animal k,

• T the number of occasions in the capture-recapture experiment,

• 1R a column vector of R ones,

• Πt the 1 × R vector of initial state probabilities, with the rth element
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being the probability that an individual is in state r when initially en-

countered at occasion t,

• Φt the R × R survival matrix, with the diagonal terms φrt denoting the

probability that an animal in state r at time t survives until t + 1 for

r < R. For R, the �dead� state, diagonal element φRt = 1 and the Rth

column is formed of the terms 1− φrt for each row r < R.

• Ψt the R×R transition matrix, with the (r, s)th element being ψr,st , the

probability that an animal is in state s at time t+1, given it was in state

r at t and that it is alive at t+ 1.

• Bt the R×E event matrix with the (r, e)th element being the probability

of observing event e for an animal in state r at time t. The notation

Bt(., ek,t) refers to the column of Bt corresponding to the event observed

at time t for animal k.

The matrices Πt, Φt, Ψt and Bt are all row-stochastic and recall that they

were illustrated for various examples in Chapter 3, Section 3.6.

L =
N∏
k=1

(
ΠfkD(Bfk(., efk))

[
T∏

t=fk+1

Φt−1Ψt−1D(Bt(., ek,t))

]
1R

)
(4.1)

This chapter focusses on multi-state capture-recapture data with partial

observations (i.e. captured/sighted with state unknown), assuming that when

states are assigned to observed animals, this is done without error/uncertainty.

These data can be modelled as a special case of multievent model, and this

chapter proposes a new diagnostic tool to assess whether the partial observa-

tions are actually generated from the states directly observed in the capture-

recapture experiment.

Consider a capture-recapture experiment designed to study avian malaria,

with the underlying states being de�ned as �healthy� (H), �infected with malaria�

(I) and �dead�(†); the events recorded are �not captured� (NC ), �observed
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as healthy� (H ), �observed as infected with malaria� (I ) and �observed with

health status unknown� (U ), which constitutes the partial observations. If an

animal is observed as healthy or infected with malaria, then this is actually in

the corresponding underlying state. If an animal's health status is unknown,

it could actually be either healthy or infected with malaria. Finally, when

an animal is not captured, it could be in any of the three underlying states.

This is a situation where partial observations are generated from the observed

states; and it is illustrated for a given occasion in Figure 4.1.

An example of alternative scenario is represented in Figure 4.2, for the

same health status example. Only this time, the partial observations corre-

spond to animals who are actually in State C which represents �infected with

conjunctivitis�. For clarity purposes, Figure 4.2 zooms in on the observations

made, leaving out the event �not captured� (and by extension the state �dead�).

The test developed in this chapter builds on the approach utilised by Test

M in the multi-state framework (Pradel et al., 2003). Test M is presented in

Section 4.2. In Section 4.3, we show that if partial observations are generated

only by the directly observable states, then animals partially observed at time

i are a mixture of the animals observed in any of the observable states at that

occasion. Based on this mixture property, a new test is developed to assess

whether partial observations are actually generated by the observable states.

The properties of this test are assessed using simulation in Section 4.4. Finally,

in Section 4.5 the test is applied to the Canada geese dataset used in Chapter 3

as well as a dataset of greater �amingoes (Phoenicopterus roseus), to explore

its performance in real-life situations. Finally, we conclude and discuss the

�ndings in Section 4.6.
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Observed H U I NC

Underlying

H I †

φHψHI

1− φH

φIψIH

1− φI

φHψHH 1φIψII

Figure 4.1: Underlying state structure illustration at a given occasion for a
capture-recapture experiment with two live states H and I, directly observed
without error and partial observations corresponding to animals that can be in
either of these states; U denotes partial observations, φr denotes the survival
probability in state r and ψrs the transition probabilities from state r to state
s.

Observed H I U

Underlying

H I C

φHψHI

φIψIH

φHψHC

φCψCH

φHψHH

φIψIC

φIψIC

φIψII φCψCC

Figure 4.2: Illustration of the underlying state structure at a given occasion for
a capture-recapture experiment with two live states H and I directly observed
without error and partial observations corresponding to the additional state C
which is never directly observable; U denotes partial observations, φr denotes
the survival probability in state r and ψrs the transition probabilities from
state r to state s.
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4.2 Test M

In a multi-state framework, it is not possible to naturally extend Test 2, de-

scribed in Chapter 2, which compares animals captured at time i to those not

captured at time i. This is due to the fact that, in a multi-state setting, when

an animal is not captured, its state is unknown. However, if the assumption of

equal recapture probability at a given occasion for all animals in the same state

is true, Pradel et al. (2003) noted that, amongst the animals still alive, those

that are not captured at occasion i must be in one of the live states de�ned

in the experiment. Thus, Pradel et al. (2003) demonstrated that the number

of animals not captured at i, previously released and known to be alive after

i, follows a conditional multinomial distribution, which is a �nite mixture of

the conditional multinomials followed by the number of animals seen at i in

the di�erent states and re-observed at least once. Pradel et al. (2003) also

noted that although this mixture property is veri�ed for the Arnason-Schwarz

model, it is actually characteristic of the more general Jolly-Movement model.

This is why the goodness-of-�t suite for the multi-state model assesses the �t

of a Jolly-Movement model rather than an Arnason-Schwarz model, as men-

tioned in Chapter 3 (Section 3.2). Based on this mixture property, Pradel

et al. (2003) used pooling strategies to derive a general mixture test at a given

occasion i: Test M. At each occasion, Test M assesses whether animals pre-

viously released in a given state r, not captured at i and known to still be

alive after i are consistent with being a mixture of the animals in the same

conditions captured in either of the states at i. Table 4.1 shows the m-array

terms constitutive of the table associated with Test M.

The probability density function of a �nite mixture is de�ned as

g(x) =
∑C

c=1 πcfc(x) (see for example Everitt and Hand, 1981, p. 4); C is

the number of mixture components, fc(x) the probability density function of

component c, also termed basis distribution by Yantis et al. (1991), and πc the
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Table 4.1: Table of the m-array terms associated with Test M at occasion i,
for a capture-recapture experiment with K occasions and R live states denoted
by A to R. The mixtures M1 to MR, are each a mixture of the bases B1 to BR.∑i−1

j=1m
AA
j,i+1 . . .

∑i−1
j=1m

AR
j,i+1 . . .

∑i−1
j=1m

AA
j,K . . .

∑i−1
j=1m

AR
j,K M1

... . . .
... . . .

... . . .
...

...∑i−1
j=1m

RA
j,i+1 . . .

∑i−1
j=1m

RR
j,i+1 . . .

∑i−1
j=1m

RA
j,K . . .

∑i−1
j=1m

RR
j,K MR

mAA
i,i+1 . . . mAR

i,i+1 . . . mAA
i,K . . . mAR

i,K B1
... . . .

... . . .
... . . .

...
...

mRA
i,i+1 . . . mRR

i,i+1 . . . mRA
i,K . . . mRR

i,K BR

mixing probabilities associated with each component (
∑C

c=1 πc = 1). Yantis

et al. (1991) developed the Multinomial Maximum Likelihood Mixture ap-

proach (MMLM), which, as its name implies, is targeted to mixtures of multi-

nomial distributions. The context of the MMLM approach is slightly di�erent

from the more common mixture model problems, in which only mixtures are

sampled from and there is no direct information available from the underlying

mixture components (Everitt and Hand, 1981, p. 2). In the MMLM setting,

independent samples are available from both the mixtures and the compo-

nents. Note that from here onwards, we will be using the terminology from

Yantis et al. (1991) and Pradel et al. (2003), and terming these components

bases.

The model structure corresponding to a MMLM setting is shown in Ta-

ble 4.2 with the mixing probabilities denoted in blue and the bases cell-

probabilities in red. The MMLM approach consists of two steps: estimat-

ing the bases cell probabilities and the mixing probabilities via maximum-

likelihood. (Recall that each row represents a multinomial so the cell proba-

bilities sum to 1 for each row.) The second step is assessing the goodness-of-

�t of the hypothesised model structure (mixtures and bases) using a classical

measure of comparison between observed and expected frequencies.

Test M is essentially an application of the MMLM approach to a capture-

recapture setting, as illustrated by the m-array terms in Table 4.1, where the
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Table 4.2: MMLM approach, Mixture and bases model structure associated
with Table 4.1

j = i+ 1 . . . T

s = A . . . R . . . A . . . R

γ1p
B1
1 + . . .+γRp

BR
1 . . . . . . . . . . . . . . . γ1p

B1
R×T+ . . . + γRp

BR
R×T M1

...
...

...
...

...
...

...
...

π1p
B1
1 + . . .+πRp

BR
1 . . . . . . . . . . . . . . . π1p

B1
R×T+ . . .+πRp

BR
R×T MR

pB1
1 . . . . . . . . . . . . . . . pB1

R×T B1
...

...
...

...
...

...
...

...

pBR
1 . . . . . . . . . . . . . . . pBR

R×T BR

mixtures are denoted by M and the bases by B. The associated model struc-

ture corresponds to the cell-probabilities given in Table 4.2 for the di�erent

mixtures and bases. Pradel et al. (2005) then partitioned Test M into two com-

ponents: Test M.ITEC, which detects a short-term trap e�ect, by confronting

the animals �rst re-observed at i+ 1 and those �rst re-observed at later times;

and Test M.LTEC. In case of sparse data, the mixture rows may be pooled

together, unlike the bases rows, which should never be pooled so that the hy-

pothesised model structure is conserved. The table may also be pooled across

the columns in any manner except for Test M.ITEC, where animals seen again

at i+ 1 and those seen later should be kept separated (Choquet et al., 2005).

Finally, note that Test M is not a test of independence so Fisher's exact test

cannot be used in this case.
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4.3 Testing the mixture property for partial ob-

servations

4.3.1 The mixture property of partial observations gen-

erated by only the observable states

If partial observations stem from the states directly observed in the experiment,

then the set of underlying states is formed only of the observable states plus the

dead state. In this section, we show that, in this case, the number of animals

partially observed at i and seen again in a known state afterwards, follows a

multinomial distribution which is a mixture of the multinomial distributions

followed by the animals released in a known state at time i and seen again in

a known state afterwards. The multinomial cells correspond to the time and

state of the �rst re-observation in a known state after i.

Consider a capture-recapture experiment with T sampling occasions and

R live states. If individuals are assigned to state r upon capture, this is done

without uncertainty (see Section 4.1) and the corresponding event is denoted

by r: �observed in state r�. However, when an individual's state cannot be

determined, the corresponding event is denoted by U : �observed with state

unknown� and the animal can be in any one of the underlying R states.

In the presence of such partial observations, there is no longer a perfect

match between observation and state; so the multi-state m-array (introduced

in Chapter 3) are no longer su�cient-statistics. However, King and McCrea

(2014) developed su�cient statistics for the more complex framework of partial

observations which we have presented in this chapter. Below, we introduce the

su�cient statistics, model parameters, and associated likelihood components

that are required to prove the mixture property of the partial observations.

We also introduce some additional notation in order to simplify the expression

of the conditional probabilities needed.
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• Su�cient statistic terms

� n
r,z(t1+1):(t2−1),s

t1,t2 denotes the number of animals observed at time t1

in known state r, next observed in known state s at t2 with partial

capture history z(t1+1):(t2−1) between these two time points.

� w
U,z(t1+1):(t2−1),s

t1,t2 denotes the number of animals observed for the �rst

time at t1 in an unknown state, re-observed for the �rst time in

known state s at time t2 with partial capture history z(t1+1):(t2−1)

between these two time points.

� vrt1 , the number of animals observed in known state r at t1 and

never seen again in a known state (i.e. never seen again or only

ever re-observed in an unknown state).

� bUt1 , the number of animals �rst observed in an unknown state at t1

and never seen again in a known state.

• Model parameters

� φrt : probability an individual in state r at time t survives until t+1,

for t = 1, . . . , (T − 1).

� prt the probability of recapture at time t for an individual in state

r, for t = 2, . . . , T .

� ψr,st : probability an individual is in state s at time t+ 1 given that

it was in state r at time t and is alive at t+ 1, for t = 1, . . . , T − 1

� αrt : probability an individual is assigned to known state r given it

was recaptured at time t, for t = 2, . . . , T . βrt = 1 − αrt is then

de�ned as the probability an individual is assigned as unknown (U)

at time t given the individual is recaptured, and in state r at this

time, for t = 2, . . . , T

� πrt : probability an individual is in state r at time t, given it was

�rst observed in U at t, for t = 1, . . . , T − 1.
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• Likelihood components associated with the su�cient statistics

� The component associated with n
r,z(t1+1):t2

,s

t1,(t2+1) is O
r,s,z(t1+1):t2
t1,t2 , de�ned

as the probability an individual released in the known state r at

time t1 is not observed in a known state between capture times

(t1 + 1) and t2, with partial encounter history z(t1+1):t2 , and is ob-

served at (t2 + 1), in known state s: for t1 ≤ t2, O
r,s,z(t1+1):t2
t1,t2 =

Q
r,s,z(t1+1):t2
t1,t2 pst2+1α

s
t2+1.

Q
r,s,z(t1+1):t2
t1,t2 denotes the probability an individual released in the

known state r at time t1 is not observed in a known state between

capture times (t1+1) and t2 with partial encounter history , z(t1+1):t2 ,

and is in state s at time (t2 + 1).

Q
r,s,z(t1+1):t2
t1,t2 =


φrt1ψ

r,s
t1 if t1 = t2

φrt1
∑R

l=1 ψ
r,l
t1 Zt1+1(l, h(t1 + 1))Q

l,s,z(t1+2):t2
t1+1,t2

if t1 < t2

Zt(r, h(t)) denotes the probability that an individual who is unob-

served or observed in a partial state at time t, has the encounter

history h(t) at that time point, given that they are in state r:

Zt(r, h(t)) = (1− prt )1{h(t)=0}(prtβ
r
t )
1{h(t)6=0} .

� The component associated with w
U,z(t1+1):t2

,s

t1,(t2+1) is the probability an

individual initially observed in U at time t1 is partially observed

or unobserved until t2 with partial encounter history z(t1+1):t2 , and

observed at time t2 + 1 in known state s:

γ
U,s,z(t1+1):t2
t1,t2 =

∑R
v=1 π

v
t1
O
v,s,z(t1+1):t2
t1,t2

• Additional notation

� λrt1 , the probability that an animal released at t1 in known state r,

is re-observed in a known state.

� λUt1 , the probability that an animal released at t1 in an unknown

state, is re-observed in a known state.
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We illustrate in Table 4.3 how example individual capture histories are

translated into the su�cient statistic terms presented above.

Consider, for example, occasion i = 2, for a capture-recapture experiment

with two live states A and B. The number of animals released in state A at

occasion 1 �rst re-captured in a known state at the di�erent occasions, and

those never seen again in a known state, follow a multinomial distribution.

The same goes for those released in state B at occasion 1, those �rst released

in an unknown state at occasion 1 etc. All these multinomials are described in

terms of su�cient statistics and their associated cell-probabilities in Table 4.4

for a study with 4 occasions. Each odd row presents the su�cient statistics

following a multinomial distribution, whilst each even row presents the cell-

probabilities associated with that multinomial. From Table 4.4, it is apparent

that some cell-probabilities relating to the animals not seen in a known state

at occasion 2 are linear combinations of the cell-probabilities of animals seen

in a known state at that same occasion (indicated in red). The quantities

constituting the coe�cients of the linear combinations are denoted in blue.

Based on this observation, it follows that the terms denoted in black should

be peeled-o� from the table in order to construct a structure with mixtures

and bases. Note that due to space constraints, we have not expanded the

cell-probabilities corresponding to the animals �rst released in U at occasion

1 (�rst row of w-terms) so as to express them as a function of the bases

terms denoted in red. However, it is a straightforward observation to make

since the cell-probabilities of these w-terms correspond to a mixture of those

associated with the n-terms denoted in blue in the same column. Building

on this, it is possible to construct a general table for occasion i, based on

the conditional multinomials obtained once the relevant terms (denoted in

black in Table 4.4) are peeled o�. When the number of sampling occasions

increases, capture histories are longer and there is a great number of possible

intermediate capture histories, formed of combinations of 0s and Us, before
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Table 4.3: Illustrating how example individual capture histories contribute
to the su�cient statistic terms, for a capture-recapture experiment with two
observable states A, B and �ve sampling occasions. Partial observations are
denoted by U. The elements of capture history determining the indices within
the statistics are denoted in bold.

Capture History su�cient statistic

U A U U B wU,−,A1,2 ,nA,UU,B2,5

A U U U A nA,UUU,A1,5

A U 0 U 0 vA1

U U U U B wU,UUU,B1,5

0 0 U 0 1 wU,0,13,5

0 A B U U nA,−,B2,3 , vB3

0 U 0 U U bU2

the �rst certain observation appears. In order to lower the chances of a sparse

table, we opted to build the multinomials based on the time and state of

the �rst known reobserved state, thus pooling over all possible intermediate

capture histories.

Table 4.5 gives a general expression of the su�cient statistic terms relating

to these conditional multinomials, for a capture-recapture experiment with R

observable states, partial observations denoted U , and T sampling occasions

whilst Table 4.6 displays the associated cell-probabilities. At occasion i, the

conditional multinomials are thus formed by the animals released at i − 1 in

a known state, partially observed at i and next seen again in a known state

by the end of the capture-recapture experiment, the animals �rst observed in

U at i− 1 or i and later re-observed in a known state, as well as the animals

released at i in a known state and seen again in a known state. Again, in

Tables 4.5 and 4.6, each row corresponds to a multinomial.

We demonstrate below the mixture property corresponding to the partial
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observations made at occasion i, which is displayed in Table 4.6: the bases

probabilities are denoted in red whilst the terms forming the mixing probabil-

ities are denoted in blue. To further simplify the probability expressions, let

ζrsi,j denote the cell-probabilities of the conditional multinomials formed by the

n-terms pooled over the possible partial histories
∑
z

n
r,zi+1:j−1,s
i,j (see Table 4.5).

When needed, we add the element h(t) to the superscript so as to specify the

capture history element at time t, with (i+ 1) ≤ t ≤ j.

From Table 4.6, which presents the detailed expression of the cell-probabilities,

we observe the following relationship between the ζ
r,s,h(i)=U
i−1,j , cell-probabilities

of the conditional multinomials corresponding to the animals released in a

known state r at i − 1, partially observed (code U) at i, and next seen in a

known state s at j (rows M1 to MR in Table 4.6), and the cell-probabilities

pertaining to the animals released at i in a known state l and next seen in a

known state s at j (rows B1 to BR in Table 4.6), ζ l,si,j/λ
l
i:

ζ
rs,h(i)=U
i−1,t =

R∑
l=1


[
φri−1ψ

r,l
i−1Zi(l, U)

]
λli

λri−1 −
R∑
g=1

Or,g,−
i−1,i−1 −

T∑
j=i+1

∑
z

R∑
g=1

O
r,g,zi:j−1,h(i)=0
i−1,j−1

ζ lsi,tλli .
(4.2)

Note that the quantity in blue does not depend on the time t or state s of �rst

re-observation in a known state. Since

λri−1−
R∑
g=1

Or,g,−
i−1,i−1−

T∑
j=i+1

∑
z

R∑
g=1

O
r,g,zi:j−1,h(i)=0
i−1,j−1 =

T∑
t=i+1

R∑
g=1

R∑
l=1

[
φri−1ψ

r,l
i−1Zi(l, U)

]
ζ lgi,t ,

and that λli =
∑T

t=i+1

∑R
g=1 ζ

lg
i,t, it follows that

R∑
l=1


[
φri−1ψ

r,l
i−1Zi(l, U)

]
λli

λri−1 −
∑R

g=1O
r,g,−
i−1,i−1 −

∑T
j=i+1

∑
z

∑R
g=1O

r,g,zi:j−1,h(i)=0
i−1,j−1

 = 1 . (4.3)

Thus, we have shown that the number of animals previously released in a
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known state r at i− 1, partially observed at occasion i and re-observed later

in a known state, follows a conditional multinomial distribution, which is a

mixture of the conditional multinomial distributions followed by the animals

released at i in the observable states, with the mixing probabilities equal to:

[
φri−1ψ

r,l
i−1Zi(l, U)

]
λli

λri−1 −
∑R

g=1O
r,g
i−1,i−1 −

∑T
j=i+1

∑
z

R∑
g=1

O
r,g,zi:j−1,h(i)=0
i−1,j−1

for l = 1, . . . , R .

Going back to Table 4.6, this means that each row M1 to MR is a mixture

of the bases formed by the rows B1 to BR.

Let ζU,si,j denote the conditional cell-probabilities associated with the ani-

mals �rst released at i in an unknown state and seen for the �rst time in a

known state s at occasion j (i.e. the w-terms from Table 4.5 with associated

cell-probabilities MR+2 from Table 4.6). The cell-probabilities corresponding

to the w-terms associated with MR+1 are denoted by ζ
U,s,h(i)=U
i−1,j . Then, for the

animals �rst released at i− 1 in an unknown state and seen in U at i:

ζ
U,s,h(i)=U
i−1,t =

R∑
l=1


[
R∑
v=1

πvi−1φ
v
i−1ψ

v,l
i−1Zi(l, U)

]
λli

λUi−1 −
R∑
v=1

πvi−1
R∑
g=1

Ov,g,−
i−1,i−1 −

T∑
j=i+1

∑
z

R∑
g=1

γ
U,g,zi:j−1,h(i)=0
i−1,j−1

ζ
l,s
i,t

λli
.

(4.4)

Once again, the quantity in blue does not depend on the time t or state s of

�rst re-observation in a known state. As for the animals �rst observed in U at

i,

ζU,si,t =
R∑
l=1

(
πliλ

l
i

λUi

)
ζ l,si,t
λli

. (4.5)

Using the same reasoning as above, it can be shown that
∑R

l=1

(
πl
iλ

l
i

λUi

)
= 1 and∑R

l=1

(
[
∑R

v=1 π
v
i−1φ

v
i−1ψ

v,l
i−1Zi(l,U)]λli

λUi−1−
∑R

v=1 π
v
i−1

∑R
g=1O

v,g
i−1,i−1−

∑T
j=i+1

∑
z

∑R
g=1 γ

U,g,zi:j−1,h(i)=0

i−1,j−1

)
= 1.

Therefore the numbers of animals �rst released at i−1 or i in an unknown

state and �rst re-observed in a known state at a later occasion, both follow
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a conditional multinomial distribution which is a mixture of the conditional

multinomial distributions followed by the animals released at i in each of the

R observable states, with the mixing probabilities respectively equal to:

[∑R
v=1 π

v
i−1φ

v
i−1ψ

v,l
i−1Zi(l, U)

]
λli

λUi−1 −
∑R

v=1 π
v
i−1
∑R

g=1O
v,g
i−1,i−1 −

∑T
j=i+1

∑
z

∑R
g=1 γ

U,g,zi:j−1,h(i)=0
i−1,j−1

for l = 1, . . . , R

and

πliλ
l
i

λUi
for l = 1, . . . , R

We have shown that the number of animals observed at i in an unknown

state, released at i − 1 in a known state or �rst released in U at i or i −

1, and next re-observed in a known state all follow conditional multinomial

distributions which are mixtures (with di�erent mixing probabilities) of the

same bases. These bases are formed by the animals seen at i in each of the

observable states. The mixtures correspond to rows M1 to MR+2 in Table 4.6,

formed by the n-terms of animals released at i−1, and the w-terms of animals

�rst released before or at i in Table 4.5; whilst the bases correspond to rows

B1 to BR in Table 4.6 formed by the n-terms of animals released at i from

Table 4.5.

More generally, animals that are partially observed at occasion i and re-

observed in a known state afterwards can be grouped by their last observation

in a known state before i, or, if they were never seen in a known state before i,

by their time of �rst release in an unknown state. By conditioning on the state

and time of their last observation in a known state or their time of �rst release

in an unknown state, we obtain multinomial distributions corresponding to

the time and state of the �rst re-observation in a known state after i. Hence,

it can be shown that animals observed at i in an unknown state, released at

any time t1 before i in a known state or observed only in an unknown state

before i, and re-observed in a known state afterwards, are also characterised
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by the mixture property, with the bases being B1 to BR. Indeed, for animals

released in a known state before i, the cell-probabilities of the corresponding

multinomial can be expressed as follows.

Due to space constraints, let Dr be de�ned as

Dr =
R∑
g=1

i∑
j=t1+1

∑
z

O
r,g,zt1+1:j−1

t1,j−1 +
R∑
g=1

T∑
j=i+1

∑
z

O
r,g,zt1+1:j−1,h(i)=0

t1,j−1 . The quantities

forming Dr correspond respectively to the probability that an animal released

in a known state r at time t1 is re-observed in a known state before or at i

and the probability that an animal is not observed at i but re-observed in a

known state afterwards. (Recall that our test pertains only to the animals

observed in U at i, all the terms corresponding to the animals not observed at

this occasion are peeled o�).

ζ
rs,h(i)=U
t1,t>i

=
R∑
a=1


[∑
z

Q
r,a,z(t1+1):(i−1)

t1,i−1 Zi(a, U)

]
λai

λrt1 −Dr

ζa,si,tλai . (4.6)

Since

λrt1 −D
r =

T∑
t=i+1

R∑
g=1

R∑
a=1

∑
z

[
Q
r,a,z(t1+1):(i−1)

t1,i−1 Zi(a, U)
]
ζagi,t ,

and that λai =
∑T

t=i+1

∑R
g=1 ζ

ag
i,t , it follows that

R∑
a=1


[∑
z

Q
r,a,z(t1+1):(i−1)

t1,i−1 Zi(a, U)

]
λai

λrt1 −Dr

 = 1 . (4.7)

Thus, we have shown that the number of animals previously released in

a known state r, partially observed at occasion i and re-observed later in a

known state, follows a conditional multinomial distribution, which is a mixture

of the conditional multinomial distributions followed by the animals released
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at i in the observable states, with the mixing probabilities equal to:


[∑
z

Q
r,a,z(t1+1):(i−1)

t1,i−1 Zi(a, U)

]
λai

λrt1 −Dr

 for a = 1, . . . , R .

In the same way, for the animals �rst released at a time t1 < i in an

unknown state, we de�ne DU as

DU =
R∑
g=1

i∑
j=t1+1

∑
z

γ
r,g,zt1+1:j−1

t1,j−1 +
R∑
g=1

T∑
j=i+1

∑
z

γ
r,g,zt1+1:j−1,h(i)=0

t1,j−1

ζ
U,s,h(i)=U
t1,t>i

=
R∑
a=1


[∑R

v=1 π
v
t1

∑
z

Q
v,a,z(t1+1):i−1

t1,i−1 Zi(a, U)

]
λai

λUt1 −DU

ζa,si,tλai . (4.8)

In the same manner as before,

λUt1 −D
U =

R∑
a=1

T∑
t=i+1

R∑
g=1

R∑
v=1

πvt1

∑
z

Q
v,a,z(t1+1):i−1

t1,i−1 Zi(a, U)ζa,gi,t ,

Hence, 
[∑R

v=1 π
v
t1

∑
z

Q
v,a,z(t1+1):i−1

t1,i−1 Zi(a, U)

]
λai

λUt1 −DU

 = 1 . (4.9)

We have shown that the number of animals �rst released before i in an un-

known state, partially observed at occasion i and re-observed later in a known

state, follows a conditional multinomial distribution, which is a mixture of the

conditional multinomial distributions followed by the animals released at i in

the observable states, with the mixing probabilities equal to:


[∑R

v=1 π
v
t1

∑
z

Q
v,a,z(t1+1):i−1

t1,i−1 Zi(a, U)

]
λai

λUt1 −DU

 for a = 1, . . . , R .

Finally, using the following property cited from Pradel et al. (2003): �if B1
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Table 4.5: Animals observed at i and later re-observed in a known state,
previously released at i or i − 1 in a known state, or �rst released at i or
i − 1 in an unknown state: su�cient statistic terms, for a capture-recapture
experiment with T sampling occasions and R observable states ranging from
A to R. The mixtures are denoted in blue and the bases in red.

j = i+ 1 . . . T

s = A . . . R . . . A . . . R

nA,U,Ai−1,i+1 . . . nA,U,Ri−1,i+1 . . .
∑
z

n
A,zi:T−1,h(i)=U,A
i−1,T . . .

∑
z

n
A,zi:T−1,h(i)=U,R
i−1,T

...
...

...
...

...
...

nR,U,Ai−1,i+1 . . . nR,U,Ri−1,i+1 . . .
∑
z

n
R,zi:T−1,h(i)=U,A
i−1,T . . .

∑
z

n
R,zi:T−1,h(i)=U,R
i−1,T

wU,U,A
i−1,i+1 . . . wU,U,R

i−1,i+1 . . .
∑
z

w
U,zi:T−1,h(i)=U,A
i−1,T . . .

∑
z

w
U,zi:T−1,h(i)=U,R
i−1,T

wU,-,A
i,i+1 . . . wU,-,R

i,i+1 . . .
∑
z

w
U,zi+1:T−1,A
i,T . . .

∑
z

w
U,zi+1:T−1,R
i,T

nA,-,Ai,i+1 . . . nA,-,Ri,i+1 . . .
∑
z

n
A,zi+1:T−1,A
i,T . . .

∑
z

n
A,zi+1:T−1,R
i,T

...
...

...
...

...

nR,-,Ai,i+1 . . . nR,-,Ri,i+1 . . .
∑
z

n
R,zi+1:T−1,A
i,T . . .

∑
z

n
R,zi+1:T−1,R
i,T

and B2 are mutually independent stochastic vectors, which are multinomially

distributed, and if M1 and M2 are mutually independent stochastic vectors

whose distributions are separately mixtures of the distributions of B1 and B2,

then the distribution of M1 +M2 is itself a mixture of the distributions of B1

and B2�, the conditional multinomials of the animals released in a known state

or �rst released in an unknown state before or at i, and partially observed at i

can be pooled in the same manner as for Test M as shown in Table 4.7. Thus,

the table used to test the mixture property of partial observations at occasion

i is given in Table 4.7: the bases are denoted in red and the mixtures in blue.

The MMLM approach is then used:

• Estimation of the cell-probabilities of the bases and of the mixing prob-

abilities via maximum-likelihood,

• Goodness-of-�t assessment based on the distance between expected and

observed values.

We implement this procedure by building on the code developed in Matlab
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by R. Choquet, for the existing Test M as implemented in program U-CARE.

Note that the parameters estimated here are not the capture-recapture pa-

rameters presented in Table 4.6, but the simpler terms presented in Table 4.2,

since we only need to assess the mixture property demonstrated in this section.

4.3.2 Goodness-of-�t

For the goodness-of-�t assessment, we consider di�erent statistics based on

the distance between expected values under the model and observed values:

Pearson's χ2, the log-likelihood ratio statistic G2 (Cressie and Read, 1988,

p. 10); and more generally, due to the di�erent properties of these statistics

depending on the alternatives or sparseness of the table, the power-divergence

family of statistics, which we denote CR(λ) (Cressie and Read, 1988).

Let Ok and Ek respectively denote the observed and expected frequencies. The

test statistics are de�ned by:

χ2 =
K∑
k=1

(Ok − Ek)2

Ek
(4.10)

G2 = 2
K∑
k=1

Ok ln

(
Ok

Ek

)
(4.11)

CR(λ) =
2

λ(λ+ 1)

K∑
k=1

Ok

([
Ok

Ek

]λ
− 1

)
(4.12)

More speci�cally, we use the power-divergence statistic with λ = 2/3, which is

recommended by Cressie and Read (1988) for its properties as a compromise

between X2 and G2. We note that the G2 and χ2 both belong to the power-

divergence family. Indeed,

CR(1) =
K∑
k=1

Ok
Ok − Ek
Ek

=
K∑
k=1

O2
k

Ek
−

K∑
k=1

Ok
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Table 4.7: Table used for testing the mixture property of partial observations
at occasion i. The columns are pooled over the di�erent partial histories,
h(i) = U denotes that the animals are seen in U at i. The rows are pooled by
state at last release (�rst R rows) and when there are no certain observations
prior to i+1 (row R+1).

j = i + 1 . . . T

s = A . . . R . . . A . . . R

∑i−1
f=1 n

A,.,A,h(i)=U
f,i+1 . . .

∑i−1
f=1 n

A,.,R,h(i)=U
f,i+1 . . .

∑i−1
f=1 n

A,.,A,h(i)=U
f,T . . .

∑i−1
f=1 n

A,.,R,h(i)=U
f,T

...
...

...
...

...
...

...∑i−1
f=1 n

R,.,A,h(i)=U
f,i+1 . . .

∑i−1
f=1 n

R,.,R,h(i)=U
f,i+1 . . .

∑i−1
f=1 n

R,.,A,h(i)=U
f,T . . .

∑i−1
f=1 n

R,.,R,h(i)=U
f,T∑i

f=1w
U,.,A,h(i)=U
f,i+1 . . .

∑i
f=1w

U,.,R,h(i)=U
f,i+1 . . .

∑i
f=1w

U,.,A,h(i)=U
f,T . . .

∑i
f=1w

U,.,R,h(i)=U
f,T

n
A,A
i,i+1 . . . n

A,R
i,i+1 . . . n

A,.,A
i,T . . . n

A,.,R
i,T

...
...

...
...

...
...

...

n
R,A
i,i+1 . . . n

R,R
i,i+1 . . . n

R,.,A
i,T . . . n

R,.,R
i,T

and

χ2 =
K∑
k=1

(Ok − Ek)2

Ek
=

K∑
k=1

O2
k

Ek
− 2

K∑
k=1

Ok +
k∑
k=1

Ek .

Since the totals are �xed,
∑k

i=1Ek =
∑k

i=1Ok, and the two expressions are

equivalent.

For G2, let y = Ok/Ek, y
λ = exp [λln(y)]. Using the usual Taylor series

expansion at zero,

exp [λln(y)] = ln(y) +
λ2 ln(y)2

2!
+O({λ ln(y)}n+1) .

Therefore, applying the Box-Cox transformation results in

yλ − 1

λ
= ln(y) +

λ ln(y)2

2!
+O({λ ln(y)}n+1) .

When λ→ 0, all the terms in the expansion become negligible except for ln(y).

Hence,



4. Test for partial observations 136

lim
λ→0

2

λ(λ+ 1)

K∑
k=1

Ok

([
Ok

Ek

]λ
− 1

)
=

K∑
k=1

2Ok ln
Ok

Ek
= G2 .

If the null hypothesis is extrinsic, or in other words, if the parameter values

are pre-speci�ed under the null hypothesis, (Sokal and Rohlf, 2012, p. 711),

these di�erent power-divergence statistics are asymptotically equivalent and

follow a χ2 distribution withK−1 degrees of freedom (Cressie and Read, 1984).

However, when the null hypothesis is intrinsic, i.e. the parameter values have

to be estimated from the data, this approximation becomes conservative since

the estimation arti�cially makes the expected values closer to the observed

data, thus the null hypothesis is less likely to be rejected (Conover, 1980,

p. 194). To remedy this, when the parameters are estimated via maximum

likelihood of the multinomial cell frequencies, as is the case for the �rst step of

our mixture test, one degree of freedom is removed per parameter estimated

(Moore, 1986, p. 66). In order for the asymptotic distributions to hold,

expected frequencies in each cell should be at least 2 for a level α = 0.05

(Moore, 1986, p. 71), this is also the threshold used in U-CARE. As a practical

way of checking whether the asymptotics hold, Reise and Revicki (2014, p.

112) advise comparing the results from di�erent statistics that are supposed

to be asymptotically equivalent. If the results are very di�erent, it is likely

that the asymptotics do not hold. In our simulations and applications, we

check this based on the three goodness-of-�t statistics presented above. In

addition to this, we note that the tables used at each occasion i condition

on known states. Therefore, like for Test M, the test-statistics obtained at

each occasion are independent and a global test-statistic can be computed by

summing these up. This global test-statistic follows, under the null hypothesis,

a chi-square distribution with the number of degrees of freedom being the sum

of the degrees of freedom of the components per occasion.
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4.4 Simulation results

Under the null hypothesis, animals partially observed at i and re-observed

later are consistent with being a mixture of animals observed in the directly

observable states at i and re-observed in the same conditions: the partial ob-

servations are generated solely by the observable states. Using the usual H0

notation for the null hypothesis and H1 for the alternative, H1 = H̄0. A large

array of situations come under the alternative hypothesis: from the partial ob-

servations being generated by the directly observable states and another state

which is never directly observable to the more extreme case of partial observa-

tions all being generated only by one (or more) states which are never directly

observable. We wish the test to be sensitive to all departures from the null

hypothesis. In order to minimise the chances of sparse data and verify that the

test works as expected in theory, we use simulation in very large sample size

conditions and focus on an extreme case of the alternative hypothesis. First,

we simulate capture-recapture data under the null hypothesis, arising from two

directly observable states, with K = 5 sampling occasions and 25,000 animals

released per occasion. The capture, survival and transition probabilities, are

respectively set as pA = pB = 0.6, φA = 0.6, φB = 0.9, ψAB = 0.8, ψBA = 0.7.

This scenario is denoted by 2S. In order to introduce partial observations,

we set a varying percentage of the observations as missing completely at ran-

dom (MCAR). We also simulate data under the alternative hypothesis (also

with K = 5 sampling occasions and 25,000 animals released per occasion),

corresponding to the situation illustrated in Figure 4.2, where the partial ob-

servations are not generated by either of the two directly observable states,

but by a third state which is never directly observable, this scenario is denoted

by 3S. Using the standard multievent notation introduced in Section 3.6 from
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Chapter 3, the survival matrix is Φt =



0.7 0 0 0.3

0 0.8 0 0.2

0 0 0.9 0.1

0 0 0 1


for t = 1, . . . , 4;

the transition matrix is Ψt =



0.1 0.3 0.6 0

0.3 0.15 0.55 0

0.4 0.4 0.2 0

0 0 0 1


for t = 1, . . . , 4 and the

event matrix Bt =



0.45 0.55 0 0

0.45 0 0.55 0

0.45 0 0 0.55

1 0 0 0


for t = 1, . . . , 5

We simulate 600 datasets for each scenario. If any of the expected values are

lower than two, the corresponding test is deemed Non Applicable (NA). The

results obtained are given in terms of percentage of signi�cant test results out

of the number of applicable tests, at a 5% level, in Table 4.8. The simula-

tion results show that for the datasets simulated under the null hypothesis

(scenario 2S), the Type I error rate is close to 5%, whatever the percent-

age of partial observations (apart from the extreme case of 95% of MCAR

data). The results from the three statistics are very similar; this supports the

fact that the theoretical asymptotics hold. Also, for the datasets simulated

under an alternative hypothesis (scenario 3S), 100% of the test results were

signi�cant, whatever the test-statistic considered. Obviously, this very high

power was to be expected due to the very large sample size considered. But,

more importantly, it shows that the test reacts as expected from the theory of

the previous section, when the partial observations are not generated by the

directly observable states.
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Table 4.8: Testing the mixture property of partial observations:
simulation results, percentage of signi�cant test results out of the
number of applicable tests, G denotes the global test, i the sam-
pling occasion and %MCAR the percentage of observations set to
�Unknown� and N denotes the number of applicable tests.

Scenario % MCAR i χ2(%) CR (λ = 2
3
)(%) G2(%) dof N (non NA)

2S

5
2 3.50 3.83 5.00 12 600
3 5.83 5.67 6.50 6 600
G 5.00 5.17 5.67 18 600

15
2 4.50 4.17 4.67 12 600
3 3.83 3.67 3.83 6 600
G 4.17 4.00 4.00 18 600

25
2 5.83 5.83 5.67 12 600
3 3.83 4.00 4.00 6 600
G 5.17 5.17 4.83 18 600

35
2 6.00 5.83 5.83 12 600
3 3.67 3.67 3.83 6 600
G 6.33 6.17 6.67 18 600

45
2 5.00 5.00 5.33 12 600
3 6.17 6.17 6.17 6 600
G 6.33 6.33 6.17 18 600

55
2 5.67 6.00 5.83 12 600
3 5.67 5.50 5.50 6 600
G 6.00 5.67 5.33 18 600

65
2 5.50 5.50 5.33 12 600
3 5.83 5.83 5.50 6 600
G 5.17 5.17 5.67 18 600

75
2 4.83 5.17 5.83 12 600
3 4.17 4.17 3.83 6 600
G 5.17 5.17 6.00 18 600

85
2 4.83 4.83 5.33 12 600
3 5.33 5.17 5.50 6 600
G 4.83 5.17 5.83 18 600

95
2 NA NA NA 12 31

3 3.34 3.56 4.01 6 4492

G 3.36 3.58 4.04 6 4462

3S
- 2 100.00 100.00 100.00 12 600
- 3 100.00 100.00 100.00 6 600
- G 100.00 100.00 100.00 18 600

1results set to NA due to small number of applicable datasets
2number of datasets resulting in the same number of dof
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4.5 Applications

We have shown that, in theory, our test has the ability to assess whether

partial observations can be adequately modelled as stemming solely from the

directly observable states in a capture-recapture experiment. In this section,

we apply our new tool to real-life situations, for which the adequate underlying

state structure is known, in order to determine whether our test can also have

good performance for datasets with more realistic sample sizes. We use two

datasets as applications: the Canada geese presented in Section 3.6 and a

dataset of greater �amingoes. Note that the tables needed for the test were

quite sparse, we therefore used the following pooling strategy: on the columns,

pooled to the maximum until there was one degree of freedom left for the test

(the column with the minimal sum is pooled with the column with the second

minimal sum and so on) whilst on the rows, all the rows corresponding to

mixtures are pooled so that there is just one mixture left to test for.

4.5.1 Canada geese

We examine the Canada geese dataset under both the null and alternative

hypotheses by arti�cially creating these situations within the data. We set a

varying percentage of the observed geese's states to unknown (MCAR): 15%,

25% and 45%, so that the partial observations are generated only by the ob-

servable states (H0). These situations are respectively denoted by P15, P25

and P45 in Table 4.9. Then we examine situations that come under the alter-

native hypotheses by setting all of the observations from a particular state to

�unknown�. Hence, for situations 2PO and 3PO the partial observations stem,

respectively, only from states 2 and 3. Note that the state set to �unknown�

is never directly observed in each of these situations.

The results obtained from applying the mixture test to all these con�gu-

rations of the geese dataset are given in Table 4.9, in terms of p-value for the
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di�erent test-statistics that were considered in this chapter. These results are

very promising with the test reacting as it should under the di�erent con�g-

urations examined. Under all the null hypothesis con�gurations, the directly

observable states as sole underlying states for the partial observations provide

an adequate �t to the data. The p-values obtained for the three test-statistics

are extremely close, thus the asymptotics hold in these situations. For the

con�gurations under the alternative, the test strongly rejects the null hypoth-

esis, with p<0.001 for almost all the tests examined (by occasion and global).

Hence, the results from con�gurations 2PO and 3 PO lead to the conclusion

that the directly observable states do not provide an adequate underlying

state-structure for the partial observations.

4.5.2 Greater �amingoes

The dataset of greater �amingoes is formed of 7061 individuals ringed and

monitored from 1977 to 2014. It is a subset of the large �amingo study that

has been conducted in the Camargue (France) since 1977 (Sanz-Aguilar et al.,

2012, for example) and was provided by the Tour du Valat. Our dataset

focusses on the breeding status of the �amingoes: at each occasion, they are

observed as �breeder� or �non-breeder�; for some individuals, the state cannot

be determined but is known to be either �non-breeder� or �failed breeder�. This

situation falls under the alternative hypothesis for our test, since the partial

observations are not generated solely from the two directly observable states.

Note however, that this setting is less extreme than the 3S scenario from

our simulations in Section 4.4 or con�gurations 2PO and 3PO from the geese

analyses. Indeed, the underlying state structure for the partial observations

consist here in one of the directly observable states and another state which is

not observable directly. The results obtained are shown in Table 4.10 in terms

of p-values for the test-statistics considered, again, the tests per occasion are
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Table 4.9: Using di�erent con�gurations of the Canada geese dataset to assess
the new mixture test for assessing the underlying state structure of partial
observations, in some real-life conditions: the p-value obtained at each occa-
sion is presented for the di�erent statistics and the associated global tests are
denoted by G.

Con�guration i χ2(%) CR (λ = 2
3)(%) G2(%) dof

P15

2 0.14 0.14 0.14 1

3 0.14 0.14 0.14 1

4 0.60 0.60 0.60 1

G 0.21 0.20 0.20 3

P25

2 0.57 0.57 0.57 1

3 0.09 0.09 0.09 1

4 0.85 0.85 0.85 1

G 0.35 0.35 0.34 3

P45

2 0.84 0.84 0.84 1

3 0.82 0.82 0.82 1

4 0.85 0.85 0.85 1

G 0.99 0.99 0.99 3

2PO

2 <0.001 <0.001 <0.001 1

3 <0.001 <0.001 <0.001 1

4 <0.001 <0.001 <0.001 1

G <0.001 <0.001 <0.001 3

3PO

2 0.13 0.13 0.14 1

3 <0.001 <0.001 <0.001 1

4 <0.001 <0.001 <0.001 1

G <0.001 <0.001 <0.001 3
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displayed as well as the pooled global test, denoted by G.

In this case, the test does not give the expected conclusion: its result is

signi�cant only at occasion 30; there is otherwise no evidence to reject H0, with

none of the other tests per occasion giving signi�cant results and the global test

resulting in a p-value around 0.27. Since we know that the dataset corresponds

to a situation that belongs to the alternative hypothesis, we decided to use

non-parametric bootstrap in order to empirically evaluate the power of the

test for matched datasets. We generated 6,000 bootstrap samples of 7061

individuals and 38 occasions, by sampling 7061 individual capture histories

from the original dataset with replacement.

The results obtained from the non-parametric bootstrap samples are pre-

sented in Table 4.11, in terms of percentage of signi�cant test results. For the

global test, around 99% of the results are signi�cant: notice that more than

50% of the results for the tests per occasion are signi�cant at occasions 11 and

30 (which was the only signi�cant result for our original dataset). The boot-

strapped results lead to the conclusion that the partial observations do not

solely result from the observable states, for the �amingo data. As a counter-

example, we also performed non-parametric bootstrap on con�guration P45

from the geese dataset, which is under the null hypothesis, around 7.8% of the

global test results were found to be signi�cant at a 5% level, which is close to

the Type I error rate, as would be expected.

As for the non-signi�cant result obtained for the original �amingo dataset

despite the high estimated power from the bootstrapped samples (based on

the global test for instance), we performed simple descriptive statistics on the

bootstrapped datasets, and these did not show any obvious discrepancies com-

pared to the original �amingo dataset; further investigations were needed. We

checked that there was no coding issue by implementing the bootstrap using

two di�erent computer packages (R and MATLAB); both implementations

led to similar results. Upon examining bootstrapped datasets individually,
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we noticed that there were very often a couple of signi�cant results per oc-

casion among the 34 occasions considered. These were enough to render the

global test result signi�cant, as it is formed by summing up the chi-square

statistics obtained per occasion. Hence, the 99% of signi�cant global test re-

sults obtained for the bootstrap. We also examined individual occasions for

which there was a strong discrepancy between the test results from the original

dataset and those from the bootstrap samples. For example, at occasion 11

(p = 0.89 versus 52% of signi�cant results), the number of animals forming the

mixture (i.e. partially observed animals) is quite small (N=44) and many of

the bootstrapped datasets result in multinomial cells with very small frequen-

cies (see Table 4.12). These are associated to extremely small cell probabilities

which are much more extreme than those of the bases and cannot be recon-

structed from a weighted average of the bases cell-probabilities; the test for a

mixture structure is consequently rejected. More generally, the bootstrapped

datasets are obtained by sampling with replacement and the over or under-

representations within the cells of the mixture are not necessarily consistent

with the over and under-representations within the cells of the bases. This

is not surprising as the partial observations in the �amingo dataset are actu-

ally not generated by the mixture model assumed under the null hypothesis.

When the cell-probabilities associated to the mixture are too extreme to be

reconstructed from the bases, the test is rejected.

The result obtained from the original dataset could be a �false negative�.

The issue of reproducibility of the p-value might also be considered (see for

example Boos and Stefanski, 2011; Halsey et al., 2015). Halsey et al. (2015)

note that p-values are often used alone as an �index of truth� whilst, like

other statistical quantities, they present sample-to-sample variability, which

is rarely reported. To take this into consideration, Boos and Stefanski (2011)

advise using variability measures such as bootstrap standard-errors or predic-

tion intervals, or computing reproducibility probabilities. Note however, that
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these criticisms are mainly targeted at non-reproducible signi�cant p-values.

Also, in the goodness-of-�t context we use the p-value as guidance rather than

a truth indicator. However, computing and reporting p-value variability in

these goodness-of-�t situations or routinely using non-parametric bootstrap,

which do not require much computational power, could be of interest, and this

is an area that could be explored more in future research.

4.6 Discussion

In this chapter, we have derived a mixture test that assesses whether partial

observations are generated solely by the directly observable states. This test

is based on distributional properties which we have demonstrated. It was

shown to perform well in theory, based on simulations in very large sample size

conditions. In order to assess the usefulness of the test in real-life situations,

its power should be examined for smaller, more realistic, sample sizes. For

example, simulations based on an incrementally decreasing sample size could

be run so as to approximately evaluate the minimum sample size necessary for

the test to work well; this is an area of future research.

As evidenced by our application on the greater �amingoes data, there is

a range of alternatives that can be considered: partial observations may stem

from one of the directly observable states and an additional state. Going

further, they may also stem from all the observable states and another state

which is never observable directly. In theory, the test should react to this

situation too. However, in practice, we surmise that the other state would

have to present di�erent enough properties from the directly observable states

for the test to be powerful enough to detect it. Evaluating the performance of

the test for a range of alternatives could be explored in future research. Also,

the issue of sample size is more complex than usual in this framework. Indeed

it is not only the total sample size which matters but also the proportion of
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Table 4.10: Testing the mixture property of partial observations on a dataset
of greater �amingoes: p-value obtained at each occasion i and for the global
test denoted by G.

i χ2(%) CR (λ = 2
3
)(%) G2(%) dof

2 NA NA NA NA
...

...
...

...
...

8 NA NA NA NA
9 0.33 0.33 0.33 1
10 0.71 0.71 0.71 1
11 0.89 0.89 0.89 1
12 0.57 0.57 0.57 1
13 0.26 0.26 0.26 1
14 0.91 0.91 0.91 1
15 0.12 0.12 0.12 1
16 0.15 0.15 0.15 1
17 0.34 0.34 0.34 1
18 0.25 0.25 0.25 1
19 0.90 0.90 0.90 1
20 0.68 0.68 0.68 1
21 0.64 0.64 0.64 1
22 0.19 0.19 0.19 1
23 0.10 0.10 0.10 1
24 0.26 0.26 0.27 1
25 0.48 0.48 0.48 1
26 NA NA NA NA
27 NA NA NA NA
28 NA NA NA NA
29 0.18 0.18 0.18 1
30 0.03 0.03 0.03 1
31 NA NA NA NA
32 0.10 0.10 0.10 1
33 0.15 0.14 0.12 1
34 0.99 0.99 0.99 1
35 0.62 0.62 0.62 1
36 0.75 0.75 0.75 1

G 0.28 0.27 0.26 24
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Table 4.11: Flamingo dataset, percentage of signi�cant results for non-
parametric bootstrap samples: tests per occasion and global test (denoted
by G).

i χ2(%) CR (λ = 2
3)(%) G2(%) N (non NA)

2 NA NA NA 0
...

...
...

...
...

6 NA NA NA 0

7 25.19 25.19 27.72 671

8 30.15 30.15 31.87 1048

9 14.05 14.05 14.14 5941

10 10.78 10.78 10.73 6000

11 52.11 52.11 52.14 5995

12 11.44 11.44 11.50 5998

13 27.83 27.83 27.85 6000

14 14.72 14.72 14.62 6000

15 44.88 44.88 44.82 6000

16 23.20 23.20 23.25 6000

17 14.54 14.54 14.55 5999

18 44.52 44.52 44.55 6000

19 33.58 33.58 33.58 6000

20 32.65 32.65 32.50 5966

21 10.13 10.13 10.12 6000

22 12.13 12.13 12.12 6000

23 25.05 25.05 24.98 6000

24 11.18 11.18 11.18 6000

25 15.48 15.48 15.45 6000

26 NA NA NA 0

27 NA NA NA 0

28 NA NA NA 0

29 20.80 20.80 20.80 5525

30 67.32 67.32 67.28 6000

31 NA NA NA 0

32 30.88 30.88 31.08 6000

33 37.57 37.57 39.74 5994

34 9.07 9.07 9.07 6000

35 11.37 11.37 11.32 6000

36 5.58 5.58 5.57 6000

G 98.95 98.97 98.98 6000
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Table 4.12: Occasion 11, observed frequencies, observed probabilities and es-
timated probabilities under the null hypothesis (mixture structure) for the
original �amingo dataset and an example bootstrapped dataset.

Observed frequencies Observed probabilities Estimated probabilities

Real dataset
Mixture 18 12 14 0.41 0.27 0.32 0.41 0.27 0.33
Basis1 161 133 151 0.36 0.30 0.34 0.36 0.30 0.34
Basis2 70 26 41 0.51 0.19 0.30 0.51 0.19 0.30

Bootstrapped
Mixture 32 3 10 0.71 0.07 0.22 0.50 0.26 0.23
Basis1 168 150 124 0.38 0.34 0.28 0.38 0.34 0.28
Basis2 48 39 27 0.42 0.34 0.24 0.50 0.26 0.23

partial observations.

Finally, regarding the interpretation of the test, if the null hypothesis is

not rejected, the observable states provide an adequate underlying structure

for the partial observations. However, the interpretation of a signi�cant test

result is not as straightforward. Indeed, if the observable states are inadequate,

how many additional states should be considered for the underlying structure

and how the partial observations should be modelled are questions that do

not have obvious answers at this stage and constitute another area of future

research.



Chapter 5

A procedure to test for

unobservable states

5.1 Introduction

In this chapter, we focus on multistate models presenting an additional level

of uncertainty for the non-captures, or in other words, some of the states are

unobservable. Unobservable states form a general modelling tool. They can

be used to model phenomena such as temporary emigration or to represent

a biological state such as non-breeder for birds (Kendall, 2004), or dormant

for plants (Kéry and Schaub, 2012). In this framework, when an individual is

observed, there is no uncertainty as to its state. An example of a model struc-

ture containing an unobservable state, based on breeding status is illustrated

in Figure 5.1. A bird may be observed as �Breeder� (B) or �Failed breeder�

(FB); a bird may be a `Non-breeder�(NB) but can never be observed in that

state. Hence, when a bird is not captured (NC), it can actually be in any of

the three live states: B, FB, or NB, or it can be dead (†).

Our initial goal was to develop a procedure to assess whether there is sta-

tistical support that one or more unobservable states should be de�ned in the
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Observed B NC FB

Underlying

B NB † FB

Figure 5.1: Illustration of a model structure with two observable states B and
FB, one unobservable live state NB (and the dead state: †). The event NC
denotes �Not captured �

model for it to �t the data adequately. Note that there is not necessarily

a one-to-one correspondence between the unobservable states de�ned in the

model and biological states. The general idea behind this procedure is a nat-

ural extension of the question posed by Test M (described in Section 4.2): at

each occasion, are the animals that are not captured consistent with being

a mixture of animals observed in any of the observable states and animals

who are in the unobservable state(s) at the same occasion? The path from

capture-recapture probabilities to a multinomial mixture and bases structure

was proven in Pradel et al. (2003) and we retain the same framework: this is

illustrated using the toy-example from Table 5.1 (also presented in Chapter 4)

as a starting point and setting the capture probability in state C to 0 (thus

rendering C unobservable); Table 5.2 illustrates how this unobservable state

translates into an unobservable basis. We use the following colour coding: red

for the observable bases, blue for the mixtures and grey for the unobservable

bases.

Testing for unobservable states means testing for unobservable bases in the

more general mixture and bases framework, introduced in Chapter 4. Despite

the apparent simplicity, the procedure was not a straightforward extension

of Test M and many steps were needed. Hence, the work naturally shifted

to focus on the more general model structure of mixtures of multinomials
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Table 5.1: Table of the multi-state m-array terms associated to Test M at
occasion i = 2. The mixtures are denoted by M and the bases by B.

mAA
13 mAB

13 mAC
13 mAA

14 mAB
14 mAC

14 M1

mBA
13 mBB

13 mBC
13 mBA

14 mBB
14 mBC

14 M2

mCA
13 mCB

13 mCC
13 mCA

14 mCB
14 mCC

14 M3

mAA
23 mAB

23 mAC
23 mAA

24 mAB
24 mAC

24 B1

mBA
23 mBB

23 mBC
23 mBA

24 mBB
24 mBC

24 B2

mCA
23 mCB

23 mCC
23 mCA

24 mCB
24 mCC

24 B3

Table 5.2: Table for mixtures and bases, at occasion i = 2, state C is unob-
servable. The mixtures are denoted by M and the bases by B.

mAA
13 mAB

13 mAA
14 mAB

14 M1

mBA
13 mBB

13 mBA
14 mBB

14 M2

mAA
23 mAB

23 mAA
24 mAB

24 B1

mBA
23 mBB

23 mBA
24 mBB

24 B2

mCA
23 mCB

23 mCA
24 mCB

24 B3

and bases, where samples from the mixtures and only some of the bases are

available (no samples available for the unobservable bases). In order to do

this, parameter redundancy was investigated. The concept is explained in

Section 5.2 and general results are derived in Section 5.3. Using the parameter

redundancy results, we go on to implement a testing procedure for one and

two unobservable bases in Section 5.4. We assess whether it works as expected

using simulations under very good conditions (i.e. large sample size). This

procedure is then applied to a capture-recapture setting in Section 5.5, using

simulation in the same way; we also apply the procedure to the Canada geese

dataset. Finally we conclude and discuss our �ndings in Section 5.6. As shown

by this chapter introduction, the primary focus shifted naturally as the work

progressed. The chapter is mainly concerned with a procedure to test for one or

two unobservable bases in a general mixture-bases context (although it could

theoretically be used for more unobservable bases); and the procedure to test
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for unobservable states in a capture-recapture setting becomes secondary as it

constitutes an application of the more general results derived in this chapter.

5.2 Investigating parameter redundancy

5.2.1 Introduction

The cell probabilities associated with the frequency cells in Table 5.2 are given

in Table 5.3. We use the MMLM approach (detailed in Chapter 4, Section

4.2) and �rst attempt to estimate the cell probabilities associated with the

bases and the mixing probabilities via maximum-likelihood. Using a numerical

example corresponding to the model presented in Table 5.3, the estimation of

the 25 parameters (7×3 basis probabilities + 2×2 mixing probabilities ) via

maximum likelihood was found to be problematic. Indeed, di�erent sets of

initial values led to di�erent parameter estimates for the same maximised

likelihood value.

If di�erent sets of maximum likelihood estimates (MLEs) result in the same

optimum log-likelihood value, this means that there is a problem with identi�-

ability. A model is globally identi�able if it is characterised by a unique set of

MLEs: M(θ1) = M(θ2) only if θ1 = θ2 (Cole et al., 2010). A non-identi�able

model can be reparametrised using a smaller number of parameters (Cole

et al., 2010). In other words, it is over-parametrised or parameter-redundant.

Table 5.3: Cell-probabilities for mixtures and bases with one unobservable
basis

π1p
B1
1 +π2p

B2
1 π1p

B1
2 +π2p

B2
2 π1p

B1
3 +π2p

B2
3 π1(1− pB1

1 − pB1
2 − pB1

3 )
+(1− π1 − π2)pB3

1 +(1− π1 − π2)pB3
2 +(1− π1 − π2)pB3

3 +π2(1− pB2
1 − pB2

2 − pB2
3 ) M1

+(1− π1 − π2)(1− pB3
1 − pB3

2 − pB3
3 )

γ1p
B1
1 +γ2p

B2
1 γ1p

B1
2 +γ2p

B2
2 γ1p

B1
3 + γ2p

B2
3 γ1(1− pB1

1 − pB1
2 − pB1

3 )
+(1− γ1 − γ2)pB3

1 +(1− γ1 − γ2)pB3
2 +(1− γ1 − γ2)pB3

3 +γ2(1− pB2
1 − pB2

2 − pB2
3 ) M2

+(1− γ1 − γ2)(1− pB3
1 − pB3

2 − pB3
3 )

pB1
1 pB1

2 pB1
3 (1− pB1

1 − pB1
2 − pB1

3 ) B1

pB2
1 pB2

2 pB2
3 (1− pB2

1 − pB2
2 − pB2

3 ) B2

pB3
1 pB3

2 pB3
3 (1− pB3

1 − pB3
2 − pB3

3 ) B3
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A parameter-redundant model has a �at ridge in the likelihood surface which

results in multiple sets of MLEs (Catchpole and Morgan, 1997). Cole et al.

(2010) showed that parameter redundancy within a model can be investigated

by using an exhaustive summary κ, which is a vector of parameters that de�nes

the model uniquely. The exhaustive summary is di�erentiated with respect to

the model parameters θ to form the derivative matrix D = ∂κ/∂θ. The rank

of D determines whether the model is parameter redundant: if it is lower than

the number of parameters p, the model is parameter redundant; if the rank is

equal to the number of parameters, the model is termed full rank.

Recall that each row of the model examined in this chapter (see example

Table 5.3) corresponds to a multinomial distribution (Yantis et al., 1991). An

exhaustive summary is therefore a vector containing all the cell-probabilities,

noting that the more complicated last column of each row (de�ned by sub-

tracting the sum of row probabilities from 1) can be omitted since these terms

do not a�ect the rank of the derivative matrix (Catchpole and Morgan, 1997).

For instance, an exhaustive summary for our example from Table 5.3 would

be:

κ(θ) =



π1p
B1
1 + π2p

B2
1 + (1− π1 − π2)pB3

1

π1p
B1
2 + π2p

B2
2 + (1− π1 − π2)pB3

2

...

pB2
3

(1− pB2
1 − pB2

2 − pB2
3 )


The derivative matrix also provides the independent parameter combinations

that can be estimated. These allow the reformulation of a non-parameter-

redundant model in terms of a smaller number of parameters. Cole et al. (2010)

detail the steps of detecting parameter redundancy and �nding the estimable

parameter combinations, in their Theorem 1, Testing parameter redundancy,

which is given below:
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Theorem 1 (Testing parameter redundancy)

(a) (i) If D has rank equal to p then the model is full rank.

(ii) If the rank of D is equal to q < p, then the model is parameter

redundant. There are q estimable parameters and the model has

de�ciency d = p− q.

(b) If the model is parameter redundant the estimable parameters can be

determined by solving α(θ)TD(θ) = 0, which has d solutions, labelled

αj(θ) for j = 1,..., d, with individual entries αij(θ). Any αij(θ) which are

zero for all d solutions correspond to a parameter, θi, which is estimable.

The solutions of the system of linear �rst-order partial di�erential equa-

tions (PDEs),

p∑
i=1

αij
∂f

∂θi
= 0 j=1,...,d and f an arbitrary function

form the set of estimable parameters. Parameterised in terms of the

estimable parameters, the model is full rank.

The symbolic algebra corresponding to these steps is carried out using

the software Maple. We note that the parameter redundancy of multi-state

capture-recapture models in the presence of unobservable states has been in-

vestigated by Cole (2012), and the paper provides estimable combinations of

capture-recapture parameters. Our aim here is di�erent, as we derive pa-

rameter redundancy results for the more general framework of mixtures of

multinomials and their associated bases, when some of the bases are unob-

servable.
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5.2.2 Parameter redundancy results for an example model:

4 bins, 2 mixtures, 3 bases - 2 observable and 1 un-

observable

There are obvious cases when the model will be parameter-redundant because

there is not enough information to estimate all the parameters uniquely. When

all the bases are observable (i.e. usual product-multinomial context), if the

exhaustive summary has fewer distinct terms than the number of parameters,

the model will be parameter redundant (Cole et al., 2012). Let K be the

number of columns (bins) of the multinomials, let B be the number of bases

and M the number of mixtures. The number of distinct independent terms in

the exhaustive summary is (B+M)(K−1) whilst the number of parameters to

be estimated is B(K−1) basis probabilities andM(B−1) mixing probabilities.

This results in the inequality (B+M)(K − 1) ≥ B(K − 1) +M(B− 1) which

simpli�es to K ≥ B. Therefore when there are no unobservable bases, the

number of bins needs to be at least equal to the number of bases in order to

have enough information to estimate the parameters.

As a starting point to examine parameter redundancy, we use a model that

could be identi�able when all bases are observable (i.e. K ≥ B) and examine

the case of M = 2, B = 3 formed of two observable bases, denoted by O = 2

and one unobservable basis, denoted by U = 1; with K = 4. This corresponds

to the model structure presented in Table 5.3 and the set of model parameters

is

θ =

[
γ1 γ2 pB1

1 pB1
2 pB1

3 pB2
1 pB2

2 pB2
3 pB3

1 pB3
2 pB3

3 π1 π2

]T
.

Let P denote the matrix of cell-probabilities of the model, with
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P =



π1p
B1
1 + π2p

B2
1 π1p

B1
2 + π2p

B2
2 π1p

B1
3 + π2p

B2
3 π1(1− pB1

1 − pB1
2 − pB1

3 )

+(1− π1 − π2)pB3
1 +(1− π1 − π2)pB3

2 +(1− π1 − π2)pB3
3 ) +π2(1− pB2

1 − pB2
2 − pB2

3 )

+(1− π1 − π2)(1− pB3
1 − pB3

2 − pB3
3 )

γ1p
B1
1 + γ2p

B2
1 γ1p

B1
2 + γ2p

B2
2 γ1p

B1
3 + γ2p

B2
3 γ1(1− pB1

1 − pB1
2 − pB1

3 )

+(1− γ1 − γ2)pB3
1 +(1− γ1 − γ2)pB3

2 +(1− γ1 − γ2)pB3
3 +γ2(1− pB2

1 − pB2
2 − pB2

3 )

+(1− γ1 − γ2)(1− pB3
1 − pB3

2 − pB3
3 )

pB1
1 pB1

2 pB1
3 (1− pB1

1 − pB1
2 − pB1

3 )

pB2
1 pB2

2 pB2
3 (1− pB2

1 − pB2
2 − pB2

3 )



. (5.1)

As noted previously, the vector denoted κ(θ) containing all of the cell-probabilities

constitutes an exhaustive summary for this model:

κ(θ) =



π1p
B1
1 + π2p

B2
1 + (1− π1 − π2)pB3

1

π1p
B1
2 + π2p

B2
2 + (1− π1 − π2)pB3

2

...

pB2
3

(1− pB2
1 − pB2

2 − pB2
3 )


Using Maple to perform symbolic computations, the �rst order derivative ma-

trix D is
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D
=

                                      

0
0

0
0

pB
1

1
−
pB

3
1

pB
1

2
−
pB

3
2

pB
1

3
−
pB

3
3

−
pB

1
1
−
pB

1
2
−
pB

1
3

+
pB

3
1

+
pB

3
2

+
pB

3
3

0
0

0
0

0
0

0
0

0
0

0
0

pB
2

1
−
pB

3
1
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2
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−
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2
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2
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−
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+
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−
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The rank of the derivative matrix is q = 11 while there are p = 13 pa-

rameters to be estimated. Applying Theorem 1a, there is a de�ciency of

d = 13 − 11 = 2, the model is parameter redundant. Note that in this case

(K = 4), parameter redundancy would be expected due to the number of cells

since there are 12 independent cells but 13 parameters.

In order to �nd an expression of the estimable parameter combinations,

as per Theorem 1b, we solve αTD = 0, which will have d solutions. The

positions of the zeros common to these solutions indicate which parameters

are estimable (Catchpole et al., 1998; Cole et al., 2010). In this case, the two

solutions are:

αT1 =

[
0 −1+γ1+γ2

−1+π1+π2 0 0 0 0 0 0
pB2
1 −pB3

1

−1+π1+π2
pB2
2 −pB3

2

−1+π1+π2
pB2
3 −pB3

3

−1+π1+π2 0 1

]

αT2 =

[
−1+γ1+γ2
−1+π1+π2 0 0 0 0 0 0 0

pB1
1 −pB3

1

−1+π1+π2
pB1
2 −pB3

2

−1+π1+π2
pB1
3 −pB3

3

−1+π1+π2 1 0

]
.

The zeroes in positions 3 to 8 for both solutions obtained indicate that we can

estimate the parameters pB1
1 , pB1

2 , pB1
3 , pB2

1 , pB2
2 , pB2

3 . The cell-probabilities

of the observable bases B1 and B2 being estimable separately is as expected

since they are both independent multinomials with enough independent cells.

In contrast, the mixing probabilities and the cell-probabilities of the unob-

servable basis B3 are not estimable separately. The estimable combinations

of parameters are found by solving a system of di�erential equations as per

Theorem 1b:
∑p

i=1 αij∂f/∂θi = 0 for j = 1, . . . , d (Catchpole et al., 1998;

Cole et al., 2010). In this case, as the de�ciency is d = 2, the two di�erential

equations are:
−1+γ1+γ2
−1+π1+π2

∂f
∂γ2

+
pB2
1 −pB3

1

−1+π1+π2
∂f
∂pB3

1
+

pB2
2 −pB3

2

−1+π1+π2
∂f
∂pB3

2
+

pB2
3 −pB3

3

−1+π1+π2
∂f
∂pB3

3
+ ∂f

∂π2
= 0

−1+γ1+γ2
−1+π1+π2

∂f
∂γ1

+
pB1
1 −pB3

1

−1+π1+π2
∂f
∂pB3

1
+

pB1
2 −pB3

2

−1+π1+π2
∂f
∂pB3

2
+

pB1
3 −pB3

3

−1+π1+π2
∂f
∂pB3

3
+ ∂f

∂π1
= 0
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The solution gives us the following estimable combinations of the original

parameters:

γ1(−pB1
1 + pB3

1 ) + γ2(−pB2
1 + pB3

1 )− pB3
1 (= −pM2

1 )

γ1(−pB1
2 + pB3

2 ) + γ2(−pB2
2 + pB3

2 )− pB3
2 (= −pM2

2 )

γ1(−pB1
3 + pB3

3 ) + γ2(−pB2
3 + pB3

3 )− pB3
3 (= −pM2

3 )

−1+π1+π2
−1+γ1+γ2

(1−π1)γ2+π2(γ1−1)
−1+γ1+γ2

The three �rst estimable combinations are easily recognizable as the cell-

probabilities of mixture M2, denoted by pM2
i . Let β1 = (−1 + π1 + π2) / (−1 + γ1 + γ2)

and β2 = [(1− π1)γ2 + π2(γ1 − 1)] / [−1 + γ1 + γ2], the cell-probabilities of

mixture M1, denoted by pM1
i can be expressed as a linear combination of the

cell-probabilities of M2 and of the observable bases: pM1
i = β1p

M2
i + β2p

B2
i +

(1−β1−β2)pB1
i . The cell-probabilities are needed for the likelihood construc-

tion so we reparametrise the model, creating a full rank parametrisation based

on the estimable parameter combinations. A reparametrisation of θ is given

by s(θ) :

s(θ) =

[
pB1
1 pB2

1 pM2
1 pB1

2 pB2
2 pM2

2 pB1
3 pB2

3 pM2
3 β1 β2

]T
The exhaustive summary expressed in terms of this reparametrisation is:

κ(s) =



β1p
M2
1 + β2p

B2
1 + (1− β1 − β2)pB1

1

β1p
M2
2 + β2p

B2
2 + (1− β1 − β2)pB1

2

...

pB2
2

pB2
3

(1− pB2
1 − pB2

2 − pB2
3 )


(5.2)

Parameter redundancy within this reparametrised model can be examined,

using Cole et al. (2010)'s reparametrisation theorem, which is given below.
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Theorem 2 (Reparametrisation theorem) Let Ds denote the rank of the

�rst-order derivative of the reparametrised exhaustive summary with respect to

the reparametrisation s(θ): Ds = ∂κ(s)/s. Let ps = dim(s)

(a) (i) If the rank of Ds, rs, is equal to ps, s constitutes a reduced form

exhaustive summary of the original model, and Theorem 1 may be

applied to examine model structure.

(ii) If rs is lower than ps, s is not a reduced form exhaustive summary.

A reduced-form exhaustive summary may be found by �rst solving

αTDs = 0 and then solving the appropriate partial di�erential equa-

tions as in Theorem 1b.

(b) If rank(∂s/∂θ) = ps, the number of estimable parameters is equal to rs.

If rs = dim(θ)then the model in terms of θ is full rank. If rs < dim(θ)

the model in terms of θ is parameter redundant.

Here, the rank of Ds is 11, for 11 parameters in the reparametrisation (ps=11).

By application of Theorem 2a, s constitutes a reduced-form exhaustive sum-

mary, and the reparametrised model is of full rank (by application of Theorem

1a).

5.3 Generalising the parameter redundancy re-

sults

Recalling the notations used earlier: let K denote the number of bins of the

multinomials, M the number of mixtures, B the number of bases. We intro-

duce additional notations to distinguish observable and unobservable bases:

respectively denoted by O and U (B = O + U). In this section, we wish to

obtain more general parameter redundancy results for a product multinomial

model consisting of mixtures and associated bases, when some of the bases are
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unobservable. The general model is presented in Table 5.4 in terms of cell-

probabilities, recalling that the mixing probabilities and the row-probabilities

both sum to one. We build on the example from Section 5.2.2, successively

expanding the table in di�erent directions, which leads to more general param-

eter redundancy results. Thus parameter redundancy is examined in Section

5.3.1 for an increase in the number of bins K, in Section 5.3.2 for an increase

in the number of mixtures M , in Sections 5.3.3 and 5.3.4 for respectively an

increase in the number of observable bases and unobservable bases. Finally, a

summary of the results is collated in Section 5.3.5.

In order to generalise the parameter results, we use the reparametrisation

theorem (Theorem 2) combined with Theorem 3, the extension theorem. The

extension theorem applies to full rank models and is cited below from Cole

et al. (2010).

Theorem 3 (Extension theorem) If a model with parameters θ1, exhaus-

tive summary κ(θ1), and derivative matrix D1(θ1) = ∂κ1/∂θ1, is extended,

adding extra parameters θ2, with the exhaustive summary extended to

κ(θ′) =

[
κ1(θ1),κ2(θ′)

]
, with θ′ = [θ1,θ2]. The derivative matrix of the ex-

tended model is D =

D1(θ1) D2,1(θ1)

0 D2,2(θ2)

, with D2,1 = ∂κ2

∂θ1
and D2,2 = ∂κ2

∂θ2
.

If the original model is full rank (i.e. D1 is full rank), and D2,2 is full rank,

then the extended model is full rank also.

If the model examined is parameter redundant, we �rst reparametrise it so

as to obtain a full rank model. The extension theorem can then be applied

to the reduced-form exhaustive summary obtained from the reparametrisation

theorem (Cole et al., 2010).
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5.3.1 Increasing the number of bins

In Section 5.2.2, we have shown that for K = 4, a multinomial model structure

comprising ofM = 2, O = 2, U = 1 presents a de�ciency of 2. Hence, we start

with Equation 5.2, the reparametrised exhaustive summary derived in Section

5.2.2 for K = 4. We present it in a slightly di�erent format: �rst, we omit

the terms from the last column from the model cell-probabilities P (Equation

5.1) since these terms are more complicated (one minus the row probabilities)

and do not a�ect the rank of the derivative matrix as mentioned in Section 5.2

(Catchpole and Morgan, 1997). Then, we slightly modify the notations used

before in order to distinguish observable and unobservable bases more clearly:

the observable bases denoted B1 and B2 in the original Equation 5.1 become

O1 and O2 whilst the unobservable basis B3 is now denoted by U1. This gives

κ1(s1) as

κ1(s1) =



β1p
M2
1 + β2p

O2
1 + (1− β1 − β2)pO1

1

β1p
M2
2 + β2p

O2
2 + (1− β1 − β2)pO1

2

β1p
M2
3 + β2p

O2
3 + (1− β1 − β2)pO1

3

pM2
1

pM2
2

pM2
3

pO1
1

pO1
2

pO1
3

pO2
1

pO2
2

pO2
3



,

where s1 =

[
pM2
1 pM2

2 pM2
3 pO1

1 pO1
2 pO1

3 pO2
1 pO2

2 pO2
3 β1 β2

]T
. When

K is increased by 1 (i.e.Table 5.3 extended by one column), the additional cell-

probabilities are:
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κ2(θ2)



π1p
O1
4 + π2p

O2
4 + (1− π1 − π2)pU1

4

γ1p
O1
4 + γ2p

O2
4 + (1− γ1 − γ2)pU1

4

pO1
4

pO2
4


, where θ2 =

[
pU1
4 pO1

4 pO2
4

]T
.

Using the reparametrisation from Section 5.2.2, the new additional terms can

be expressed as

κ2(s2) =



β1p
M2
4 + β2p

O2
4 + (1− β1 − β2)pO1

4

pM2
4

pO1
4

pO2
4


,

and the additional parameters are s2 =

[
pM2
4 pO1

4 pO2
4

]T
. Recall from

Section 5.2.2 that the derivative matrix of the initial reparametrised model

D1(s1) = ∂κ1(s1)/∂s1 is of full rank. Let us study the rank of D2(s2):

D2(s2) =
∂κ2

∂s2
=


β1 1 0 0

−β1 − β2 + 1 0 1 0

β2 0 0 1


The rank of this matrix is 3, which is equal to the number of additional pa-

rameters: D2(s2) is full rank. Note thatD2(s2) corresponds to the termD2,2

from the extension theorem and D1(s1) to D1. Both these terms have been

shown to be full rank, hence the reparametrised extended model is of full rank.

It has three additional estimable parameters (pO1
4 , pO2

4 , pM2
4 ) for three addi-

tional original parameters (pO1
4 , pO2

4 , pU1
4 ). Since the extended reparametrised

model is full rank, thus with rank 14, the extended model in terms of the 16

original parameters is parameter redundant with de�ciency 2. By induction,

the generalisation from a multinomial with K bins to K + 1 bins will proceed

in the same way (Cole et al., 2012). Hence, the extended model with M = 2,

O = 2, U = 1, will always be parameter redundant with de�ciency 2 for all
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K ≥ 4.

5.3.2 Increasing the number of mixtures

In this section, we aim to generalise the parameter redundancy results when

increasing the number of mixtures. Starting from M = 1, O = 2, U = 1,

K = 4, and labelling this mixtureM2 for convenience, the exhaustive summary

can be expressed as

κ1M (θ1M ) =



γ1p
O1
1 + γ2p

O2
1 + (1− γ1 − γ2)pU1

1

γ1p
O1
2 + γ2p

O2
2 + (1− γ1 − γ2)pU1

2

γ1p
O1
3 + γ2p

O2
3 + (1− γ1 − γ2)pU1

3

pO1
1

pO1
2

pO1
3

pO2
1

pO2
2

pO2
3


with θ1M =

[
γ1 γ2 pO1

1 pO2
1 pU1

1 pO1
2 pO2

2 pU1
2 pO1

3 pO2
3 pU1

3

]T
. Us-

ing Maple, the derivative matrix of the exhaustive summary with respect to the

parameters D1M = ∂κ1M (θ1M )/∂θ1M has rank 9, it is parameter redundant

with de�ciency 2. Solving the appropriate partial di�erential equations, the es-

timable parameter combinations are again found to be the cell-probabilities of

the mixture as in Section 5.2.2. We denote these estimable parameters by pM2
i ,

with pM2
i = γ1p

O1
i + γ2p

O2
i + (1− γ1− γ2)pU1

i . The reparametrised exhaustive

summary is then κ1M (s1M ) =

[
pM2
1 pM2

2 pM2
3 pO1

1 pO1
2 pO1

3 pO2
1 pO2

2 pO2
3

]T
,

where s1M =

[
pM2
1 pM2

2 pM2
3 pO1

1 pO1
2 pO1

3 pO2
1 pO2

2 pO2
3

]T
. In these

reparametrised terms, the model simply becomes a product-multinomial with

each cell-probability corresponding to a unique parameter: for instance multi-

nomialM2 is characterised solely by the p
M2
i , the same applies for multinomials
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O1 and O2. This model, and hence D1M (s1M ) = ∂κ1M (s1M )/∂s1M is there-

fore obviously full rank (Cole et al., 2012). Note that this result is consistent

with the rank of the derivative matrix found using Maple. The extension the-

orem is now applied to this full-rank reparametrised model. When increasing

the number of mixtures to 2, the extended summary in reparametrised terms

is κ1(s1) from Section 5.3.1. The additional terms are denoted by

κ2M (s2M ) =


pM2
1 β1 + β2p

O2
1 + (1− β1 − β2)pO1

1

pM2
2 β1 + β2p

O2
2 + (1− β1 − β2)pO1

2

pM2
3 β1 + β2p

O2
3 + (1− β1 − β2)pO1

3

, where s2M =

[
β1 β2

]T
.

Recall from Section 5.2.2 that β1 = (−1 + π1 + π2)/(−1 + γ1 + γ2) and

β2 = [(1− π1)γ2 + π2(γ1 − 1)] / [−1 + γ1 + γ2]. The derivative matrix term

D2,2 from the extension theorem is

D2M (s2M ) =
∂κ2M

∂s2M
=

pM2
1 − pO1

1 pM2
2 − pO1

2 pM2
3 − pO1

3

pO2
1 − pO1

1 pO2
2 − pO1

2 pO2
3 − pO1

3


The rank of this matrix is 2, which is equal to the number of additional

parameters, thus D2M (s2M ) is full rank. Using the extension theorem, since

D1M (s1M ) and D2M (s2M ) are both full rank, the extended reparametrised

model is of full rank. It has two additional estimable parameters (β1, β2) for

two additional original parameters (π1, π2). Since the extended reparametrised

model is full rank, thus with rank 11, the extended model in terms of the 13

original parameters is parameter redundant with de�ciency 2. By induction,

the generalisation from a model with M mixtures to M + 1 mixtures will

proceed in the same way (Cole et al., 2012).

From the two applications of the extension theorem, we can now conclude

that, a model with three bases, amongst which one is unobservable, withK ≥ 4

bins and M ≥ 1 mixtures will always be parameter redundant with de�ciency

2.
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5.3.3 Increasing the number of observable bases

We now increase the number of observable bases O: let K = 4, U = 1, O = 3,

M = 2. The exhaustive summary κ3O(θ3O) is obtained based on the general

multinomial model presented in Table 5.4, once again omitting the last column.

κ3O(θ3O) =



π1p
O1
1 + π2p

O2
1 + π3p

O3
1 + (1− π1 − π2 − π3)pU1

1

π1p
O1
2 + π2p

O2
2 + π3p

O3
2 + (1− π1 − π2 − π3)pU1

2

...

pU1
2

pU1
3


with model parameters θ3O =

[
γ1 γ2 γ3 pO1

1 pO1
2 . . . pU1

2 pU1
3 π1 π2 π3

]T
.

The rank of the derivative matrix, D3O = ∂κ3O(θ3O)/∂θ3O, is found to be

15 using Maple, whereas there are 18 parameters. The model is therefore pa-

rameter redundant with de�ciency 3. Solving the appropriate set of partial

di�erential equations as per Theorem 1b, the estimable parameter combina-

tions can be expressed as:

−pM2
1 = −γ1pO1

1 − γ2pO2
1 − γ3pO3

1 + (−1 + γ1 + γ2 + γ3)p
U1
1

−pM2
2 = −γ1pO1

2 − γ2pO2
2 − γ3pO3

2 + (−1 + γ1 + γ2 + γ3)p
U1
2

−pM2
3 = −γ1pO1

3 − γ2pO2
3 − γ3pO3

3 + (−1 + γ1 + γ2 + γ3)p
U1
3

β1 = −1+π1+π2+π3
−1+γ1+γ2+γ3

β2 = (1−π1−π3)γ2+π2(γ1+γ3−1)
−1+γ1+γ2+γ3

β3 = (1−π1−π2)γ3+π3(γ1+γ2−1)
−1+γ1+γ2+γ3

Once again, the cell-probabilities of mixture M1 can be expressed as a linear

combination of the cell-probabilities of M2 and of the observable bases, with

the βs being the coe�cients:

pM1
i = pM2

i β1 + β2p
O2
i + β3p

O3
i + (1− β1 − β2 − β3)pO1

i .

A reparametrised exhaustive summary based on these estimable combinations

can then expressed be expressed as:
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κ3O(s3O) =



pM2
1 β1 + β2p

O2
1 + β3p

O3
1 + (1− β1 − β2 − β3)pO1

1

pM2
2 β1 + β2p

O2
2 + β3p

O3
2 + (1− β1 − β2 − β3)pO1

2

pM2
3 β1 + β2p

O2
3 + β3p

O3
3 + (1− β1 − β2 − β3)pO1

3

pM2
1

pM2
2

pM2
3

pO1
1

pO1
2

pO1
3

pO2
1

pO2
2

pO2
3

pO3
1

pO3
2

pO3
3



,

with

s3O =

[
β1 β2 β3 pO1

1 pO1
2 pO1

3 pO2
1 pO2

2 pO2
3 pO3

1 pO3
2 pO3

3 pM2
1 pM2

2 pM2
3

]T
.

The derivative matrix D(s3O) = ∂κ3O(s3O)/∂s3O is found to have rank 15.

Hence, this reparametrised model is full rank as expected. Comparing the

reparametrised exhaustive summary to the starting point κ1(s1) for the model

with O = 2, K = 4, U = 1, M = 2, this is not a case where additional pa-

rameters are simply being added to the original exhaustive summary. Rather,

the original exhaustive summary terms are also modi�ed when increasing the

number of observable bases. Hence, this situation does not lend itself to the

application of the extension theorem.

However, we observe that the reparametrised exhaustive summary κ1(s1),

which corresponds to a model with 2 observable bases, may be obtained from

κ3O(s3O), by setting the following constraints: β3 = 0 and pO3
i = 0, for

i = 1, ..., 3. The rank of the derivative matrix D(s3O) evaluated for the
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constrained case would yield a rank of 15 − 4 = 11 which is indeed the rank

of D1(s1) (see Section 5.3.1).

By trying out situations with an increase in the number of observable bases

to 4, 5 etc. as well as in the number of mixtures and bins, keeping U1 as the

unobservable basis with associated mixing probability equal to one minus the

others, we observe a pattern for the estimable combinations. For O observable

bases, one unobservable basis (U = 1), M mixtures and K bins, these can be

expressed using the general notation de�ned in Table 5.4, as

• the �rst (K − 1) cell-probabilities of one of the mixtures Ml: p
Ml
i for

i = 1, ..., K − 1 (this can be any mixture)

• and if M ≥ 2 , (M − 1)(B − 1) parameters, with each of the remaining

mixtures Mm;(m6=l) expressed as a linear combination of mixture Ml and

the observable bases, using the following coe�cients:

� the coe�cient of mixture Ml,

βMm;m6=l
1 =

1−
∑O

k=1 π
Mm
Ok

1−
∑O

k=1 π
Ml
Ok

,

(recall that πMm
Ok denotes the mixing probability of basis Ok for

mixture Mm)

� the coe�cients of the observable bases Oj, for j = 2, . . . , O

βMm;m6=l
Oj =

πMm
Oj

(
−1 +

∑O
k=1
k 6=j

πMl
Ok

)
+ πMl

Oj

(
1−

∑O
k=1
k 6=j

πMm
Ok

)
−(1−

∑O
k=1 π

Ml
Ok )

� the coe�cient of observable basis O1 is then expressed as

βMm;m6=l
O1 = 1− βMm;m6=l

1 −
O∑
j=2

βMm;m6=l
Oj

We use induction to �nd a general result regarding the de�ciency of the
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model with O observable bases. We have shown that a model with M = 2,

K = 4, O = 2, U = 1 presents a de�ciency of 2, and that a model withM = 2,

K = 4, O = 3, U = 1 presents de�ciency of 3. Suppose that a model with

M mixtures and K bins, with O observable bases and one unobservable basis,

presents a de�ciency of O+U − 1 = B − 1, with B being the total number of

bases in the model. For the induction step, we show that reducing the number

of observable bases from O to O − 1 and thus the total number of bases from

B to B − 1 whilst keeping all other dimensions �xed, results in a de�ciency

of O − 1 + U − 1 = B − 2. Keeping the other dimensions �xed, the reduced

form exhaustive summary for a model with O − 1 observable bases can be

obtained by constraining to 0 the K − 1 cell probabilities of basis OO as well

as the (M−1) βm6=lO coe�cients relating to basis OO (for the (M−1) mixtures

expressed as linear combinations of the observable bases and mixtureMl in the

reparametrised model). The rank of the derivative matrix of the exhaustive

summary can be expressed as r = p−d, with p the number of parameters and

d the de�ciency. Therefore, the rank of the derivative matrix of the exhaustive

summary for the model with O observable bases, with respect to the original

parameters, will be r = [M(B − 1) + (K − 1)B]− (B − 1). Constraining the

parameters pertaining to basis O to 0 (K − 1 cell probabilities and M − 1

coe�cients), it follows that the rank of the derivative matrix model with O−1

observable bases is r2 = [M(B−1)+(K−1)B]− (B−1)− (K−1)− (M −1).

The number of parameters to estimate for a model with O−1 observable bases

and 1 unobservable basis (i.e. B−1 bases in total) is equal toM(B−2)+(B−

1)(K − 1). Therefore, using the relationship d = p − r, the de�ciency of the

model with O− 1 observable bases is equal to d = (M(B − 2) + (B − 1)(K −

1))− (M(B − 1) + (K − 1)B − (B − 1)− (K − 1)− (M − 1)) = B − 2. Hence

a model with B − 1 bases amongst which one is unobservable (O = B − 2,

U = 1) presents a de�ciency of B− 2. Thus, we have shown by induction that

a model with M mixtures, K bins, B bases, amongst which 1 is unobservable
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(O = B − 1, U = 1), is parameter redundant with de�ciency B − 1.

5.3.4 Increasing the number of unobservable bases

Finally, we examine the e�ect of rendering another basis unobservable: O = 2,

U = 2, K = 4, M = 2, again using the testing parameter redundancy theorem.

The exhaustive summary for this model is:

κ2U (θ2U ) =



π1p
O1
1 + π2p

O2
1 + π3p

U1
1 + (1− π1 − π2 − π3)pU2

1

π1p
O1
2 + π2p

O2
2 + π3p

U1
2 + (1− π1 − π2 − π3)pU2

2

π1p
O1
3 + π2p

O2
3 + π3p

U1
3 + (1− π1 − π2 − π3)pU2

3

γ1p
O1
1 + γ2p

O2
1 + γ3p

U1
1 + (1− γ1 − γ2 − γ3)pU2

1

γ1p
O1
2 + γ2p

O2
2 + γ3p

U1
2 + (1− γ1 − γ2 − γ3)pU2

2

γ1p
O1
3 + γ2p

O2
3 + γ3p

U1
3 + (1− γ1 − γ2 − γ3)pU2

3

pO1
1

pO1
2

pO1
3

pO2
1

pO2
2

pO2
3


with the model parameters being

θ2U =

[
γ1 γ2 γ3 pO1

1 pO1
2 . . . pU1

3 pU2
1 pU2

2 pU2
3 π1 π2 π3

]T
Using maple, the rank of the derivative matrix D2U(θ2U ) = ∂κ2U(θ2U )/∂θ2U

is 12 whilst there are 18 parameters to estimate, the model presents a de�ciency

of d = 6. When attempting to solve the partial di�erential equations necessary

to obtain the estimable parameters, Maple runs out of memory. Therefore

an incremental approach is used to �nd these estimable combinations. We

refer back to a simpler model with the same total number of bases, amongst

which only one is unobservable: O = 3, U = 1, K = 4, M = 2. We found

a reduced-form exhaustive summary for this model in Section 5.3.3: s3O.
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Keeping the total number of bases constant (here B = 4), if another basis

becomes unobservable (O = 2 and U = 2), the number of parameters to

estimate for the model won't change. However, the cell-probabilities associated

to the newly unobservable basis will disappear from the exhaustive summary

since they are no longer observed. Therefore, based on κ3O(s3O), we can

express the model with 2 unobservable bases in terms of the reparametrised

terms from s3O .

κ2U (s2U ) =



pM2
1 β1 + β2p

O2
1 + β3p

U2
1 + (1− β1 − β2 − β3)pO1

1

pM2
2 β1 + β2p

O2
2 + β3p

U2
2 + (1− β1 − β2 − β3)pO1

2

pM2
3 β1 + β2p

O2
3 + β3p

U2
3 + (1− β1 − β2 − β3)pO1

3

pM2
1

pM2
2

pM2
3

pO1
1

pO1
2

pO1
3

pO2
1

pO2
2

pO2
3


with

s2U =

[
β1 β2 β3 pO1

1 pO1
2 pO1

3 pO2
1 pO2

2 pO2
3 pM2

1 pM2
2 pM2

3 pU2
1 pU2

2 pU2
3

]T
.

Note that s2U corresponds s3O, only with basis O3 relabelled as U2 since it is

now unobservable.

The rank of the derivative matrix D2U(s2U ) = ∂κ2U(s2U )/∂s2U is 12, as

expected, for 15 terms to estimate in s2U ; s2U is not a reduced form summary.

Thus, applying Theorem 2a(ii), we solve the appropriate set of partial di�er-

ential equations and �nd the following estimable parameter combinations:
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τ1 = pM2

1 β1 + β2p
O2
1 + β3p

U2
1 + (−β1 − β2 − β3)pO1

1 = pM1
1 − pO1

1

τ2 = pM2
2 β1 + β2p

O2
2 + β3p

U2
2 + (−β1 − β2 − β3)pO1

2 = pM1
2 − pO1

2

τ3 = pM2
3 β1 + β2p

O2
3 + β3p

U2
3 + (−β1 − β2 − β3)pO1

3 = pM1
3 − pO1

3

A new reparametrisation in terms of these estimable combinations is given by

κ′2U(s′2U) =

[
τ1 + pO1

1 τ2 + pO1
2 τ3 + pO1

3 pM2
1 pM2

2 pM2
3 pO1

1 pO1
2 pO1

3 pO2
1 pO2

2 pO2
3

]T
with

s′2U =

[
τ1 τ2 τ3 pM2

1 pM2
2 pM2

3 pO1
1 pO1

2 pO1
3 pO2

1 pO2
2 pO2

3

]T
.

The rank of the derivative matrix using this additional reparametrisation is

12, the newly reparametrised model is full rank and s′2U is a reduced-form

exhaustive summary for the model with 2 unobservable bases. The exhaustive

summary for one unobservable basis κ3O(s3O) can now be expressed using the

full-rank reparametrisation s′2U :

κ3O(s′3O) =



τ1 + pO1
1

τ2 + pO1
2

τ3 + pO1
2

pM2
1

pM2
2

pM2
3

pO1
1

pO1
2

pO1
3

pO2
1

pO2
2

pO2
3

pO3
1

pO3
2

pO3
3


Hence, going from two unobservable bases to one unobservable basis, requires
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the additional terms in the exhaustive summary κ2(s′2,3O) =

[
pO3
1 pO3

2 pO3
3

]T
for additional parameters to estimate s′2,3O =

[
pO3
1 pO3

2 pO3
3

]T
, κ2(s′2,3O) is

trivially of full rank. Therefore the extended model using this reparametrisa-

tion is of full rank when U = 1, O = 3. This means the number of estimable

parameters is 15 for 18 original parameters, the original model with U = 1,

O = 3 (i.e. in terms of θ3O) is parameter redundant with de�ciency 3, which

is consistent with our �ndings from Section 5.3.3.

By induction, decreasing the number of unobservable bases from U to U−1

for a model with 4 bases, decreases the de�ciency by 3 or, in other words,

increasing the number of unobservable bases by one increases the de�ciency

by 3.

From the previous results in Section 5.3.3, a model with B bases amongst

which one is unobservable yields a de�ciency of B − 1. It follows that the

de�ciency increases by B− 1 when U increases by 1. Therefore, a model with

B bases amongst which O are observable and U are unobservable will present

a de�ciency of d = U(B − 1).

From experimenting with various example values of O and U , we deduced

that the estimable combinations can be derived and expressed in a recursive

manner. Suppose there are U unobservable bases within a total number of B

bases, for O observable and M mixtures, we start from a model with 1 unob-

servable basis and O + U − 1 observable bases, for which it is easy to �nd a

full-rank reparametrisation using the results from Section 5.3.3 (see for exam-

ple κ3O(s3O)). Let the original model be characterised byM old = M , Oold = O

and U old=1. Recall the structure of the full-rank reparametrised model: the

cell-probabilities associated with one of the mixtures Ml are estimated and

the remaining mixtures expressed as linear combinations of this mixture and

the observable bases. We term the mixture Ml a proxy basis since it plays

exactly the same role as the observable bases. The full-rank reparametrised
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model can then be characterised by Mnew = M old − 1, Onew = Oold + 1 and

Unew = U old − 1 = 0; with Mnew the number of remaining mixtures, Onew the

number of observable bases (now including the original and the proxy basis)

and Unew the number of unobservable bases within the full-rank reparametrised

model. For example κ3O(s3O) is characterised by Mnew = 1 (formed of M1),

Onew = 4 (formed of O1, O2, O3, and M2), and U
new=0.

Based on this full-rank reparametrisation, we set M old = Mnew, Oold =

Onew and U old = Unew and now set another basis as unobservable: for exam-

ple, in κ2U (s2U ), O3 was set as unobservable and relabelled U2. The model

examined at this step is then characterised by Mnew = M old, Onew = Oold − 1

and Unew=1. This comes back to the situation examined in Section 5.3.3

with just one unobservable basis, which is easily reparametrised as full-rank.

Thus, the process continues recursively until we have set the appropriate

U bases to be unobservable. Note that by setting, at each step, the co-

e�cient of the newly unobservable basis to be equal to 1 minus the other

coe�cients, the estimable parameter combinations at each step can also be

recursively expressed, based on the full-rank reparametrisation from the pre-

vious step, using the expressions presented in Section 5.3.3. For example, in

κ2U (s2U ), the cell-probabilities associated to mixture M1 are expressed as

pM1
i = pM2

i β1 + β2p
O2
i + β3p

O3
i + (1 − β1 − β2 − β3)p

O1
i . Since O3 becomes

unobservable, let us de�ne β4 = 1−β1−β2−β3 so that β3 can be expressed as

(1−β1−β2−β4) and pM1
i = pM2

i β1+β2p
O2
i +β4p

O1
i +(1−β1−β2−β4)pU2

i . This

re-expression of the parameters brings us back to the exact same situation as

examined in Section 5.3.3 and the general expression of estimable parameter

combinations presented in that section may then be used. This result will be

applied to a numerical example in Section 5.4.2.

Using this recursive approach leads to the following general result. When

there are at least as many mixtures as unobservable bases (M ≥ U), U of

the M mixtures are used as proxies for the U unobservable bases whilst the
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remaining (M − U) mixtures are expressed as a linear combination of the ob-

servable bases and the proxy bases. This is consistent with the observation

made by Yantis et al. (1991) that if only samples from the mixtures are avail-

able, and that B bases are thought to underlie these mixtures, B amongst the

M mixtures should be used as surrogate bases. We also note that there are

(M +O)(K−1) independent cells to estimate (O+U)(K−1) + (M −U)(O+

U − 1) parameters. It follows that M should be greater or equal to U for our

general results to hold. And indeed, when looking at various examples, we

found that while M < U , the de�ciency varies with K (for example a model

with M = 1, O = 2, U = 2, K = 4 presented a de�ciency of 6 versus 7 when

K = 5).

5.3.5 Conclusion

From the investigations conducted, we can conclude that a model with K

bins, M mixtures, B bases divided in O observable and U unobservable will

present a de�ciency of U(B − 1) for M ≥ U and K ≥ B. The estimable

parameters will be: the O(K− 1) cell probabilities of all the observable bases,

the U(K−1) cell-probabilities of the U mixtures used as proxy bases and �nally

the (M − U)(B − 1) coe�cients relating to the M − U mixtures expressed as

linear combinations of the U proxies and O observable bases.

Also, intuitively, since U mixtures are being used as proxies for the un-

observable bases, the mixing probabilities associated with these U mixtures

will never be estimable separately. Since there are B − 1 mixing probabilities

per mixture, we come back to the result that the de�ciency will be U(B − 1),

albeit in an informal manner. Finally, we notice that if M = U all the mix-

tures are used as proxy bases and estimated independently, a mixture-bases

structure becomes apparent only whenM > U , so this is a necessary condition

to perform goodness-of-�t assessment of the hypothesised model structure.
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5.4 Testing for unobservable bases in a multino-

mial mixture and bases framework

In this section, we derive a step-up goodness-of-�t procedure to test for unob-

servable bases. If independent samples of multinomial mixtures and bases are

available, we �rst test whether the multinomial mixtures are consistent with

being a mixture of the available (i.e. observable) bases using the usual test

for mixtures from the MMLM approach (described in Chapter 4, Section 4.2).

If this is rejected, we test for a model structure including one unobservable

basis. If this is also rejected, we test for two unobservable bases.

To construct the tests for unobservable bases, we use the MMLM approach

presented in Section 4.2, combined with the parameter redundancy results ob-

tained in Sections 5.2 and 5.3 for the maximum-likelihood estimation. We

will also show that it is preferable in the framework of unobservable bases to

test for linear combinations rather than a mixture structure. The goodness-

of-�t step is performed as usual using the statistics presented in Section 4.3

(Chapter 4): Pearson's chi-square statistic, denoted χ2, the Cressie & Read

power-divergence statistic with λ = 2/3 denoted CR(λ = 2
3
) and the log-

likelihood ratio statistic G2. The tests examined in this section correspond

to goodness-of-�t assessment in terms of the reparametrised models obtained

by applying the results from Section 5.3. Hence, the null hypotheses are not

formulated directly in terms of the unobservable bases but rather in terms of

the reparametrised model with proxy bases and these will be detailed in the

relevant sections. We use simulation under very large sample size conditions in

order to assess whether the procedure works as expected in theory for di�erent

scenarios: mixtures generated only by the observable bases, mixtures gener-

ated by also one unobservable basis or mixtures generated by two additional

unobservable bases. As mentioned in Chapter 4, if the minimal expected value

is lower than 2, the test is considered Non Applicable and denoted by NA.
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5.4.1 Testing for one unobservable basis

Using the R rmultinom function, 300 datasets of a multinomial mixture and

bases data structure were simulated, with M = 2, B = 3, K = 7, each multi-

nomial being of size 6000. The true value of the multinomial cell probabilities

are shown in Table 5.5. The mixtures M1 and M2 are generated by the

three bases B1, B2 and B3 with respective mixing probabilities π1 = 0.22,

π2 = 0.36, π3 = 0.42 and γ1 = 0.12, γ2 = 0.63, γ3 = 0.25.

To examine a situation with one unobservable basis, we set basis B3 to be

unobservable (i.e. there is no sample available from B3). Proceeding as we

would in a real application, we �rst use the test for mixtures from the original

MMLM approach. The null hypothesis tested for is then �The multinomials

M1 and M2 are consistent with being mixtures of the (observed) bases B1 and

B2�. The results obtained are given in Table 5.6, in terms of percentage of

signi�cant test results at a 5% level for the test-statistics considered. The

test for mixtures reacts as expected: 100% of the results are signi�cant in

the presence of one unobservable basis. We then proceed to testing the �t

of a model structure including one unobservable basis. Based on the results

derived in Section 5.3, this equates to using the MMLM approach with one of

the mixtures used as a proxy basis: its cell probabilities are estimated on their

own, in the same way as the other bases and for the remaining mixtures, mixing

probabilities pertaining to the proxy basis and the other bases are estimated.

For example if M2 is used as the proxy basis, the null hypothesis tested for

Table 5.5: Multinomial cell-probabilities of mixtures and bases used to sim-
ulate datasets. The mixtures are denoted by M, the bases by B. When B3
is unobservable, the highest and lowest probabilities within each bin are indi-
cated, respectively in green and red.

0.1892 0.1682 0.1866 0.1526 0.0966 0.0772 0.1296 M1
0.2556 0.1197 0.1906 0.1277 0.1064 0.0861 0.1139 M2

0.2300 0.1100 0.3300 0.0500 0.0900 0.1300 0.0600 B1
0.3500 0.0500 0.2000 0.0900 0.1200 0.1000 0.0900 B2
0.0300 0.3000 0.1000 0.2600 0.0800 0.0300 0.2000 B3
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is �Multinomial M1 is consistent with being a mixture of the (observed) bases

B1 and B2 and proxy basis M2�. The results obtained from the test for one

unobservable basis are displayed in Table 5.6. They show that the choice of the

mixture used as proxy basis is actually important and can completely change

the conclusions of the test. Indeed, the Type I error rate is slightly high but

still close to the expected level (7.67%) when using M1 as proxy basis, however

100% of the results are signi�cant when using M2 as proxy basis. Here, we

di�er from Yantis et al. (1991) who, in a more general case where the bases are

not directly observable or the partition between mixture and bases unknown,

advise to arbitrarily use U mixtures as surrogate bases and, then, check the

�t of all possible partitions. Indeed we show, using a simple example, that

choosing the mixture that will act as proxy basis cannot be done arbitrarily.

Let M1, M2 and M3 be three mixtures of the same bases B1 and B2. They

are characterised as follows:

• M1: π1B1 + π2B2

• M2: ν1B1 + ν2B2

• M3: γ1B1 + γ2B2

Choosing some mixtures as proxy bases means expressing the remaining

mixtures as a mixture of the observable bases and the proxy bases. The

arbitrary choice of mixtures to act as proxy bases therefore boils down to the

question: can all mixtures of the same bases also be expressed as mixtures of

each other? Suppose that none of the bases from our example are observable.

Expressing M2 as a mixture of M1 and M3, M2 = α1M1 + α2M3 with

α1 + α2=1. It follows that

ν1B1 + ν2B2 = α1(π1B1 + π2B2) + α2(γ1B1 + γ2B2)

= α1π1B1 + α1π2B2 + α2γ1B1 + α2γ2B2
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Thus, ν1 = α1π1+α2γ1, ν2 = α1π2+α2γ2, and ν2γ1−ν1γ2 = γ1α1π2+γ1α2γ2−

α1π1γ2−α2γ1γ2. Since all the mixing probabilities sum to 1, ν1+ν2 = π1+π2 =

γ1 + γ2 = 1. It is then possible to express α1 in terms of the original mixing

probabilities:

α1 =
ν2γ1 − ν1γ2
γ1π2 − π1γ2

=
(1− ν1)γ1 − ν1(1− γ1)
γ1(1− π1)− π1(1− γ1)

=
γ1 − ν1
γ1 − π1

There will be a natural ordering between the mixing probabilities: if 0 < π1 <

ν1 < γ1 < 1 then γ1−ν1 < γ1−π1 and both these quantities are positive, thus

0 < α1 < 1, and M2 is indeed a mixture of M1 and M3.

However, if 0 < ν1 < π1 < γ1 < 1, then γ1 − ν1 > γ1 − π1 and α1 > 1. On the

other hand, if 0 < π1 < γ1 < ν1 < 1, γ1−ν1 < 0 whereas γ1−π1 > 0, leading to

α1 < 0. Hence, in this simple example, although M1, M2 and M3 are mixtures

of the same bases B1 and B2, M2 may be expressed as a mixture of M1 and

M3 only in the con�guration 0 < π1 < ν1 < γ1 < 1. The other orderings

examined lead to α1 not being between 0 and 1. Note, however, that although

M2 cannot be expressed as a mixture of M1 and M3 in these con�gurations,

it may still be expressed as a linear combination of those mixtures.

Although this simple example deals with a situation where none of the

bases are observable, the same applies when some of the bases are observable

and this can be explained intuitively for our multinomial framework. The mix-

ture cell-probabilities are, by de�nition, weighted averages of the original bases

cell-probabilities, thus the mixture cell-probabilities will always be bounded

by the extrema of the associated bases cell-probabilities. Consequently, when

one or more bases are unobservable, any mixture presenting extreme probabil-

ities within a bin (i.e. highest or lowest probability within that bin) cannot be
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modelled as a mixture of observable and proxy bases. This is illustrated in Ta-

ble 5.5, where, once B3 (denoted in grey) is set as unobservable, the extreme

cell-probabilities within each bin are denoted in red (minimum) and green

(maximum). Mixture M1 presents extreme probability values and therefore

cannot be reconstructed as a mixture of B1, B2 and M2, whereas M2 always

presents intermediate cell-probabilities. Hence, only M1 may be used as a

proxy basis and M2 modelled as a mixture of B1, B2 and M1. This obser-

vation is consistent with the results obtained from the mixture test for one

unobservable basis in Table 5.6.

To circumvent the problem of having to choose the correct mixture as

proxy basis, particularly in more complex situations, we propose to use a

test for linear combinations rather than mixtures. The only di�erence lies

in the fact that at the maximum likelihood estimation stage, coe�cients are

estimated rather than mixing probabilities: they are no longer constrained to

lie between 0 and 1. They are, however, still constrained to sum up to 1 in

accordance with the parameter redundancy results obtained in Section 5.3.

Note that we did not perform a linear combination test for 0 unobservable

basis, since under the null hypothesis corresponding to this model structure,

the mixtures are all �proper� mixtures of the observable bases. Thus the

use of the original test for mixtures, which assesses whether the observed

multinomial mixtures are consistent with being mixtures of the observable

bases, is adequate. For the mixture test for one unobservable basis, once

the model has been appropriately reformulated in terms of the proxy basis,

recall that the null hypothesis is concerned with the structure of the remaining

mixtures (not used as proxy basis): �The remaining multinomial mixtures are

consistent with being mixtures of the observed multinomial bases and the proxy

basis�. Whilst the null hypothesis for the corresponding linear combination

test is: �The remaining multinomial mixtures are consistent with being linear

combinations of the observed multinomial bases and the proxy basis�.
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Table 5.6 shows that the Type I error obtained with the linear combination

test (3.67%) is closer to the expected 5% level than the one obtained with the

mixture test, when the correct mixture was used as proxy basis (7.67%). We

also note that the linear combination tests lead to the same results, whatever

mixture is chosen as proxy basis. Plotting the distribution of the Pearson's

chi-square test-statistics obtained under the null hypothesis versus the theoret-

ical chi-square distribution in Figure 5.2 shows that, for our simulations, the

linear combination test presented better distributional properties in general

(observed density closer to theoretical one), for the values we looked at.

To summarise, the procedure for testing for one unobservable basis works

as expected based on our simulations, and it seems preferable to test for linear

combinations rather than mixtures, based on the better distributional proper-

ties of the test-statistics and the fact that any mixture chosen as proxy basis

leads to the same results.

5.4.2 Testing for two unobservable bases

In this section, we extend the procedure to testing for two unobservable bases.

Following the results from Section 5.3, at least three mixtures are needed

to test the �t of a model including two unobservable bases. Two of these

Table 5.6: Procedure for testing for one unobservable basis in a general multi-
nomial mixture and bases framework: simulation results, percentage of sig-
ni�cant test results (5% level) out of the N applicable tests. Utrue denotes
the number of unobservable bases in the data, Ufitted denotes the number of
unobservable states used in the �tted and tested model, Mproxy denotes (when
applicable), the mixture used as a proxy basis. Test indicates the type of test
used: M for mixture and LC for linear combination

Utrue Ufitted Mproxy χ2(%) CR (λ = 2
3
)(%) G2(%) dof N Test

1 0 - 100.00 100.00 100.00 10 300 M

1 1 M2 100.00 100.00 100.00 4 300 M
1 1 M1 7.67 7.67 7.67 4 300 M

1 1 M2 3.67 3.67 3.67 4 300 LC
1 1 M1 3.67 3.67 3.67 4 300 LC
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(a) Mixture test: Pearson's chi square, test-
statistic distribution: M = 2, O = 2, U =
1, mixture M1 used as proxy basis

(b) Linear combination test: Pearson's chi
square, test-statistic distribution: M = 2,
O = 2, U = 1, mixture M1 used as proxy
basis

Figure 5.2: Pearson's chi-square test-statistic distribution under the null hy-
pothesis, tests for one unobservable basis, M1 used as proxy basis

mixtures are used as proxy bases and the MMLM approach is then applied

to the model structure based on the remaining mixtures and the new bases

(observable and proxy). For two unobservable bases, we just add a step to

the procedure presented for one unobservable basis: this time we expect the

original test for mixtures (0 unobservable basis) to yield a signi�cant result,

then we test for one unobservable basis, and also expect the result to be

signi�cant, �nally we test for two unobservable bases and expect the test result

to not be signi�cant. Once again, we use simulation under very good conditions

to verify that the procedure works as expected in theory. 300 datasets of a

multinomial mixture-bases model structure with M = 3, O = 2, U = 2,

K = 7, each multinomial being of size 6000, with associated cell-probabilities

displayed in Table 5.7. The mixtures M1, M2, and M3 are generated by the

four bases B1, B2, B3, and B4 with respective mixing probabilities π1 = 0.8,

π2 = 0.04, π3 = 0.1, π4 = 0.06 (M1); γ1 = 0.05, γ2 = 0.2, γ3 = 0.6, γ4 = 0.15

(M2) and ν1 = 0.17, ν2 = 0.15, ν3 = 0.08, ν4 = 0.6 (M3). Bases B3 and B4

are set as unobservable. The extreme probabilities within each bin, once B3

and B4 are set as unobservable, are shown in Table 5.7 (green for the highest

and red for the lowest): M2 and M3 both present extreme probabilities and
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thus, should be used as proxy bases when testing for mixtures.

The results obtained using both tests for mixtures and tests for linear com-

binations are presented in Table 5.9. The null hypotheses associated with the

tests for two unobservable bases are, once again, concerned with the struc-

ture of the remaining mixtures (i.e. those not used as proxy bases). The null

hypotheses are respectively: �The remaining multinomial mixtures are consis-

tent with being mixtures of the observed bases and the two proxy bases� when

testing for mixtures, and �The remaining multinomial mixtures are consistent

with being linear combinations of the observed bases and the two proxy bases�

when testing for linear combinations.

As expected, the original mixture test rejects a model structure with all

bases observable: the observed mixtures are not consistent with being mixtures

of the observable bases; the model including one unobservable basis is also

strongly rejected by the mixture tests, whatever the mixture used as a proxy

basis (100% of signi�cant test results). Finally, as expected when examining

the extreme probabilities within each bin, the test for mixtures using (M1,M3)

or (M1,M2) as proxy bases rejects the corresponding model structure (100%

of tests rejected); whilst the Type I error rate for the mixture test for two

unobservable bases using (M2, M3) as proxy bases is slightly higher than

expected (8.01% of signi�cant results).

Unexpected optimisation issues were encountered within the linear combi-

nation framework when testing for two unobservable bases. The model struc-

Table 5.7: Cell-probabilities of the multinomial mixture and bases structures
used for the simulations. Once B3 and B4 are unobservable, the highest
probability in each bin is denoted in green and the lowest in red.

0.720440 0.057920 0.011540 0.037380 0.087260 0.052180 0.020440 0.012840 M1
0.047350 0.004980 0.037450 0.162100 0.480400 0.121250 0.116220 0.030250 M2
0.154140 0.013954 0.030330 0.125900 0.066720 0.481230 0.020336 0.107390 M3
0.900000 0.072000 0.005000 0.006000 0.009000 0.005000 0.001000 0.002000 B1
0.002000 0.003000 0.180000 0.800000 0.005000 0.002000 0.005000 0.003000 B2
0.003000 0.000800 0.001000 0.001000 0.798000 0.001000 0.190200 0.005000 B3
0.001000 0.002000 0.004000 0.008000 0.001000 0.800000 0.007000 0.177000 B4
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Table 5.8: Model structure estimated and tested for in the linear combination
framework. The proxy bases and observable bases are denoted in red whilst
the remaining mixture is denoted in blue.
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ture estimated and tested for using for example, M2 and M3 as proxy bases,

is shown in Table 5.8. Di�erent initialisations led to di�erent optima (and

thus di�erent MLEs and test results). In order to investigate this problem, we

use a dataset composed of the expected values of the multinomial cells, with

each multinomial being of size 105. Hence the dataset is simply constructed

by multiplying by 105 the cell probabilities from Table 5.7. For ten di�erent

initialisation starts, the following optima were reached, given in terms of -(log-

likelihood) values: {523063.05, 532925.53, 546208.16, 549730.75, 522709.32,

537286.65, 528127.90, 533394.63, 559820.20, 525353.00}. As illustrated in this

example, the optimisation never reaches the same point and overall, the mini-

mum reached is 522709.32. However, the value of -(log-likelihood) at the true

parameter values is 522643.27 and this is never reached. Using even an ex-

treme number of random initial starts as high as 104, the optimum reached is

522643.43 and it is reached only once out of 104: clearly, the optimiser keeps

getting stuck in local minima. Note that although we had used the same pro-

cess to optimise the likelihood in the case of one unobservable basis: O = 2,

U = 1, M = 2, we did not encounter this issue previously. To explore this fur-

ther, the �apparent� pro�le likelihoods of one of the coe�cients are plotted in

Figure 5.3 for each of the situations: U = 1 and U = 2. This is done by incre-

mentally �xing the parameter of interest and performing maximum-likelihood

estimation with respect to all the other parameters. The optimum value of the

-(log-likelihood) reached is then plotted against the parameter values. Note
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the use of the term �apparent� because despite a high number of initial starts,

the pro�le likelihood also gets stuck in local minima. We observe that the like-

lihood surface seems very bumpy and di�cult to optimise for U = 2 compared

to U = 1. We perform further examinations to determine whether the peaks

and troughs are indeed due to local minima, or rather, whether they re�ect

convergence issues. In order to do this, we plot a pro�le likelihood by incre-

mentally increasing the value of the parameter of interest, and another one by

incrementally decreasing this value. Also, we use random starting points for

the initial optimisation, but for all the subsequent ones, we use the maximum

likelihood estimates obtained in the previous step as an informative starting

point. The pro�le likelihoods obtained are plotted in Figure 5.4. We observe

that the plots are much smoother and that the troughs do not occur at the

same place in both graphs. Hence, there is clearly a problem of convergence.

Due to the problems encountered, we explored an alternative approach to

the optimisation process. Rather than directly optimising the log-likelihood,

we used an iterative approach for the estimation based on the original algo-

rithm proposed by Yantis et al. (1991). First the bases cell-probabilities are

estimated, then the mixing probabilities updated based on these estimations,

the updated mixing probabilities in turn feed in to obtain new estimates for

the bases probabilities and so forth until convergence. We use this iterative

process, with the di�erence that we estimate coe�cients rather than mixing

probabilities. We implemented this optimisation in Matlab and the associ-

ated pseudo-algorithm is given below. Using the iterative method on the

same example dataset composed of expected multinomial cell values corre-

sponding to the probabilities of Table 5.7, with 10 random initial starts, the

optima reached are {522643.27, 522643.27, 579237.58, 522643.88, 522643.27,

522643.27, 522643.27, 522643.27, 522643.27, 522643.27}. The true minimum

is now reached 8 times out of 10, which is very promising. We therefore choose

to use the iterative method to estimate the parameters needed for our linear
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(a) α2 pro�le likelihood, M = 3, O = 2,
U = 2, mixturesM1 andM2 used as proxy
bases

(b) β2, M = 2, O = 2, U = 1 pro�le likeli-
hood, M2 used as proxy basis

Figure 5.3: Pro�le likelihood for coe�cients α2 (from a model with 2 unob-
servable bases) and β2 (from a model with one unobservable basis)

(a) α2 pro�le likelihood obtained by incre-
mentally increasing the parameter value,
M = 3, O = 2, U = 2, mixtures M1 and
M2 used as proxy bases

(b) α2 pro�le likelihood obtained by incre-
mentally decreasing the parameter value,
M = 3, O = 2, U = 2, mixtures M1 and
M2 used as proxy bases

Figure 5.4: Pro�le likelihood for coe�cient α2,M = 3, O = 2, U = 2, mixtures
M1 and M2 used as proxy bases
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Algorithm 1 Iterative optimisation for parameter estimation in the linear
combination framework
1: procedure Iterative(B, Mp, M)
2: Step 1 Initialisation of basis and proxy basis cell-probabilities (here using classical

multinomial MLE result)
3: for i← 1, nB do

4: for j ← 1, (K − 1) do

5: poldB (i, j) = B(i,j)∑K
k=1 B(i,k)

6: end for

7: poldB (i,K) = 1−
∑K−1

k=1 B(i, k)
8: end for

9: for i← 1, nMp
do

10: for j ← 1, (K − 1) do

11: poldMp
(i, j) =

Mp(i,j)∑K
k=1 Mp(i,k)

12: end for

13: poldMp
(i,K) = 1−

∑K−1
k=1 Mp(i, k)

14: end for

15:
16: Step 2 Initialisation of coe�cients
17: for l← 1, 3 do . (3 coe�cients for M = 3, O = 2, U = 2)
18: αold(l) =random values from normal distribution (for example)
19: end for

20:
21: Step 3 Optimize (used Matlab fminunc) with respect to the coe�cients (basis prob-

abilities �xed to poldB , poldMp
).

22: Output: αnew, devMnew . devMnew denotes the deviance optimum reached at this
step

23: Step 4 Optimize (used Matlab fminunc) with respect to basis and proxy basis
probabilities (coe�cients �xed to αnew) .

24: Output: pnewB ,pnewMp
, devBnew

25: Step 5 Set αold = αnew, poldB = pnewB , poldMp
= pnewMp

26:
27: while |devMnew − devBnew| ≥ 10−4 do

28: do Step 3, using αold as initial values, with basis probabilities �xed to pnewB , and
proxy basis probabilities to pnewMp

29: Output: αnew, devMnew

30: if devMnew > devBnew then

31: αnew = αold . The new coe�cient estimates do not improve the likelihood,
therefore the old estimates are retained

32: break

33: end if

34: do Step 4, using poldB , poldMp
as initial values, coe�cients �xed to αnew.

35: Output: pnewB , pnewMp

36: if devBnew > devMnew then

37: pnewB = poldB , pnewM = poldM . The new basis and proxy basis probability
estimates do not improve the likelihood, therefore the old estimates are retained

38: break

39: end if

40: Start a new cycle: poldB = pnewB , poldMp
= pnewMp

, αold = αnew

41: end while

42: end procedure
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combination tests; and the results obtained from the subsequent goodness-of-

�t assessment for the simulated datasets with two unobservable bases are given

in Table 5.9. The goodness-of-�t tests for linear combinations strongly reject

a model structure including one unobservable basis: the observed mixtures

are not consistent with being linear combinations of the proxy basis and the

observed bases (100% of signi�cant results, whatever proxy bases is chosen).

The linear combination tests for two unobservable bases yield a Type I error

close to 5%, whatever proxy bases are chosen. (As a precaution, the optimi-

sation and goodness-of-�t were also re-run using the iterative method for the

simulated datasets from Section 5.4.1, when testing for linear combinations

when one basis is unobservable and the results obtained were unchanged.)

Although the test results are as expected, we note that di�erent choices

of proxy basis lead to slightly di�erent results with the linear combination

approach, whilst they should all yield exactly the same result (since the cell-

probabilities computed or estimated should be equal in all three cases).

Hence, we examine the maximum-likelihood estimates obtained for the

coe�cients, in each con�guration of proxy bases and compare them to the

true parameter values. In order to compute these true values, we need to

express the coe�cients as a function of the original mixing probabilities. We

use two di�erent approaches to do so: reformulating each mixture as a linear

combination and solving the relevant equations using the Matlab symbolic

algebra package, or alternatively using the recursive reparametrisation results

stated in Section 5.3.4.

Recall that M1, M2 and M3 are all mixtures of B1,B2, B3 and B4 that

may be expressed as:

• M1 = π1B1 + π2B2 + π3B3 + (1− π1 − π2 − π3)B4,

• M2 = γ1B1 + γ2B2 + γ3B3 + (1− γ1 − γ2 − γ3)B4

• M3 = ν1B1 + ν2B2 + ν3B3 + (1− ν1 − ν2 − ν3)B4,
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Table 5.9: Procedure testing for two unobservable bases in a general multino-
mial mixture and bases framework, simulation results, percentage of signi�cant
test results (5% level) out of N , the number of applicable tests. Utrue denotes
the number of unobservable bases in the simulated data, Ufitted denotes the
number of unobservable bases used in the �tted and tested model, Mproxy de-
notes (when applicable), the mixture(s) used as proxy bases. TestM indicates
the use of a mixture test and LC(it) the use of a linear combination test based
on the iterative approach for parameter estimation.

Utrue Ufitted Mproxy χ2(%) CR (λ = 2
3
)(%) G2(%) dof N Test

2 0 - 100.00 100.00 100.00 18 235 M

2 1 M3 100.00 100.00 100.00 10 287 M
2 1 M2 100.00 100.00 100.00 10 291 M
2 1 M1 100.00 100.00 100.00 10 213 M

2 2 M2, M3 8.01 8.01 8.01 4 287 M
2 2 M1, M3 100.00 100.00 100.00 4 282 M
2 2 M1, M2 100.00 100.00 100.00 4 245 M

2 1 M3 100.00 100.00 100.00 10 294 LC(it)
2 1 M2 100.00 100.00 100.00 10 294 LC(it)
2 1 M1 100.00 100.00 100.00 10 293 LC(it)

2 2 M2, M3 3.83 3.83 3.48 4 287 LC(it)
2 2 M1, M2 5.28 5.28 5.28 4 284 LC(it)
2 2 M1, M3 3.89 3.89 3.89 4 283 LC(it)

ExpressingM1 as a linear combination of the observable bases B1, B2 and

the mixtures M2,M3, with the coe�cients summing to one, results in:

M1 = α1M3 + α2M2 + α3B1 + (1− α1 − α2 − α3)B2

= α1 [ν1B1 + ν2B2 + ν3B3 + (1− ν1 − ν2 − ν3)B4]

+ α2 [γ1B1 + γ2B2 + γ3B3 + (1− γ1 − γ2 − γ3)B4]

+ α3B1 + (1− α1 − α2 − α3)B2

= (α1ν1 + α2γ1 + α3)B1 + (α1ν2 + α2γ2 + 1− α1 − α2 − α3)B2

+ (α1ν3 + α2γ3)B3 + [α1(1− ν1 − ν2 − ν3) + α2(1− γ1 − γ2 − γ3)]B4

Using the symbolic package from Matlab, we solve the following equations for

α1, α2, α3
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π1 = α1ν1 + α2γ1 + α3

π2 = α1ν2 + α2γ2 + 1− α1 − α2 − α3

π3 = α1ν3 + α2γ3

1− π1 − π2 − π3 = α1(1− ν1 − ν2 − ν3) + α2(1− γ1 − γ2 − γ3)

This results in:

α1 = −π3 − γ3 + π1γ3 − π3γ1 + π2γ3 − π3γ2
γ3 − ν3 + γ1ν3 − γ3ν1 + γ2ν3 − γ3ν2

α2 =
π3 − ν3 + π1ν3 − π3ν1 + π2ν3 − π3ν2
γ3 − ν3 + γ1ν3 − γ3ν1 + γ2ν3 − γ3ν2

α3 =
π1γ3 − π3γ1 − π1ν3 + π3ν1 + γ1ν3 − γ3ν1 + π1γ2ν3 − π1γ3ν2 − π2γ1ν3 + π2γ3ν1 + π3γ1ν2 − π3γ2ν1

γ3 − ν3 + γ1ν3 − γ3ν1 + γ2ν3 − γ3ν2

Results for the other con�gurations of proxy bases can be obtained in the same

way: M3 as a function of M1 and M2 results in

M3 = β1M1 + β2M2 + β3B1 + (1− β1 − β2 − β3)B2, with

β1 = − ν3 − γ3 + ν1γ3 − ν3γ1 + ν2γ3 − ν3γ2
γ3 − π3 + γ1π3 − γ3π1 + γ2π3 − γ3π2

β2 =
ν3 − π3 + ν1π3 − ν3π1 + ν2π3 − ν3π2
γ3 − π3 + γ1π3 − γ3π1 + γ2π3 − γ3π2

β3 =
ν1γ3 − ν3γ1 − ν1π3 + ν3π1 + γ1π3 − γ3π1 + ν1γ2π3 − ν1γ3π2 − ν2γ1π3 + ν2γ3π1 + ν3γ1π2 − ν3γ2π1

γ3 − π3 + γ1π3 − γ3π1 + γ2π3 − γ3π2

M2 as a function of M1 and M3 results in :

M2 = τ1M3 + τ2M1 + τ3B1 + (1− τ1 − τ2 − τ3)B2, with

τ1 = −γ3 − π3 + γ1π3 − γ3π1 + γ2π3 − γ3π2
π3 − ν3 + π1ν3 − π3ν1 + π2ν3 − π3ν2

τ2 =
γ3 − ν3 + γ1ν3 − γ3ν1 + γ2ν3 − γ3ν2
π3 − ν3 + π1ν3 − π3ν1 + π2ν3 − π3ν2

τ3 =
γ1π3 − γ3π1 − γ1ν3 + γ3ν1 + π1ν3 − π3ν1 + γ1π2ν3 − γ1π3ν2 − γ2π1ν3 + γ2π3ν1 + γ3π1ν2 − γ3π2ν1

π3 − ν3 + π1ν3 − π3ν1 + π2ν3 − π3ν2

The coe�cients' numeric values obtained for our simulation settings, in these

di�erent con�gurations, are displayed in Table 5.10.

We can also use the recursive reparametrisation approach mentioned in

Section 5.3.4 to obtain the coe�cient values. Indeed, in a �rst step, B4 is

rendered unobservable and M2 used as a proxy basis. M1 and M3 are then

expressed as: M1=αM1
1 M2+αM1

2 B2+αM1
3 B3+αM1

4 B1 and
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M3=αM2
1 M2+αM2

2 B2+αM2
3 B3+αM2

4 B1, with αMi
4 = 1− αMi

1 − αMi
2 − αMi

3 .

From the general expression of the estimable combinations obtained in Section

5.3.3, αM1
1 = 1−π1−π2−π3

1−γ1−γ2−γ3 , α
M1
2 = π2(−1+γ1+γ3)+γ2(1−π1−π3)

−(1−γ1−γ2−γ3) ,

αM1
3 = π3(−1+γ1+γ2)+γ3(1−π1−π2)

−(1−γ1−γ2−γ3) , αM1
4 = 1− αM1

1 − αM1
2 − αM1

3

and αM3
1 = 1−ν1−ν2−ν3

1−γ1−γ2−γ3 , α
M3
2 = ν2(−1+γ1+γ3)+γ2(1−ν1−ν3)

−(1−γ1−γ2−γ3) ,

αM3
3 = ν3(−1+γ1+γ2)+γ3(1−ν1−ν2)

−(1−γ1−γ2−γ3) , αM3
4 = 1− αM3

1 − αM3
2 − αM3

3

This reparametrised model is full rank. We then render B3 unobservable and

express its coe�cient as one minus the others: αMi
3 = 1 − αMi

1 − αMi
2 − αMi

4

and we repeat the process, using M1 as additional proxy basis. Hence, M3 can

be expressed as M3=βM3
1 M1+βM3

2 M2+βM3
3 B2+βM3

4 B1, with

βM3
1 =

1−αM3
1 −αM3

2 −αM3
4

1−αM1
1 −αM1

2 −αM1
4

, βM3
2 =

αM2
1 (−1+αM1

2 +αM1
4 )+αM1

1 (1−αM2
2 −αM2

4 )

−(1−αM1
1 −αM1

2 −αM1
4 )

,

βM3
3 =

αM2
2 (−1+αM1

1 +αM1
4 )+αM1

2 (1−αM2
1 −αM2

4 )

−(1−αM1
1 −αM1

2 −αM1
4 )

, and βM3
4 = 1−βM3

1 −βM3
2 −βM3

3 .Finally,

in the last step, the α terms can be replaced by their expression as a function

of the original mixing probabilities (note that the Matlab symbolic package

was used to simplify the expressions):

βM3
1 = γ3(ν1+ν2−1)−ν3(γ1+γ2−1)

γ3(π1+π2−1)−π3(γ1+γ2−1) , β
M3
2 = − ν3−π3+ν1π3−ν3π1+ν2π3−ν3π2

−(γ3−π3+γ1π3−γ3π1+γ2π3−γ3π2)

βM3
3 = γ2ν3−γ3ν2−γ2π3+γ3π2+ν2π3−ν3π2−γ1ν2π3+γ1ν3π2+γ2ν1π3−γ2ν3π1−γ3ν1π2+γ3ν2π1

−(γ3−π3+γ1π3−γ3π1+γ2π3γ3π2) ,

βM3
4 = γ1ν3−γ3ν1−γ1π3+γ3π1+ν1π3−ν3π1+γ1ν2π3−γ1ν3π2−γ2ν1π3+γ2ν3π1+γ3ν1π2−γ3ν2π1

−(γ3−π3+γ1π3−γ3π1+γ2π3−γ3π2) .

Comparing to the results previously obtained using a direct reformulation

as linear combination and solving the corresponding equations, βM3
1 = β1,

βM3
2 = β2 and β

M3
4 = β3; both methods give the same results.

The values of the coe�cients presented in Table 5.10 indicate that even

when the mixtures M2 and M3 (which present extreme probabilities within

the bins) are chosen as proxy bases, M1 cannot be expressed as a mixture

of these and the observable bases: indeed the coe�cient relating to B2 is

negative (-0.0007). This shows that there can be situations in which none of

the mixtures can be expressed strictly as a mixture of proxy and observable

bases; and this is another argument in favour of using linear combination tests

rather than mixture tests.
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Table 5.10: Coe�cient values for the di�erent con�gurations of proxy bases

Mixture Bases and proxy bases
M1 M3 M2 B1 B2

M1 - 0.1586 0.0603 0.7818 -0.0007
M2 16.5714 -2.6286 - -12.9557 0.0129
M3 6.3043 - -0.3804 -4.9288 0.0049

Boxplots of the maximum likelihood estimates of the coe�cients, obtained

using the iterative optimisation method, are shown in Figures 5.5 to 5.7 for

the di�erent con�guration of proxy bases. We observe from Figures 5.6 and

5.7 that some of the estimates are biased. This might account for the slight

di�erence in the test results. Although the tests only seem slightly a�ected

by this bias, we try using a stricter convergence criterion and �x it to 10−9

instead of 10−4. This more stringent criterion increased computational time

(from hours to days). Due to this, results were generated for only one of the

con�gurations: M1 and M3 used as proxy bases; and the boxplot of the MLEs

of interest are shown in Figure 5.8. These boxplots show that the stricter

convergence criterion produces very good results and should be retained.

To brie�y summarise, the procedure for testing for two unobservable bases

works as expected in theory based on our simulations. The tests used for

unobservable bases should be linear combination tests and the estimation step

should be performed using the iterative optimisation method with a stringent

enough convergence criterion (e.g. 10−9). When using these tests, the choice

of original mixtures used as proxy bases does not matter.

5.5 Application: testing for unobservable states

in a capture-recapture setting

Returning to our initial capture-recapture setting, recall from Section 5.1 that

an unobservable state translates itself into an unobservable basis within a

multinomial mixture and bases framework. Once animals are grouped into
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(a) Maximum likelihood
estimates boxplot, coe�-
cient of M2

(b) Maximum likelihood
estimates boxplot, coe�-
cient of M3

(c) Maximum likelihood
estimates boxplot, coe�-
cient of B1

Figure 5.5: Coe�cients maximum likelihood estimates, boxplots, iterative op-
timization: M2,M3 proxy basis. The blue horizontal dashed line represents
the true value of the coe�cient and ∗ represents the mean.

(a) Maximum likelihood
estimates boxplot, coe�-
cient of M1

(b) Maximum likelihood
estimates boxplot, coe�-
cient of M3

(c) Maximum likelihood
estimates boxplot, coe�-
cient of B1

Figure 5.6: Coe�cients maximum likelihood estimates boxplots, iterative op-
timization: M1,M3 proxy basis. The blue horizontal dashed line represents
the true value of the coe�cient and ∗ represents the mean.

(a) Maximum likelihood
estimates boxplot, coe�-
cient of M2

(b) Maximum likelihood
estimates boxplot, coe�-
cient of M1

(c) Maximum likelihood
estimates boxplot, coe�-
cient of B1

Figure 5.7: Coe�cients maximum likelihood estimates boxplots, iterative op-
timization: M1,M2 proxy basis. The blue horizontal dashed line represents
the true value of the coe�cient and ∗ represents the mean.
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(a) Maximum likelihood
estimates boxplot, coe�-
cient of M1

(b) Maximum likelihood
estimates boxplot, coe�-
cient of M3

(c) Maximum likelihood
estimates boxplot, coe�-
cient of B1

Figure 5.8: Coe�cients, boxplots of maximum likelihood estimates obtained
with the iterative optimisation, using a more stringent convergence criterion
(10−9), M1,M3 proxy basis. The blue horizontal dashed line represents the
true value of the coe�cient and ∗ represents the mean..

the relevant m-array cells used to perform the existing Test M, the resulting

table consists of independent samples from multinomial mixtures and their as-

sociated bases, with unobservable states corresponding to unobservable bases.

In other words, once the table required for Test M is constructed, we en-

ter the exact same framework of mixtures and bases that has been analysed

throughout this chapter. Hence, based on the results obtained in Sections

5.2 to 5.4, we use the procedure based on linear combination tests, with the

parameter estimation step performed using the iterative optimisation method

(convergence criterion set to 10−9), to examine whether this procedure can

work in a capture-recapture framework, for testing for unobservable states.

Due to the added complexity resulting from the fact that mixture and bases

cell-probabilities are formed by products of capture-recapture parameters, we

use simulation under very large sample size conditions to examine whether the

procedure can work in a capture-recapture setting.

5.5.1 Testing for one unobservable state

300 datasets are simulated from a capture-recapture experiment with 5 sam-

pling occasions, with 25,000 animals released per occasion. The animals move

between three live states but only two are observable, all the parameters are

constant with time. Using the general multievent notations introduced in
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Chapter 4, the model is de�ned by Πt =

[
0.5 0.5 0 0

]
;

Φt =



0.7 0 0 0.3

0 0.8 0 0.2

0 0 0.9 0.1

0 0 0 1


; Ψt =



0.1 0.3 0.6 0

0.3 0.15 0.55 0

0.4 0.4 0.2 0

0 0 0 1


for t = 1, . . . , 4 and

Bt =



0.45 0.55 0

0.45 0 0.55

1 0 0

1 0 0


for t = 2, . . . , 5

The results obtained for the procedure based on tests for linear combinations

are given in Table 5.11. Recall that Test M is used to test for a model structure

with no unobservable states. Test M is signi�cant at occasions 2 and 3 (100%

of signi�cant results): the animals not captured at time i are not consistent

with being a mixture of the animals captured at time i in states 1 and 2.

The linear combination test for one unobservable state presents a Type I error

rate close to the expected 5% at both occasions 2 and 3 and the results are

the same, whatever proxy mixture is chosen. Hence, these simulations show

that the procedure for testing for one unobservable basis can be used in a

capture-recapture setting, to test for one unobservable state.

5.5.2 Testing for two unobservable states

We now attempt to test for two unobservable states in a capture-recapture

framework by applying the procedure retained to test for two unobservable

bases. Since our main aim is to assess whether the procedure can work in a

capture-recapture context, we focus on simulations generated by an extreme

situation with a model structure which ensures that the mixtures at occasions

2 and 3 cannot be reconstructed solely from the observable bases nor from

including just one unobservable basis in the model structure: 300 datasets
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Table 5.11: Test for detecting 1 unobservable state in a capture-recapture
framework, simulation results, percentage of signi�cant test results (5% level)
out of N applicable tests. Utrue denotes the number of unobservable states
in the simulated data, Ufitted denotes the number of unobservable states used
in the �tted and tested model, Mproxy denotes (when applicable), the mixture
used as a proxy basis, i denotes the capture occasion.

Utrue Ufitted Mproxy χ2(%) CR (λ = 2
3
)(%) G2(%) i dof N Test

1 0 NA 100.00 100.00 100.00 2 8 300 M
1 0 NA 100.00 100.00 100.00 3 4 300 M

1 1 M2 4.00 4.00 4.00 2 3 300 LC(it)
1 1 M2 6.00 6.00 6.00 3 1 300 LC(it)

1 1 M1 4.00 4.00 4.00 2 3 300 LC(it)
1 1 M1 6.00 6.00 6.00 3 1 300 LC(it)

were simulated for a capture-recapture experiment with 7 sampling occasions

with 25,000 animals are released at each occasion, the animals move between

four live states,amongst which only two are observable. The probabilities were

chosen in order to give rise to two very di�erent unobservable bases, without

which the mixture probabilities could not be reconstructed (at least at occa-

sions 2 and 3). Recall that the procedure for testing for two unobservable bases

requires at least three mixtures and that in a capture-recapture framework,

the table used to perform Test M (see Section 4.2 from Chapter 4) contains as

many mixtures as observable states, since it separates animals not captured

at occasion i only by their state at release. Hence if there are two observable

states, there will be two corresponding mixtures formed by the live animals

not seen at i but previously released in state A and those not seen at i but

previously released in state B. In order to have three mixtures, we �rst keep

the mixtures separated by state and time of previous release and then pool

some of them (arbitrarily) to obtain three mixtures. An example is given in

Table 5.12: we chose to pool M1 and M3 for a test at occasion 3, whilst the

table used for Test M is given in Table 5.13. The manner in which the mixtures

are pooled should not a�ect the results due to the property from Pradel et al.

(2003) cited in Section 4.3.1 (the distribution of a sum of mixtures from the
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same bases is still a mixture of the same bases) and due to the fact that we

are dealing with large sample sizes. For smaller datasets, the pooling decision

might be a function of the data sparseness. Note that, due to the need for 3

mixtures, the linear combination test for two unobservable states may only be

performed on occasions 3 to T-3. We chose to present the test results at each

occasion only for the occasions common to all steps of the testing procedure

(i.e. 3 to T-3), but recall that both Test M and the test for one unobservable

state can be performed from occasions 2 to T-2.

The model used for our simulations is de�ned by Πt =

[
0.5 0.5 0 0 0

]
;

Φt =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


for t = 1, . . . , 3

Φt =



0.25 0 0 0 0.75

0 0.33 0 0 0.67

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


for t = 4, . . . , 6.

Table 5.12: An example table used to test for two unobservable states: these
mixtures are pooled arbitrarily to form the three mixtures necessary for the
test.

mAA
14 mAB

14 mAA
15 mAB

15 M1

mBA
14 mBB

14 mBA
15 mBB

15 M2

mAA
24 mAB

24 mAA
25 mAB

25 M3

mBA
24 mBB

24 mBA
25 mBB

25 M4

mAA
34 mAB

34 mAA
35 mAB

35 B2

mBA
34 mBB

34 mBA
35 mBB

35 B1
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Table 5.13: Table associated to the original Test M at occasion i = 3, an
example, the mixtures are denoted by M and the bases by B.

mAA
14 + mAA

24 mAB
14 +mAB

24 mAA
15 +mAA

25 mAB
15 +mAB

25 M1

mBA
14 + mBA

24 mBB
14 + mBB

24 mBA
15 + mBA

25 mBB
15 + mBB

25 M2

mAA
34 mAB

34 mAA
35 mAB

35 B2

mBA
34 mBB

34 mBA
35 mBB

35 B1

The transition matrix is Ψt =



0.1 0.6 0.22 0.08 0

0.6 0.1 0.08 0.22 0

0.05 0.05 0.8 0.1 0

0.05 0.05 0.1 0.8 0

0 0 0 0 1


for t = 1,

Ψt =



0.8 0.2 0 0 0

0.2 0.8 0 0 0

0.05 0.05 0.8 0.1 0

0.05 0.05 0.1 0.8 0

0 0 0 0 1


for t = 2, 3

Ψt =



0.8 0.2 0 0 0

0.2 0.8 0 0 0

0.85 0.15 0 0 0

0 0.75 0 0.25 0

0 0 0 0 1


for t = 4 . . . 6

and the event matrix Bt =



0.7 0.3 0

0.7 0 0.3

1 0 0

1 0 0

1 0 0


for t = 2, . . . , 7.

The results of the procedure testing for two unobservable states from occasions

3 to T-3 are given in Table 5.14. To test for one or two unobservable states, we

use the linear combination tests based on the iterative optimisation (stopping

criterion: 10−9). The mixture(s) used as proxy bases are chosen randomly
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since we showed in Section 5.4 that this choice does not matter in a linear

combination framework. As expected, the existing Test M strongly rejects a

model structure with no unobservable states (100% of signi�cant results). The

linear combination test also rejects a model structure including only one un-

observable state at occasion 3 (100% of signi�cant results) but not at occasion

4 (only 5.69% signi�cant results). Finally, the test for two unobservable states

presents a Type I error rate close to the expected 5% at occasion 3 whilst

there are very few (0.33%) signi�cant results at occasion 4. We can surmise

that this is due to �tting an overly complicated model at occasion 4, since

statistically at that time, including just one unobservable state would provide

an adequate �t of the model. The results obtained from these simulations

show that the procedure testing for two unobservable states can work in a

capture-recapture setting. But they also show that, due to the complexity of

the cell-probabilities constituting the mixtures and bases, in terms of capture-

recapture parameters, which can be state and time dependent, it will be hard

to predict the circumstances in which the test for one unobservable state will

be rejected so that the test for two unobservable states may be applied.

Table 5.14: Test for detecting two unobservable states in a capture-recapture
framework, simulation results, percentage of signi�cant test results (5%
level),Utrue denotes the number of unobservable states in the data, Ufitted

denotes the number of unobservable states used in the �tted and tested model

Utrue Ufitted χ2(%) CR (λ = 2
3
)(%) G2(%) i dof N Test

2 0 100.00 100.00 100.00 3 18 300 M
2 0 100.00 100.00 100.00 4 12 300 M

2 1 100.00 100.00 100.00 3 10 299 LC(it)
2 1 5.69 5.69 5.69 4 6 299 LC(it)

2 2 4.68 4.68 4.68 3 4 300 LC(it)
2 2 0.33 0.33 0.33 4 2 300 LC(it)
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5.5.3 Testing for one unobservable state in the Canada

Geese dataset

When assessing whether the procedure to test for one unobservable state could

be used in a capture-recapture setting, we used simulations with extremely

large sample sizes. Using the Canada geese dataset presented in Section 3.6

(Chapter 3), we examine whether the procedure could actually be used in real-

life conditions. To do so, we set state 3 to be unobservable in the geese dataset

(all 3s replaced by 0s) and use our procedure to assess whether the results

indicate that one additional state should be de�ned in the model. Hence, we

start from a dataset which seemingly presents only two live states: 1 and 2.

The results obtained using the procedure to test for one unobservable state

are given in Table 5.15.

Applied to the geese dataset with one unobservable state, Test M yields a

signi�cant result at both occasions 3 and 4 whilst the linear combination test

for one unobservable state does not, indicating that a model structure includ-

ing one unobservable state provides an adequate �t to the dataset. Based on

these results, an additional state with capture probability 0 would be de�ned

in the model. The procedure works as expected for this example, and this is

encouraging in terms of possible applications to capture-recapture datasets.

Table 5.15: Canada geese, state 3 set to unobservable, results of the procedure
testing for one unobservable state

Utrue Ufitted χ2(%) CR (λ = 2
3
)(%) G2(%) i dof Test

1 0 NA NA NA 2 NA M
1 0 < 0.001 < 0.001 < 0.001 3 8 M
1 0 0.006 0.006 0.006 4 4 M

1 1 NA NA NA 2 NA LC(it)
1 1 0.12 0.13 0.13 3 3 LC(it)
1 1 0.22 0.22 0.22 4 1 LC(it)
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5.6 Discussion

In this chapter, we have derived general parameter redundancy results for a

multinomial mixture and bases model structure including unobservable bases.

These results enabled us to adapt the MMLM approach and derive a procedure

to test for one or more unobservable bases. We examined di�erent aspects of

the procedure such as the structure tested for and the optimisation method

used. To sum up, we need M > U mixtures to assess the �t of a model in-

cluding U unobservable bases: U of the mixtures are used as proxy bases and

their cell probabilities estimated separately whilst the remaining mixtures are

expressed as linear combinations of both the observable and proxy bases. We

showed in this chapter that the tests for unobservable bases should be tests for

linear combinations rather than tests for mixtures: they present good distri-

butional properties, any mixtures can be used as proxy bases and more impor-

tantly, the remaining mixtures can always be expressed as linear combinations

of the mixtures used as proxies and the observable bases. Indeed in some cases,

none of the mixtures can be expressed as mixtures of observable and proxy

bases, whereas they can be expressed as linear combinations. Table 5.10 was

illustrative of this for instance, we also provide here a more extreme exam-

ple: consider a situation where one of the original mixing probabilities is on a

boundary. Mixtures M1, M2 and M3 are generated by bases B1, B2, B3 and

B4 with respectively, mixing probabilities π1 = 0.8, π2 = 0, π3 = 0.1, π4 = 0.1;

γ1 = 0.1, γ2 = 0.2, γ3 = 0.7, γ4 = 0; ν1 = 0, ν2 = 0.1, ν3 = 0.3, ν4 = 0.6. The

resulting cell-probabilities are displayed in Table 5.16: when B3 and B4 are

both unobservable, each of the mixtures presents extreme probabilities in one

of the bins; and none of the mixtures can be expressed as a weighted average

of the observable bases and other mixtures.

The linear combination tests are based on two steps: parameter estimation

and goodness-of-�t assessment. An iterative approach should be used for the
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Table 5.16: Mixture-bases cell probabilities for an example with mixing proba-
bilities on the boundary: the extreme probabilities are denoted in red (lowest)
and green(highest) for each bin, once bases B3 and B4 are set to unobservable

0.72040 0.05788 0.00450 0.00570 0.08710 0.08410 0.02052 0.01980 M1
0.09250 0.00836 0.03720 0.16130 0.56050 0.00160 0.13424 0.00430 M2
0.00170 0.00174 0.02070 0.08510 0.24050 0.48050 0.06176 0.10800 M3
0.90000 0.07200 0.00500 0.00600 0.00900 0.00500 0.00100 0.00200 B1
0.00200 0.00300 0.18000 0.80000 0.00500 0.00200 0.00500 0.00300 B2
0.00300 0.00080 0.00100 0.00100 0.79800 0.00100 0.19020 0.00500 B3
0.00100 0.00200 0.00400 0.00800 0.00100 0.80000 0.00700 0.17700 B4

estimation step, so as to avoid local optima, and a stringent enough conver-

gence criterion so that the estimates obtained are not biased (at least 10−9,

which seemed to work quite well). The procedure for testing for unobservable

bases consists in a step-up approach, performing only one test at each step.

The initial step consists of applying the original test for mixtures (i.e. thus

testing for 0 unobservable bases); although the hypothesised model structure

at this stage is of mixtures and bases, it could be of interest to examine how

a test for linear combinations would perform, even at this step. If the original

test for mixtures yields a signi�cant result, we test for one unobservable basis

by using one of the mixtures as a proxy basis and applying the linear combi-

nation test for one unobservable basis. If the result is not signi�cant, we stop

here and de�ne an additional basis, which is unobservable, in our model struc-

ture. If the test result is signi�cant, we continue to test for two unobservable

bases, two mixtures are then chosen to be proxy bases and we use the linear

combination test for two unobservable bases and so on and so forth. We have

veri�ed, using simulation that the procedure for testing one and two unob-

servable bases work as expected in theory. Technically, it would be possible to

continue this step-up approach to test for U unobservable bases. However, the

null hypothesis tested at each step will only be rejected if the unobservable

bases are di�erent enough and have speci�c properties that mean the mixtures

cannot be reconstructed without them. Therefore, in practice, it will not be

possible to reach a step that tests for many unobservable bases. Note that at

each step, only one null hypothesis is tested and this hypothesis is di�erent
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for each step. Since �Multiple testing refers to any instance that involves the

simultaneous testing of more than one hypothesis� (Romano et al., 2010), we

do not believe multiple testing would be an issue in this case.

Finally we have shown that it is possible to apply this procedure to the

capture-recapture framework to test for unobservable states. However, the

complex nature of capture-recapture parameters and the way they interact to

form the relevant cell-probabilities of the mixtures and bases render the prop-

erties of corresponding mixtures and bases di�cult to assess. Using simulation

as well as a real-life dataset, the procedure to test for one unobservable state

showed promising results and could be the focus of future research. Indeed

it would be of interest to examine the power of the test related to sample

size and state-speci�c properties. Also, recall that the original Test M has a

component M.ITEC which is used to assess trap-dependence; thus it would be

interesting to investigate how the test for unobservable states might react to

this phenomenon. We also showed that a test for two unobservable states can

work in theory in a capture-recapture setting, in an extreme situation, with

very large sample sizes; but we expect limitations in practice. Indeed the two

unobservable states would need to have very speci�c properties to give rise

to mixtures which could not be reconstructed without both of the bases, the

animals would also have to have a high probability of moving to and from the

unobservable states. It is unclear at this stage what these speci�c properties

should be, and this is an area of future research.



Chapter 6

Modelling individual

continuous time-varying

covariates using a multi-state

framework

6.1 Introduction

In the previous chapters, we presented various types of capture-recapture mod-

els for open populations: the CJS model, the multi-state models and �nally the

more general multievent models. The model parameters (describing survival,

capture and transitions) can be constant, time-dependent or state-dependent.

They can also be in�uenced by covariates, which can be external and time-

varying (e.g. climate), individual and constant with time (e.g. gender) or

individual and time-varying (e.g. weight). The values taken by these covari-

ates can be partially responsible for heterogeneity, they can also be represen-

tative of crucial ecological relationships, so that it is important to model them
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when appropriate (see for example Pollock, 2002). Individual time-varying

covariates are problematic in a capture-recapture context since the covariate

value is unknown whenever the animal is not resighted, resulting in an in-

tractable likelihood (Worthington et al., 2015). Several methods have been

developed in order to deal with this issue. Nichols et al. (1992) used a coarse

discretisation of their individual covariate of interest (body mass), into four

categories. These categories were then used as states and the model re-framed

as a multi-state model. Amstrup et al. (2005, page 177) note that any con-

tinuous covariate could be treated in this way. Bonner and Schwarz (2006)

proposed a Bayesian data augmentation method: �rst modelling the covariate

process as well as the relationship between capture-recapture parameters and

the covariate; and then using a Bayesian approach based on the complete data

likelihood to estimate the parameters. Catchpole et al. (2008) introduced

the trinomial method, which only takes into account the events associated

with observed (i.e. known) values of the covariate, thus using a conditional

likelihood approach. More recently, Langrock and King (2013) used hidden

Markov model machinery, based on a state-space formulation of the original

model. They modelled the covariate process and �nely discretised the covari-

ate space in order to use an approximate likelihood approach, based on a sum

instead of an integral, thus using all of the available data, unlike the trino-

mial method. Finally, Worthington et al. (2015) presented a two-step method:

multiple imputations of the missing covariate values assuming they are missing

at random, based on a covariate process model �tted to the observed data,

followed by the estimation of the demographic parameters resulting from the

likelihood conditional on observed and imputed values of the covariate.

In this chapter, we focus on the multi-state approach proposed by Nichols

et al. (1992). This method has been criticised, mainly on the grounds of the

coarse discretisation used, which results from an arbitrary decision and may

lead to losing valuable information (Worthington et al., 2015; Langrock and
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King, 2013; Bonner et al., 2010), or to a violation of the assumption of same

behaviour for animals in the same state (Bonner and Schwarz, 2006). How-

ever, the multi-state approach possesses the advantage of not needing to model

the covariate process since the parameters can be estimated freely as state-

dependent (Bonner and Schwarz, 2006), and, most importantly, missing values

due to non-captures of animals are automatically treated in this framework.

Since the main criticism pertains to the coarse discretisation of the covariate

rather than the use of multi-state models per se, we investigate the perfor-

mance of a multi-state approach using a �ne discretisation of the covariate

space, in a simple CJS capture-recapture context. In this chapter, we focus on

the initial goal of investigating whether the multi-state model produces good

results rather than assessing its performance relative to all the other meth-

ods currently developed. In Section 6.2, we �rst examine a situation where

survival is strongly dependent on body-mass using simulation. We then ap-

ply this methodology to a dataset of great crested newts (Triturus cristatus)

to explore a potential link between body mass and demographic parameters

(Section 6.3.1). In Section 6.3.2, we revisit the North American meadow vole

(Microtus pennsylvanicus) dataset from Nichols et al. (1992) to assess whether

a �ner discretisation a�ects the results previously obtained. Finally, in Section

6.4, using simulation, we brie�y explore the performance of this approach for

possible extensions such as incorporating measurement error or accommodat-

ing missing data (i.e. missing covariate value when the animal is resighted).

We conclude in Section 6.5. All the multi-state models �tted in this chapter

were �tted using Matlab.
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6.2 Simulation study

6.2.1 Fine discretisation and multi-state model parametri-

sation

In order to �nely discretise the covariate space, we follow the approach of

Langrock and King (2013): de�ning the essential range as 0.8wmin to 1.2wmax,

with wmin and wmax respectively denoting the minimum and maximum of the

observed covariate values; then dividing this range into m equal intervals. The

boundaries of these intervals will represent the �live� states and are relabelled

accordingly from 1 to m+1, with the animals assigned to the boundary closest

to their covariate value. Taking the great crested newts' body mass as an

example, using m = 20, wmin = 4.5g and wmax = 21.7g, this leads to the

following boundaries:{4.0, 5.1, 6.2, 7.3, 8.4, 9.5, 10.6, 11.7, 12.8, 13.9, 15.0,

16.1, 17.2, 18.3, 19.4, 20.5, 21.6, 22.7, 23.8, 24.9, 26.0}. An illustration of

conversion from example weights to a multi-state format is given in Table 6.1.

For example animals with weights of 8.3 and 8.5 are both assigned to state 5

since they are closest to the boundary 8.4.

Bonner and Schwarz (2006) observed that using a large number of states

can result in identi�ability issues due to the considerable number of parame-

ters to estimate. Keeping this in mind, we simplify the parametrisation usually

associated with state-dependence in classic multi-state models. For the sur-

vival probability in state r, denoted by φ(r), instead of using one parameter

Table 6.1: Example of conversion from original weightings to a multi-state
format, NA denotes missing values corresponding to occasions on which the
animals was not captured

Occasion T1 T2 T3 T4 T5 T6 T7 T8

Original weight 8.5 8.3 NA 10.3 12.9 13.0 16.3 11.4

Multi-state format 5 5 0 7 9 9 12 8
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per state, we model the dependence on weight using a linear logistic model

(North and Morgan, 1979), as is usually done with continuous covariates:

logit(φ(r)) = β0 + β1r, with logit(x) = log(x/(1− x)) The capture probability,

set to be constant over time and states, and denoted by p, is modelled using

a logit link: logit(p) = β2. We also choose a simple structure for the tran-

sition probabilities, which considerably reduces the number of parameters to

estimate. In this case, we use multinomial logistic-type links (in order for the

transition matrix to remain row-stochastic), one for weight increase and the

other for weight decrease, with the transition probabilities being a function

of the di�erence between arrival state and departure state (i.e. the weight

jump). Additionally, we constrain the transition probabilities of large jumps

to be zero, using as threshold the maximum observed weight jump between

two consecutive occasions plus 0.1m. Using the probability of remaining in

the same state as the reference level, and using r and s to respectively denote

the arrival and departure states, if |r − s| ≤ 0.1m,

• for r < s (weight increase)

ψr,s =
exp(β3 + |r − s| β4)

1 +
∑m+1

s>r,s=1 exp(β3 + |r − s| β4) +
∑m+1

s<r,s=1, exp(β5 + |r − s| β6)

• for r > s (weight decrease)

ψr,s =
exp(β5 + |r − s| β6)

1 +
∑m+1

s>r,s=1 exp(β3 + |r − s| β4) +
∑m+1

s<r,s=1, exp(β5 + |r − s| β6)

• and ψr,r = 1−
∑m+1

s 6=r,s=1 ψr,s

Hence, instead of estimating (m+ 1)(m+ 1)−m parameters, we estimate

only four parameters: β3, β4, β5 and β6. The probability of remaining in the

same state is the reference level and the parameters are interpreted relative

to this probability. Although the parametrisation is simple, an interpretation
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of the estimates at �rst glance is not as straightforward, as illustrated using a

simple example (note also that this is not a �real� multinomial regression with

independent predictors). Recall that another way of expressing the model for

a weight increase, for instance, would be: log(ψr,s/ψr,r) = β3 + |r − s| β4. Let

us suppose that the MLEs obtained were β̂3 = 0.64, β̂4 = −0.25, β̂5 = 0.42

and β̂6 = −0.58. Then, the log-odds of increasing state relative to remaining

in the same state decreases by 0.25 unit when the state value increases by one

unit. Using numerical examples, the log-odds of increasing the state value by

1, 2 or 3 would be respectively: 0.64− 0.25 = 0.39, 0.64− 0.25× 2 = 0.14, and

0.64− 0.25× 3 = −0.11. The same reasoning applies to a weight decrease: the

log-odds of decreasing state relative to remaining in the same state decreases

by 0.58 unit when the state value decreases by one unit. Using numerical

examples, the log-odds of decreasing state by respectively, 1, 2 or 3 compared

to remaining the same weight is 0.42− 0.58 = −0.16, 0.42− 2× 0.58 = −0.74

and 0.42 − 3 × 0.58 = −1.32. In other words, for this example, the animals

would be more likely to increase by 1 or 2 state-units than to remain in the

same weight category, but would be less likely to decrease in weight or to

increase by more than 2 state-units.

The choice of this structure for transition probabilities was based on basic

intuitive considerations regarding weight: that the animals could increase or

decrease weight in di�erent manners and that the probabilities of changing

weight would depend on the change in weight value between times.

6.2.2 Simulation results

We used simulation in order to evaluate how well the multi-state approach

performed to estimate the survival parameters as well as the capture probabil-

ity, in the presence of a strong link between survival and weight. 250 datasets

of 500 individuals, arising from a simple CJS model, were simulated, with a
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strong logistic-type link between the survival probability of animal k from t to

t+ 1 (φk,t) and a simulated individual continuous covariate representing body

mass wk,t: logit(φk,t) = β0 + β1wk,t, with β0 = −5.05 and β1 = 0.7.

The covariate values were simulated in R, using the homogeneous order 1

autoregressive process, proposed by Langrock and King (2013),

wk,t = η(wk,t−1 − µ) + µ+ σεt with εt
i.i.d∼ N (0, 1);

setting the values to σ = 1.38, η = 0.81, µ = 18.6. The initial weights were

simulated from a normal distribution with mean 7.5 and standard deviation

2.48. All these covariate process values are roughly based on the estimates

obtained when �tting this model to the great crested newts dataset (the values

were slightly modi�ed in order to allow for a stronger increase in weight over

time). The evolution of weight over time is illustrated in Figure 6.1 and the

link between survival and weight in Figure 6.2.

Varying levels of capture probabilities were examined: p = 0.9, 0.6 and 0.3,

as well as increasing levels of �ne discretisation: m = 10, 20, 40 and 60. The

results obtained by �tting a multi-state model with 7 parameters, as described

in subsection 6.2.1, are presented in Table 6.2 in terms of mean relative bias

with 2.5 and 97.5 percentiles, mean of the 95% con�dence interval widths of

the parameter estimates and coverage probability of these con�dence inter-

vals. The relative bias is equal to (β̂ − β)/β, with β̂ denoting the estimated

parameter value and β the true value. When using the multi-state framework,

the link between survival and weight is modelled as a function of the state r:

logit(φ(r)) = β0 + β1r. Therefore the estimates obtained cannot be directly

compared to the true values; they need to be rescaled back to the original

weight scale. The state value r is obtained from the discretised weight bound-

ary wd, the minimum of the essential range min and the length of the equal

intervals between boundaries, denoted by length: r = (wd−min)/(length)+1.
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Figure 6.1: Weight evolution over time for a simulated dataset with 10 release
occasions: individual pro�les and average trend. The mean is represented by
triangles and the standard error by the shaded area. Time has been rescaled
so that 1 represents the initial release occasion of the animal, capture and
survival probabilities were set to 1 in order to illustrate only the covariate
process.

Figure 6.2: Illustration of the link between survival and weight chosen for the
simulations
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In order to distinguish parameters on a state scale from those on a weight scale,

we denote the multi-state parameters by the superscript MS.

βMS
0 + rβMS

1 = βMS
0 +

(
wd−min

length
+ 1

)
βMS
1

By simply re-arranging the terms, we obtain

βMS
0 + rβMS

1 = βMS
0 + βMS

1 − βMS
1

min

length
+

βMS
1

length
wd

Hence the parameters on the original weight scale are

β0 = βMS
0 + βMS

1 − βMS
1

min

length

and β1 =
βMS
1

length
.

There will obviously be a slight loss in precision due to the fact that the

rescaling from multi-state to weight goes back to the discretised weights, not

the original weights. The standard errors of the parameter estimates are ob-

tained using the square root of the diagonal terms of the inverse Hessian nu-

merically evaluated at the MLE. We also need to transform these standard

errors obtained to compute the con�dence intervals on the weight scale, us-

ing the classic formula of variance for a sum of variables: Var(aX + bY ) =

a2Var(X) + b2Var(Y ) + 2abCov(X, Y ). It follows that

Var(β̂0) = Var(β̂MS
0 ) + Var(β̂MS

1 )

[
1− min

length

]2
+ 2

[
1− min

length

]
Cov(β̂MS

0 , β̂MS
1 )

Var(β̂1) =

(
1

length

)2

Var(β̂MS
1 ) .

Finally, for the capture probability, p, the standard errors on the proba-

bility scale are derived using the delta method, with ilogit denoting the in-

verse logit link: ilogit(x) = exp(x)/(1 + exp(x)) and se(p̂) = ilogit(β̂2)(1 −
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ilogit(β̂2))se(β̂2) (see for example Cooch and White, 2014, p.55, Chapter 4).

The simulation results show that a multi-state approach with �ne discreti-

sation produces very good results. Indeed over all levels of capture probabilities

examined, m = 10 produces biased estimates (around 10% for the intercept).

However, the biases are drastically reduced form = 20: around 1 % for p = 0.9,

2% for p = 0.6 and 3% for p = 0.3. We note that higher discretisations of

m = 40 and m = 60 do not seem to change the results much: the intercept

is estimated with no bias, but the relative bias of the weight coe�cient are

slightly increased, although they remain low (e.g. 5 % for p = 0.3). Finally

we note that the relative bias of the capture probability estimates increases

slightly as the true capture probability decreases and is constant over all lev-

els of discretisation: unbiased for p=0.9 to a 1% relative bias for p=0.6 and

3% for p=0.3. The con�dence interval widths do not seem to change much

across the discretisations, however they become larger as the capture probabil-

ity decreases, as expected. Finally the coverage probabilities of the con�dence

intervals are very high for m ≥ 20, around 96% for the survival parameters,

but they are lower for the capture probability around 90% for p = 0.6 and

p = 0.3. On the other hand, the con�dence interval widths are extremely

narrow for the capture probability estimates. Based on these simulations, a

multi-state approach for modelling time-varying individual covariates seems

to work well for m ≥ 20, even for a low capture probability and despite the

use of a very simple structure for the transition probabilities. Based on these

simulation results, m = 20 presents good properties in terms of computational

time and estimation performance, whereas m = 40 and m = 60 took much

longer to run for no signi�cant gain in estimate precision (see Table 6.2). As

an aside, the number of available simulations is consistently lower than 250 for

m = 10 because the obtained estimates were associated with negative variance

estimates for some datasets and these were not taken into account. Since this

did not happen for m ≥ 20 (apart for p = 0.3, for only 7 datasets), we did not
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deem it necessary to investigate the optimisation problem further.

Seeing that the multi-state approach with �ne discretisation is shown to

work well, the next step to investigate in future research would be to assess its

relative performance compared to the existing methods described in Section

6.1.

6.3 Applications

6.3.1 Great crested newts

We use a CJS-format dataset of great crested newts, captured on a �eld study

site at the University of Kent campus, using funnel traps, from 2003 to 2014

and identi�ed using their unique belly patterns. The dataset consists of 108

individuals: 50 females and 58 males, whose weight information was collected

on capture. The captures occurred from around March until around mid-July,

when no newt was captured (Gri�ths et al., 2010). The data we used were in

an annual format: coded as 1 if a newt was captured at least once during the

capture season and 0 if not; annual weight data was also available for these

newts.

We use a multi-state framework to investigate a potential e�ect of weight

on the survival or capture probability. Recall that our simulations from Section

6.2.2 were roughly based on the weight process used by Langrock and King

(2013), �tted to the great crested newts. Since our results showed that a

discretisation in m = 20 intervals presented good properties, we set m to 20

for our application.

First, out of curiosity, we compared the results obtained by �tting a simple

model using the Langrock and King (2013) HMM approach and the multi-

state approach presented in this chapter (setting m = 20). We �tted a model

with constant capture probability, weight/state-dependent survival probability
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Table 6.2: Modelling weight via a multi-state approach using an increasingly
�ne discretisation and di�erent level of capture probabilities: simulation re-
sults; RB denotes the relative bias, q the quantiles, CIW the con�dence interval
widths, CP the coverage probability and N the number of usable datasets (i.e.
omitting the datasets presenting negative variance estimates).

ptrue m Parameter RB(q0.025, q0.975) CIW CP N

0.9

10

β0 -0.09 (-0.22, 0.05) 1.37 0.74

220β1 -0.07 (-0.18 ,0.05) 0.16 0.76

p 0.00 (-0.02 , 0.01) 0.04 0.94

20

β0 -0.01 (-0.13,0.15) 1.47 0.96

250β1 -0.01 (-0.11, 0.13) 0.18 0.97

p 0.00 (-0.02,0.02) 0.04 0.94

40

β0 0.01 (-0.12,0.17) 1.49 0.96

250β1 0.01 (-0.10,0.15) 0.18 0.96

p 0.00 (-0.02,0.02) 0.04 0.94

60

β0 0.01(-0.12,0.17) 1.5 0.96

250β1 0.01 (-0.09,0.15) 0.18 0.96

p 0.00 (-0.02,0.02) 0.04 0.94

0.6

10

β0 -0.09 (-0.24, 0.05) 1.65 0.75

163β1 -0.06 (-0.17, 0.08) 0.20 0.86

p -0.02 (-0.06, 0.03) 0.06 0.92

20

β0 -0.02 (-0.18, 0.16) 1.76 0.94

250β1 0.00 (-0.12, 0.16) 0.22 0.98

p -0.02 (-0.07, 0.03) 0.06 0.90

40

β0 0.00 (-0.15 , 0.17) 1.79 0.96

250β1 0.02 (-0.11, 0.18) 0.22 0.96

p -0.01 (-0.07, 0.03) 0.06 0.90

60

β0 0.00 (-0.15 0.18) 1.79 0.96

250β1 0.02 (-0.10, 0.17) 0.22 0.98

p -0.01 (-0.07, 0.03) 0.06 0.90

0.3

10

β0 -0.10 (-0.32, 0.12) 2.29 0.82

119β1 -0.03 (-0.22, 0.16) 0.30 0.92

p -0.03 (-0.12, 0.07) 0.06 0.91

20

β0 -0.02 (-0.20, 0.19) 2.41 0.96

243β1 0.03 (-0.14, 0.23) 0.31 0.98

p -0.03 (-0.12, 0.06) 0.06 0.91

40

β0 0.00 (-0.20, 0.25) 2.46 0.96

250β1 0.05 (-0.13, 0.26) 0.31 0.97

p -0.03 (-0.12, 0.07) 0.06 0.91

60

β0 0.00 (-0.19, 0.25) 2.46 0.96

250β1 0.05 (-0.12, 0.27) 0.31 0.97

p -0.03 (-0.12, 0.07) 0.06 0.91
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through a logistic link, and transitions structured similarly to Section 6.2.1.

Table 6.3 presents the common parameters estimated by both models and

shows that both approaches yield very similar results (only the intercept es-

timate for survival is slightly di�erent); they both lead to the same estimate

and conclusion regarding weight, that it has no signi�cant e�ect on survival.

Then, using the multi-state approach with m = 20, in order to further

investigate whether weight intervened once other e�ects had been accounted

for, we performed some model selection based on a step-up procedure starting

with a model de�ned by constant capture, survival and transition probabilities,

which is termed the level 0 model (McCrea and Morgan, 2011). In the next

step, models are �tted by allowing just one level of dependence for each of the

parameters and this is done for all the possible types of dependence for each of

the parameters; these form the level 1 models. For instance a model with time-

dependent survival, constant capture and constant transition probabilities is

a level 1 model. The best model from level 1 is chosen using the AICc as

the criterion to select the best model at each stage. It is then used as the

starting point for the next level models, where one level of dependence will be

added for each of the parameters. The best model from this level then serves

as the starting point for the next level and so forth. The AICc was computed

according to the formula given below: log(L(θ̂)) denotes the log-likelihood

evaluated at its maximum, d denotes the number of estimable parameters of

Table 6.3: Great crested newts: capture and survival estimates and associ-
ated standard errors; multi-state (MS) and HMM approaches. Note that the
conversion from multi-state results to original weight scale only concern the
weight-dependent survival parameters, the capture probability is not expressed
in relation to weight and thus is not expressed on the weight scale.

MS MS (weight scale) HMM

φ, intercept: β0 0.91 (0.569) 0.67 (0.745) 0.63 (0.763)

φ, weight coe�cient: β1 0.09 (0.069) 0.08 (0.063) 0.08 (0.064)

logit(p) 1.55 (0.188) - 1.55 (0.188)
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the model and n the e�ective sample size (Burnham and Anderson, 2002, page

66).

AICc = −2 log{(L(θ̂)}+ 2d+
2d(d+ 1)

n− d− 1

When the sample size is large relative to the number of estimable parame-

ters, the AICc will be approximately equal to the AIC: −2 log{L(θ̂)} + 2d.

We note that the de�nition of e�ective sample size in the capture-recapture

framework does not seem straightforward due to the multiple measurement

points for each animal, and there does not seem to be much literature on the

subject. Cooch and White (2014, Chapter 19) state that �The appropriate

value for e�ective sample size in mark-recapture models remains an unresolved

issue and more research on the topic is warranted �. Burnham and Anderson

(2002, page 332) suggest using the number of animals captured at least once,

or the number of potential recaptures. Programs commonly used for capture-

recapture analyses such as MARK or E-SURGE also di�er in their de�nition

of the e�ective sample size, with MARK using the total number of captures

and recaptures, leaving out the last year (see response from Cooch on the

forum http://www.phidot.org/forum/viewtopic.php?f=1&t=3136) and E-

SURGE using the total number of captures and recaptures minus the number

of individuals removed or censored (see response from Choquet on the forum

http://www.phidot.org/forum/viewtopic.php?f=5&t=1597). We chose to

use the sample size de�ned in program E-SURGE, simply because we have of-

ten used this program to check our results from the simpler models. Since there

were no individuals removed, the e�ective sample was 333 (this would be 288

with the MARK de�nition or 225 using the number of potential recaptures).

At each stage/level of the step-up procedure, we select as best model the

one with the smallest AICc. We use the rough rule of thumb recommended

in Burnham and Anderson (2004, p.70), that ∆(AICc) <= 2 indicates strong

support for the model, with ∆(AICc) being the di�erence between the AICc
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value of a model considered within a given level and the AICc value of the best

model within the same level. Although the discretisation was set to m = 20,

the number of states was actually 17 in the multi-state dataset, since some

of the larger weight categories were not represented. Throughout the model-

�tting process, we encountered the issue of very large or negative variance

estimates at the maximum likelihood. Upon further examination, these were

due either to convergence to a local optimum rather than the global one, or

to parameters being estimated at a boundary. As a safeguard against local

minima, we checked that the deviances obtained for all models �tted at level

L were smaller than that of the best model selected at level L − 1, which

is nested within the more complicated models of level L. Thus, we re-ran

the optimisation process when necessary. Following the recommendations of

McCrea and Morgan (2011), we also used the maximum-likelihood estimates

obtained from the best model at level L − 1 as initial values for the optimi-

sation for models at level L. Finally, the boundary estimates we encountered

were probabilities estimated as 1, so we �xed these values and estimated only

the remaining parameters. After making these corrections, we no longer ob-

tained aberrant variance estimates for the �tted models. The results of the

model �tting performed on the great crested newts dataset are presented in

Table 6.4, with the best model at each level indicated in red. The models are

denoted based on the GEMACO notation used in program E-SURGE: p, φ

and ψ respectively denote the capture, survival and transition probabilities;

(.) denotes a constant parameter, t time-dependence, g gender e�ect, w weight

e�ect (modelled through a logistic regression link as described in section 6.2),

`+' indicates additive e�ects and `∗' interactive e�ects.

Note that categorical e�ects are modelled using dummy variables (one vari-

able per category, no intercept); and additive categorical e�ects involving cat-

egorical variables will result in multicollinearity. Indeed, for each variable, one

category will be associated to a value of 1; hence the sum of the dummy vari-
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ables associated with each categorical e�ect will sum to 1 for all possible com-

binations. Take for instance an additive gender and time e�ect characterised

by the following indicators: male = 0, female = 1, t1 = 1, t2, . . . , t11 = 0, it is

obvious that the gender indicators and the time indicators will each sum to 1,

whatever is the combination of indicators. To solve this problem, we followed

the method given in Choquet and Nogue (2006) and dropped the dummy vari-

able associated to one of the categories: for example, with a parametrisation

g + t, parameters were estimated from t = 2 onwards. For the transition

probabilities, D denotes the departure state (i.e. state at time t − 1) and J

the size of the jump between arrival state (i.e. state at time t) and departure

state, (D + J)diff denotes that the link parameters are di�erent for a weight

increase than for a weight decrease as in the model described in Section 6.2.1,

except that we did not constrain any of the transition probabilities to 0. The

notation (B) indicates that parameters estimated at a boundary have been

�xed and the number of estimable parameters reduced consequently.

Since our simulation results as well as the �rst step of simple model �tting

to the newt dataset both showed that accurate results were obtained when

using a simple structure for the transition probabilities, we only considered a

few simple structures for these in our model �tting. Our goal is not to model

the transitions as accurately as possible, but to use the multi-state framework

to �t models with weight-dependent capture and/or survival probabilities, and

accurately estimate the potential weight-e�ect.

We note that we did not �t the interactive model p(g), φ(.), ψ{(D+J)diff ∗

g ∗ t} at level 4, due to the considerable number of parameters involved (135),

with 132 for the transition structure (in this case it would make more sense to

actually model the covariate process rather than using an over-parametrised

possibly inaccurate structure for the transition process). We stopped the

model �tting at level 4 since weight-dependence had not entered the model for

survival nor for capture by that point.
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Table 6.4: Newts, model �tting results, the best model at each level is denoted
in red. The last model from the list corresponds to the best model from level
4, including environmental covariates

Level Model Deviance d AIC AICc

0 p(.), φ(.), ψ(.) 1613.14 3 1619.14 1619.21

1

p(.), φ(.), ψ(D + J)diff 1225.56 8 1241.56 1242.01

p(.), φ(.), ψ(D + J) 1311.15 5 1321.15 1321.33

p(.), φ(.), ψ(J) 1313.60 4 1321.60 1321.72

p(w), φ(.), ψ(.) 1531.53 4 1539.53 1539.65

p(g), φ(.), ψ(.) 1583.11 4 1591.11 1591.23

p(.), φ(.), ψ(g) 1608.59 4 1616.59 1616.71

p(.), φ(.), ψ(D) 1609.84 4 1617.84 1617.96

p(t), φ(.), ψ(.) 1592.83 13 1618.83 1619.97

p(.), φ(w), ψ(.) 1611.50 4 1619.50 1619.62

p(.), φ(t), ψ(.) 1593.03 13 1619.03 1620.17

p(.), φ(g), ψ(.) 1612.98 4 1620.98 1621.10

p(.), φ(.), ψ(t) 1597.39 13 1623.39 1624.53

2

p(.), φ(.), ψ{(D + J)diff ∗ g} 1197.78 14 1225.78 1227.10

p(g), φ(.), ψ{(D + J)diff} 1214.06 9 1232.06 1232.62

p(.), φ(.), ψ{(D + J)diff + g} 1216.49 9 1234.49 1235.05

p(w), φ(.), ψ(D + J)diff 1221.20 9 1239.20 1239.76

p(.), φ(w), ψ(D + J)diff 1223.89 9 1241.89 1242.45

p(t), φ(.), ψ{D + J)diff 1205.25 18 1241.25 1243.43

p(w), φ(t), ψ(D + J)diff 1205.45 18 1241.45 1243.63

p(.), φ(.), ψ{(D + J)diff + t} 1210.65 18 1246.65 1248.83

p(.), φ(g), ψ(D + J)diff 1225.40 9 1243.40 1243.95

p(.), φ(.), ψ{(D + J)diff ∗ t} 1128.15 68 1264.15 1299.69

3

p(g), φ(.), ψ{(D + J)diff ∗ g} 1186.28 15 1216.28 1217.80

p(w), φ(.), ψ{(D + J)diff ∗ g} 1191.99 15 1221.99 1223.51

p(.), φ(w), ψ{(D + J)diff ∗ g} 1196.09 15 1226.09 1227.61

p(t), φ(.), ψ{(D + J)diff ∗ g} 1177.47 24 1225.47 1229.37

p(.), φ(t), ψ{(D + J)diff ∗ g} 1177.67 24 1225.67 1229.57

p(.), φ(g), ψ{(D + J)diff ∗ g} 1197.61 15 1227.61 1229.13

p(.), φ(.), ψ{(D + J)diff ∗ (g + t)} 1184.99 24 1232.99 1236.88

p(.), φ(.), ψ{(D + J)diff ∗ (g ∗ t)} 1060.83 134 1328.83 1511.55

4

p(g + t), φ(.), ψ{(D + J)diff ∗ g}(B) : p2 = p6 = 1 1166.11 23 1212.11 1215.68

p(g), φ(w), ψ{(D + J)diff ∗ g} 1184.16 16 1216.16 1217.88

p(g), φ(t), ψ{(D + J)diff ∗ g}(B) : φ3 = 1 1166.05 24 1214.05 1217.94

p(g + w), φ(.), ψ{(D + J)diff ∗ g} 1186.03 16 1218.03 1219.75

p(g), φ(g), ψ{(D + J)diff ∗ g} 1186.23 16 1218.23 1219.95

p(g.w), φ(.), ψ{(D + J)diff ∗ g} 1184.29 17 1218.29 1220.24

p(g), φ(.), ψ{(D + J)diff ∗ g + t} 1173.50 25 1223.49 1227.72

p(g ∗ t), φ(.), ψ{(D + J)diff ∗ g} 1183.62 35 1253.62 1262.11

p(g + SR), φ(NAR +WT +NAR ∗WT ),

ψ{(D + J)diff ∗ g} 1174.64 19 1212.64 1215.07



6. Individual time-varying covariates 222

At level 4, according to the AICc criterion the best model, with

AICc=1215.68, is p(g+t), φ(.), ψ{(D+J)diff ∗g} with boundary parameters p2

and p6 set to 1 for both males and females. Since p(g), φ(w), ψ{(D+J)diff ∗g}

presents a ∆(AICc)=2.20, we use a likelihood ratio test to determine the

signi�cance of the weight e�ect by comparing this model with the nested

model p(g), φ(.), ψ{(D + J)diff ∗ g} (the best model from level 3). The test-

statistic is de�ned as−2{log(LM0)− log(LM1)} with log(LM0) the maximised

log-likelihood value for the simpler nested model denoted byM0 and log(LM1)

the maximised log-likelihood value for the more complex model denoted by

M1; this test-statistic follows a chi-square distribution with degrees of free-

dom equal to the number of additional parameters estimated in M1 (see for

example McCrea and Morgan, 2014, p. 16). The likelihood-ratio test shows

that the weight e�ect is non-signi�cant (LRT-statistic = 2.12, p = 0.14 for

1 d.o.f.); alternatively we can draw the same conclusion from the weight co-

e�cient estimate obtained for this model: 0.10 with 95% con�dence interval

(-0.04, 0.24).

Finally, since time-dependence intervenes in the best level 4 model for cap-

ture probabilities, that ∆(AICc) = 2.26 for model p(g), φ(t), ψ{(D+J)diff ∗g}

with φ3 �xed to 1, and that climatic data was shown to in�uence demographic

parameters in previous analyses (Gri�ths et al., 2010), we also �t a model with

time-varying environmental covariates for both capture and survival probabil-

ities, the results of this model are presented in Table 6.5.

For the capture probabilities, we considered the spring rainfall SR (rainfall

over March, April and May for each calendar year), since it corresponds to the

period where newts are in the ponds (Gri�ths et al., 2010). We chose the

mean minimum winter temperature WT and the non-aquatic rainfall NAR

(thus termed since it is the rainfall over the period where newts are out of

the water) for survival as they were shown to be important predictors in the

previous analyses conducted by Gri�ths et al. (2010). We computed the NAR
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as the rainfall over the period between capture seasons (i.e. rainfall from

June to December over year y and January-February in year y + 1). All the

environmental covariates were standardised, with missing data replaced by 0

in this format (which is equivalent to a replacement by the overall mean).

Table 6.5 presents the results for the competing best models (model including

environmental covariates and best model from level 4), in terms of parameter

estimates and associated 95% con�dence intervals.

All models have the same parametrisation for the transition probabilities

and, as expected, yield the same results for all those parameters. They are

presented more for informative purposes since, as illustrated by the Section

6.2.1 example, their interpretation is not intuitive. For males, the log-odds of

decreasing state value (i.e. weight category) relative to remaining in the same

weight category increases with the departure state value (for a jump size held

constant) whilst this log-odds decreases with the jump size (for a departure

state held constant). The log-odds of increasing weight category relative to

remaining in the same weight category decreases with the departure state

value (for a jump size held constant) as well as with the jump size (for a

departure state held constant). For females, the log-odds of decreasing state

value (i.e. weight category) relative to remaining in the same weight category

does not vary signi�cantly with the departure state value (for a jump size held

constant) whilst this log-odds decreases with the jump size (for a departure

state held constant). The log-odds of increasing weight category relative to

remaining in the same weight category decreases with the departure state value

(for a jump size held constant)and it also decreases with the jump size (for a

departure state held constant). Note also that we are cautious regarding the

interpretation of the transition parameters since, as mentioned previously in

this section, the transition process was not the focus of our modelling.

The environmental model (denoted by E in Table 6.5) show that the cap-

ture probability signi�cantly decreases when spring rainfall increases and that
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Table 6.5: Newts, best model results, the signi�cant e�ects are denoted in
bold; E denotes the model with environmental covariates, L4 the best model
from Level 4. For the transition parameters, I and D respectively denote
weight increase and weight decrease, r denotes the departure state.

Parameter E L4

Estimate 95% CI Estimate 95% CI

φ: intercept 1.79 (1.32 , 2.25) 1.65 (1.32 , 1.98)

φ: βWT -0.59 (-1.10 , -0.09) - -

φ: βNAR -0.87 (-2.07 , 0.32) - -

φ: βWT∗NAR 0.00 (-1.00 , 1.00) - -

pmales: intercept 2.29 (1.64 , 2.94) 1.90 (0.33 , 3.47)

pfemales: intercept 0.98 (0.50 , 1.47) 0.56 (-1.05 , 2.17)

p: βSR -0.41 (-0.79 , -0.03) - -

p: βt3 - - 0.94 (-1.62 , 3.50)

p: βt4 - - -0.42 (-2.76 , 1.92)

p: βt5 - - 1.65 (-0.85 , 4.16)

p: βt7 - - 0.33 (-1.54 , 2.21)

p: βt8 - - 1.10 (-0.85 , 3.06)

p: βt9 - - -0.71 (-2.39 , 0.97)

p: βt10 - - 0.79 (-1.07 , 2.65)

p: βt11 - - 0.14 (-1.69 , 1.97)

ψmales, D:intercept -4.32 (-7.57 , -1.07) -4.32 (-7.57 , -1.07)

ψmales, D:βr 0.45 (0.10 , 0.81) 0.45 (0.10 , 0.81)

ψmales, D:βjump -1.05 (-1.53 , -0.57) -1.05 (-1.53 , -0.57)

ψmales, I:intercept 3.58 (1.78 , 5.38) 3.58 (1.78 , 5.38)

ψmales, I:βr -0.34 (-0.57 , -0.11) -0.34 (-0.57 , -0.11)

ψmales, I:βjump -1.13 (-1.42 , -0.85) -1.13 (-1.42 , -0.85)

ψfemales, D:intercept -0.39 (-4.78 , 4.01) -0.39 (-4.78 , 4.01)

ψfemales, D:βr 0.09 (-0.29 , 0.48) 0.09 (-0.29 , 0.48)

ψfemales, D:βjump -1.40 (-2.34 , -0.46) -1.40 (-2.34 , -0.46)

ψfemales, I:intercept 3.99 (1.05 , 6.94) 3.99 (1.05 , 6.94)

ψfemales, I:βr -0.30 (-0.58 , -0.01) -0.30 (-0.58 , -0.01)

ψfemales, I:βjump -0.76 (-0.98 , -0.54) -0.76 (-0.98 , -0.54)
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the capture probability is signi�cantly higher for male newts than female

newts. This model also shows that the survival probability decreases when

the mean minimum winter temperature increases; this is in agreement with

the previous �ndings from Gri�ths et al. (2010). We note that modelling

the parameters as a function of environmental covariates removed the issue of

boundary estimates since none of the parameters hit the boundary. The model

with additive gender and time e�ects, and p2 and p6 �xed to 1 (denoted by

L4 in Table 6.5), however, showed no signi�cant di�erences between genders

or sampling occasions in terms of capture probabilities. We also noticed that

model p(g), φ(t), ψ{(D+J)diff ∗g}(B) from level 4 necessitated �xing φ3 to 1,

which corresponds to the survival in year 2005. Survival in this year was also

noted to behave di�erently in Gri�ths et al. (2010), although it was unusually

low in those analyses and unusually high in ours. Clearly, further investigation

is warranted as to the modelling of capture and survival probabilities. How-

ever, in regards to our aim, there is no evidence of a weight-e�ect on either

capture or survival probability.

Finally, we have insisted on the importance of goodness-of-�t throughout

this thesis. At �rst sight, multi-state models seem advantageous in this as-

pect since they have a goodness-of-�t test suite. However, in a context where

the states represent categories of a �nely discretised continuous variable, these

tests cannot be used due to the sparseness of data per state and sampling

occasion. Therefore, we just present the results of the goodness-of-�t tests for

the simple CJS model by gender in Table 6.6. These results were obtained

using program U-CARE. There is no obvious violation of the CJS model as-

sumptions, although transience could be investigated since the one-sided test

for males is not far from signi�cance. (Note also that the result for test 2.CL

comes from only the 9th occasion, there was not enough data to perform it for

any of the other occasions.)
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Table 6.6: Newts, goodness-of-�t of the fully time-dependent CJS model, by
group (gender)

Test Males Females

dof p-value dof p-value

3.SR 8 0.79 9 0.99

3.Sm 6 0.80 3 1

2.CT 4 0.79 4 0.74

2.CL NA NA 1 0.07

Transience (one-sided) - 0.09 - 0.30

Trap-dependence (two-sided) - 0.51 - 0.34

Global dof p-value

35 0.995

6.3.2 Meadow voles

We revisited the previous analyses of meadow voles by Nichols et al. (1992),

who used a multi-state framework with coarse discretisation (only 4 categories)

to model body mass. The dataset consisted of CJS-format information over

four sampling occasions, for 515 voles captured at the Patuxent Wildlife Center

in Laurel, Maryland, from fall 1981 to spring 1982 (Nichols et al., 1992). One

record was deleted due to the fact that no mass was assigned at any of the

capture occasions. As done previously, we used a �ner discretisation with m =

20 to explore a potential e�ect of weight on survival or capture; this yielded

a model with 18 states. We used the model structure and step-up approach

described in Section 6.3.1, also using the same model notations, the e�ective

sample size for this dataset was 819. The results of the step-up procedure

are given in Table 6.7. We stopped the model �tting at level 3, given that

there was no support for a model with weight-dependence for either capture

or survival probability. Model p(w), φ(t), ψ(D + J)diff has a ∆(AICc) = 2.7

compared to the best model of level 3, but a likelihood-ratio test between

models p(w), φ(t), ψ(D+ J)diff and p(.), φ(t), ψ(D+ J)diff indicated that the
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weight e�ect was not signi�cant (LRT-statistic = 1.96, p = 0.16 with d.o.f=1).

The best model selected amongst our candidates models is p(.), φ(t), ψ{(D +

J)diff + t} with AICc = 1563.86.

The results of the best model from level 3 are given in Table 6.8. Since the

survival and capture probabilities were modelled using a logit link, the stan-

dard errors on the probability scale were computed using the delta method de-

scribed in Section 6.2.1. The survival probability was found to be signi�cantly

lower over the �rst period than the second period, which is consistent with the

�ndings of Nichols et al. (1992). The capture probability was estimated to be

0.91, which is very close to the value of 0.9 reported by Bonner and Schwarz

(2006) in their analysis of a subset of voles from the same dataset (Nichols

et al. (1992) did not report the capture probability estimate). Once again,

transition parameters are presented more for informative purposes. From Ta-

ble 6.8, the log-odds of changing weight category relative to remaining in the

same category is signi�cantly lower in period 3 than period 1. The log-odds

of increasing weight category relative to remaining in the same weight cate-

gory signi�cantly decreases with the departure state (jump size and occasion

held constant) and the jump size (departure state and occasion held constant);

whilst the log-odds of decreasing weight category relative to remaining in the

same weight category, signi�cantly decreases with the jump size.

In conclusion, using a multi-state approach with �ne discretisation to model

weight for the meadow voles, has shown no evidence of a weight-e�ect on

either survival or capture. Finally, for informative purposes, we also present

the goodness-of-�t results of the basic CJS model in Table 6.9; these tests were

performed using program U-CARE. We note that the test for transience is at

the limit of signi�cance and could be investigated further, but that is not done

here.
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Table 6.7: Meadow voles, step-up model selection, the best model at each level
is denoted in red

Model Deviance d AIC AICc

p(.), φ(.), ψ(.) 2041.44 3 2047.44 2047.47

p(.), φ(.), ψ(D + J)diff 1561.83 8 1577.83 1578.01

p(.), φ(.), ψ(D + J) 1714.63 5 1724.63 1724.70

p(.), φ(.), ψ(J) 1748.97 4 1756.97 1757.02

p(w), φ(.), ψ(.) 1920.71 4 1928.71 1928.76

p(.), φ(.), ψ(D) 2008.52 4 2016.52 2016.57

p(.), φ(t), ψ(.) 2025.81 5 2035.81 2035.88

p(t), φ(.), ψ(.) 2035.42 5 2045.42 2045.49

p(.), φ(.), ψ(t) 2035.95 5 2045.95 2046.02

p(.), φ(w), ψ(.) 2041.14 4 2049.14 2049.18

p(.), φ(t), ψ(D + J)diff 1546.20 10 1566.20 1566.47

p(.), φ(.), ψ{(D + J)diff + t} 1555.11 10 1575.11 1575.38

p(t), φ(.), ψ(D + J)diff 1555.81 10 1575.81 1576.08

p(t), φ(.), ψ(D + J)diff 1555.81 10 1575.81 1576.08

p(w), φ(.), ψ(D + J)diff 1560.28 9 1578.28 1578.50

p(.), φ(w), ψ(D + J)diff 1561.45 9 1579.45 1579.68

p(.), φ(.), ψ{(D + J)diff ∗ t} 1545.95 20 1585.95 1587.01

p(.), φ(t), ψ{(D + J)diff + t} 1539.48 12 1563.48 1563.86

p(w), φ(t), ψ(D + J)diff 1544.24 11 1566.24 1566.56

p(t), φ(t), ψ(D + J)diff 1543.87 12 1567.87 1568.26

p(.), φ(t+ w), ψ(D + J)diff 1546.19 11 1568.19 1568.52

p(.), φ(t.w), ψ(D + J)diff 1545.90 13 1571.90 1572.35

p(.), φ(t), ψ{(D + J)diff ∗ t} 1530.32 22 1574.32 1575.59
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Table 6.8: Voles, best model results, the signi�cant e�ects are denoted in bold.
For the transition parameters, I andD respectively denote weight increase and
weight decrease, r denotes the departure state.

Parameter Estimate 95% CI

φ1 0.67 (0.59 , 0.75)

φ2 0.88 (0.82 , 0.94 )

φ3 0.81 (0.73 , 0.89)

p 0.91 (0.87 , 0.96)

ψ,D: intercept -1.28 (-3.09 , 0.52)

ψ,D:βr 0.13 (-0.01 , 0.26)

ψ,D:βjump -0.93 (-1.18 ,-0.67)

ψ, I: intercept 6.21 (4.55 , 7.86)

ψ, I: βr -0.61 (-0.76 ,-0.46)

ψ, I:βjump -0.62 (-0.74 , -0.51)

ψ: βt2 -0.48 (-1.19 , 0.23)

ψ: βt3 -0.89 (-1.59 , -0.20)

Table 6.9: Voles, goodness-of-�t tests for time-dependent CJS model

Test dof p-value

3.SR 2 0.19

3.Sm 1 1

2.CT 1 0.33

2.CL NA NA

Transience (one-sided) - 0.07

Trap-dependence (two-sided) - 0.33

Global 4 0.37
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6.4 Some possible extensions

The methodology of using a multi-state framework with �ne discretisation to

model an individual time-varying covariate could be extended to cases where

this covariate is subject to a measurement error or when the covariate value

is missing even when the animal is resighted. We explored the performance

of the multi-state approach for these scenarios, using the simulated datasets

from section 6.2, with p = 0.9, with the following modi�cations:

• adding a measurement error following a normal distribution with mean

0 s.d.= 0.1

• adding a measurement error following a normal distribution with mean

0 s.d.= 0.5

• rendering 10% of the observations missing completely at random

The results are presented in Table 6.10, using a discretisation of m = 20.

The multi-state approach performs well even with measurement error, and, as

expected, for the larger measurement error, the relative bias is slightly higher

for the survival parameters while the coverage probability is slightly lower.

When there were missing covariate values, we slightly modi�ed the model used.

Indeed, we de�ned an additional state corresponding to �alive with covariate

value unknown�. Recall that the transition probabilities were modelled very

simply in section 6.2 as a function of the weight jump and survival as a function

of the state (i.e. weight). These relationships do not make sense for the

additional state denoted U since it does not have the same meaning as the

other states; it does not represent a speci�c weight category. Indeed, it is not

a state per se, but rather a modelling tool. Hence, the survival probability

in state U is de�ned simply as an average of the survival probabilities in all

possible states, with R denoting the number of �known� states: φU =
∑R

r=1 φr

R
.

As for the transition probabilities, they are assumed to be uniform across the
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di�erent states for moving from the alive with covariate value unknown to any

of the other live states: ψ(U, s) = 1
R+1

, whilst the probability of going from

a known covariate value to an unknown covariate value is modelled, using a

multinomial logit link, as a function of an additional parameter β7. Table 6.10

shows that this approach yields results close to those obtained in section 6.2.

Further research is necessary, for instance looking at lower capture prob-

abilities, higher percentage of missing values and so forth. Nonetheless, the

few scenarios explored for an individual time-varying covariate measured with

error or presenting missing values show promising results for the multi-state

approach with a �ne discretisation.

6.5 Conclusion

In this chapter, we have shown that a multi-state approach with �ne dis-

cretisation performs well to incorporate an individual time-varying covariate

in a CJS-type capture-recapture analysis. The multi-state approach presents

distinct advantages over the existing methods that handle the problematic

individual time-varying covariates. They use all available data (unlike condi-

tional tools such as the trinomial method), they do not require modelling the

covariate process (unlike the Langrock and King (2013) or the Bonner and

Schwarz (2006) approaches). Finally there is no need for assumptions on the

pattern missing covariate values due to non-captures (unlike the Worthington

et al. (2015) method for instance) since these are automatically treated in the

multi-state framework. Hence, the next stage for future research, would be to

consolidate our results by comparing the performance of this multi-state ap-

proach with the other methods, exploring in particular situations where these

might be a�ected (e.g. completely erroneous covariate model). We also note

that in practice, for our newt application from Section 6.3.1, the multi-state

approach was computationally much faster to run that the HMM model. Al-
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Table 6.10: Simulated datasets with added measurement error or with missing
data (MI): results from a multi-state approach, using a discretization with
m = 20, ME(s.d.) denotes the standard error of the normal distribution used
for the added measurement error ; RB denotes the relative bias, q the quantiles,
CIW the con�dence interval widths, CP the coverage probability and N the
number of usable datasets.

Scenario m Parameter RB(q0.025, q0.975) CIW CP N

ME (0.1) β0 -0.01 (-0.14, 0.15) 1.47 0.94 250

β1 -0.01 (-0.11, 0.13) 0.18 0.96

p 0.00 (-0.02, 0.02) 0.04 0.94

ME (0.5) β0 (-0.05, -0.17) 0.1 1.42 0.88 250

β1 -0.04 (-0.14, 0.09) 0.17 0.88

p 0.00 (-0.02, 0.02) 0.04 0.93

MI 20 β0 0.00 (-0.14, 0.16) 1.61 0.96 250

β1 0.01 (-0.10, 0.15) 0.20 0.97

p 0.00 (-0.02, 0.02) 0.04 0.92

though the timing might be a�ected by the software used (Matlab versus R),

the fact that the HMM likelihood is constructed from individual likelihoods

whilst the multi-state likelihood is computed e�ciently using matrix-products

based on su�cient statistics surely plays a role in the speed di�erences. Thus,

computational speed could be another advantage for the multi-state approach

and this should be explored further.

Based on our simulations, a �ne discretisation with m = 20 intervals pre-

sented good properties; but these simulations represented a speci�c covariate

(weight) for a speci�c animal (great crested newt). In a more general setting,

the choice of m will depend on the range of the individual time-varying covari-

ate of interest, and its precision of measure. For instance, if weight is measured

to the nearest gram, it would not be informative to use intervals smaller than

a gram. The points raised by Bonner and Schwarz (2006) regarding the prob-

lems linked to having a large number of states such as estimation problems, or
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exhaustion of data also favour the choice of a not too large m. In particular,

parameter redundancy could be induced by some of the states never being ob-

served, when �tting state-dependent parameters. On the other hand,m should

not be chosen as too small in order to avoid losing information. Finally, m

should be chosen so that the multi-state assumption of same properties for

animals in the same state is biologically reasonable. Based on this, a good

compromise for m could be chosen and the model selection performed using

this m. Then, for the best model, the recommendation of Langrock and King

(2013) could be applied: repeating the model �tting for increasing values of m

in order to improve the estimates' precision and stopping when the values do

not change anymore. Note that this step did not seem of particular interest for

our applications from Section 6.3 because none of our parameters of interest

(capture and survival probabilities) were signi�cantly linked to weight.

In this chapter, we handled the potential estimation issues linked to the

relatively large number of states (20), by using simple structures to model

the di�erent parameters: incorporating the state (thus the covariate) using a

logistic regression link for capture and survival probabilities as is usually done

for continuous covariates. Since the discretisation is �ne, we do not expect to

lose much information. In addition to this, we also use very basic structures

to model the transition probabilities. In doing so, we lose the advantage of the

multi-state approach with regard to estimating the parameters freely (Bonner

and Schwarz, 2006). As we pointed out in the previous sections, this leads

to the raw transition parameters not being intuitively interpretable, but this

can be remedied by examining the transition probability matrix rather than

the raw estimates. Also, the simple structure might not represent the most

accurate modelling of the transition process so one should remain cautious as

to the interpretation of the transition parameters. In particular, the choice

of a multinomial logistic-type link implies proportional odds, which might not

always be realistic. However, since the aim is the estimation of survival and
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capture parameters, and that we are able to do so accurately, we deem the

simple transition structure to be an acceptable compromise for the situations

examined. It remains to be seen if this simple structure performs well in

more general settings. Finally, although we did not encounter any obvious

identi�ability issues in our model �tting, it would be of interest to formally

prove the identi�ability of these models using the procedures from Chapter 5.

Based on all these considerations, at this stage of the work, we recommend

using a multi-state model with �ne discretisation to incorporate the e�ect

of an individual time-varying covariate on capture or survival probability, if

that is the main aim of the analysis, and that the covariate process itself

is not of much interest. However, if one is interested in the covariate itself

and the biological interpretation of its variation over time, it will be more

relevant to use one of the alternative methods which include the modelling

of the covariate process. Further work is warranted regarding the goodness-

of-�t assessment of these multi-state models with a large number of states

representing a continuous covariate, since the usual goodness-of-�t suite is

unlikely to be applicable (for reasons stated in Section 6.3.1). The use of score-

tests for example could be examined (although they might pose a problem

for boundary estimates). Finally, the extensions to measurement error and

missing values show promising results but need to be explored in more detail.

Again, the performance of the multi-state approach could be compared with

the other existing methods for these situations. We also note that using a

multievent framework would allow these issues to be described more elegantly,

with less restrictive assumptions. Indeed, if measurement error is expected, an

observation in state r might be modelled as being possibly generated by states

r − 1, r or r + 1 (or other adjacent states). As for missing values, a multi-

event model, with observation �weight unknown� being generated by any of

the live states, would allow the missing data pattern to be more general than

just missing at random.
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As a general aside, all the methods explored seem to deal mainly with

weight as the individual time-varying covariate process and a possible logistic-

type relationship between survival/capture and the covariate. Future work

could also include examining other types of covariates, where there is poten-

tially less knowledge about the covariate process, and exploring other rela-

tionships between the parameter and weight, in particular the e�ects of a

misspeci�ed model. For instance, one could think of cases where the rela-

tionship between weight and survival probability would be an inverted U-type

curve, with underweight and overweight animals both presenting lower survival

probabilities.



Chapter 7

Conclusion

7.1 Contributions

In this thesis, we have mainly developed new diagnostic tools for various

capture-recapture models by focusing on speci�c violations of model assump-

tions. These tools lead to conclusions that allow us to guide the model-building

process and give biological insights to the data.

In Chapter 2, we developed a new test for detecting heterogeneity in cap-

ture within a Cormack-Jolly-Seber (CJS) framework, based on Goodman-

Kruskal's gamma. We used simulation to compare its performance to that

of existing methods, which we described in detail: the existing CJS diagnostic

tests, the Leslie test for equal catchability and Carothers' extension of this test.

Simulation results have shown this test to be powerful and also less sensitive

to trap-happiness than existing tests. If this test is signi�cant, then models

accounting for heterogeneity in capture should be considered and �tted.

Chapter 3 progressed to the more general multi-state models, for which

we also employed Goodman-Kruskal's gamma, albeit in a di�erent manner,

to detect the existence of a mover-stayer structure. This phenomenon, and
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more generally the violation of the assumption of homogeneous transitions for

animals in the same state, has not received much attention, although it could

provide interesting ecological insights. A simulation study allowed us not only

to draw conclusions about the new test, but also revealed new �ndings regard-

ing the interpretation of the existing diagnostic test WBWA, which we also

described in detail. Indeed, the WBWA test is usually used as an indication of

memory, but our simulation study found it to also be sensitive to heterogeneity

in movement or preferences; whilst the new test was found to be sensitive to

both memory and a mover-stayer structure. Adapting the WBWA test and

combining this adaptation with a slightly modi�ed version of the test of pos-

itive association allowed us to detect and di�erentiate between heterogeneity

in movement or preferences, memory and a mover-stayer structure.

Chapter 4 focussed on the presence of partial observations in a multi-

state capture-recapture experiment. This situation, where the state cannot

be determined upon capture for some of the animals, can be expressed as a

special case of the multievent model. We theoretically showed that if partially

observed animals actually belong to one of the observable states de�ned in

the experiment, then those partially observed at a given occasion i and seen

again at later occasions follow a multinomial distribution that is a mixture

of the distributions followed by animals observed at i in the observable states

and seen again at the same later occasions. Based on this mixture property,

we derived a test for mixtures, following a path similar to the construction

of existing Test M, which allows us to assess whether partial observations

are generated by the observable states. Using simulations under very good

conditions, the test was shown to work as expected theoretically.

In Chapter 5, we sought to derive a test for unobservable states. This

led us through a journey which di�ered from the previous chapters. Indeed

we expected a straightforward extension of the existing Test M, based on the

fact that unobservable states translated into unobservable bases. Only the



7. Conclusion 238

test, which uses the Multinomial Maximum Likelihood Mixture method relies

on two steps: parameter estimation and goodness-of-�t assessment; and the

model with unobservable bases was found to be parameter redundant. Hence,

the concept of parameter redundancy was introduced and examined in this

framework. This led to deriving general parameter redundancy results in a

context of multinomial mixtures and bases. Afterwards, we used simulation,

focussing on one and two unobservable bases, under very good conditions to

verify that the test for unobservable bases worked as expected. In doing this,

we realised that in the reparametrised model that used some of the mixtures

as proxy bases for the unobservable ones, the remaining original mixtures were

not necessarily mixtures, but linear combinations of the new bases (proxy and

original). We also had to use an iterative optimisation method to avoid get-

ting stuck in local optima. Finally, we derived a step-up procedure based

on tests for linear combinations, using the reparametrisations resulting from

the parameter redundancy work, that indicated whether there was statistical

support for the existence of one or two unobservable bases. The procedure

worked as expected in theory on the simulations considered. It was only after

all these investigations that we came back to the speci�c capture-recapture

setting with unobservable states, which constituted one possible area of ap-

plication of our results. Simulations under very large sample sizes showed

that the procedure can work to detect one or two unobservable states in a

capture-recapture setting.

Finally, Chapter 6 di�ered from the rest of the thesis in its scope. In this

chapter we used multi-state models with a �ne discretisation, imposing simple

structures on the model parameters, to incorporate the e�ect of individual

time-varying covariates such as body mass on the model parameters. This

approach showed promising results as well as a potential to be extended to

more general situations such as covariates measured with error or the presence

of missing data.
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Note that, by essence, biological phenomena are very complex and this

complexity will not be captured in its entirety by the various model assump-

tion violations considered. However, models, by nature, are themselves a

simpli�cation of reality and the diagnostic tools developed throughout this

thesis provide guidance as to directions to explore, both from a biological and

modelling perspective; they can also help avoid drawing conclusions based on

erroneous assumptions.

7.2 Future work

Building on the conclusions of this thesis, three main areas of future research

can be identi�ed: the testing procedure itself, sample sizes and additional

ecological applications. Firstly, regarding the testing process, mixture and/or

linear combination tests could potentially be extended for more general mul-

tievent models, when there is uncertainty on all observations, to test for the

number of underlying states necessary to provide an adequate �t to the data.

Also, for the individual time-varying covariates, re-framing the problem in a

multi-state context could allow for the use of score tests combined with a step-

up model building approach for goodness-of-�t assessment and this should be

explored further.

Secondly, we used simulations under very good conditions i.e. when sample

sizes are large, to check that the new diagnostic tools worked as expected in

theory and reacted to speci�c phenomena. It would be of interest to perform

power analyses and assess the test properties for more moderate sample sizes,

especially for the tools from Chapters 4 and 5. The positive association tests

from Chapters 2 and 3 have been evaluated on more moderate sample sizes,

however one could look into adapting these tools or potentially deriving new

ones for small sample sizes.
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Finally, the methodologies developed throughout this thesis have generally

been applied to real datasets, and mostly gave the results we expected: Great

cormorants and Sandwich terns (Chapter 2), Canada Geese (Chapters 3 to

5), Greater �amingoes (Chapter 4), Great crested newts and Meadow voles

(Chapter 6). However, they would bene�t from exploring a wider variety of

ecological applications, delving into the e�ects of �tting inadequate models

as well as examining new motivating datasets that would bene�t from the

insights provided by our tools.
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