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Abstract

This paper looks at the design of an embedded psoceto be used for network traffic
monitoring. This would operate on the stream dadsetween a network interface and a host
computer. Associative processing techniques asal us implement multiple finite state
machines that can be used to monitor various né&twteams or protocol layers. Network
packets are selectively captured and passed alating other status information to a host
computer for further processing. A first versiohsoch a processor has been designed and
modeled in VHDL. The processor design has beemlabed and performance figures are
presented in this paper along with some sample tovdmjg) programs. This study shows that
associative processing appears to be an efficiayt tw implement fast network monitoring
tools.

1 Introduction

This report looks at the design of an associatireegssing system for use in network traffic moritgr
The aim here is to design an embedded processbcdhabe used between a network interface and & hos
computer. This system would then be programmaeddnitor various streams of traffic that it receiyesm

the network interface and would then make decisasigo which packets of data and other information
should be passed on to the host computer. The hdea is to be able to make intelligent decisions
concerning selective traffic capture close to teemork interface. We then supply the host compuiigh a
stream of data at a far lower data rate than #agived from the network, but which has a high rimfation
content — i.e. the aim is to captuwrseful data. In this report, a prototype design is preskthat could be
implemented using a small number of componentds désign is simulated and the model used to genera
figures for performance. A critical evaluation miiies shortcomings and makes recommendations for
improvements and alternative designs.

Ideas concerning this topic have been presenteddrin two previous reports. The initial report §ives a
survey of various methods that have been used dta ceduction in real time network monitoring. This
makes a proposal to use a finite state machine JH&ed system and recommends that this could be
implemented using associative processing technitu@sovide a parallel implementation of logic foext
state and output generation. This subject is dgesl further in [2] which looks at possible asstea
processing architectures. Topics covered theréhase of implementing multiple FSMs, managing asce

to network data and also possible styles of ouguént that could be generated to pass onto the host
processor.

The next section gives an overview of the work enésd in [1] and [2]. Section three gives the alle&xims

of the work presented in this paper. The forthisaives details of the types of components chdsethis
design and the proposed board level implementat®ection five describes the design of the custogicl
for the associative processor, and gives detaithefindividual modules along with the design chsithat
were made. The sixth section describes the methgets for simulation, gives performance figuresafdew
example monitoring programs, gives a critical estihn of the overall performance and makes
recommendations for improvements and alternatigégds. The last section gives conclusions andsifiea
further work.



2 The Associative processing system

Two previous reports have looked at this subjddte first report [1] starts with a review of worirded out
in the field of network monitoring and makes a peal that a finite state machine (FSM) approachulsho
be used with associative processing used as theoohef implementation. The proposal was that fiomet
memory [3] should be used to implement look updsalibr the FSM implementation. Functional memaeary i
useful because this allows each bit in memory waoodse specified as 0, 1 or don't care — this alole
memory to contain 'match patterns' rather thanigpeg specific binary values. We search the fimaal
memory with a key consisting of the current state the inputs, and retrieve a code word that gavealid
match. This code word also contains values fat ste and outputs. To implement this, code worekd
to be generated for each state that together naltgiossible values of the input data. To copéhwite
possibility of multiple matches, the one with thghest priority (such as lowest memory addressglscted.

This work is developed further in [2] that lookspatssible architectures that could be used to imefd a

practical system. The topics covered in [2] caslmmarized as follows:

The system described in [1] is extended to allogvithplementation of multiple FSMs, by the use of a
separate area of memory to hold state informatioreéch instance of a FSM — referred to as a cthanne
A scheduling system is then used to swap betweanngts — one of which is the current active channel
and able to receive input data from the network thiedothers being suspended. Channels communicate
by sending event messages to each other, the gaskisuch a message causing the sender to be
suspended and the recipient to be activated. 3ystem is further extended by the provision of a
procedural interface, allowing the return to ainglichannel. Initial suggestions are given for the
implementation of dynamic channel allocation.

It is proposed that the output from the FSM shduddable to specify a number of possible actions,
including arithmetic operations, scheduling operagi (as above), output event generation and coottrol
the network data stream.

Various styles of output event generation are psedp from general-purpose message generation to
simple packet capture.

The access to the network data stream is discasskdequential access to a data stream is comjwared
random access to a packet stored within the process

It is argued that it should be possible to buildoractical associative processing system for nekwor
monitoring using existing components.

3 Aims

The aim of this work is to design a prototype aggoe processing system for use in a network-nawimgy
environment. At this stage there is no intentiottild a piece of hardware, but to design and medeh a
system at a level of detail that will allow a priyfoe to be constructed at a later date if requirgétis low-
level model would primarily be used to show thas tiype of processing is practical and also to shuat it
could be put into manufacture if required usingrels number of existing components.

The work involved here has three distinct stages:

1 Develop a design for an associative processingesy$tased on the principles described in [2]. The
processor is then to be modeled in Register Transfgel VHDL[4], the other components such as
memory to be modeled in behavioral VHDL. The coatplsystem then to be tested by simulation.

2 Synthesize logic for the associative processogetad at a Field Programmable Gate Array (FPGA).

Use tools to generate an FPGA design from the sgitbd logic. Constrain the design to operatbet t
required clock rate and with the setup and outelaydtimes specified by the external components. A
this stage the original design may require modiificadepending on the implementation size and speed
of the synthesized logic. Modify design and itenatéil required performance is met.



3 Use simulation to test the complete associativegssing system with example network monitoring
programs. Use this stage to determine the perfoceaf the processor as a whole and to highligkasar
for improvement.

The overall aim here is to be able to show whethiertype of system is practical, to generate figuior the
system performance and to evaluate the decisiom rdaring the system design. Following experiemce i
programming such a system and observing its pedoom, it should be possible to determine whether th
mechanisms chosen are appropriate and if not tieenative approaches that could be taken in future
designs.

4 Design Choices

A significant consideration in this work was to @gsa small prototype system that could be modeieal
reasonably short period of time. Also any systasigh should be practical; it should be possiblbuitd a
physical system if required using a small numbecahponents on a single circuit board. With thesé
imposed constraints in mind, the following subsedilook at choice of components.

4.1 Associative memory components

This associative processor requires the use oftgroontent addressable memory — often referredsto
functional memory [3]. There are less sourcesisf than the standard content addressable memudtytha
most suitable component at the time appeared theébBIL85721 [5] from NETLOGIC. There is a versidon o
this component specified as operating at 66 MHhoaigh this is heavily pipelined. This CAM has algg
CBUS that is used to carry comparand values (keybe used in searches and can also be used tbaneh
write access to the memory. It has a 16-bit irsion bus, to determine the function performed ey CAM
and a Results bus (RBUS) that outputs the contintee status register. In general, instructioas be
started every clock tick — subject to various cists. These may however take a few cycles topbete

The NL85721 has a 128-bit word, with each memorydaadso having its own mask work. Internal global
match registers are provided that allow the usespecify which bits of the CAM word are used in any
search and hence allow the user to use part cT#&M word as an associated result if required. Testest
type of search can be performed by using a 646yt ks this can be transferred over the CBUS iimgles
clock cycle. Following a search instructionr {te comparand and compare), match result flags are generated
in 2 clock cycles and a status output includinghtghest priority match (HPM) address is generatedhe
RBUS in 3 clock cycles. If required, we can follthhe CAM search instruction with a Read memory aWvHP
instruction. This will take 2 cycles before thdueis presented on the CBUS — the same time astahes is
available on the RBUS. Using this method of operatwe can use half of the CAM word to match aghin
a 64-bit key and half to generate a 64-bit redfilive require a key of greater length than 64 kiten we
need to write part of the comparand firarrie to comparand) and then follow this with a searchr(te
comparand and compare) — this will now take 4 clock cycles and will albe at the expense of the size of the
result. Alternatively, we could use all of the CANbrd to match against a key of up to 128 bits et use
the HPM value on the RBUS to index into a sepaaad@ of RAM to generate an associated result flwm t
search. This would take 4 clock cycles plus theetto retrieve data from the RAM.

For performance and simplicity, the first methodsvehiosen, hence taking 3 clock cycles from preienta
of a key of length< 64 bits, to give an associated result of lengté4 bits.

4.2 Other components

The content addressable memory uses a pipelinégindiésus enabling a high clock rate. Given thidesis
used by the CAM, it was decided to use a similglesdf operation for the other parts of the systeltis
expected that future components may follow thiedref pipelining and high clock rates.

The random access memory — used for registers s- syg&hronous random access memory. This is the
MT55L64L32F [6] from MICRON technology, inc. This 64K x 32 bits and a version of this part is
specified as operating at 100 MHz. The part chdsae is the flow-through version of this memorgtth
provides data in the cycle following a Read operati



Finally, it was proposed that the processor pathisf system should be implemented using a XiliRGA.
The Xilinx X4000XLA series [7] was chosen as thesmappropriate technology to target at the time,
primarily because of the performance and availghilf design tools. Using these components weable to
design a fully synchronous interface to the RAM &AM that will operate at the maximum clock rate of
the CAM. In practice, the overall maximum clockerfor the system will then depend on the perforreanf
the logic within the FPGA and this requires us ¥oid designs that will synthesize into multiple dév of
logic.

4.3 Board level implementation

From the above it can be seen that the completeraysan be implemented as 3 chips. The network dat
input and output busses are currently considerdnkt82 bits wide. In any physical implementatitnis
anticipated that these wide busses will be repldmyedtandard Utopia [8] style interfaces of 8 orki® in
width.

Network
Data In
CBUS
IBUS DQ
Control SA
CAM ontro FPGA SRAM
RBUS Control
Status
Network
Data Out

Figure 1 - Board level implementation of associat processor.

5 Processor Design

5.1 CAM search cycle

Much of the design for this processor is basedraddhe timing of the access to the content addbéssa
memory chip as described in the previous sectldsing this CAM chip, we can obtain the fastest afien

by performing a search using of a key of lengthb®§ or below, and then follow this by a read oé th
memory location giving the highest priority matcfihis can give us an index and a 64-bit memory word
result in 3 clock cycles.

To obtain the highest clock speed, we can use sgnohs input to, and output from the FPGA. Thigegia
minimum delay of 2 cycles. If a search of the CABEs a key that may depend on the results of thequs
search, then generally we have an overall minimwarch period of 5 clock cycles. Introducing
combinatorial logic into the input or output to t8B&M could optimize this, but this may increase time
required for a clock cycle. This could be inveategl in later designs, particularly if faster FPGxan be
used.

A disadvantage of this system is that because wefarathe results of one search before startirg ribxt,
we are under-utilizing the CAM chip, which is cafeabf performing more frequent searches if required

—4-



5.1.1 CAM code words and result

Given the method of searching described above,rei@lale to use a 64-bit key and 64-bit result. Kég
was subdivided as follows:

32 bits Network data

12 bits Current State

12 bits Current Channel

4 bits  Current invocation event
2 bits  ALU status

1bit  End of packet flag

1 bit CAM word valid bit

The overall throughput depends on the number &f béied in the network data key, so it is advisable
allocate as much space as possible to this — gthfiar simplicity this will need to be kept to ars@ntional
word size such as: 8, 16, 32, 64 bits etc. Far dieisign, half of the CAM key is used for netwosdtad Of
the remaining bits, 28 are used for the variousgssor states which is enough in this instanceusecanly
a small processor is being built. The ALU statits bllow searching to be conditioned upon the ltesof
ALU operations; the end-of-packet flag allows ugest if we have reached the end of the curreniteieand
the valid bit allows active CAM words to be markiedindicate whether they should be used as pattteof
current search.

A results width of 64 bits is less of a problemrtiar the key as this time we have no large datal fio use
up all the resources. This time however we havadinde fields to set a new processor state, dsalfeelds
to specify any actions that need to be performEukse have been specified as follows:

12 bits Next state

12 bits Possible next channel / Immediate field
4 bits Possible next event

4 bits  Network data control

29 bits Action and parameters

3 bits Reserved

The Next channel field can also be used for ALUraplens as an immediate value.

5.2 Actions

For simplicity, all the possible actions except éontrol of network data have been grouped togdtitera
single instruction to be executed following eachrsb. This has the disadvantage that it is nosiptesto
perform more than one of these operations in alesiogcle, the advantage however is that it makes
implementation a lot easier.

5.2.1 Channel Memory

The random access memory for this processor hasfregided as a block of 64K x 32 bits. This istea
small amount by current standards although thiddcbe increased in later designs if required. #sw
specified previously that each channel should ligvewn local memory space. To avoid having a nmymo
management system, the total memory is simply dividetween the maximum number of channels — this is
then referred to as the channel's register wind@ach channel therefore has a fixed number of tegis
within its register window. It is very simple tmplement this as we can form the memory address the
channel number and the register number used wtitleichannel.

Memory address = Channel number (12 bits) Registatben (4 bits)

In our system with a total of 64K words of memomndadK channels, we have 16 registers per channel
RO-> R15. If we reserve one of the channel numbesach as 0 — we can use this register window for a
block of global registers G& G15. This is only a small amount of memory peargtel, however it does
have the advantage that any address fields usadhwlite actions can also be small.



5.2.2 ALU operations

In this particular environment, we have a long skedime for each new CAM word, but have a reasgnabl
large number of bits to specify any action. Instiease it appears sensible to try to code mostlsimp
arithmetic operations in a single action. To dé,tla three-address architecture has been used with
instructions for ADD, SUB and MOVE. This is podsilso long as we don't have large address fields to
specify the operands. In this prototype, this lasn done by using 6 bits for each operand adfiedds-

this specifies either: a global register, a loadister, an immediate value from a separate fieldtber
dedicated internal registers.
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Figure 2 — ALU data paths.

A basic outline of the ALU data paths is shown igufe 2. The D-BUS and S-BUS signals are connetcted
the scheduling sections to give access to the madtenemory. The YQ-BUS provides a copy of outpatiad
to internal registers.

5.2.3 Scheduling operations

As well as ALU operations, the scheduling operatiafso require access to memory and in this design
controlled using the same mechanism as the ALUis Tihfortunately means that it will not be possitbe
have both types of these operations at the sange-tiindoes however enable a single control syst€émaid
flexibility, the ALU operands can also be used éheduling operations to specify the registers usedubld
channel state etc.

The scheduling system provides ways of changingctiteent channel, event and state. The defaulract
here is to leave the values of the channel andteagethey are and to load a new value of state frmmext
state field from each new code word read from tA&IC There does however need to be alternativecssur
for each of these three key fields as we changa fvoe channel to another using the various mectmenis
described in [2]. The various alternative souraiethese key values can be the scheduling stackyameor
from the CAM code word. A basic schematic of tbbegluling system is shown below.
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Figure 3 — Paths for keys and scheduling.

The scheduling section connects to the ALU modigethe D-BUS and the S-BUS to gain access to the
random access memory. The ALU status flags ané&titeof Packet (EOP) flags are also used as paineof
key as described in section 5.1.1. The data &gyavided by the network data module. The neanhabl
signal is also used to generate an IMMEDIATE vdhreboth the ALU and the network data module. For
clarity, control paths are not shown.

5.2.4 Output events

A very simple output event system has been impléagenOne of the global registers doubles up asaut
port to a token queue. Any of the channels catevaitoken to this queue to specify if the curpgatket
should be saved or discarded. In addition to #ésh packet passing through the processor hasck bf
global registers appended to the end of the packeais is explained in more detail in section 5.3.3

5.3 Network data

As described in [2], the network data could be theshih one of two different ways.

e Asrandom access in the packet contents
¢ As sequential access

A disadvantage of random access is the potentiatye amount of multi-port memory that is requited
hold the packet within or closely coupled to thegassor. The FPGAs chosen for the implementafiohi®
system was the Xilinx XC4000XLA series. This caeuook up tables (LUTs) for RAM implementation,
however this only provides individual blocks of 16kits when used as dual port. Although this would
enable enough memory to be generated to handle &dlld, it would be more difficult to handle the raor
standard length packets found on Ethernet etc.thigsvill require large numbers of LUTs and wilpically



increase access times as the memory depth is ssteaDue to this potential problem, it was decitted
provide sequential access into the network data pat

5.3.1 Data register and network data selection

The program running on this system may not wisadoess all of the data in sequence as it arrives the
network. For example it may only wish to accedewa separate words within a packet. To allow us to
determine the rate that data is accessed in saffwa will need an input buffer to hold data aaritves
from the network until it can be processed. Irtimgi the software for this system, the programmiirnged

to ensure that the average time taken procesgieghket does not exceed the packet transmission-tithes
ensuring that the input queue length does not &sa@ver time. If the input queue is small compaoethe
size of the packet, then the programmer will alsechto ensure that the input queue does not owverflo
during the processing of a packet.

To generate the data key to be used for CAM searchelata register is used. The programmer can the
insert instructions into the result section of e&M code word to select new words of data to batew
into this register. As this system is sequentigleas, the assumption is made that the programamekeep
the value that is currently in the data registeremjuest that this is loaded with a new word ohdast is
further back up the input buffer. The programmaer pat request a word of data that has already paghis
may no longer be available.

In some circumstances, the programmer may wislate gems of data and be able to load old valuek ba
into the data register. This could be the caseef@mple if parts of a word were obtained from safga
packets. Provision has therefore been made totheadata register and also to rotate values frékMR
registers and selectively write individual byteghe data register

5.3.2 Pipeline & cache

A potential problem with sequential access to thBvork data is the delay that may be caused bjoadeof
the data register. A program may ask for a newdvadrdata that is several words back up the inpetug.
If we read words of data from the input queue uht required word is available, then this may tedeeral
clock cycles and hence degrade the performandeeddytstem. To enhance performance, an input pgei
used that holds up to five words at the head ofrtpat queue. With the use of multiplexors, maoggble
words could be retrieved directly from the pipeline

Unfortunately there is a separate problem, thavarfd alignment. Protocols are often carefully desit to
allow 32-bit words to fall on word boundaries — filsvious reasons. This is not always the case hene
and we may have the situation that the 32-bit weedare interested in spans 2 words from the inpatiq.

The current network data cache consists of a fisedvinput pipeline and a four-word cache. The dsta
kept on its original word boundaries in the datpepne and this pipeline moves forward as the data
accessed. The data may be required on arbitrdeydmundaries and it is the role of the data caclenable
this to take place. The pipeline is originally ddl such that the first word of a packet is locatethe first
word of the pipeline. As the data is used, the dadves forward. The pipeline is maintained itadessuch
that the last word accessed is as close to thedfehé pipeline head as possible. As the inforomatnay be
accessed on any byte boundary, an offset regigémifges the byte offset of the last accessed \iranth the
head of the pipeline. This offset may be in thegea0 to 3 bytes and this therefore points to threeat head
word. It is likely that any forward movement wilave a high probability of being a multiple of fdwytes
and this is assumed by the caching mechanism. \Wigepipeline is full, the data cache will save @dsthat
are at offsets of 0, 4, 8 and 12 bytes from thelheard — each of these words can be selected firmemod
four positions in the pipeline, depending on theigaf the offset register.

If we select one of the cached data words, or askd change, then we will get a cache HIT. Theans
that the data will be available immediately withamty additional delay. Following this, the datatea will
sometimes need to initiate an internal REFILL ofierato move the latest word accessed up to the béa
the pipeline and then refill the cache. The timethe REFILL operation for data offsets of 4, &ldr? is 5,
6 and 7 cycles respectively. Hence a move forwért word takes the same time as the shortestrafiip
design) and will leave the cache ready for the naghe search.



If we ask for any other data offset, or if the ca@dn't ready, then we will generate a cache MISBis may
require us to wait for a previous cache refill tomplete, or it may require a word that isn't in tdaghe. In
either case, the required word will be moved totthad of the pipeline, the offset register set appately
and then the word accessed as being at offsee@rcBes for the next instruction are started imlfrwith
the action for a previous instruction assuming theaiche HIT will occur. If we have a cache MI8&@n the
search will be abandoned and restarted when théreglgdata is available. It can be seen that langees
forward will often generate a cache MISS and hereese a delay before processing can continue.

In addition to the data moves described above,lse®elmve a NEXT instruction which flushes the ramar

of the current packet to the output buffer and appeany status information to the packet end. W ne
packet will then be loaded into the pipeline. THEXT instruction will give a cache HIT if the caclge
ready. A move of 0 is required before accessimyfittst word of the next packet — this will givecache
MISS if the data transfer is not yet complete. @M instruction is also provided which will leaves ttiata
key unchanged. This will always generate a cackie elven if the cache is not ready. Careful spgah
changes to the data key may optimize the performahprograms.

The scheme above could easily be extended to lesgex pipeline if required. The caching systerasua
lookup table to determine which words are in theheawhen it is ready — hence this could easily bdified
to cache more words or words with different offsethis example design has been limited to a cadeeof
four words to limit the amount of resources used @so to enable the fast selection of the commeet from
the cache.

5.3.3 Packet capture and discard

It is likely that any software processing a pack@t not have made a decision as to whether thekgtac
should be kept until most, or all, of the packet haen examined. Because of this, the packethedtl to be
written into the output queue before a decision been made as to whether it is required. To cikamh
this problem, a token queue is used in paralleh lite output queue. When a decision has been made
concerning the current packet, a single bit tokerwritten to the token queue with the Boolean value
specifying if the packet is to be kept. The prece=ading from the output queue will first needmait for

the value from the token queue to say if the packed be discarded or kept for further processiidis is
hidden within the processor by the use of a seagnglest-discard queﬁe Apart from deciding whether or
not to keep a packet, the programmer may also teiskturn some status information with a saved ptack
This is implemented by returning a copy of GO arida®s the end of the packet — this could be exterided
provide copies of more registers if required allaithe cost of having more data to transfer to laost
system.

Global Registers

output
queue
input I:I{L post-discard
queue data pipeline queue
ﬁ cell N
9| H discard
data token
D-BUS
barrel cache queue
shifter
v
data key

Figure 4 - Data cache and the packet discard mechim.

OThe cell discard mechanism limits the maximum sizeutput event packet that the processor canlband
to the size of the output queue, which in this giygie is 64 bytes. The output queue could be edgrato a
certain extent within the limits of the FPGA usedternatively, this queue could be supplementeith \ai
larger external FIFO and the cell discard mechanisptemented either (back) within the FPGA or & th
input to the next processing stage.



5.4 Control

The processor is controlled by the use of a comweakt micro-program architecture [9] using a widgnmo-
code word. This uses 64 words of control store aiddé-entry mapping table. This controls the opana
performed by the CAM, RAM, ALU and the various kggneration and scheduling functions. A single
instruction determines the action that should béopeed.

Unlike a conventional processor, it is difficultpoedict very far ahead where the software wilelkecuting.
A complete cycle consists of a search for a codedviollowed by the execution of any associatedoacti
However, if the action for a code word does notetfthe key values used for the next search, theare
able to start the search for the next code worpairallel with the execution of the action from ttarent
one. Any action that changes the key values usethé next search will need to either performa search
itself as soon as the new search values are alityill need to initiate a pre-fetch after ithhaompleted.

The only parts of the system not controlled disetty the micro-program are the network data paines,
pipeline and the caching system, which run autongtyo When a new code word is read from the CAM,
the caching system will look at the instruction@fyeng changes to the data register and try télfftihese if
possible. If it cannot do so then it will set adglto indicate a cache miss. The micro-prograncichéhis
flag during the execution of the current actiorolléwing a cache miss, any pipelined search is dbaad
and a piece of micro-code is invoked to wait far tache to become ready and refill the executipalipie.

5.4.1 Bootstrapping

Before the system can operate, the micro-code tipesgh a boot sequence during which it reads filata
an external ROM and writes code words into the Cér\hitializes registers in RAM.

6 Evaluation

This section looks at the testing of the designtaediming results for some example monitoringgpams.

6.1 Modeling and simulation

The processor itself was designed in VHDL and te&te simulation. The type of VHDL code used was
Register Transfer Level and the design was writtesuch a way as to be able to synthesize fast liogithe
target FPGA. The other two components in the systere specified using behavioral simulation madels
The model for the RAM component was obtained from manufacturers and the model for the CAM was
generated locally using details and timing inforioratfrom the manufacturer's data sheet. These thagts
were instantiated within a top-level design ‘enpgwigch linked together the various signals.

The design 'engine’ was then tested using a tedilasign that includes other components suchtiesfic
source and a boot ROM. It also generates otheakiguch as reset and clock.

traffic

source CAM —| boot ROM
[ 1]

FIFO FPGA
[ 1]

clock& RAM traffic

reset sink

Engine
testbench

Figure 5 — Testbench for Associative Processor.
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The traffic source simulates a stream of cells fiemmATM physical layer interface. The ATM cellstinis

cell stream are 52 bytes long — the HEC byte bassymed to have been removed in the physical lagés,
common practice. A small FIFO was included to exteulthe cell FIFO such as may be found in these
physical layer interfaces. This external FIFO isnitored throughout the simulation to ensure itarev
becomes full and discards incoming data. Theitraffurce runs at a high data rate (266.7 Mbps)adsal
starts before the associative processor to enkatéhe associative processor always has datableibn its
input for processing. The level of the input FIa@hin the FPGA was monitored throughout the siriata

to ensure that this never became empty. This was tb ensure consistent timing results and alemsoire
that we were measuring the performance of the gsmreand not the speed of the traffic source. tidféc

sink reads data from the processor output FIFOdswhrds it.

The boot ROM contains the code words for the cdardddressable memory and also details of any Masab
in RAM which need initializing at load time. Itsal contains a number of other constants required to
initialize registers within the CAM.

This structure was used for debugging the assueiatirocessor design model and was also used
subsequently to evaluate performance.

6.2 Evaluation of synthesized logic

As well as building a model of the associative pssor, it was also an objective to be able to tauitbsign
for an FPGA. The process involved here is to ssitte logic for the design model and then to use th
FPGA tools to build the code for the FPGA. To béedo do this, we need to ensure that it is pésdip
synthesize logic from our model, that the logicthgsized is of a sensible size and also that i fast
enough. Itis very easy in VHDL to model systehet will synthesize into large amounts of slow &g

Once the code for the FPGA has been built we c#airobigures for the worst case timing for the FP&#d
also the amount of FPGA resources that are usée. fdrmer point is important as we now have sonaé re
timing figures for our design. To push the dedigpls in the right direction we can give constraititat can
specify for example the target system clock speed a@so the setup and delays figures for attached
components.

For this design, the target clock rate was 50 MHze—requiring a 20ns clock period. Initially thegic
synthesized had a minimum clock period of over 4@ims however was quickly traced to the ALU carry
logic. The ALU had been designed by instantiafmgy 8 bit Add/subtract units and there were latgey
delays between the units. The design was modifjespecifying the ALU operation in VHDL and allovgn
the compiler to synthesize logic for this itselfhis generated a far better carry chain than tiginad and
the clock period of 20ns was achieved without ferghroblems.

6.3 Evaluation of system performance

Following the completion of the logic synthesiswis possible to perform test simulations with ecusate
figure for the system clock speed. This sectimksoat some example programs running on the sifoolat
and gives figures for the time taken to procesh eadl. As previously noted, these tests werequeréd
using a heavy continuous traffic stream, thus éngldonsistent figures to be obtained for cell pssing
time. If we look at the timing of cells passinddrthe associative processor, then this gives ratagable
results due to the effect of the small input FIFGh remove this effect, the cells are observedhatpbint at
which they leave the input FIFO. The referencenposed is the time instance when the first word ctll
is read from the network data cache and the timedch cell is measured from this point to the timten
the first word for the next cell is read from theche. This form of measurement is valid in thiategt as
we have a continuous source of cells arriving frib network. The time measured gives the time for
processing of the cell plus the time taken to floghthe remainder of the cell and to refill thela — this
accurately reflects the time the processor wasujedith processing a particular cell, it also givensistent
results.

In the following examples, references are madestugo-code in the appendices. For the simulatibiss,

pseudo-code was converted by hand into a form déwiicro-code and then assembled to give the da&ih u
by the boot ROM.
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6.3.1 Cell count program

The first program to be tested was the cell covogam described in [2] and referred to here dsmeaht-1.
This does a simple decode on AAL5 frames arrivingaogiven VCI/VPI and counts the number of cells
received on a small number of IP address paire peuedo-code for this is given in Appendix A. fEhare
three separate paths through the code dependinghether: (a) the cell is on a different VCI and ¢en
ignored, (b) it is the first cell of an AAL5 framand the IP addresses need to be checked, (cpatriof the
body/end of an AAL5 frame and the IP addresseslaeady known.

Performance of cellcount-1 program

0 I 1 1

wrong vci 1stcell othercells ATM cell
time

Figure 6 - Cellcount-1 program.

The results of the timing for cellcount are showrkigure 6, along with the time taken to transmi¢ &ATM

cell at 155 Mbps for comparison. The time for csad® and (c) were slower than expected. By clmeritie
simulation, it was noted that there was a lot wietispent flushing out the cell after it had beestpssed. By
inspecting the code, this becomes obvious — theestdor the next cell does not take place untiretarn to

the bottom level. A problem here is that we haemegthrough a series of return and other statements
without moving forward though the cell stream.wi modify the software (cellcount-2) to request tiet

cell as soon as it knows it no longer requires ghevious cell, then we can improve the performaase
shown below. This happens because the flushintheold cell and loading of the new cell happens i
parallel with the remaining software to be executedhat cell.
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Comparison of the two cellcount programs

2.5

] I Cellcount-1
M Cellcount-2

1.5

0

Time (us)

wrong  1stcell other ATM cell
VCi cells time

Figure 7 - Comparison of cellcount-1 and cellcoung-

As can be seen, modifying the software can givéedarge improvements to performance, albeit atcthst
of making the software rather untidy.

6.3.2 String searching

For the second test, a rather different examplsésl. Here we use a program to look for a tekigsin any
arbitrary position within a cell. This makes exdie use of the parallel matching facilities andvss that
some quite complex matching can be done usingtisitem.

As an example we could search for the string "apaltfiough any string could be used as long asshorter
than the cell length. For this particular stringgtching is easy, as the string does not contairnitial letter
anywhere within its body. To start with we canltha simple 'one character at a time' finite statgechine
that searches for this string in a series of bytdd it hits the end of the packer (which is flagigas EOP).
This is shown as a simple FSM in figure 8.

' start }

-..eop.____llall (%\ eop
| ~eop.llall
~eop.llall
eop
~eop.~llall.~llbll 1
~eop."a" ~eop."b
eop
~eop.~"a".~"c" 2
~eop."a" ~eop."c"
i eop [fal'] q
~eop.~"a".~"d" | 3 Len

~eop."d" [pass]

Figure 8 - FSM for a four character pattern match.
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In the processor described in this paper, we haverd size of 32 bits or 4 bytes. To maintain ¢ffficiency
of this system, we will need to perform matchingumto 4 bytes at a time. To do this, we can reeaour
FSM to operate on more than one symbol at a tinthis- method of improving network monitoring
performance is described by Hershey in [10]. T®s us an increase in performance, although weend
up with a rather more complex FSM.

With the above example, in state 0 we will needdarch for the string "abcd" as starting at anthef4 byte
positions in a word, this could give us an immealiatatch for this string if it starts in byte 0, etlvise we
can move to states 1,2,3 after matching this nurobdaytes. In states 1,2,3 we will need to look tlee
remainder of the string in the next word. Howeviervé do not find the remainder of the string insthiew
word, we also need to look for the start of a neavdias we did in state 0. This system can of earpand
to strings of any length, with a corresponding éase in the number of possible states.

START

AN
N/

N
EOP
"bcd?"
"abcd" N\
"2abc”
n59ah"
1209"
1"

)

EQP

Ilah(\dll

Ilf)ah(\"

O ||r)r)ahu 1
oo

12922"

N

EOP
"cd?2?" N\
"abcd”
2 "?2abc”

n59ah"
222"

"2227" EOP = End of Packet

N
EQP
lld’)’)l)ll \
llah(\dll
3 ll’)ah(\ll
ll??abll

"222a" [drop] END

o

7 [save]

N—

7
Figure 9 - String pattern matching, 4 bytes at a the.

Here the conditions attached to each transitiomimecmore complex. Whilst some of the tests arauatiyt
exclusive, this is not always the case. For Qate always move to state END and drop the c&llOP is
set. If EOP is false, then we have four possitriag matches that in this case are mutually exedysut in
the case of repeated letters in the pattern thighinmiot be the case — here we would probably gieéepence
to the longest possible match. Finally if EOPalksé and none of the string patterns match, weag o
state 0. For the sake of clarity, | have shows thiFigure 9 with an arrow that indicates the ofidevhich
the conditions should be tested — rather than edipgrout the logic for each condition.

An interesting point to note is that although weéguite a complex FSM, the FSM will make a maximum
of n+2 transitions for a packet of lengthwords. If we increase the length of the stringare searching for,
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then all that happens is that we increase the nupftstates in the FSM and increase its complexiy still
operate the pattern matching at the same speed.

For our example program, we search for the stradgrtdefgh™ in all possible positions within the dadidy.
The FSM for this is quite large, so is not includeere as a schematic. The pseudo-code program to
implement this is given in Appendix C.

Performance of pattern matching
program

15 —

Time (us)

0.5 T —

O 1 1 1 1 1
wrong no  string string string  ATM
vci  match in in in cell
bytes bytes bytes time
1-8 23-30 41-48

Figure 10 — Performance of pattern matching program(pattern-1).

The worst case performance is when the patterotiound in the cell as all the network data netedbe
examined and end of packet discovered. Assumiagtkie cell is on the correct VCI, then the besiecs
when the string appears at the start of the celtha remainder of the cell does not require amyraxation.
As can be seen, this simple pattern matching opertster than the ATM cell time, so should work
successfully on an ATM network operating at 155 Blbp

6.3.3 Per VCI continuous pattern matching

In this final example, the pattern-matching progrdiscussed in the previous sub-section is modifed
operate on multiple VCI streams. In addition, eatthan performing a pattern match on each cell in
isolation, this is extended to treat the bodiesadis on the same VCI as a stream of data on whigerform
pattern matching. This is a relatively simple &ddito the previous example. All that needs talbee is to
have a separate channel for each VCI that is baimgjtored and then to save the current state ofgthttern
match” when the end of the cell is found. Thusmay enter the process for a particular channel with
different initial state depending on what happededng the last cell on that VCI.

As before, we are saving a cell on a successftémpamatch, however this time it will be the cellwhich
the pattern match completed. In addition, the daoadl will be labeled with the channel number ohici
the pattern match occurred. The pseudo code ferfihal program is given in Appendix D and the
performance figures are shown below.
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Performance of pattern matching program with matchi ng
spanned across consecutive cells on the same VCI

3
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Figure 11 - Per VCI stream pattern matching (patten-2).

The time for no match to take place is the samthaisfor the program pattern-1. This time we disve
various cases where a part match at the end off Aasoccurred — this is where we hit the endhef ¢ell
body part way through a pattern match. The timeafiocases of a part match is the same as fondhmatch
as all data in the cell needs to be examined watihit the end of packet flag. The times for aahdb take
place within a single cell are higher than for @attl, as this time we need to save the value etthrent
channel number in global memory for return with tied. The time for part matches to complete atated
to the number of words of data examined.

This program scales well to monitor larger numlmdr¥Cl's, as only one extra CAM code word is reqdir
per VCI. For longer strings, this scales reasonai@ll, however for strings where the initial chetex is
repeated with the string body we will require mooenplex FSMs for the matching.

6.4 Observations on performance

It is instructive to look at how the time spent g@ssing a cell is distributed between the variquesations
involved. In an ideal world this should consistoofat least be dominated by the time performireycdees
for data patterns in the CAM. Other operationshsas changing process and waiting for cachesltargl
just overheads and hence valid targets for optitioiza The time taken searching for data is a s#pdssue
that needs to be dealt with.
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The following figure shows how the processing timedivided. Note that due to these functions being
carried out in parallel there is overlap betweee tHarious categories. The time for each of the fou
categories is accounted for in the following ptipri

Data search.

(a) Actions, (b) Scheduling.
Network data control.
Waiting for data.

A WN P

Hence a call instruction that matches network deith be accounted for partly in category 1 and the
remainder in category 2(b). If a cache miss ogdten this will also contribute to category 4.

Divison of time between operations

2
15 O waiting
’§ T nw data control
o 1 O actions
'E 05 N scheduling
' @ data search
0 -

cellcount-2 cellcount-2 pattern-1
(wrong vci) (1st cell) (no match)

Figure 12 - Break down of execution time between #hvarious operations.

For the pattern-matching example, we can see ligaéxecution time is made up primarily of data clees
as would be expected. The cellcount-2 progranttferf' cell of an AAL5 frame spends a lot of time on
scheduling as it changes between various procésseach protocol layer. There is also quite aofotime
spent here on various actions, these include dpgrdte counters and also generating output evehite
case with cells arriving on the wrong VCI is intglieg because it does not really do very much, gasick
the cell header and drop the cell. This howevendp a lot of time waiting as the unwanted celldsee be
flushed through the system and the next cell loadet$ place. The operations for this generabyppen in
parallel with the last few instructions executed fioe cell. When the cellcount-2 program has & toel
process, then the cell flush operations happeramaligl with the scheduling operations. With thatern
matching case we are already at the end of thestellery little work needs to be done.

The performance of the system in general is detexchby the maximum clock speed that the systenbean
operated at. The current CAM component used otstthis to 66 MHz (15ns clock period). Using the
FPGA noted in section 4.1, and operating with symgbus input and output, we are limited to a minmu
clock period of 14ns to allow for the setup timesbie met on component inputs. This is less than the
minimum clock period required for the CAM, so tipiesents no problems. The system is however limite
by the speed of the logic within the FPGA itseFor the current design, this was constrained t@Qes,
although it is likely that this could be made stigtfaster. Two particular pieces of logic thatyastrict

the speed of this device are the ALU and also t©d&/IRused for holding the micro-code. The ALU has a
limit in operation speed due to the long carry ohéithis posed a problem in faster designs ttés ¢could

be split and the ALU operation performed in twoal@ycles. The micro-code ROM may cause problems i
performance because the depth of memory (64 lot@ticequires each bit to be implemented as multiple
CLBs and the width (128 bits) requires a high famfor the ROM address lines. The design curremtiys
two sources for the ROM address lines — the nurabsources could be increased if required, althahgh
makes the design rather untidy. In general, perdoice could be improved by fine tuning the desigth a
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using more intervention in the FPGA design proeessch as using specific library parts and floanping
the design.

6.5 Random vs. Sequential access

From the previous section, it can be seen thatesg@l access is not always the best method ofatiper
This can often lead to times where the programagimg for the correct data to arrive in the cacties the
caching system runs in parallel with the programs ts not always a problem as the cache fill meguo
whilst other parts of the program are executings we have seen in secti6i3.1, the problem of delays
occurring when requesting the next cell can be gedwr even eliminated by modifying the program to
request the next cell at the earliest possible.tilbelays during the examination of a cell can éduced by
careful arrangement of the changes to the curatitbm so as to avoid cache misses occurring.

However, an advantage of the sequential accesatisttis possible to step through the contenta packet
of data without explicitly specifying an addres$isTwas used in the pattern-matching program teatl the
same set of states for testing all 12 words ofcilebody and only stopped on end of packet. Tiesdso
the problem of requiring a process to start openation a packet in different places — such as ntght
required if a lower protocol layer had facilitiesr fvariable length headers. This is easy with satal
access, but becomes more difficult with random s&ce

Some of the problems noted in the previous pardgvegre covered in [2], where it was suggested \eat
could use an index register as a base pointeritd pothe start of the data for the current preceslere |
would recommend that where possible, the implentiemtanethod for handling network data should be to
read the entire packet into internal memory befooeessing begins. This enables far more parsieto be
used in the implementation, as we can store malfygickets in memory and be processing a packestwhil
the next packet is being read into memory. By aisinal port memory, we could use one port for axces
from the processor and the other port to share dmtwnetwork data in and packet output events. The
program access method could be left to the chdidbeoprogrammer and combinations of sequential and
random access methods could be provided. Caclinig still be used to improve performance and tpeco
with random word alignment if this was required. dsadvantage would be that the overall througlgput
the input and output ports would be halved duénéotivo needing to share access to one port ofithepmbrt
memory. The present implementation operates atdimum input/output rate of 1600 Mbps, so this is
probably not a problem. The requirement for laag®unts of dual port memory is not easy on the FPGA
currently being used, although this problem wowdd®moved if the design was targeted at one ohéweer
FPGAs such as the Xilinx Virtex [11] series, whitdwe larger amounts of on chip memory.

6.6 Future versions

A number of ideas come to mind for a revised versid this design. Many of these will depend on
availability of tools and also on the advance infation provided by manufacturers on new CAM designs
However, a number of general issues are detailkavbe

* Network data access. The cache control system fasetlis processor was actually quite complex to
design and it only provides fair performance at.bésmove to a random access system as discussed i
the previous section is probably advisable.

e Scheduling. Causes quite a lot of overhead inchivig tasks. Where possible, this should be imgdov
May be beneficial to have separate memory spaceHannel state information, to avoid clashes with
other actions. Separate control over scheduling ateo be useful.

« Output event generation. A more sophisticated reehavould be useful, such as suggested in [2].
Should be able to generate short events from amgegs without sending the whole packet.

« Data width. May be worth investigating the podgipiof increasing the word size used for data.sThi
will however be affected by the CAMs used in thsige — using a 128 bit key with the current CAMs
and a separate RAM for results would increase asaiclkcycle time from 5 to approx. 7 clock cycles.

e Clock rate. Likely to be possible to use a higbleick rate with the next generation of CAM chips.

Moving to the Xilinx Virtex [11] series of FPGAs @rides a humber of features that will help support
this.
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e Dynamic channel allocation. The architecture @& turrent design supports this to a limited extent,
although at the time of writing more work is needsdthe micro-code. Any new version will need to
give more consideration to this issue and alsottipic of garbage collection of old processes. slt i
proposed that this topic should be investigatednore detail before the next generation processor is
designed.

6.7 Summary

Section 6 has taken a critical look at the perforoeaof this processor and ways in which the peréomre
could be improved. On a positive note, it is iating to look at the performance figures obtaiftecdthe
program examples. The most difficult in termscofhventional processing is the program used faepat
matching. This allows us to check the cell headeselect the appropriate channel for the VCI dmeht
provides a pattern match within the body of an ATMI in 1.86us. This corresponds to a data rate of
223 Mbps — i.e. easily fast enough to process aMigis ATM channel. If we ignore the various ovextig,

we have a per-word search time of 100ns or 320 Mbps

If we look at the maximum theoretical throughputtied CAM based system, this would be to use a 64-bi
data key and have the results in external memtrwe run the CAM at its top speed, then the timedne

64 bit word is 15 x 7 = 105 ns — i.e. 609 Mbps.e Tiext generation of CAMs looks to be faster arfdrcd
wider memory word — if the current system was upddb use these new devices then it may well have a
higher overall throughput.

7 Conclusions

This paper presents the design of an associativeepsor for use in network monitoring. The desigas
three main components: an FPGA, a CAM and a RAMe design for custom parts of this system have
been modeled in register transfer level VHDL and ¢tan be synthesized into logic for a Xilinx FPGA
which should operate at 50 MHz. The system ha® Isgaulated, both to enable debugging and also to
provide timing figures for some example network ftanng programs.

7.1 Results of Evaluation and Comments

The processor described in this paper is a firstopype, however it allows us to deduce that thetof
processor is a practical method of implementatmnuse in the design of network monitoring toolat

present, the usual role of content addressable myemonetwork interfaces is generally for routingda
address translation. The work in this paper shibvasit is also more generally useful in networktsyns for
unlocking the inherent parallelism that can be dodedesigns defined as finite state machines.

7.2 Further Study

A number of issues have been highlighted in sedioft appears that if possible the packet beinggssed
should be stored in memory within or closely codpie the processor and for the processor to hawdora
access to the data. This mechanism can be ussgpéctive of the access method used by any software
running on the processor and should allow programexecute without delays in fetching the netwoakad
The disadvantage is that memory needs to be maalkalsle that can hold the maximum sized packet that
could be received from the network. Secondly, dbgut event generation system could be improved to
allow the generation of short output events fromp process — it would probably be wise to look ahgs
similar semantics for generation of events to imérand external processes. Thirdly, the issugyofmic
channels needs further investigation. The workiireg is primarily in the area of garbage collectaf idle
channels and also highlights the need for the prowiof a timeout mechanism. Finally, any futuesign
should aim for yet higher performance — ideas @hieving this have been detailed in section 6.

To enable further tests to take place with realvodts it would be interesting to build a prototypleysical
design of such a system. This could be built gerseral-purpose test harness, using a large dtéte-aurt
FPGA. As the current system is specified in VHOtLshould be easy to retarget this at a newer FPGA
technology. This should enable tests to be unklemtavith the existing designs, whilst providing the
opportunity to upgrade to newer systems as thesedeveloped. Testing designs and software in b rea
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environment should identify shortcomings of currelesigns and hence help to target effort into usefu
improvements.

Finally, at present the system relies on specifyimanitoring programs in a form of micro-code. Vghihis
is acceptable during development, it would be Udefthave proper tools to allow code tables to tagiled
or synthesized from a high level language.
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Appendix A — Original 'Cell count'

-- process for cell level, channel 1
cell: process( cs, data )
registers
cs(chan = 1) <= FETCH;
begi n
case cs is
FETCH =>

ns <= ATMCELL;
Dat aAction(Go to 1st word of packet);

ATMCELL =>
if (data.vpi = 1) and (data.vci = 15) and
(data.pti /= Tail) then
-- Cell

ns <= ATMEND;

Dat aActi on(Forward 4 bytes);

call (chan <= 2, event <= strean);
elsif (data.vpi = 1) and (data.vci =
Last cell in an AAL5 frane
ns <= ATMEND,
Dat aActi on(Forward 4 bytes);

15) then

call (chan <= 2, event <= streanf);
el se
-- cell not on correct VPI/VC
ns <= ATMEND;
end if;
-- cell processing conplete
ATMEND =>
Dat aActi on(Get next cell);
ns <= FETCH;
end case;

end process;

channel 2

process to decode AAL5 fram ng,

-- all cells on appropriate VPI/VC
AAL: process( cs, data )
registers
cs(chan = 2) <= AAL5IDLE;
begi n
case cs is
AAL5I DLE =>
if (event = strean) then
-- first cell of AAL5 frane
ns <= AAL5I PEND;
Dat aActi on(Forward 12 bytes);
uplink := call(chan <= 3, event <= first);
el se
-- first and last cell of AAL5 frame
ns <= AALSEND;
Dat aActi on(Forward 12 bytes);
uplink := call(chan <= 3, event <= first);
end if;
AAL5| PEND =>
ns <= AAL5BODY;
return;
AAL5BODY =>
if event = streamthen
ns <= AAL5I PEND;
upcal | (chan <= uplink, event <= body);
el se
ns <= AAL5END;
upcal | (chan <= uplink, event <= body);
end if;
AALSEND =>
ns <= AALS5I DLE;
return;
end case;
end process;
-- process to |look up | P addresses and count cells

| P: process( cs, data )
registers

cs(chan = 3) <= | PSRC;

cs(chan = 4) <= | PNONE;

cs(chan = 10, 20, 30);

cs(chan = 11,12, 13, 21, 22, 23, 31, 32, 33);

cel lcount(chan = 11,12, 13, 21, 22, 23, 31, 32,33) <= 0;
gl obal s

st at us;

program — cellco unt-1

constants
IP1 <=
1P2 <=
I1P3 <=
P4 <=
I P5 <=
1P6 <=
begi n
case cs is
first cell of an AAL5 frame,
(check 1P source)
| PSRC =>
if event = first then
if data.ipsrc = 1Pl then
Dat aActi on(Forward 4 bytes);

0810C1508H;
0810C1509H;
0810C150AH;
0810C1501H;
0810C1502H;
0810C1503H;

elsif data.ipsrc = IP2 then
Dat aActi on(Forward 4 bytes);
ns <= | PDST,
elsif data.ipsrc = IP3 then
Dat aActi on(Forward 4 bytes);
ns <= | PDST,
el se
ns <=
end if;
el se
ns <= | PSRC,
return;
end if;

-- looking for, channel 4
| PNONE =>
ns <= | PNONE;

return,

channel s

first cell of an AAL5 frane,
20, 30 (Check | P destination)
| PDST =>
if (chan = 10) and (data.ipdst =
ns <= | PCELL;
elsif (chan = 10)
ns <= | PCELL;
elsif (chan = 10)
ns <= | PCELL;
elsif (chan = 20)
ns <= | PCELL;
elsif (chan = 20)
ns <= | PCELL;
elsif (chan = 20)
ns <= | PCELL;
elsif (chan = 30)
ns <= | PCELL;
elsif (chan = 30)
ns <= | PCELL;
elsif (chan = 30)
ns <= | PCELL;
el se
ns <= | PNONE;
end if;

goto(chan <= 11);
and (data.ipdst =
goto(chan <= 12);
and (data.ipdst =1
goto(chan <= 13);
and (data.ipdst =1
goto(chan <= 21);
and (data.ipdst =1
goto(chan <= 22);
and (data.ipdst =1
goto(chan <= 23);
and (data.ipdst =1
goto(chan <= 31);
and (data.ipdst =1
goto(chan <= 32);
and (data.ipdst =1
goto(chan <= 33);

goto(chan <= 4);

cell on a known IP
chans 11, 12, 13,
| PCELL =>
-- First save a copy of old val ue of
cellcount for this channel
status <= cellcount;
ns <= | PC1;
I PC1 =>
-- Wite a token to keep current cell
cel | savet oken <= Keep;
ns <= | PC3;
1 PC2 =>

address pair,
21, 22, 23, 31, 32,

Drop subsequent cells
cel | savet oken <= Drop;
ns <= | PC3;

=>

cell count <= cell count
ns <= | PC4;

=>

ns <= | PC2;

return;

| PC3

| PC4

end case;
end process;

- 21—

channel 3

ns <= | PDST; goto(chan <= 10);

goto(chan <= 20);

goto(chan <= 30);

| PNONE; goto(chan <= 4);

not one of the |IP address pairs we were

10,

P6)
P4)
P5)
P6)
P4)
P5)

P6)

33

regi

| P4) then

I P5) then

then

then

then

then

then

then

then

ster



Appendix B — Maodified 'Cell count' program — cellco unt-2

-- process for cell level, channel 1 | P3 <= 0810C150AH;
cell: process( cs, data ) | P4 <= 0810C1501H;
registers | P5 <= 0810C1502H;
cs(chan = 1) <= FETCH; | P6 <= 0810C1503H;
begi n begi n
case cs is case cs is
FETCH => -- first cell of an AAL5 frane, channel 3
ns <= ATMCELL; -- (check IP source)
Dat aAction(Go to 1st word of packet); | PSRC =>
if event = first then
ATMCELL => if data.ipsrc = 1Pl then
if (data.vpi = 1) and (data.vci = 15) and Dat aActi on(Forward 4 bytes);
(data.pti /= Tail) then ns <= | PDST; goto(chan <= 10);
-- Cell elsif data.ipsrc = IP2 then
ns <= FETCH; Dat aAction(Forward 4 bytes);
Dat aActi on(Forward 4 bytes); ns <= | PDST; goto(chan <= 20);
call (chan <= 2, event <= strean); elsif data.ipsrc = IP3 then
elsif (data.vpi = 1) and (data.vci = 15) then Dat aActi on(Forward 4 bytes);
-- Last cell in an AAL5 franme ns <= | PDST; goto(chan <= 30);
ns <= FETCH, el se
Dat aActi on(Forward 4 bytes); ns <= | PNONE; goto(chan <= 4);
call (chan <= 2, event <= streanf); end if;
el se el se
-- cell not on correct VPI/VC ns <= | PSRC;
ns <= FETCH, return,
Dat aActi on(CGet next cell); end if;
end if;
-- not one of the |IP address pairs we were
-- No ATMEND state -- looking for, channel 4
| PNONE =>
end case; ns <= | PNONE;
end process; return;

-- first cell of an AAL5 frane, channels 10,

-- process to decode AAL5 fram ng, channel 2 -- 20, 30 (Check |P destination)
-- all cells on appropriate VPI/VC | PDST =>
AAL: process( cs, data ) if (chan = 10) and (data.ipdst = 1P4) then
registers ns <= | PCELL; goto(chan <= 11);
cs(chan = 2) <= AAL5IDLE; elsif (chan = 10) and (data.ipdst = I1P5) then
begi n ns <= | PCELL; goto(chan <= 12);
case cs is elsif (chan = 10) and (data.ipdst = I1P6) then
AAL5I DLE => ns <= | PCELL; goto(chan <= 13);
if (event = strean) then elsif (chan = 20) and (data.ipdst = 1P4) then
-- first cell of AAL5 frame ns <= | PCELL; goto(chan <= 21);
ns <= AAL5I| PEND; elsif (chan = 20) and (data.ipdst = IP5) then
Dat aActi on(Forward 12 bytes); ns <= | PCELL; goto(chan <= 22);
uplink := call(chan <= 3, event <= first); elsif (chan = 20) and (data.ipdst = 1P6) then
el se ns <= | PCELL; goto(chan <= 23);
-- first and last cell of AAL5 franme elsif (chan = 30) and (data.ipdst = 1P4) then
ns <= AAL5END ns <= | PCELL; goto(chan <= 31);
Dat aActi on(Forward 12 bytes); elsif (chan = 30) and (data.ipdst = IP5) then
uplink := call(chan <= 3, event <= first); ns <= | PCELL; goto(chan <= 32);
end if; elsif (chan = 30) and (data.ipdst = I1P6) then
AAL5| PEND => ns <= | PCELL; goto(chan <= 33);
ns <= AAL5BODY; el se
return; ns <= | PNONE; goto(chan <= 4);
end if;
AAL5BODY =>
if event = streamthen -- cell on a known | P address pair,
ns <= AAL5| PEND; -- chans 11, 12, 13, 21, 22, 23, 31, 32, 33
upcal | (chan <= uplink, event <= body); | PCELL =>
el se -- First save a copy of old value of register
ns <= AALSEND; -- cellcount for this channel
upcal | (chan <= uplink, event <= body); status <= cellcount;
end if; | -- Finished with current cell, so get the next.
| Dat aActi on(Get next cell);
AALSEND => ns <= | PC1;
ns <= AAL5I DLE; I PC1L =>
return; -- Wite a token to keep current cell
cel | savet oken <= Keep;
end case; ns <= | PC3;
end process; | PC2 =>
-- Drop subsequent cells
-- process to look up I P addresses and count cells cel | savet oken <= Drop;
| P: process( cs, data ) -- Finished with current cell, so get the next.
registers Dat aAction(Get next cell);
cs(chan = 3) <= | PSRG; ns <= | PC3;
cs(chan = 4) <= | PNONE; | PC3 =>
cs(chan = 10, 20, 30); cellcount <= cellcount + 1;
cs(chan = 11, 12, 13, 21, 22, 23, 31, 32, 33) ; ns <= | PC4;
cellcount(chan = 11,12, 13, 21, 22, 23, 31, 32,33) <= 0; | PC4 =>
gl obal s ns <= | PC2;
stat us; return;
constants
| P1 <= 0810C1508H; end case;
| P2 <= 0810C1509H; end process;
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Appendix C - Pattern matching program — pattern-1

-- process for cell level, channel 1
cell: process( cs, data )
registers
cs(chan = 1) <= FETCH;
begi n
case cs is
FETCH =>

Dat aAction(go to 1st word of packet);
ns <= ATMCELL;

ATMCELL =>
if (data.vpi = 1) and (data.vci = 15) then
-- Cell
Dat aAction(forward 4 bytes);
ns <= FETCH,
call (chan <= 2, event <= strean);
el se

-- cell not on correct VPI/VC
ns <= FETCH;
cel | savet oken <= Drop;
Dat aActi on(get next cell);
end if;

end case;
end process;

-- process to search for the text string "abcdefgh" in

-- the cell and to save the cell if the string is found
-- Channel 2
PATTERN. process( cs, data )
registers
cs(chan = 2) <= PATO;
begi n
case cs is
PATO =>
if (end_of _packet) then
ns <= PATEND; cel |l savetoken <= Drop;
Dat aActi on(CGet next cell);
el sif data="abcd" then
ns <= PAT4; DataAction(Forward 4 bytes);
el sif data=""?abc" then
ns <= PAT3; DataAction(Forward 4 bytes);
el sif data="??ab" then
ns <= PAT2; DataAction(Forward 4 bytes);
el sif data="???a" then
ns <= PAT1; DataAction(Forward 4 bytes);
el se
ns <= PATO; DataAction(Forward 4 bytes);
end if;
PAT1 =>
if (end_of _packet) then
ns <= PATEND; cellsavetoken <= Drop;
Dat aActi on(CGet next cell);
el sif data="bcde" then
ns <= PAT5; DataAction(Forward 4 bytes);
el sif data="abcd" then
ns <= PAT4; DataAction(Forward 4 bytes);
el sif data=""?abc" then
ns <= PAT3; DataAction(Forward 4 bytes);
el sif data="??ab" then
ns <= PAT2; DataAction(Forward 4 bytes);
el sif data="???a" then
ns <= PAT1; DataAction(Forward 4 bytes);
el se
ns <= PATO; DataAction(Forward 4 bytes);
end if;
PAT2 =>
if (end_of _packet) then
ns <= PATEND; cel |l savet oken <= Drop;
Dat aActi on(CGet next cell);
el sif data="cdef" then
ns <= PAT6; DataAction(Forward 4 bytes);
el sif data="abcd" then
ns <= PAT4; DataAction(Forward 4 bytes);
el sif data="?abc" then
ns <= PAT3; DataAction(Forward 4 bytes);
el sif data="??ab" then
ns <= PAT2; DataAction(Forward 4 bytes);
el sif data="???a" then
ns <= PAT1; DataAction(Forward 4 bytes);
el se
ns <= PATO; DataAction(Forward 4 bytes);
end if;
PAT3 =>

if (end_of _packet) then

ns <= PATEND; cel |l savetoken <= Drop;

Dat aActi on(Get next cell);
el sif data="defg" then

ns <= PAT7; DataAction(Forward 4 bytes);
el sif data="abcd" then
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ns <= PAT4; DataAction(Forward 4 bytes);
el sif data="7abc" then

ns <= PAT3; DataAction(Forward 4 bytes);
el sif data="??ab" then

ns <= PAT2; DataAction(Forward 4 bytes);
el sif data="???a" then

ns <= PAT1; DataAction(Forward 4 bytes);

el se
ns <= PATO; DataAction(Forward 4 bytes);
end if;
PAT4 =>

if (end_of _packet) then

ns <= PATEND; cel | savetoken <= Drop;

Dat aAction(Get next cell);
el sif data="efgh" then

ns <= PATEND; cel | savetoken <= Keep;

Dat aAction(Get next cell);
el sif data="abcd" then

ns <= PAT4; DataAction(Forward 4 bytes);
el sif data="?abc" then

ns <= PAT3; DataAction(Forward 4 bytes);
el sif data="??ab" then

ns <= PAT2; DataAction(Forward 4 bytes);
el sif data="???a" then

ns <= PAT1; DataAction(Forward 4 bytes);

el se
ns <= PATO; DataAction(Forward 4 bytes);
end if;
PAT5 =>

if (end_of _packet) then

ns <= PATEND; cel | savetoken <= Drop;

Dat aAction(Get next cell);
el sif data="fgh?" then

ns <= PATEND; cel | savetoken <= Keep;

Dat aAction(Get next cell);
el sif data="abcd" then

ns <= PAT4; DataAction(Forward 4 bytes);
el sif data=""?abc" then

ns <= PAT3; DataAction(Forward 4 bytes);
el sif data="??ab" then

ns <= PAT2; DataAction(Forward 4 bytes);
el sif data="???a" then

ns <= PAT1; DataAction(Forward 4 bytes);

el se
ns <= PATO; DataAction(Forward 4 bytes);
end if;
PAT6 =>

if (end_of _packet) then

ns <= PATEND; cel | savetoken <= Drop;

Dat aAction(Get next cell);
el sif data="gh??" then

ns <= PATEND; cel | savetoken <= Keep;

Dat aAction(Get next cell);
el sif data="abcd" then

ns <= PAT4; DataAction(Forward 4 bytes);
el sif data=""?abc" then

ns <= PAT3; DataAction(Forward 4 bytes);
el sif data="??ab" then

ns <= PAT2; DataAction(Forward 4 bytes);
el sif data="???a" then

ns <= PAT1; DataAction(Forward 4 bytes);

el se
ns <= PATO; DataAction(Forward 4 bytes);
end if;
PAT7 =>

if (end_of _packet) then

ns <= PATEND; cel | savetoken <= Drop;

Dat aAction(Get next cell);
el sif data="h???" then

ns <= PATEND; cel | savetoken <= Keep;

Dat aAction(Get next cell);
el sif data="abcd" then

ns <= PAT4; DataAction(Forward 4 bytes);
el sif data=""?abc" then

ns <= PAT3; DataAction(Forward 4 bytes);
el sif data="??ab" then

ns <= PAT2; DataAction(Forward 4 bytes);
el sif data="???a" then

ns <= PAT1; DataAction(Forward 4 bytes);

el se
ns <= PATO; DataAction(Forward 4 bytes);

end if;

PATEND =>
-- Start pattern matching fromscratch in the
-- next cell.
ns <= PATO;
return;

end case;

end process;



Appendix D - Per VCI pattern matching program — pat

-- process for cell level, channel 1
-- check for cells on various VCl's and make a call to the
-- appropriate channel for that VC .

cell: process( cs, data )
registers
cs(chan = 1) <= FETCH;
begi n
case cs is
FETCH =>

Dat aAction(go to 1st word of packet);
ns <= ATMCELL;

ATMCELL =>

if (data.vpi = 1) and (data.vci = 1) then
-- Cell on a valid VCl/VPI
Dat aAction(forward 4 bytes); ns <= FETCH,
call (chan <= 2, event <= strean);

elseif (data.vpi = 1) and (data.vci = 2) then
-- Cell on avalid VCl/VPI
Dat aAction(forward 4 bytes); ns <= FETCH,
call (chan <= 3, event <= strean);

elseif (data.vpi = 1) and (data.vci = 3) then
-- Cell on avalid VCl/VPI
Dat aAction(forward 4 bytes); ns <= FETCH;
call (chan <= 4, event <= strean);

elseif (data.vpi = 1) and (data.vci = 4) then
-- Cell on a valid VCl/VPI
Dat aAction(forward 4 bytes); ns <= FETCH,
call (chan <= 5, event <= strean);

elseif (data.vpi = 1) and (data.vci = 5) then
-- Cell on a valid VCl/VPI
Dat aAction(forward 4 bytes); ns <= FETCH,
call (chan <= 6, event <= strean);

elseif (data.vpi = 1) and (data.vci = 6) then
-- Cell on avalid VCl/VPI
Dat aAction(forward 4 bytes); ns <= FETCH;
call(chan <= 7, event <= strean);

elseif (data.vpi = 1) and (data.vci = 7) then
-- Cell on a valid VCl/VPI
Dat aAction(forward 4 bytes); ns <= FETCH;
call (chan <= 8, event <= strean);

elseif (data.vpi = 1) and (data.vci = 8) then
-- Cell on a valid VCl/VPI
Dat aAction(forward 4 bytes); ns <= FETCH,
call (chan <= 9, event <= strean);

elseif (data.vpi = 1) and (data.vci = 9) then
-- Cell on avalid VCl/VPI
Dat aAction(forward 4 bytes); ns <= FETCH,
call (chan <= 10, event <= strean);

elseif (data.vpi = 1) and (data.vci = 10) then
-- Cell on avalid VCl/VPI
Dat aAction(forward 4 bytes); ns <= FETCH;
call (chan <= 11, event <= strean);

el se
-- cell not on a correct VPI/VCl
ns <= FETCH,
cel | savet oken <= Drop;
Dat aActi on(get next cell);

end if;

end case;
end process;

-- Process to search for the text string "abcdefgh".

-- Current state is saved between invocations to allow
-- matching across nmultiple cells on the sane VC.

-- Used for channels 2 to 11.

-- If a match succeeds, then the current cell is saved
-- along with the channel nunber.

PATTERN. process( cs, data )

registers
cs(chan = 2,3,4,5,6,7,8,9,10, 11) <= PATO;
ch(chan = 2) <= 2;
ch(chan = 3) <= 3;
ch(chan = 4) <= 4;
ch(chan = 5) <= 5;
ch(chan = 6) <= 6;
ch(chan = 7) <= 7;
ch(chan = 8) <= 8;
ch(chan = 9) <= 9;
ch(chan = 10) <= 10;
ch(chan = 11) <= 11;
begi n
case cs is
PATO =>

if (end_of _packet) then
ns <= PATENDO; cel | savet oken <= Drop;
Dat aActi on(CGet next cell);
el sif data="abcd" then
ns <= PAT4; DataAction(Forward 4 bytes);
el sif data=""?abc" then
ns <= PAT3; DataAction(Forward 4 bytes);
el sif data="??ab" then
ns <= PAT2; DataAction(Forward 4 bytes);
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el sif data="???a" then
ns <= PAT1; DataAction(Forward 4 bytes);

el se
ns <= PATO; DataAction(Forward 4 bytes);
end if;
PAT1 =>

if (end_of _packet) then

ns <= PATEND1; cellsavetoken <= Drop;

Dat aAction(Get next cell);
el sif data="bcde" then

ns <= PAT5; DataAction(Forward 4 bytes);
el sif data="abcd" then

ns <= PAT4; DataAction(Forward 4 bytes);
el sif data="?abc" then

ns <= PAT3; DataAction(Forward 4 bytes);
el sif data="??ab" then

ns <= PAT2; DataAction(Forward 4 bytes);
el sif data="???a" then

ns <= PAT1; DataAction(Forward 4 bytes);

el se
ns <= PATO; DataAction(Forward 4 bytes);
end if;
PAT2 =>

if (end_of _packet) then

ns <= PATEND2; cell savetoken <= Drop;

Dat aAction(Get next cell);
el sif data="cdef" then

ns <= PAT6; DataAction(Forward 4 bytes);
el sif data="abcd" then

ns <= PAT4; DataAction(Forward 4 bytes);
el sif data="?abc" then

ns <= PAT3; DataAction(Forward 4 bytes);
el sif data="??ab" then

ns <= PAT2; DataAction(Forward 4 bytes);
el sif data="???a" then

ns <= PAT1; DataAction(Forward 4 bytes);

el se
ns <= PATO; DataAction(Forward 4 bytes);
end if;
PAT3 =>

if (end_of _packet) then

ns <= PATEND3; cellsavetoken <= Drop;

Dat aAction(Get next cell);
el sif data="defg" then

ns <= PAT7; DataAction(Forward 4 bytes);
el sif data="abcd" then

ns <= PAT4; DataAction(Forward 4 bytes);
el sif data=""?abc" then

ns <= PAT3; DataAction(Forward 4 bytes);
el sif data="??ab" then

ns <= PAT2; DataAction(Forward 4 bytes);
el sif data="???a" then

ns <= PAT1; DataAction(Forward 4 bytes);

el se
ns <= PATO; DataAction(Forward 4 bytes);
end if;
PAT4 =>

if (end_of _packet) then

ns <= PATEND4; cellsavetoken <= Drop;

Dat aAction(Get next cell);
el sif data="efgh" then

ns <= MATCH, status <= ch;
el sif data="abcd" then

ns <= PAT4; DataAction(Forward 4 bytes);
el sif data=""?abc" then

ns <= PAT3; DataAction(Forward 4 bytes);
el sif data="??ab" then

ns <= PAT2; DataAction(Forward 4 bytes);
el sif data="???a" then

ns <= PAT1; DataAction(Forward 4 bytes);

el se
ns <= PATO; DataAction(Forward 4 bytes);
end if;
PAT5 =>

if (end_of _packet) then

ns <= PATEND5; cel | savetoken <= Drop;

Dat aAction(Get next cell);
el sif data="fgh?" then

ns <= NMATCH status <= ch;
el sif data="abcd" then

ns <= PAT4; DataAction(Forward 4 bytes);
el sif data=""?abc" then

ns <= PAT3; DataAction(Forward 4 bytes);
el sif data="??ab" then

ns <= PAT2; DataAction(Forward 4 bytes);
el sif data="???a" then

ns <= PAT1; DataAction(Forward 4 bytes);
el se

ns <= PATO; DataAction(Forward 4 bytes);
end if;



PAT6 =>
if (end_of _packet) then
ns <= PATENDG; cel | savet oken <= Drop;
Dat aActi on(CGet next cell);
el sif data="gh??" then
ns <= MATCH, status <= ch;
el sif data="abcd" then
ns <= PAT4; DataAction(Forward 4 bytes);
el sif data=""?abc" then
ns <= PAT3; DataAction(Forward 4 bytes);
el sif data="??ab" then
ns <= PAT2; DataAction(Forward 4 bytes);
el sif data="???a" then
ns <= PAT1; DataAction(Forward 4 bytes);

el se
ns <= PATO; DataAction(Forward 4 bytes);
end if;
PAT7 =>

if (end_of _packet) then

ns <= PATEND7; cel |l savet oken <= Drop;

Dat aActi on(CGet next cell);
el sif data="h???" then

ns <= MATCH, status <= ch;
el sif data="abcd" then

ns <= PAT4; DataAction(Forward 4 bytes);
el sif data="?abc" then

ns <= PAT3; DataAction(Forward 4 bytes);
el sif data="??ab" then

ns <= PAT2; DataAction(Forward 4 bytes);
el sif data="???a" then

ns <= PAT1; DataAction(Forward 4 bytes);
el se

ns <= PATO; DataAction(Forward 4 bytes);
end if;

MATCH =>
-- Keep current cell and request next
cel | savet oken <= Keep;
Dat aActi on(Get next cell);
ns <= PATENDO;

-- Save current state, so we can continue the
-- search in the next cell on this VC .

PATENDO =>

ns <= PATO; return;
PATENDL =>

ns <= PAT1; return;
PATEND2 =>

ns <= PAT2; return;
PATEND3 =>

ns <= PAT3; return;
PATEND4 =>

ns <= PAT4; return;
PATENDS =>

ns <= PAT5; return;
PATENDG =>

ns <= PAT6; return;
PATEND7 =>

ns <= PAT7; return;

end case;
end process



