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Abstract

In this thesis, the algebras of primary interest are the quantum Schubert cells and the

quantum Grassmannians, both of which are known to satisfy a condition on primitive

ideals known as the Dixmier-Moeglin equivalence.

A stronger version of the Dixmier-Moeglin equivalence is introduced - a version which

deals with all prime ideals of an algebra rather than just the primitive ideals. Quantum

Schubert cells are shown to satisfy the strong Dixmier-Moeglin equivalence.

Until now, given a torus-invariant prime ideal of the quantum Grassmannian, one

could not decide which quantum Plücker coordinates it contains. Presented here is a

graph-theoretic method for answering this question. This may be useful for providing

a full description of the inclusions between the torus-invariant prime ideals of the

quantum Grassmannian and may lead to a proof that quantum Grassmannians satisfy

the strong Dixmier-Moeglin equivalence.
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Chapter 1

Introduction

This thesis is organised into two main parts - one dealing with a strengthening of

the notion of the Dixmier-Moeglin equivalence for quantum Schubert cells, the other

providing a graph-theoretic solution to the problem of deciding whether or not a

given quantum Plücker coordinate belongs to a given torus-invariant prime ideal of a

quantum Grassmannian.

Dixmier and Moeglin gave an algebraic condition and a topological condition for

recognising the primitive ideals among the prime ideals of the universal enveloping

algebra of a finite-dimensional complex Lie algebra; they showed that the primitive,

rational, and locally closed ideals coincide. In modern terminology, they showed that

the universal enveloping algebra of a finite-dimensional complex Lie algebra satisfies

the Dixmier-Moeglin equivalence. We define quantities which measure how “close” an

arbitrary prime ideal of a noetherian algebra is to being primitive, rational, and locally

closed; if every prime ideal is equally “close” to satisfying each of these three properties,

then we say that the algebra satisfies the strong Dixmier-Moeglin equivalence. Using

the example of the universal enveloping algebra of sl2(C), we show that the strong

Dixmier-Moeglin equivalence is strictly stronger than the Dixmier-Moeglin equivalence.

For a simple complex Lie algebra g and an element w of the Weyl group of g, De Concini,

Kac, and Procesi have constructed a subalgebra Uq[w] of the quantised enveloping

K-algebra Uq(g). These quantum Schubert cells are known to satisfy the Dixmier-
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Moeglin equivalence and we show that they in fact satisfy the strong Dixmier-Moeglin

equivalence when q is not a root of unity. Along the way, we show that commutative

affine domains, uniparameter quantum tori, and uniparameter quantum affine spaces

satisfy the strong Dixmier-Moeglin equivalence.

Algebras of quantum matrices have certain subalgebras known as partition subalgebras,

in which we define the notion of a pseudo quantum minor (analogously to the notion

of a quantum minor of an algebra of quantum matrices). Partition subalgebras of

quantum matrices admit rational torus actions and, based on results of Casteels,

we develop a graph-theoretic method for deciding whether or not a given pseudo

quantum minor belongs to a given torus-invariant prime ideal of a partition subalgebra

of quantum matrices. The quantum Grassmannian Oq(Gm,n(K)) is generated as an

algebra by the maximal quantum minors of the algebra Oq(Mm,n(K)) of quantum

m× n matrices. These generators are known as the quantum Plücker coordinates of

the quantum Grassmannian. By a one-to-one correspondence of Launois, Lenagan,

and Rigal, the torus-invariant prime ideals of Oq(Gm,n(K)) (except the irrelevant ideal)

correspond to the torus-invariant prime ideals of the partition subalgebras of the algebra

Oq(Mm,n−m(K)) of quantum m× (n−m) matrices. Let J be a torus-invariant prime

ideal of Oq(Gm,n(K)) and let J ′ be the corresponding torus invariant prime ideal of

the corresponding partition subalgebra of Oq(Mm,n−m(K)). Given a quantum Plücker

coordinate α of Oq(Gm,n(K)), we show that the question of whether or not α belongs to

J can be answered by reading off a graph. Indeed we reduce the question of whether or

not α belongs to J to the question of whether or not a certain pseudo quantum minor

belongs to J ′ and we answer this question by the graph-theoretic method (mentioned

above) which we developed based on results of Casteels.
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N.B. We adopt the following conventions throughout this thesis:

• N is the set of nonnegative integers (in particular, 0 ∈ N);

• K is an infinite field;

• K× := K \ {0};

• q ∈ K× is not a root of unity;

• for integers a < b, Ja, bK denotes the set of all integers x such that a ≤ x ≤ b;

• for an integer t ≥ 1, St is the symmetric group on J1, tK;

• all algebras are unital associative K-algebras, unless otherwise stated;

• every ideal is two-sided, unless otherwise stated;

• for a K-algebra R, Spec(R) denotes the space of prime ideals of R (which we

endow with the Zariski topology) and Z(R) denotes the centre of R;

• all homomorphisms and (skew) derivations of K-algebras are K-linear;

• if we say that R[X; σ, δ] is an Ore extension of a K-algebra R, the reader may

assume that σ is an automorphism of R and δ is a left σ-derivation of R.

• Is I is an ideal of a ring R and x is an element of R, then x shall denote the

canonical image of x in R/I, namely the coset I + x.

• If R is a semiprime noetherian ring, then Frac(R) shall denote its (semisimple

artinian) total ring of fractions.



Chapter 2

Preliminaries

2.1 The algebras which appear in this thesis

2.1.1 Quantum affine spaces

Let N be a positive integer and let Λ = (λi,j) ∈MN(K×) be a multiplicatively skew-

symmetric matrix. The quantum affine space associated to Λ is denoted by OΛ(KN)

or KΛ[T1, . . . , TN ] and is presented as the K-algebra with generators T1, . . . , TN and

relations

TjTi = λj,iTiTj for all i, j ∈ J1, NK.

The algebra OΛ(KN) can be written as the iterated skew-polynomial extension

K[T1][T2; σ2] · · · [TN ; σN ],

where, for each j ∈ J2, NK, σj is the automorphism of K[T1][T2; σ2] · · · [Tj−1; σj−1]

defined by σj(Ti) = λj,iTi for all i ∈ J1, j − 1K.

It is clear that OΛ(KN ) is a domain; it is noetherian by [18, Theorem 1.14]. There is

a PBW-type K-basis for OΛ(KN) given by {T i1
1 · · ·T iN

N | i1, . . . , iN ∈ N}.

A quantum affine space OΛ(KN ) = KΛ[T1, . . . , TN ] is called a uniparameter quantum

affine space with parameter q if there exists an additively skew-symmetric matrix A =
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(ai,j) ∈MN (Z) such that Λ = (qai,j ). In this case, we denote OΛ(KN ) = KΛ[T1, . . . , TN ]

by Oq,A(KN) = Kq,A[T1, . . . , TN ].

2.1.2 Quantum tori

Let N be a positive integer and let Λ = (λi,j) ∈MN(K×) be a multiplicatively skew-

symmetric matrix. The quantum torus associated to Λ is denoted by OΛ((K×)N) or

KΛ[T ±1
1 , . . . , T ±1

N ] and is presented as the K-algebra generated by T ±1
1 , . . . , T ±1

N with

relations

TiT
−1
i = T −1

i Ti = 1 for all i, TjTi = λj,iTiTj for all i, j.

The algebra OΛ((K×)N) can be written as the iterated skew-Laurent extension

K[T ±1
1 ][T ±1

2 ; σ2] · · · [T ±1
N ; σN ],

where for each j ∈ J2, NK, σj is the automorphism of K[T ±1
1 ][T ±1

2 ; σ2] · · · [T ±1
j−1; σj−1]

defined by σj(Ti) = λj,iTi for all i ∈ J1, j − 1K.

It is clear that OΛ((K×)N ) is a domain; it is noetherian by [18, Corollary 1.15]. There

is a PBW-type K-basis for OΛ((K×)N) given by {T i1
1 · · ·T iN

N | (i1, . . . , iN) ∈ ZN}.

A quantum torus OΛ((K×)N ) = KΛ[T ±1
1 , . . . , T ±1

N ] is called a uniparameter quantum

torus with parameter q if there exists an additively skew-symmetric matrix A = (ai,j) ∈

MN (Z) such that Λ = (qai,j ). In this case, we write Oq,A((K×)N ) = Kq,A[T ±1
1 , . . . , T ±1

N ]

for OΛ((K×)N) = KΛ[T ±1
1 , . . . , T ±1

N ].

2.1.3 Quantum matrices

Consider the variety M2,2(K) of 2 × 2 matrices over K, which is simply affine 4-

space K4 and whose coordinate ring O(M2,2(K)) is simply the polynomial algebra

K[a, b, c, d] in four indeterminates over K. There are natural morphisms of varieties

K2 ×M2,2(K)→ K2 and M2,2(K)×K2 → K2 given by matrix multiplication. These
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maps dualise to give morphisms of algebras

O(K2)→ O(K2)⊗O(M2,2(K)) and O(K2)→ O(M2,2(K))⊗O(K2). (2.1)

The algebra O(K2) is the polynomial algebra K[x, y] in two variables and the morphisms

(2.1) can be written in matrix form as

(
x y

)
7→
(

x y

)
⊗

 a b

c d

 and

 x

y

 7→
 a b

c d

⊗
 x

y

 . (2.2)

(To clarify this notation, the first map in (2.2) is given by x 7→ x ⊗ a + y ⊗ c, y 7→

x⊗b+y⊗d and the second map in (2.2) is given by x 7→ a⊗x+b⊗y, y 7→ c⊗x+d⊗y.)

Manin [29] used this framework to arrive at a natural definition of the quantised

coordinate ring of M2,2(K), which we shall denote byOq(M2,2(K)) and refer to informally

as the (algebra of) 2×2 quantum matrices. For Oq(M2,2(K)), Manin wanted an algebra

with four generators a, b, c, d, and relations such that, where Oq(K2) = K⟨x, y⟩/⟨xy −

qyx⟩ is the quantum plane (quantum affine 2-space), one has morphisms of algebras

Oq(K2)→ Oq(K2)⊗Oq(M2,2(K)) and Oq(K2)→ Oq(M2,2(K))⊗Oq(K2) (2.3)

given by the formulae in (2.2). This leads to an algebra Oq(M2,2(K)) with generators

a, b, c, d — which we think of as lying in a matrix

 a b

c d

 — and the six relations

ab = qba, ac = qca, bd = qdb, cd = qdc, bc = cb, ad− da = (q − q−1)bc. (2.4)

It turns out that the algebra Oq(M2,2(K)) can be given the structure of a bialgebra

in a natural way and that the maps (2.3) equip the quantum plane Oq(K2) with the

structure of a left and a right comodule algebra for Oq(M2,2(K)).
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One can define quantum matrices Oq(Mm,n) for any m, n; one thinks of the generators

Xi,j of Oq(Mm,n) as lying in the matrix


X11 · · · X1n

... . . . ...

Xm1 · · · Xmn

 , (2.5)

(called the matrix of canonical generators for Oq(Mm,n(K))) with the relations given

for all i, k ∈ J1, mK and all l, j ∈ J1, nK by

Xi,jXi,l = qXi,lXi,j if j < l;

Xi,jXk,j = qXk,jXi,j if i < k;

Xi,jXk,l = Xk,lXi,j if k < i and j < l;

Xi,jXk,l −Xk,lXi,j = (q − q−1)Xi,lXk,j if i < k and j < l.

(2.6)

Remark 2.1.1. The relations (2.6) can be thought of as follows: taking any 2 × 2

submatrix

 a b

c d

 of the canonical matrix (2.5), the relations between a, b, c, and d

are exactly those appearing in (2.4).

Adding the generators in lexicographical order, the algebra Oq(Mm,n(K)) may be

expressed as an iterated Ore extension

K[X1,1] · · · [Xi,j; σi,j, δi,j] · · · [Xm,n; σm,n, δm,n], (2.7)

where the σi,j are automorphisms. As such, Oq(Mm,n(K)) is clearly a domain and it is

noetherian by [18, Theorem 2.6].

Definition 2.1.2. Let I = {i1 < · · · < it} ⊆ J1, mK and J = {j1 < . . . < jt} ⊆ J1, nK.

The quantum minor [I | J ] of Oq(Mm,n(K)) is defined by

[I | J ] =
∑

σ∈St

(−q)ℓ(σ)Xi1,jσ(1)Xi2,jσ(2) · · ·Xit,jσ(t) ,
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where for σ ∈ St, the length ℓ(σ) of σ is the cardinality of the set {(i, j) ∈ J1, tK ×

J1, tK | i < j and σ(i) > σ(j)}.

Certain subalgebras of Oq(Mm,n(K)) called partition subalgebras shall be of significant

interest to us but we shall postpone their definition until we need them in Chapter 4.

We postpone also the notion of a pseudo quantum minor of a partition subalgebra of

Oq(Mm,n(K)).

2.1.4 Quantum Grassmannians

When m ≤ n, the m × n quantum Grassmannian Oq(Gm,n(K)) is the subalgebra of

Oq(Mm,n(K)) generated by all maximal (i.e. m×m) quantum minors of Oq(Mm,n(K));

these generators are called the quantum Plücker coordinates of Oq(Gm,n(K)). Since

Oq(Mm,n(K)) is a domain, so isOq(Gm,n(K)). The quantum GrassmannianOq(Gm,n(K))

is noetherian by [21, Theorem 1.1]. We shall elaborate on the construction of

Oq(Gm,n(K)) in Section 5.1.

2.1.5 Quantised enveloping algebras

Let g be a simple complex Lie algebra of rank n. Choose a Cartan subalgebra h

of g and, relative to this choice of Cartan subalgebra, choose a root system Φ of g.

Choose an ordered base π := {α1, . . . , αn} of Φ, so that π is a basis of a real Euclidean

vector space E, whose inner product we denote by (−,−). Recall that the Cartan

matrix of g associated to the above choice of simple roots is given by C = (ci,j), where

ci,j = 2(αi, αj)/(αi, αi).

Let us normalise (−,−) so that short simple roots have length
√

2 i.e. short simple

roots α satisfy (α, α) = 2. For i ∈ J1, nK, the simplicity of g guarantees that (αi, αi) ∈

{2, 4, 6}, so that qi := q(αi,αi)/2 ∈ {q, q2, q3}; for nonnegative integers k ≤ p, define

 p

k


qi

:= (qi − q−1
i ) · · · (qp−1

i − q1−p
i )(qp

i − q−p
i )

(qi − q−1
i ) · · · (qk

i − q−k
i )(qi − q−1

i ) · · · (qp−k
i − qk−p

i )
.



2.1 The algebras which appear in this thesis 9

The quantised enveloping algebra Uq(g) of g over K is the K-algebra generated by

F1, . . . , Fn, K±1
1 , . . . , K±1

n , E1, . . . , En with the following relations

KiK
−1
i = 1 and KiKj = KjKi;

KiEjK
−1
i = q

ci,j

i Ej and KiFjK
−1
i = q

−ci,j

i Fj;

EiFj − FjEi = δi,j
Ki −K−1

i

qi − q−1
i

;

and the quantum Serre relations

1−ci,j∑
k=0

(−1)k

 1− ci,j

k


qi

E
1−ci,j−k
i EjE

k
i = 0 (i ̸= j);

1−ci,j∑
k=0

(−1)k

 1− ci,j

k


qi

F
1−ci,j−k
i FjF

k
i = 0 (i ̸= j).

This presentation of Uq(g) is analogous to Serre’s presentation of U(g).

We denote by U+
q (g) and U−

q (g) the subalgebras of Uq(g) generated by E1, . . . , En

and F1, . . . , Fn respectively. We denote by U0
q (g) the subalgebra of Uq(g) generated by

K±1
1 , . . . , K±1

n .

2.1.6 Quantum Schubert cells Uq[w]

Let g be a simple complex Lie algebra of rank n, as in the previous subsection. The

Weyl group of g, which we denote by W, is the subgroup of the general linear group

GL(E) of E generated by the reflections si (i ∈ J1, nK) with reflecting hyperplanes

given by {β ∈ E | (β, αi) = 0} (i ∈ J1, nK). For any element w of W, De Concini,

Kac, and Procesi [12] defined a quantum analogue, Uq[w], of the universal enveloping

algebra of the nilpotent Lie algebra n+∩Adw(n−), where Ad denotes the adjoint action.

The algebra Uq[w] is called a quantum Schubert cell.
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Let us describe a construction of Uq[w] which leads to an expression of Uq[w] as an

iterated Ore extension. The Weyl group W is a Coxeter group with respect to the

generators s1, . . . , sn and we define the length, ℓ(w), of w to be the smallest N such

that there exist ij ∈ J1, nK satisfying w = si1 · · · siN
. Let us fix this reduced expression

w = si1 · · · siN
. (2.8)

It is well known that β1 := αi1 , β2 := si1(αi2), . . . , βN := si1 · · · siN−1(αiN
) are distinct

positive roots and are independent (up to reordering) of the chosen reduced expression

for w. The construction of generators for Uq[w] is analogous to the construction of

β1, . . . , βN : Let BW be the braid group ofW , which is obtained fromW by omitting the

involution relations between the generators s1, . . . , sn. In particular, BW has generators

T1, . . . , Tn such that there is a surjective morphism BW →W which sends each Ti to

si. Using Lusztig’s action of the braid group BW on Uq(g) by algebra automorphisms

(see [6, I.6.7]), define elements X1, . . . , XN of Uq(g) by

X1 = Ei1 , X2 = Ti1 · Ei2 , . . . , XN = Ti1 · · ·TiN−1 · EiN

and define Uq[w] to be the subalgebra of Uq(g) generated by X1, . . . , XN . It is well

known that although the elements X1, . . . , Xn of Uq(g) depend on the choice (2.8) of

reduced expression for w, the algebra Uq[w] generated by X1, . . . , XN is independent of

this choice. By results of Lusztig and Levendorskii-Soibelman, Uq[w] is a subalgebra of

U+
q (g) (and is in fact equal to U+

q (g) if w is chosen as the unique longest element ofW)

and by a result of Levendorskii-Soibelman, there are commutation relations between

the generators X1, . . . , XN allowing Uq[w] to be written as an iterated Ore extension

Uq[w] = k[X1][X2; σ2; δ2] · · · [XN ; σN , δN ], (2.9)

where the σi are automorphisms, so that Uq[w] is clearly a domain and is noetherian

by [18, Theorem 2.6].
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Example 2.1.3. Let g = slm+n, W = Sm+n, and w = (1 2 · · · m+n)m. Cauchon and

Mériaux [31, Proposition 2.1.1] constructed an isomorphism Uq[w] ∼= Oq(Mm,n(K)).

2.2 H-stratification

The notion of H-stratification, due to Goodearl and Letzter, plays a central role in

this thesis. We introduce the idea here.

Let us suppose that R is a noetherian K-algebra and that H = (K×)r is an algebraic

K-torus1 acting on R by automorphisms. Let us assume also that the action of H

on R is rational i.e. R has a basis of H-eigenvectors whose eigenvalues H → k× are

rational maps. We refer to the H-invariant prime ideals of R as H-prime ideals. We

denote by H-Spec R the H-spectrum of R, namely the subspace of Spec R consisting

of all H-prime ideals.

For an ideal I of R, (I : H) := ⋂
h∈H h·I is easily checked to be the largest H-invariant

ideal of R contained in I. It is well known that if P is a prime ideal of R, then (P : H) is

an H-prime ideal of R. For an H-prime ideal J of R, the H-stratum of Spec R associated

to J is denoted by SpecJ R and is defined by SpecJ R = {P ∈ Spec R | (P : H) = J}.

That is, SpecJ R is the subspace of Spec R consisting of all those prime ideals P of R

with the property that J is the largest H-prime ideal (and in fact the largest H-invariant

ideal) of R contained in P . The H-strata form a partition of Spec R, usually referred

to as the H-stratification:

Spec(R) =
⊔

J∈H−Spec(R)
SpecJ(R).

We shall later discuss the notion of H-stratification in much more detail; we shall pay

particular attention to the crucial role which it plays in understanding the prime and

primitive spectra of various quantum algebras.

1This is a slight abuse of terminology because, strictly speaking, H is not an algebraic group.
Technically we should refer to H as the group of K-rational points of the affine algebraic group (K×)r.
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Example 2.2.1. The algebraic K-torus H = (K×)N acts rationally on any quantum

affine space OΛ(KN) = KΛ[T1, . . . , TN ] by automorphisms as follows:

(a1, . . . , aN) · Ti = aiTi for all i ∈ J1, NK and all (a1, . . . , aN) ∈ H.

For a subset ∆ of J1, NK, let K∆ be the ideal of OΛ(KN) generated by those Ti with

i ∈ ∆. The ideal K∆ is clearly an H-invariant completely prime ideal of OΛ(KN).

Goodearl and Letzter have shown [17, Proposition 2.11] that all H-prime ideals of

OΛ(KN) take this form, namely that H-SpecOΛ(KN) = {K∆ | ∆ ⊆ J1, NK}. For any

∆ ⊆ J1, NK, we denote SpecK∆
OΛ(KN) by Spec∆(OΛ(KN))) and we have

Spec∆(OΛ(KN)) =
{
P ∈ SpecOΛ(KN) | P ∩ {Ti | i ∈ J1, NK} = {Ti | i ∈ ∆}

}
.

Example 2.2.2. The algebraic torus H = (K×)m+n acts rationally by automorphisms

on Oq(Mm,n(K)) as follows:

(α1, . . . , αm, β1, . . . , βn) ·Xi,j = αiβjXi,j (2.10)

for all (α1, . . . , αm, β1, . . . , βn) ∈ H and all (i, j) ∈ J1, mK× J1, nK.

2.3 Cauchon-Goodearl-Letzter extensions

Definition 2.3.1. In terminology similar to that introduced in [23, Definition 3.1], an

iterated Ore extension

R = K[X1][X2; σ2, δ2] · · · [XN ; σN , δN ]

(where the σi are automorphisms and the δi are left σi-derivations) is called a Cauchon-

Goodearl-Letzter (or CGL) extension if there exists an algebraic K-torus H = (K×)d

acting rationally on R by automorphisms and
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(i) X1, . . . , XN are H-eigenvectors;

(ii) For all j ∈ J2, NK, δj is locally nilpotent;

(iii) For all j ∈ J2, NK, there exists qj ∈ K× not a root of unity such that σj ◦ δj =

qjδj ◦ σj;

(iv) For all j ∈ J2, NK and all i ∈ J1, j−1K, we have σj(Xi) = λj,iXi for some λj,i ∈ k×;

(v) The set {λ ∈ K× | there exists h ∈ H such that h ·X1 = λX1} is infinite;

(vi) For all j ∈ J2, NK, there exists hj ∈ H such that hj · Xj = qjXj and, for

i ∈ J1, j − 1K, hj ·Xi = λj,iXi.

The CGL extension R is said to be a uniparameter CGL extension (with parameter q)

if λj,i is an integral power of q for all j ∈ J2, NK and all i ∈ J1, j − 1K.

Remark 2.3.2. To a uniparameter CGL extension K[X1][X2; σ2, δ2] · · · [XN ; σN , δN ]

with parameter q, we associate a skew-symmetric integral matrix (ai,j)(i,j)∈J1,NK×J1,NK

such that λj,i = qaj,i for all j ∈ J2, NK and all i ∈ J1, j − 1K.

Remark 2.3.3. Every CGL extension appearing in this thesis is uniparameter with

parameter q or q−1.

The class of uniparameter CGL extensions contains many quantum algebras such

as uniparameter quantum affine spaces, quantum matrices, and quantum Schubert

cells. Uniparameter CGL extensions are clearly domains; they are noetherian by [18,

Theorem 2.6]; they have finite Gelfand-Kirillov dimension2 by [6, Lemma II.9.7]; they

satisfy the noncommutative Nullstellensatz3 over K by [6, Theorem II.7.17]; all prime

ideals of a uniparameter CGL extension are completely prime by [6, Theorem II.6.9].
2For a definition of Gelfand-Kirillov dimension, see Chapter 2 of [22].
3For a definition of the noncommutative Nullstellensatz, see the beginning of Subsection 3.1.1.
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2.4 Cauchon’s deleting-derivations algorithm

Let R = K[X1][X2; σ2, δ2] · · · [XN ; σN , δN ] be a uniparameter CGL extension with

parameter q, associated skew-symmetric integral matrix A, and admitting a rational

action by an algebraic torus H. It is easy to check that R satisfies the conditions

specified in [10, Section 3.1] and both [10, Hypothèse 4.1.1] and [10, Hypothèse 4.1.2].

In [10, Section 3], Cauchon introduced an algorithm, now known as the deleting-

derivations algorithm, which he used to relate the prime and primitive spectra of R to

those of the quantum affine space obtained by “deleting” the derivations δ2, . . . , δN .

The deleting-derivations algorithm sets (X(N+1)
1 , . . . , X

(N+1)
N ) = (X1, . . . , XN) and,

for each j ∈ J2, NK, constructs from (X(j+1)
1 , . . . , X

(j+1)
N ) a family (X(j)

1 , . . . , X
(j)
N ) of

elements of Frac(R). For each j ∈ J2, N + 1K, the subalgebra of Frac(R) generated by

X
(j)
1 , . . . , X

(j)
N is denoted by R(j); in particular, R(N+1) = R. By [10, Theorem 3.2.1],

for each j ∈ J1, NK, there is an isomorphism

R(j+1) ∼=−→ K[X1][X2; σ2, δ2] · · · [Xj; σj, δj][Xj+1, τj+1] · · · [XN ; τN ]

X
(j+1)
i 7→ Xi for all i ∈ J1, NK,

(2.11)

where for each l ∈ Jj +1, NK, τl is the automorphism which sends each Xi (i ∈ J1, l−1K)

to λl,iXi. In particular, R(2) is isomorphic, by an isomorphism which sends each X
(2)
i

to Ti (i = 1, . . . , N), to the quantum affine space given by

Kq,A[T1, . . . , TN ] = K[T1][T2; τ2] · · · [Tn; τN ], (2.12)

where for each l = J2, NK, τl is the automorphism which sends each Ti (i ∈ J1, l − 1K)

to λl,iTi. Via this isomorphism, we identify R(2) with the quantum affine space

Kq,A[T1, . . . , TN ].

The deleting-derivations algorithm: Suppose that j ∈ J2, NK and that the

set (X(j+1)
1 , . . . , X

(j+1)
N ) has been constructed. Notice that (2.11) shows in partic-

ular that the element X
(j+1)
j of Frac(R) is nonzero and hence invertible. To con-
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struct (X(j)
1 , . . . , X

(j)
N ) from (X(j+1)

1 , . . . , X
(j+1)
N ), identify4 (X(j+1)

1 , . . . , X
(j+1)
N ) with

(X1, . . . , XN) via the isomorphism (2.11) and for i ∈ J1, NK, set

X
(j)
i :=


X

(j+1)
i if i ≥ j;

+∞∑
n=0

(1− qj)−n

[n]!qj

δn
j ◦ σ−n

j (X(j+1)
i )(X(j+1)

j )−n if i < j,
(2.13)

where [n]!qj
= (1)× (1 + qj)× · · · × (1 + qj + · · ·+ qn−1

j ).

2.4.1 An injection ϕj : Spec(R(j+1))→ Spec(R(j))

In [10, Section 4.3], Cauchon constructed for each j ∈ J2, NK an injection

ϕj : Spec(R(j+1))→ Spec(R(j)).

We shall not describe the construction of this injection but we shall describe some of

its properties which shall be useful to us.

2.4.2 Identifying several total rings of fractions

Let j ∈ {2, . . . , N} and let Q be a prime ideal of R(j+1). Then [10, Lemme 5.3.1 and

Lemma 5.3.2] give isomorphisms

Frac(R(j+1)/Q)
∼=−→ Frac(R(j)/ϕj(Q)). (2.14)

2.4.3 Relationships between generators

Let P be a prime ideal of R. For j ∈ J2, N +1K, set P (j) = ϕj ◦· · ·◦ϕN (P ) ∈ Spec(R(j))

(which gives P (N+1) = P ), and let a
(j)
1 , . . . a

(j)
N be the canonical images of X

(j)
1 , . . . , X

(j)
N

in R(j)/P (j). Let us denote by G the total ring of fractions of R/P (which is a division

ring since all prime ideals of R are completely prime) and by varying j over J2, NK

4We make this identification in order that the term δn
j ◦ σ−n

j (X(j+1)
i ) in (2.13) makes sense.
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and Q over P (3), . . . , P (N+1) in the isomorphism (2.14), let us identify the total ring of

fractions of each noetherian domain R(j)/P (j) (j ∈ J2, N + 1K) with the division ring

G. Some immediate consequences of this setup (noted in [10, Proposition 5.4.1]) are

that for each j ∈ J2, N + 1K,

• R(j)/P (j) is the subalgebra of G generated by a
(j)
1 , . . . , a

(j)
N ;

• there is a morphism of algebras fj : R(j) → G which sends each X
(j)
i (i ∈ J1, NK)

to a
(j)
i ;

• the kernel of fj is P (j) and its image is R(j)/P (j).

For j ∈ J2, NK, Cauchon [10] gives an algorithm for constructing the generators

a
(j)
1 , . . . , a

(j)
N of the algebra R(j)/P (j) from the generators a

(j+1)
1 , . . . , a

(j+1)
N of the algebra

R(j+1)/P (j+1). Indeed suppose that j ∈ J2, NK and that i ∈ J1, NK. By [10, Proposition

5.4.2], when we identify5 (X(j+1)
1 , . . . , X

(j+1)
N ) with (X1, . . . , XN) via the isomorphism

(2.11), we have

a
(j)
i =


+∞∑
n=0

(1− qj)−n

[n]!qj

λ−n
j,i fj+1(δn

j (X(j+1)
i ))(a(j+1)

j )−n if 1 ≤ i < j and a
(j+1)
j ̸= 0;

a
(j+1)
i otherwise.

(2.15)

2.4.4 The canonical injection ϕ : Spec(R)→ Spec(R(2))

By [10, Lemma 4.2.1], the action of H on R induces an action of H on R(2) =

Kq,A[T1, . . . , TN ]. Although this may not be the same torus action as defined in

Example 2.2.1, [10, Proposition 5.5.1] shows that both actions have the same invariant

prime ideals i.e. if we let W be the power set of J1, NK and if for ∆ ∈ W , we let K∆

be the ideal of R(2) generated by {Ti | i ∈ ∆}, then H − Spec(R(2)) = {K∆ | ∆ ∈ W}.

For ∆ ∈ W , denote the H-stratum of K∆ by Spec∆(R(2)), so that

Spec∆(R(2)) =
{
P ∈ Spec(R(2)) | P ∩ {Ti | i ∈ J1, NK} = {Ti | i ∈ ∆}

}
.

5We make this identification in order that the term δn
j (X(j+1)

i ) in (2.15) makes sense.
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Define the canonical injection ϕ : Spec(R) → Spec(R(2)) by ϕ := ϕ2 ◦ · · · ◦ ϕN (see

[10, Définition 4.4.1]) and for ∆ ∈ W , set Spec∆(R) = ϕ−1(Spec∆(R(2))) . Denote by

W ′ the set of those ∆ ∈ W with Spec∆(R) ̸= ∅. The elements of W are called the

diagrams of R and the elements of W ′ are called the Cauchon diagrams of R. For

any Cauchon diagram ∆ of R, the canonical injection ϕ restricts to a bi-increasing

homeomorphism from Spec∆(R) to Spec∆(R(2)) ([10, Théorèmes 5.1.1 and 5.5.1]).

Remark 2.4.1. Though we shall not do it, it would be more precise to call the elements

of W ′ the Cauchon diagrams of the CGL extension R, rather than the Cauchon diagrams

of R; not all ways to write R as a CGL extension yield the same Cauchon diagrams.

By [10, Proposition 4.4.1], we have

Spec(R) =
⊔

∆∈W ′
Spec∆(R).

This is called the canonical partition of Spec(R) and, by [10, Théorème 5.5.2], it

coincides with the partition of Spec(R) into H-strata. Let us make this more precise:

By [10, Lemme 5.5.8 and Théorème 5.5.2], we have

(i) For any ∆ ∈ W ′, there is a unique H-prime ideal J∆ of R such that ϕ(J∆) = K∆;

(ii) H − Spec(R) = {J∆ | ∆ ∈ W ′}, so that H − Spec(R) is finite (having cardinality

at most 2N);

(iii) SpecJ∆
(R) = Spec∆(R) for all ∆ ∈ W ′.

Remark 2.4.2. In the current general setting of uniparameter CGL extensions, Cau-

chon diagrams are sets rather than diagrams. The terminology Cauchon diagram

comes from the application of Cauchon’s theory of deleting derivations to algebras of

quantum matrices. Set R = Oq(Mm,n(K)), set N = mn, and recall that R can be

expressed as an iterated Ore extension (2.7) in N indeterminates. There is a poset

isomorphism ι : J1, NK
∼=−→ J1, mK× J1, nK, where the set J1, mK× J1, nK is endowed with

the lexicographical order; let us identify J1, NK and J1, mK× J1, nK via ι. Let us identify
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any subset S of J1, mK× J1, nK with an m× n rectangular array of boxes such that the

box in the (i, j)-position is black if (i, j) ∈ S and white otherwise. Cauchon showed in

[11, Section 3.2] that the Cauchon diagrams of Oq(Mm,n(K)) are exactly those m× n

rectangular arrays of black and white boxes satisfying the following rule:

If a box is black, then either every box to its left is black or every box above it is black.



Chapter 3

A strong Dixmier-Moeglin

equivalence for quantum Schubert

cells

With the exception of Subsection 3.7.1, the material of this chapter is original and is

based on joint work with Prof. Stéphane Launois and Prof. Jason Bell; the results

come from [4].

It is a difficult and often intractable problem to classify the irreducible representations

of an algebra. Dixmier proposed that a good first step towards tackling this problem

would be to find the kernels of the irreducible representations, that is the annihilators

of the simple modules, namely the primitive ideals. In any ring, every primitive ideal

is prime; Dixmier [13] and Moeglin [32] gave an algebraic condition and a topological

condition for deciding whether or not a given prime ideal of the universal enveloping

algebra of a finite-dimensional complex Lie algebra is primitive:

• A prime ideal P of a ring R is said to be locally closed if the singleton set {P} is

locally closed in the Zariski topology on Spec R, namely if {P} is the intersection

of a Zariski-open subset of Spec R and a Zariski-closed subset of Spec R. (For a

prime ideal P of a ring R, it is easily shown that P is locally closed if and only if
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P is strictly contained in the intersection of all prime ideals of R which strictly

contain P .)

• A prime ideal P of a noetherian K-algebra R is said to be rational if the field

extension1 Z(Frac R/P ) of K is algebraic.

Dixmier and Moeglin proved that for a prime ideal of the universal enveloping algebra

of a finite-dimensional complex Lie algebra, the properties of being primitive, locally

closed, and rational are equivalent. In modern terminology, they proved that the

universal enveloping algebra of a finite-dimensional complex Lie algebra satisfies the

Dixmier-Moeglin equivalence.

Since the work of Dixmier and Moeglin on universal enveloping algebras of finite-

dimensional complex Lie algebras, many more algebras have been shown to satisfy the

Dixmier-Moeglin equivalence: [6, Corollary II.8.5] lists several quantised coordinate

rings which satisfy the Dixmier-Moeglin equivalence; Bell, Rogalski, and Sierra [5] have

shown that twisted homogeneous coordinate rings of projective surfaces satisfy the

Dixmier-Moeglin equivalence. However, Irving [20] and Lorenz [27] have shown that

there exist noetherian algebras of infinite Gelfand-Kirillov dimension for which the

Dixmier-Moeglin equivalence fails. Moreover Bell, Launois, León Sánchez, and Moosa

[3] have shown that there exist noetherian algebras of finite Gelfand-Kirillov dimension

which do not satisfy the Dixmier-Moeglin equivalence.

Our goal is to extend the notion of the Dixmier-Moeglin equivalence to all prime

ideals, in a way which captures how “close” they are to being primitive. Of course, not

all non-primitive prime ideals are created equal. For example, in the polynomial ring

C[x, y], the primitive ideals are the maximal ideals ⟨x− α, y − β⟩. For this reason, we

think of the prime ideal ⟨x⟩ as being “closer” to being primitive than the prime ideal

⟨0⟩, in the same sense that it is “closer” to being maximal — that is, the height of ⟨x⟩

is greater than the height of ⟨0⟩.
1The K-algebra Z(Frac R/P ) is a field by the Goldie and Artin-Wedderburn theorems.
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In general, given a noetherian K-algebra R and given a prime ideal P of R, we are

interested in the primitivity degree, prim. deg P , of P , which we define as follows:

prim. deg P := inf{ht Q | Q ∈ Prim R/P},

where Prim R/P denotes the subspace of Spec R/P consisting of the primitive ideals

of R/P . This quantity gives a measure of how close the prime ideal P is to being

primitive. Clearly, P is primitive if and only if prim. deg P = 0.

Remark 3.0.1. We would like to have a more representation-theoretic characterisation

of primitivity degree, such as a way to realise the prime ideals of a given primitivity

degree as the kernels of members of a family of representations. However we have not

been able to find such a characterisation.

We use the notion of primitivity degree to extend the idea of the Dixmier-Moeglin

equivalence to all prime ideals. To this end, we define generalisations of the notions of

a locally closed ideal and a rational ideal.

It is easy to extend the notion of a rational ideal: for a prime ideal P of R, we

define the rationality degree, rat. deg P , of P to be the transcendence degree of the

field extension Z(Frac R/P ) of K. Clearly, P is rational if and only if rat. deg P = 0.

Remark 3.0.2. It seems reasonable to expect that, under some mild assumptions, the

property that rat. deg P = d should relate to the existence of a rational ideal of height d

in R/P but it seems difficult to establish such a relationship.

In the same spirit of generalisation, we define the local closure degree, loc. deg P , of a

prime ideal P of R to be the smallest nonnegative integer d such that ⋂Q∈Spec>d R/P Q ̸=

0, where Spec>d R/P denotes the subspace of Spec R/P consisting of all prime ideals

of R/P which are of height strictly greater than d. Clearly, P is locally closed if and

only if loc. deg P = 0.

Remark 3.0.3. In the case that the noetherian K-algebra R has finite Gelfand-Kirillov

dimension, all prime ideals of R have finite height by [22, Corollary 3.16]. All of the
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algebras which will concern us in this chapter have finite Gelfand-Kirillov dimension

and so we shall always use the following equivalent characterisation of local closure

degree: for a prime ideal P of R, loc. deg P is the smallest nonnegative integer d

such that ⋂Q∈Specd+1 R/P Q ̸= 0, where Specd+1 R/P denotes the subspace of Spec R/P

consisting of all prime ideals of R/P which are of height d + 1. In this context, we shall

prove (in the proof of Proposition 3.1.1) that if P ∈ Spec R is such that loc. deg P = d,

then R/P has a locally closed ideal of height d.

Definition 3.0.4. A noetherian K-algebra R is said to satisfy the strong Dixmier-

Moeglin equivalence (SDME) if every prime ideal P of R satisfies

loc. deg P = prim. deg P = rat. deg P.

We remark that the strong Dixmier-Moeglin equivalence is strictly stronger than the

Dixmier-Moeglin equivalence. Indeed the Dixmier-Moeglin equivalence simply says

that if P is a prime ideal of a noetherian K-algebra R, then

loc. deg P = 0 ⇐⇒ prim. deg P = 0 ⇐⇒ rat. deg P = 0.

Even though the universal enveloping algebra, U(sl2(C)), of sl2(C) satisfies the Dixmier-

Moeglin equivalence (as was shown in the original work of Dixmier and Moeglin), it

fails to satisfy the strong Dixmier-Moeglin equivalence. Indeed, since U(sl2(C)) is a

domain, ⟨0⟩ is a (completely) prime ideal of U(sl2(C)). By [9, Remark 4.6], all prime

ideals of U(sl2(C)) except ⟨0⟩ are primitive, so that prim. deg⟨0⟩ = 1. It is well known

that the centre of U(sl2(C)) is given by the polynomials in the Casimir element; by [14,

Corollary 4.2.3], Z(Frac U(sl2(C))) is given by the rational functions in the Casimir

element, so that rat. deg⟨0⟩ = tr. degCZ(Frac U(sl2(C))) = 1. By [9, Theorem 4.5 and

Proposition 5.13], there are infinitely many height two prime ideals in U(sl2(C)) and

their intersection is zero, so that loc. deg⟨0⟩ > 1. Since, by [9, Theorem 4.5], there are

no height three prime ideals in U(sl2(C)), the intersection of the height three prime

ideals is nonzero (in fact it is the entirety of U(sl2(C))), so that loc. deg⟨0⟩ = 2.
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The goal of this chapter is to prove that quantum Schubert cells Uq[w] (see Subsection

2.1.6 for more details) satisfy the strong Dixmier-Moeglin equivalence.

It shall be useful to define a weaker version of the strong Dixmier-Moeglin equivalence

which is often easy to prove and provides a useful stepping-stone to proving the strong

Dixmier-Moeglin equivalence.

Definition 3.0.5. A noetherian K-algebra R is said to satisfy the quasi strong Dixmier-

Moeglin equivalence if every prime ideal P of R satisfies loc. deg P = rat. deg P .

With the quasi strong Dixmier-Moeglin equivalence in hand for a noetherian K-

algebra R, the problem is reduced to showing that every prime ideal P of R satisfies

prim. deg P = rat. deg P . For a quantum Schubert cell Uq[w], we prove this by exploit-

ing the good behaviour of the poset of H-prime ideals of Uq[w], where H is a suitable

algebraic K-torus acting rationally on Uq[w] by automorphisms.

This chapter is organised as follows. First, we prove various general results about the

(quasi) strong Dixmier-Moeglin equivalence (Section 3.1). Next, we consider various

examples from the quantum world. Using Cauchon’s theory of deleting derivations,

one can relate the prime and primitive spectra of a quantum Schubert cell to those of

an associated uniparameter quantum affine space, which can in turn be related via

localisations to the prime and primitive spectra of a family of uniparameter quantum

tori. Since there is a bi-increasing homeomorphism between the prime spectrum

of a uniparameter quantum torus and the prime spectrum of its centre, which is a

commutative affine domain, we are guided into a natural strategy: we shall prove the

strong Dixmier-Moeglin equivalence first for commutative affine domains (Section 3.2),

then for uniparameter quantum tori (Section 3.3), then for uniparameter quantum

affine spaces (Section 3.5), and then for quantum Schubert cells (Section 3.7). Partial

results are also obtained for a larger class of algebras — we prove in Section 3.6 that

every uniparameter Cauchon-Goodearl-Letzter extension satisfies the quasi strong

Dixmier-Moeglin equivalence. (Finally, we use our results to deduce that the quantum

groups Oq(SLn) and Oq(GLn) satisfy the strong Dixmier-Moeglin equivalence.)
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3.1 General results on the (quasi) SDME

In this section we prove that, under some mild assumptions, the primitivity degree

of a prime ideal is bounded above by its local closure degree, and then we prove

transfer results for the quasi strong Dixmier-Moeglin equivalence for an algebra and

its localisations.

3.1.1 An upper bound for the primitivity degree

Some of the implications needed to prove the Dixmier-Moeglin equivalence hold in

a very general setting. Recall that a noetherian K-algebra R is said to satisfy the

noncommutative Nullstellensatz over K if R is a Jacobson ring (which means that every

prime ideal is an intersection of primitive ideals) and the endomorphism ring of every

irreducible R-module is algebraic over K. By [6, Lemma II.7.15], for any noetherian

K-algebra R which satisfies the noncommutative Nullstellensatz over K and for any

prime ideal P of R, we have

P is locally closed =⇒ P is primitive =⇒ P is rational. (3.1)

We have generalised the first implication above to a large class of algebras:

Proposition 3.1.1. Let R be a noetherian K-algebra of finite Gelfand-Kirillov dimen-

sion which has the property that every locally closed ideal is primitive (this is the case

if, for example, R satisfies the noncommutative Nullstellensatz over K). Then for any

prime ideal P of R, we have loc. deg P ≥ prim. deg P .

Proof. Let P ∈ Spec R be such that loc. deg P = d. We claim that the alge-

bra B := R/P has a locally closed ideal of height d. Indeed if not, then every

prime ideal Q of height d in B is such that ⋂Q$T ∈Spec B T = Q. It follows that⋂
Q∈Specd B

(⋂
Q$T ∈Spec B T

)
= ⋂

Q∈Specd B Q, so that ⋂T ∈Spec>d B T = ⋂
Q∈Specd B Q i.e.⋂

T ∈Specd+1 B T = ⋂
Q∈Specd B Q. This is a contradiction because loc. deg P = d implies

that the intersection ⋂Q∈Specd B Q is trivial while the intersection ⋂T ∈Specd+1 B T is not.
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This establishes the claim that the algebra B = R/P has a locally closed ideal of height

d; since this ideal is also primitive, the proof is complete. �

We do not know whether the second implication in (3.1) can be similarly generalised

but we will prove, on a case-by-case basis, that for all prime ideals P of a commutative

affine domain, a uniparameter quantum torus, a uniparameter quantum affine space,

or a quantum Schubert cell, we have

prim. deg P = rat. deg P.

We will do the same for all prime ideals P of the quantum groups Oq(SLn) and

Oq(GLn).

3.1.2 Transferring the quasi SDME

Recall that a noetherian K-algebra R is said to satisfy the quasi strong Dixmier-Moeglin

equivalence if, for every prime ideal P of R, we have loc. deg P = rat. deg P .

Lemma 3.1.2. Let R be a noetherian K-algebra of finite Gelfand-Kirillov dimension

which is a domain and in which every prime ideal is completely prime. Let E be a right

Ore set of regular elements of R which is finitely generated as a multiplicative system.

Then for any d ∈ N \ {0}, we have

⋂
P ∈Specd R P ̸= 0 ⇐⇒ ⋂

Q∈Specd RE−1 Q ̸= 0.

It follows immediately that loc. deg⟨0⟩R = loc. deg⟨0⟩RE−1, where ⟨0⟩R and ⟨0⟩RE−1

denote the zero ideals of R and RE−1 respectively.

Proof. Let E be generated as a multiplicative system by x1, . . . , xn. Since all prime

ideals of R are completely prime, the conditions P ∩ E = ∅ and x1, . . . , xn /∈ P are

equivalent for every prime ideal P of R.

By [18, Theorem 10.20], extension (P 7→ PE−1) and contraction (Q 7→ Q ∩ R) are

mutually inverse increasing bijections between {P ∈ Spec R | P ∩ E = ∅} = {P ∈
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Spec R | x1, . . . , xn /∈ P} and Spec RE−1, so that since both extension and contraction

send the zero ideal to the zero ideal, we get

⋂
P ∈Specd R, x1,...,xn /∈P P ̸= 0 ⇐⇒ ⋂

Q∈Specd RE−1 Q ̸= 0. (3.2)

We claim that

⋂
P ∈Specd R, x1,...,xn /∈P P ̸= 0 ⇐⇒ ⋂

P ∈Specd R P ̸= 0. (3.3)

One implication is trivial. For the other, suppose that ⋂P ∈Specd R, x1,...,xn /∈P P ≠ 0 and

choose any 0 ̸= r which belongs to this intersection. Then 0 ̸= rx1 · · ·xn ∈
⋂

P ∈Specd R P ,

verifying (3.3). Now (3.2) and (3.3) immediately give the result. �

Lemma 3.1.3. Let R be a noetherian K-algebra of finite Gelfand-Kirillov dimension

in which every prime ideal is completely prime. If R satisfies the quasi strong Dixmier-

Moeglin equivalence and E is a right Ore set of regular elements of R which is finitely

generated as a multiplicative system, then RE−1 satisfies the quasi strong Dixmier-

Moeglin equivalence.

Proof. Every prime ideal of RE−1 takes the form PE−1 for some P ∈ Spec R with

P ∩ E = ∅. Denoting by E the image of E in R/P , we have

loc. deg PE−1 = loc. deg⟨0⟩RE−1/P E−1

= loc. deg⟨0⟩(R/P )E−1

= loc. deg⟨0⟩R/P (Lemma 3.1.2)

= loc. deg P

= rat. deg P.

Since it is clear that rat. deg P = rat. deg PE−1, we are done. �

Proposition 3.1.4. Let R be a noetherian K-algebra of finite Gelfand-Kirillov dimen-

sion in which every prime ideal is completely prime. Suppose that for every P ∈ Spec R,

there exists a right Ore set E of regular elements of R/P which is finitely generated as
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a multiplicative system, such that (R/P )E−1 satisfies the quasi strong Dixmier-Moeglin

equivalence. Then R itself satisfies the quasi strong Dixmier-Moeglin equivalence.

Proof. Choose any P ∈ Spec R. We have

loc. deg P = loc. deg⟨0⟩R/P

= loc. deg⟨0⟩(R/P )E−1 (Lemma 3.1.2)

= rat. deg⟨0⟩(R/P )E−1 .

Since it is clear that rat. deg⟨0⟩(R/P )E−1 = rat. deg P , we are done. �

3.2 The SDME in the commutative case

If there is to be any hope that the strong Dixmier-Moeglin equivalence will hold for any

quantum algebras, one should first check that it holds for commutative affine domains.

Before checking this, let us introduce the useful notion of Tauvel’s height formula:

Definition 3.2.1. Tauvel’s height formula is said to hold in a K-algebra R if for every

prime ideal P of R, the following equality holds:

GK. dim R/P = GK. dim R− ht P.

It is well known that Tauvel’s height formula holds in commutative affine domains;

as we shall remark later, it has also been shown to hold in several interesting quantum

algebras, including all of those which interest us in this chapter.

In commutative affine domains, the notions of primitive, locally closed, and rational

ideals all agree with the notion of a maximal ideal, so the following result is not

surprising.

Proposition 3.2.2. Every commutative affine domain over K satisfies the strong

Dixmier-Moeglin equivalence.
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Proof. Let R be a commutative affine domain over K and let P ∈ Spec R. By [34,

Remark 6.9 (i), Corollary 6.49], every primitive (i.e. maximal) ideal of R/P has height

tr. degK Frac(R/P ), so that

prim. deg P = K. dim R/P = rat. deg P. (3.4)

If we set d = prim. deg P = K. dim R/P = rat. deg P , then all maximal ideals of R/P

have height d, so that Specd+1 R/P is empty and hence ⋂Q∈Specd+1 R/P Q = R/P ̸= 0.

Since R is a Jacobson ring, we get ⋂Q∈Specd R/P Q = 0, so that loc. deg P = d. This

completes the proof. �

Remark 3.2.3. Affine prime noetherian polynomial identity algebras over K can be

shown to satisfy the strong Dixmier-Moeglin equivalence by a proof essentially the same

as the proof above.

Remark 3.2.4. Let P be a prime ideal of a commutative affine domain R over K. Since

Gelfand-Kirillov dimension and Krull dimension agree in commutative affine domains,

Tauvel’s height formula gives K. dim R/P = K. dim R− ht P . Now we conclude from

Proposition 3.2.2 and equation (3.4) that

loc. deg P = prim. deg P = rat. deg P = K. dim R− ht P.

3.3 The SDME for uniparameter quantum tori

Consider any quantum torus OΛ((K×)N ) = KΛ[T ±1
1 , . . . , T ±1

N ]. By [6, Corollary II.7.18],

OΛ((K×)N) satisfies the noncommutative Nullstellensatz over K and by [6, Theorem

II.9.14], OΛ((K×)N) is catenary and satisfies Tauvel’s height formula.

We recall from [17, Section 1] some useful facts about quantum tori. For

i = (i1, . . . , iN) ∈ ZN , we set T i := T i1
1 · · ·T iN

N . For any s, t ∈ ZN , we have

T sT t = σ(s, t)T tT s, where σ : ZN × ZN → K× is the alternating bicharacter which

sends any ((s1, . . . , sN), (t1, . . . , tN)) to ∏N
i,j=1 λ

sitj

i,j .
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When S is the subgroup {s ∈ ZN | σ(s,−) ≡ 1} of ZN , the centre of OΛ((K×)N) is

spanned over K by those T s with s ∈ S. When b1, . . . , br is a basis for S, the centre

of OΛ((K×)N) is a commutative Laurent polynomial ring in T b1 , . . . , T br . Moreover,

OΛ((K×)N) is a free module over its centre with basis {T t}t, where t runs over any

transversal for S in ZN .

There is a bi-increasing homeomorphism, known as extension, from

SpecZ(OΛ((K×)N)) to SpecOΛ((K×)N) given by I 7→ ⟨I⟩ (where ⟨I⟩ denotes the

ideal of OΛ((K×)N) generated by I). The inverse of this map is given by J 7→ J ∩

Z(OΛ((K×)N )) and is known as contraction from SpecOΛ((K×)N ) to SpecZ(OΛ((K×)N )).

In fact, contraction and extension define mutually inverse increasing bijections between

the set of all ideals of OΛ((K×)N) and the set of all ideals of its centre.

Computing the rationality degree of a prime ideal P of OΛ((K×)N) requires study

of the centre of Frac(OΛ((K×)N)/P ). The following general lemma is folklore, but we

have not been able to locate it in the literature2.

Lemma 3.3.1. Let R be a prime noetherian ring and suppose that every nonzero ideal

of R intersects Z(R) nontrivially. Then

Z(Frac R) ∼= FracZ(R).

Proof. FracZ(R) embeds naturally into Z(Frac R). Let z ∈ Z(Frac R) and set I =

{a ∈ R | za ∈ R}. Then I is a nonzero ideal of R and thus contains a nonzero element

c of Z(R), which is regular in R (since R is prime) and hence is certainly regular in

Z(R). Now z = (zc)c−1 ∈ FracZ(R). �

Proposition 3.3.2. For every prime ideal P of OΛ((K×)N), we have

Z
(

Frac OΛ((K×)N)
P

)
∼= FracZ

(
OΛ((K×)N)

P

)
.

2We thank Ken Goodearl for bringing this result to our attention.
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Proof. Set R = OΛ((K×)N) and let P be a prime ideal of R. By Lemma 3.3.1, it will

suffice to show that every nonzero ideal of R/P intersects Z(R/P ) nontrivially. This

follows easily from the fact that every ideal of R is generated by its intersection with

Z(R). �

Proposition 3.3.3. For any ideal I of OΛ((K×)N), we have

Z
(
OΛ((K×)N)

I

)
∼=
Z(OΛ((K×)N))

I ∩ Z(OΛ((K×)N)) .

Proof. Retain the notation introduced at the beginning of the current section (Section

3.3). Set R = OΛ((K×)N). We may clearly assume that I is a proper ideal and that

R is noncommutative. We claim that Z(R/I) = (Z(R) + I)/I. Indeed the inclusion

Z(R/I) ⊇ (Z(R) + I)/I is obvious. Suppose that x ∈ R is central modulo I. We

may choose elements 0, i1, . . . , in of a transversal for S in ZN and central elements

z0, z1, . . . , zn of R such that

x = z0 +
n∑

a=1
zaT ia .

Fixing any b ∈ J1, nK, there exists jb belonging to the chosen transversal for S in ZN

such that σ(jb, ib) ̸= 1. Since T jbx(T jb)−1 = x modulo I, we have

n∑
a=1

(1− σ(jb, ia))zaT ia ∈ I

and hence, by [17, Proposition 1.4], each (1 − σ(jb, ia))za must belong to I. Since

σ(jb, ib) ̸= 1, we must have zb ∈ I. Because b ∈ J1, nK was chosen arbitrarily, we get

z1, . . . , zn ∈ I and hence x = z0 modulo I, completing the proof. �

We are now ready to prove the main result of this section.

Theorem 3.3.4. The uniparameter quantum tori Oq,A((K×)N) satisfy the strong

Dixmier-Moeglin equivalence.

Proof. Set R = Oq,A((K×)N) and choose any P ∈ Spec R. By [6, Corollary II.6.10], P

is completely prime.
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Recall that Z(R) is a commutative Laurent polynomial ring; in particular, Z(R) is a

commutative affine domain, so that it satisfies the strong Dixmier-Moeglin equivalence

by Proposition 3.2.2. By Propositions 3.3.2 and 3.3.3, we have

Z(Frac R/P ) ∼= FracZ(R/P ) ∼= Frac Z(R)
Z(R) ∩ P

.

It follows that rat. deg P = rat. deg(Z(R)∩P ). Since Z(R)/(Z(R)∩P ) is a commuta-

tive affine domain, Remark 3.2.4 gives rat. deg P = K. dimZ(R)−ht(Z(R)∩P ). Since

extension and contraction are mutually inverse increasing homeomorphisms between

SpecZ(R) and Spec R, we have ht(Z(R) ∩ P ) = ht P , so that

rat. deg P = K. dimZ(R)− ht P.

Every maximal ideal of Z(R) has height K. dimZ(R) and hence so does every maximal

ideal of R. By [17, Corollary 1.5], the primitive ideals of R are exactly its maximal

ideals, so that every primitive ideal of R has height K. dimZ(R). Now the catenarity of

R gives prim. deg P = K. dimZ(R)− ht P and, in particular, prim. deg P = rat. deg P .

Let us set d = prim. deg P = rat. deg P = K. dimZ(R)−ht P . Since all maximal (i.e.

primitive) ideals of R have height K. dimZ(R), all maximal (i.e. primitive) ideals of

R/P have height d. Now Specd+1 R/P is empty so that ⋂Q∈Specd+1 R/P Q = R/P ̸= 0.

Since R is a Jacobson ring, we get ⋂Q∈Specd R/P Q = 0 and hence loc. deg P = d,

completing the proof. �

Remark 3.3.5. By Remark 3.2.3, Theorem 3.3.4 holds even when q is a root of unity

(since in this case, the quantum torus satisfies a polynomial identity). As such, it seems

likely that the strong Dixmier-Moeglin equivalence holds for all quantum tori, without

restrictions on the parameters.
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3.4 Dimensions of H-strata

Our next aim is to show that uniparameter quantum affine spaces satisfy the strong

Dixmier-Moeglin equivalence. For this, we will make use of the stratification theory

of Goodearl and Letzter, which we discussed briefly in Section 2.2. Indeed, an ex-

amination of the stratification of a uniparameter quantum affine space reveals that

every (prime homomorphic image of a) uniparameter quantum affine space localises to

a (prime homomorphic image of a) uniparameter quantum torus. This allows us to

transfer the quasi strong Dixmier-Moeglin equivalence from uniparameter quantum

tori to uniparameter quantum affine spaces in Section 3.5. Further examination of

the stratification of a uniparameter quantum affine space allows us to calculate the

primitivity degrees of the prime ideals and hence, in the next section, complete the

proof that uniparameter quantum affine spaces satisfy the strong Dixmier-Moeglin

equivalence.

The material in this section shall be useful beyond quantum affine spaces, so we work

in a more general setting. The aim of this section is to prove results on dimensions of

strata which shall be utilised in our proof that quantum affine spaces, quantum Schubert

cells, and some quantum groups satisfy the strong Dixmier-Moeglin equivalence.

Let us suppose that R is a noetherian K-algebra and that H = (K×)r is an alge-

braic K-torus acting rationally on R by automorphisms. Let us assume further that

every H-prime ideal J of R is strongly H-rational in the sense that the fixed field

Z(Frac(R/J))H is K; in CGL extensions (including quantum affine spaces), [6, Theo-

rem II.6.4] guarantees that every H-prime ideal is strongly H-rational. By [6, Theorem

II.2.13], for each H-prime ideal J of R, there is a bi-increasing homeomorphism from

SpecJ R to the prime spectrum of an appropriate commutative Laurent polynomial

algebra over K; the Krull dimension of the H-stratum SpecJ R is defined to be the

Krull dimension of this commutative Laurent polynomial algebra.

Let us make a useful observation on the Krull dimensions of H-strata under localisa-

tion.
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Lemma 3.4.1. Let an algebraic K-torus H act rationally by automorphisms on a

noetherian K-algebra R. Let E be a right Ore set in R consisting of regular H-

eigenvectors with rational H-eigenvalues.

(1) The action of H on R extends to a rational action by automorphisms on RE−1.

(2) Extension and contraction restrict to mutually inverse increasing bijections between

the set of H-prime ideals of R which do not intersect E and the set of H-prime

ideals of RE−1.

(3) For any H-prime ideal J of R which does not intersect E, extension and con-

traction restrict to mutually inverse increasing bijections between SpecJ R and

SpecJE−1 RE−1.

(4) If all H-prime ideals of R are strongly H-rational, then the same is true for RE−1.

Proof. (1) For all r ∈ R, e ∈ E , h ∈ H, define h · (re−1) = (h · r)(h · e)−1. If ν is the

eigenvalue of e with respect to the action of h, then h · (re−1) = ν−1(h · r)e−1. It is

routine to check that this gives a rational action of H by automorphisms on RE−1.

(2) Since the mutually inverse increasing bijections of extension (P 7→ PE−1) and

contraction (Q∩R←[ Q) between {P ∈ Spec R | P ∩E = ∅} and Spec RE−1 clearly

send H-invariant ideals to H-invariant ideals, they restrict to mutually inverse

increasing bijections between the set of H-prime ideals of R which do not intersect

E and the set of H-prime ideals of RE−1.

(3) Let J be an H-prime ideal of R such that J ∩ E = ∅.

Let P ∈ SpecJ R and notice that since J is the largest H-invariant ideal contained

in P , P cannot intersect E . Since J ⊆ P , we have JE−1 ⊆ PE−1. We claim

that PE−1 ∈ SpecJE−1 RE−1. Indeed let K be an H-prime ideal of RE−1 which

is contained in PE−1. By part (2) of this lemma, there exists J ′ ∈ H − Spec R

such that K = J ′E−1. Now since J ′E−1 ⊆ PE−1, we have J ′ ⊆ P , so that
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(since P ∈ SpecJ R) J ′ ⊆ J . Hence K ⊆ JE−1, establishing the claim that

PE−1 ∈ SpecJE−1 RE−1.

Let Q ∈ SpecJE−1 RE−1. Since JE−1 ⊆ Q, we have JE−1∩R ⊆ Q∩R i.e. J ⊆ Q∩R.

We claim that Q ∩ R ∈ SpecJ R. Indeed let L be an H-prime ideal of R such

that L ⊆ Q ∩ R. Then LE−1 is an H-prime ideal of RE−1 which is contained in

(Q ∩R)E−1 = Q, so that (since Q ∈ SpecJE−1 RE−1) LE−1 ⊆ JE−1. Hence L ⊆ J ,

establishing the claim that Q ∩R ∈ SpecJ R.

(4) This follows immediately from part (2).

�

From Lemma 3.4.1 parts (3) and (4), we deduce

Corollary 3.4.2. Let an algebraic K-torus H act rationally by automorphisms on

a noetherian K-algebra R and suppose that all H-prime ideals of R are strongly H-

rational. Let E be a right Ore set in R consisting of regular H-eigenvectors with rational

H-eigenvalues. Then for any H-prime ideal J of R which does not intersect E , we have

K. dim SpecJ R = K. dim SpecJE−1 RE−1.

Under the further assumptions that R has finitely many H-prime ideals and that

R satisfies the noncommutative Nullstellensatz over K, [6, Theorem II.8.4] says that

R satisfies the Dixmier-Moeglin equivalence and that the primitive ideals of R are

exactly those prime ideals which are maximal in their H-strata. Assuming further

that R is catenary and that the H-strata of R satisfy a technical condition (given in

inequality (3.5)), we now show that if P is a prime ideal of R belonging to SpecJ R

for an H-prime ideal J of R and if M ⊇ P is a primitive (i.e. maximal) element of

SpecJ R, then ht M/P = prim. deg P (and we compute these quantities in terms of

the Krull dimension of SpecJ R). Crucially, this allows us to look only at a single

H-stratum of R in order to compute prim. deg P .
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Proposition 3.4.3. Let R be a catenary noetherian K-algebra satisfying the noncom-

mutative Nullstellensatz over K and let H be an an algebraic K-torus acting rationally

by automorphisms on R. Suppose that H-Spec R is finite, that all H-prime ideals of R

are strongly H-rational, and that for any pair of H-prime ideals J ⊆ J ′ of R, we have

K. dim SpecJ R + ht J ≤ K. dim SpecJ ′ R + ht J ′. (3.5)

Then for any H-prime ideal J of R, any P ∈ SpecJ R, and any primitive element

M ⊇ P of SpecJ R, we have

prim. deg P = ht M/P = K. dim SpecJ R + ht J − ht P. (3.6)

Proof. Let M be a primitive element of SpecJ R which contains P . Then M is maximal

in SpecJ R, so that ht M/J = K. dim SpecJ R. It follows from the catenarity of R that

ht M/P = K. dim SpecJ R + ht J − ht P. (3.7)

Every primitive ideal of R/P corresponds to a primitive ideal of R which contains P .

Choose any such primitive ideal N of R and say N belongs to SpecJ ′ R for an H-prime

ideal J ′ of R. It is clear that J ⊆ J ′.

Since N is maximal in SpecJ ′ R, we have ht N/J ′ = K. dim SpecJ ′ R. It follows from

the catenarity of R that

ht N/P = K. dim SpecJ ′ R + ht J ′ − ht P. (3.8)

Equations (3.7) and (3.8), along with the assumption (3.5), show that the height of an

arbitrary primitive ideal of R/P is at least ht M/P . Since M/P is itself primitive, we

get ht M/P = prim. deg P ; combining this with equation (3.7) gives the result. �

Remark 3.4.4. Except for the inequality (3.5), the conditions of Proposition 3.4.3

are known to hold for many interesting algebras. Much of the rest of this chapter
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is concerned with verifying inequality (3.5) for uniparameter quantum affine spaces

(Section 3.5), quantum Schubert cells (Section 3.7), and certain quantum groups

(Section 3.8). Our proofs rely on knowledge of the dimensions of the H-strata [1, 2]

and on knowledge of the posets of H-prime ideals [15, 17, 31].

3.5 The SDME for uniparameter quantum affine

spaces

In a further step towards proving the strong Dixmier-Moeglin equivalence for quantum

Schubert cells, we prove it in this section for uniparameter quantum affine spaces.

Consider a uniparameter quantum affine space Oq,A(KN) = Kq,A[T1, . . . , TN ]. Recall

from Example 2.2.1 that the algebraic K-torus H = (K×)N acts rationally on Oq,A(KN )

by automorphisms as follows:

(a1, . . . , aN) · Ti = aiTi for all i ∈ J1, NK and all (a1, . . . , aN) ∈ H

and that, by [17, Proposition 2.11],

H − SpecOq,A(KN) = {K∆ | ∆ ⊆ JNK}, (3.9)

where K∆ is the ideal of Oq,A(KN) generated by those Ti with i ∈ ∆. For any

∆ ⊆ {1, . . . , N}, recall that we denote by Spec∆Oq,A(KN ) the H-stratum of Oq,A(KN )

associated to K∆.

Let us mention some properties of Oq,A(KN) which will be relevant for us in this

section. One checks easily that Oq,A(KN ) is a domain. By [18, Theorem 2.6], Oq,A(KN )

is noetherian. By [6, Corollary II.7.18], Oq,A(KN) satisfies the noncommutative Null-

stellensatz over K and by [6, Theorem II.9.14], Oq,A(KN) is catenary and satisfies

Tauvel’s height formula. By (3.9), H − SpecOq,A(KN ) has cardinality 2N and is finite

in particular. By [6, Theorem II.8.4], R satisfies the Dixmier-Moeglin equivalence and
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its primitive ideals are exactly those prime ideals which are maximal in their H-strata.

By [6, Theorem II.6.4], all H-prime ideals of R are strongly H-rational and by [6,

Corollary II.6.10], every prime ideal of Oq,A(KN) is completely prime.

We use a transfer result from Section 3.1 to show that Oq,A(KN) satisfies the quasi

strong Dixmier-Moeglin equivalence.

Proposition 3.5.1. The uniparameter quantum affine spaces Oq,A(KN) satisfy the

quasi strong Dixmier-Moeglin equivalence.

Proof. Set R = Oq,A(KN) = Kq,A[T1, . . . , TN ]. Choose any P ∈ Spec R and say

P ∈ Spec∆ R for a subset ∆ of {1, . . . , N}. Let E be the multiplicative system in R

generated by those Ti for which i /∈ ∆. Then E satisfies the Ore condition on both

sides in R and, denoting by E and Ê its images in R/P and R/K∆ respectively, we

have

(R/P )E−1 ∼= ((R/K∆)Ê−1)/((P/K∆)Ê−1).

The uniparameter quantum torus (R/K∆)Ê−1 satisfies the strong Dixmier-Moeglin

equivalence by Theorem 3.3.4 and hence so does its homomorphic image (R/P )E−1.

The result now follows from Proposition 3.1.4. �

Since we have proven that Oq,A(KN) satisfies the quasi strong Dixmier-Moeglin

equivalence, proving that prim. deg P = rat. deg P holds for all prime ideals P of

Oq,A(KN) will establish the strong Dixmier-Moeglin equivalence for Oq,A(KN).

In order to invoke Proposition 3.4.3, which gives us an expression for the primitivity

degree of any prime ideal P of Oq,A(KN) in terms of the dimension of the H-stratum

to which P belongs, we must prove an inequality relating the dimensions of H-strata

of Oq,A(KN). First we introduce some new notation:

Notation 3.5.2. Let ∆ be a subset of {1, . . . , N} and set {ℓ1 < . . . < ℓd} =

{1, . . . , N} \ ∆. We define the skew-adjacency matrix, A(∆), of ∆ to be the d × d

additively skew-symmetric submatrix of A = (ai,j) ∈MN(Z) whose (s, t) entry (s < t)

is aℓs,ℓt.
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For any subset ∆ of {1, . . . , N}, it follows from [2, Theorem 3.1] that the dimension of

the H-stratum Spec∆(Oq,A(KN )) corresponding to the H-prime ideal K∆ = ⟨Ti | i ∈ ∆⟩

is exactly dimQ(ker A(∆)). In fact, [2, Theorem 3.1] applies to the more general class

of uniparameter CGL extensions (see Section 3.6).

Proposition 3.5.3. For any pair of H-prime ideals K∆ ⊆ K∆′ of Oq,A(KN ), we have

K. dim Spec∆(Oq,A(KN)) + ht K∆ ≤ K. dim Spec∆′(Oq,A(KN)) + ht K∆′ .

Proof. Since K∆ ⊆ K∆′ , we clearly have ∆ ⊆ ∆′. The matrix A(∆′) is an (N − |∆′|)-

square submatrix of the (N − |∆|)-square matrix A(∆), so that rk A(∆′) ≤ rk A(∆)

and

(N − |∆′|)− dimQ(ker A(∆′)) ≤ (N − |∆|)− dimQ(ker A(∆)).

Hence, we have

dimQ(ker A(∆)) + |∆| ≤ dimQ(ker A(∆′)) + |∆′|. (3.10)

Tauvel’s height formula holds in Oq,A(KN), so that

ht K∆ = GK. dimOq,A(KN)−GK. dim(Oq,A(KN)/K∆) = N − (N − |∆|) = |∆|

and similarly ht K∆′ = |∆′|. Now (3.10) and [2, Theorem 3.1] give

K. dim Spec∆(Oq,A(KN)) + ht K∆ ≤ K. dim Spec∆′(Oq,A(KN)) + ht K∆′ .

�

With Proposition 3.5.3 in hand, we can apply Proposition 3.4.3 to Oq,A(KN) in our

proof of the main result of this section:

Theorem 3.5.4. The uniparameter quantum affine spaces Oq,A(KN ) satisfy the strong

Dixmier-Moeglin equivalence.
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Proof. Set R = Oq,A(KN) = Kq,A[T1, . . . , TN ]. We showed in Proposition 3.5.1 that R

satisfies the quasi strong Dixmier-Moeglin equivalence, so what remains is to prove

that prim. deg P = rat. deg P for all prime ideals P of R.

Let P be any prime ideal of R and say P ∈ Spec∆ R for a subset ∆ of {1, . . . , N}.

In view of Proposition 3.5.3, Proposition 3.4.3 gives

prim. deg P = K. dim Spec∆ R + ht K∆ − ht P. (3.11)

Let E be the multiplicative system in R generated by those Ti for which i /∈ ∆.

Then E satisfies the Ore condition on both sides in R and consists of regular H-

eigenvectors with rational eigenvalues; denoting by Ê the image of E in R/K∆, we have

RE−1/PE−1 ∼= ((R/K∆)Ê−1)/((P/K∆)Ê−1). Notice that (R/K∆)Ê−1 is a uniparameter

quantum torus and that PE−1 ∈ SpecK∆E−1 RE−1.

Since R is catenary and noetherian, so is RE−1. Moreover, RE−1 can be obtained from

K by a finite number of skew-polynomial and skew-Laurent extensions; in particular,

RE−1 is a constructible K-algebra in the sense of [30, 9.4.12], so that RE−1 satisfies

the noncommutative Nullstellensatz over K by [30, Theorem 9.4.21]. From Lemma

3.4.1 and Corollary 3.4.2 (which deal with the effect of localisation on H-stratification),

we deduce that RE−1 satisfies the conditions of Proposition 3.4.3. Now

prim. deg PE−1 = K. dim SpecK∆E−1 RE−1 + ht K∆E−1 − ht PE−1 (by Proposition 3.4.3)

= K. dim Spec∆ R + ht K∆ − ht P (by Corollary 3.4.2)

= prim. deg P (by (3.11)).

Since the uniparameter quantum torus (R/K∆)Ê−1 satisfies the strong Dixmier-

Moeglin equivalence (Theorem 3.3.4), so does its homomorphic image RE−1/PE−1.

So prim. deg⟨0⟩ = rat. deg⟨0⟩ holds in RE−1/PE−1, which can be rephrased by saying

that in RE−1, we have prim. deg PE−1 = rat. deg PE−1. Since we have already shown

that prim. deg P = prim. deg PE−1 and it is clear that rat. deg PE−1 = rat. deg P , we

have prim. deg P = rat. deg P , as required. �
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Remark 3.5.5. By Remark 3.2.3, Theorem 3.5.4 holds even when q is a root of unity

(since in this case, the quantum affine space satisfies a polynomial identity). As such,

it seems likely that the strong Dixmier-Moeglin equivalence holds for all quantum affine

spaces, without restrictions on the parameters.

3.6 A sufficient condition for the SDME in CGL

extensions

Let R = K[X1][X2; σ2, δ2] · · · [XN ; σN ; δN ] be a uniparameter Cauchon-Goodearl-Letzter

(CGL) extension with parameter q and associated additively Skew-symmetric matrix

A = (ai,j) ∈ MN(Z), admitting a rational action of an algebraic K-torus H (see

Definition 2.3.1 and Remark 2.3.2).

Let us mention some properties of R which shall be relevant for us. It is easy to

check that R is a domain. By [18, Theorem 2.6], R is noetherian. The Gelfand-Kirillov

dimension of R is N by [6, Lemma II.9.7]. By [6, Theorem II.7.17], R satisfies the

noncommutative Nullstellensatz over K. Recall from Subsection 2.4.4 that H − Spec R

is finite. By [6, Theorem II.8.4], R satisfies the Dixmier-Moeglin equivalence and its

primitive ideals are exactly those prime ideals which are maximal in their H-strata.

By [6, Theorem II.6.9], all prime ideals of R are completely prime and by [6, Theorem

II.6.4], all H-prime ideals of R are strongly H-rational.

The algebra R(2) (which, loosely speaking, is obtained from R by “deleting” all

the derivations δ2, . . . , δN) is a uniparameter quantum affine space in indeterminates

T1, . . . , TN with commutation relations given by q and the matrix A, i.e. (in the

notation of Subsection 2.1.1) we have

R(2) = Kq,A[T1, . . . , TN ] = Oq,A(KN).
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Before continuing, the reader might want to revisit Subsection 2.4.4 for some details and

notation pertaining to Cauchon’s deleting-derivations algorithm and to the canonical

injection ϕ : Spec R→ Spec R(2) in particular.

Theorem 3.6.1. Every uniparameter CGL extension satisfies the quasi strong Dixmier-

Moeglin equivalence.

Proof. Let R be a uniparameter CGL extension. Recall that both in R and in the

uniparameter quantum affine space R(2), all prime ideals are completely prime.

Choose any P ∈ Spec R and say P ∈ Spec∆ R for a Cauchon diagram ∆ of R. Let E

be the image in R(2)/ϕ(P ) of the multiplicative system in R(2) generated by those Ti

for which i ∈ {1, . . . , N} \∆. By [10, Théoremè 5.4.1], E satisfies the Ore condition on

both sides in R(2)/ϕ(P ) and there exists a finitely generated multiplicative system F

in R/P satisfying the Ore condition on both sides such that

(R/P )F−1 ∼= (R(2)/ϕ(P ))E−1. (3.12)

Since R(2) is a uniparameter quantum affine space, it satisfies the strong Dixmier-

Moeglin equivalence (Theorem 3.5.4) and hence so does every homomorphic image

of R(2). In particular, R(2)/ϕ(P ) satisfies the strong Dixmier-Moeglin equivalence.

Hence, by Lemma 3.1.3, (R(2)/ϕ(P ))E−1 satisfies the quasi strong Dixmier-Moeglin

equivalence. The result now follows from (3.12) and Proposition 3.1.4. �

Regarding the strong Dixmier-Moeglin equivalence, we can prove the following partial

result.

Theorem 3.6.2. If R is a catenary uniparameter CGL extension such that for any

pair of H-prime ideals J ⊆ J ′ of R, the following inequality holds:

K. dim SpecJ R + ht J ≤ K. dim SpecJ ′ R + ht J ′, (3.13)

then R satisfies the strong Dixmier-Moeglin equivalence.
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Proof. Since R satisfies the quasi strong Dixmier-Moeglin equivalence (Theorem 3.6.1),

we need only show that for every prime ideal P of R, we have prim. deg P = rat. deg P .

Recall that by [6, Theorem II.8.4], R and R(2) satisfy the Dixmier-Moeglin equivalence

and, in each of these two algebras, the primitive ideals are exactly the prime ideals

which are maximal in their H-strata.

Suppose that P is a prime ideal of R with P ∈ Spec∆ R for a Cauchon diagram ∆ of

R. Choose any primitive (i.e. maximal) element M ⊇ P of Spec∆ R. Since (by [10,

Théorèmes 5.1.1 and 5.5.1]) the canonical injection ϕ : Spec R → Spec R(2) restricts

to a bi-increasing homeomorphism from Spec∆ R to Spec∆ R(2), we get that ϕ(M)

is a maximal (i.e. primitive) element of Spec∆ R(2) and that ϕ(M) contains ϕ(P ).

Proposition 3.5.3 and the assumption (3.13) allow us to invoke Proposition 3.4.3 to get

ht M/P = prim. deg P and ht ϕ(M)/ϕ(P ) = prim. deg ϕ(P ). (3.14)

Moreover, since ϕ restricts to a bi-increasing homeomorphism from Spec∆ R to

Spec∆ R(2), it induces a length-preserving one-to-one correspondence between the

chains of prime ideals from P to M and the chains of prime ideals from ϕ(P ) to ϕ(M).

It follows that

ht M/P = ht ϕ(M)/ϕ(P ). (3.15)

We deduce from (3.14) and (3.15) that prim. deg P = prim. deg ϕ(P ). Now, recalling

that the uniparameter quantum affine space R(2) satisfies the strong Dixmier-Moeglin

equivalence (by Theorem 3.5.4) and that, by [10, Théoremè 5.4.1], Frac(R/P ) ∼=

Frac(R(2)/ϕ(P )), we have

prim. deg P = prim. deg ϕ(P )

= rat. deg ϕ(P )

= rat. deg P,
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as required. �

Remark 3.6.3. The conditions on the uniparameter CGL extension R in the statement

of Theorem 3.6.2 may turn out to be redundant: it is not known whether there are

any non-catenary CGL extensions and we do not know whether there are any CGL

extensions in which the inequality (3.13) fails.

3.7 Quantum Schubert cells

Yakimov [35, Theorem 5.7] has shown that quantum Schubert cells are catenary and

satisfy Tauvel’s height formula. We show that they satisfy the inequality (3.13) so that,

by Theorem 3.6.2, they satisfy the strong Dixmier-Moeglin equivalence. Our proofs

exploit the CGL extension structure of quantum Schubert cells, which we now discuss.

3.7.1 Quantum Schubert cells as CGL extensions

It turns out that quantum Schubert cells are uniparameter CGL extensions. Let g be

a simple complex Lie algebra of rank n, choose a set {α1, . . . , αn} of simple roots and

an element w = si1 · · · siN
of the Weyl group W of g. Recall from Subsection 2.1.5 the

construction of the positive roots {β1, . . . , βN}.

Recall from Subsection 2.1.6 the construction of elements X1, . . . , XN of U+
q (g) which

generate Uq[w] such that Uq[w] may be expressed as an iterated Ore extension

Uq[w] = k[X1][X2; σ2; δ2] · · · [XN ; σN , δN ]. (3.16)

It is well known both that the algebraic torus H = (K×)n acts rationally by automor-

phisms on U+
q (g) as follows

(k1, . . . , kn) · Ei = kiEi for all i ∈ J1, nK and all (k1, . . . , kn) ∈ H
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and that this restricts to a rational action of H by automorphisms on Uq[w]. Cauchon

showed [10, Proposition 6.1.2 and Lemme 6.2.1] that with this action of H, the

expression (3.16) of Uq[w] as an iterated Ore extension is in fact a uniparameter CGL

extension with parameter q and the following associated additively skew-symmetric

matrix:

A :=



0 (β1, β2) · · · · · · (β1, βN)

−(β1, β2) 0 (β2, β3) (β2, βN)
... . . . . . . . . . ...
... . . . 0 (βN−1, βN)

−(β1, βN) · · · · · · −(βN−1, βN) 0


. (3.17)

Theorem 3.6.1 immediately gives:

Proposition 3.7.1. The quantum Schubert cell Uq[w] satisfies the quasi strong Dixmier-

Moeglin equivalence.

3.7.2 The SDME for quantum Schubert cells

Considering Uq[w] as a uniparameter CGL extension (3.16) in N indeterminates with

associated additively skew-symmetric matrix A (see (3.17)), recall both that J∆ denotes

the H-prime ideal of Uq[w] associated to a Cauchon diagram ∆ of Uq[w] and that

H−Spec∆ Uq[w] denotes the H-stratum of Spec(Uq[w]) associated to J∆. The remaining

work lies in proving that for any pair of H-prime ideals J∆ ⊆ J∆′ of Uq[w], the following

inequality holds:

K. dim Spec∆ Uq[w] + ht J∆ ≤ K. dim Spec∆′ Uq[w] + ht J∆′ . (3.18)

This will allow us to invoke Theorem 3.6.2 to show that Uq[w] satisfies the strong

Dixmier-Moeglin equivalence.

Remark 3.7.2. Unlike in the case of uniparameter quantum affine spaces, the bijective

map ∆ 7→ J∆ is not an isomorphism of posets between the Cauchon diagrams and the
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H-prime ideals of Uq[w] (this map preserves inclusions but its inverse does not). This

is the reason why (3.18) is more difficult to verify than the corresponding inequality for

a uniparameter quantum affine space.

In contrast to that of most algebras supporting a torus action, the poset structure of

the H-spectrum of Uq[w] is known. Let us denote by ≤ the Bruhat order on W and let

us set W≤w := {u ∈ W | u ≤ w}. The posets H-Spec Uq[w] and W≤w are isomorphic

by results of Cauchon-Meriaux [31] and Geiger-Yakimov [15]. In order to describe the

isomorphism, we introduce some notation:

Notation 3.7.3. Recall that we have fixed a reduced expression w = si1 · · · siN
for w.

Let ∆ ⊆ {1, . . . , N} be any (not necessarily Cauchon) diagram.

(i) For all k = 1, . . . , N , we set

s∆
ik

:=


sik

if k ∈ ∆

id otherwise.

(ii) We set {l1 < · · · < ld} := {1, . . . , N} \∆ and jr = ilr for all r = 1, . . . , d.

(iii) We set w∆ := s∆
i1 · · · s

∆
iN
∈ W.

(iv) We set A(w∆) to be the d× d additively skew-symmetric submatrix of A whose

(s, t)-entry (s < t) is (βjs , βjt).

Cauchon and Mériaux [31, Corollary 5.3.1] showed that the map

H-Spec Uq[w]→W≤w; J∆ 7→ w∆, (3.19)

where ∆ runs over the set of Cauchon diagrams of Uq[w], is a bijection; they asked

whether or not this bijection is an isomorphism of posets and this question was answered

affirmatively by Geiger and Yakimov [15, Theorem 4.4].

Lemma 3.7.4. For any Cauchon diagram ∆ of Uq[w], we have ht J∆ = |∆|.
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Proof. Set R = Uq[w] and recall that R(2) denotes the uniparameter quantum affine

space Kq,A[T1, . . . , TN ] which results from “deleting” the derivations in the expression

(3.16) of R as a uniparameter CGL extension in N indeterminates. Recall that K∆ =

⟨Ti | i ∈ ∆⟩ is the image of J∆ under the canonical injection ϕ : Spec R→ Spec R(2).

Let E be the image in R(2)/K∆ of the multiplicative system in R(2) generated by

those Ti for which i /∈ ∆. Then E satisfies the Ore condition on both sides in R(2)/K∆

and it follows from [10, Théoremè 5.4.1] both that R/J∆ embeds in the uniparameter

quantum torus (R(2)/K∆)E−1 and that Frac(R/J∆) ∼= Frac((R(2)/K∆)E−1). By [36,

Proposition 7.2] (which is a special case of an earlier result of Lorenz - [28, Corollary

2.2]), the uniparameter quantum torus (R(2)/K∆)E−1 is Tdeg-stable in the sense of [36,

Section 1]. Therefore, we can apply [36, Proposition 3.5(4)] to get GK. dim R/J∆ =

GK. dim(R(2)/K∆)E−1 = N − |∆|.

Since R satisfies Tauvel’s height formula, we conclude that

N − |∆| = GK. dim R/J∆ = GK. dim R− ht J∆ = N − ht J∆,

and so ht J∆ = |∆|, as desired. �

We are now in position to establish the crucial inequality required to prove that

quantum Schubert cells satisfy the strong Dixmier-Moeglin equivalence.

Proposition 3.7.5. For any pair of H-prime ideals J∆ ⊆ J∆′ of Uq[w], we have

K. dim Spec∆ Uq[w] + ht J∆ ≤ K. dim Spec∆′ Uq[w] + ht J∆′ .

Proof. As we have noted, Uq[w] is a uniparameter CGL extension in N indeterminates

with associated additively skew-symmetric matrix A. By [1, Theorems 2.3 and 3.1], we

have

K. dim Spec∆Uq[w] = dimQ ker(w∆ + w) and K. dim Spec∆′Uq[w] = dimQ ker A(w∆′).
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From the poset isomorphism (H-Spec Uq[w] → W≤w; J∆ 7→ w∆), we deduce that

w∆ ≤ w∆′ . Since the diagrams ∆ and ∆′ are Cauchon, the subexpressions w∆ and w∆′

of w = si1 · · · siN
are reduced by [31, Corollary 5.3.1(2)]. Since w∆ ≤ w∆′ , [19, Corollary

5.8] allows us to choose a diagram (not necessarily Cauchon) ∆̃ ⊆ ∆′ such that w∆̃ = w∆

and the subexpression w∆̃ of w = si1 · · · siN
is reduced. Now K. dim Spec∆Uq[w] =

dimQ ker(w∆̃ +w), so that [1, Theorem 3.1] gives K. dim Spec∆Uq[w] = dimQ ker A(w∆̃).

A(w∆′) is an (N − |∆′|)-square submatrix of the (N − |∆̃|)-square matrix A(w∆̃), so

that rk A(w∆′) ≤ rk A(w∆̃) and hence dimQ ker A(w∆̃) + |∆̃| ≤ dimQ ker A(w∆′) + |∆′|

and

K. dim Spec∆Uq[w] + |∆̃| ≤ K. dim Spec∆′Uq[w] + |∆′|. (3.20)

By Lemma 3.7.4, we have ht J∆ = |∆| and ht J∆′ = |∆′|. Since w∆ and w∆̃ are equal

as elements of W , we have ℓ(w∆) = ℓ(w∆̃). But since the subexpressions w∆ and w∆̃

of w = si1 · · · siN
are reduced, we have ℓ(w∆) = |∆| and ℓ(w∆̃) = |∆̃|; hence |∆| = |∆̃|.

Now we have |∆̃| = ht J∆ and |∆′| = ht J∆′ , so that the result now follows from

(3.20). �

Yakimov has shown [35, Theorem 5.7] that Uq[w] is catenary. We have discussed

the uniparameter CGL extension structure of Uq[w]. Proposition 3.7.5 provides the

final condition required for us to apply Theorem 3.6.2 to Uq[w], giving one of our main

results:

Theorem 3.7.6. The quantum Schubert cell Uq[w] satisfies the strong Dixmier-Moeglin

equivalence.

3.8 The SDME for two families of quantum groups

For a positive integer n, let us denote the algebra Oq(Mn,n(K)) of quantum n × n

matrices over K by Oq(Mn(K)). The quatum determinant detq of Oq(Mn(K)) is simply

the n × n quantum minor [1 · · ·n | 1 · · ·n]. It is well known that detq generates the

centre of Oq(Mn(K)). The quantum special and general linear groups Oq(SLn(K)) and
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Oq(GLn(K)) over K can be obtained from Oq(Mn(K)) by respectively setting detq = 1

and inverting detq. More precisely, we define

Oq(SLn(K)) := Oq(Mn(K))/⟨detq − 1⟩ and Oq(GLn(K)) := Oq(Mn(K))[det−1
q ].

Each of the algebras Oq(Mn(K)), Oq(SLn(K)), and Oq(GLn(K)) is catenary by [6,

Corollary II.9.18]. Notice that Theorem 3.7.6 and the fact (due to Cauchon-Mériaux -

see Example 2.1.3) that Oq(Mn(K)) is a quantum Schubert cell Uq[w] (where w belongs

to the Weyl group of sl2n(C)) show immediately that Oq(Mn(K)) satisfies the strong

Dixmier-Moeglin equivalence. Since the rank of sl2n(C) is 2n− 1, the algebraic torus

(K×)2n−1 acts rationally on Oq(Mn(K)) as described in Subsection 3.7.1; it is known

that this torus action on Oq(Mn(K)) has the same invariant prime ideals as the action

of the torus H = (K×)2n described in (2.2.2).

Theorem 3.8.1. The quantum special and general linear groups Oq(SLn(K)) and

Oq(GLn(K)) satisfy the strong Dixmier-Moeglin equivalence.

Proof. Since the strong Dixmier-Moeglin equivalence clearly passes to homomorphic

images, it is immediate that Oq(SLn(K)) satisfies the strong Dixmier-Moeglin equiva-

lence.

The Ore set {detn
q | n ∈ N} consists of regular H-eigenvectors with rational eigen-

values. From Lemma 3.4.1, one can easily deduce that the rational action of H by

automorphisms on Oq(Mn(K)) extends to a rational action by automorphisms on

Oq(GLn(K)) such that all H-prime ideals are strongly H-rational and there are finitely

many H-prime ideals. The algebra Oq(GLn(K)) satisfies the noncommutative Nullstel-

lensatz over K by [6, Corollary II.7.18] and all its prime ideals are completely prime by

[6, Corollary II.6.10].

By Lemma 3.1.3, Oq(GLn(K)) satisfies the quasi strong Dixmier-Moeglin equivalence

since Oq(Mn(K)) does, so that we need only show that every P ∈ SpecOq(GLn(K))

satisfies prim. deg P = rat. deg P . From the fact (Lemma 3.7.5) that the H-prime
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ideals of Oq(Mn(K)) satisfy the inequality (3.5) and from Lemma 3.4.1 and Corollary

3.4.2, we deduce that the H-prime ideals of Oq(GLn(K)) satisfy the inequality (3.5).

Let us fix P ∈ SpecOq(GLn(K)) and let J ∈ H − SpecOq(GLn(K)) be such that

P ∈ SpecJ Oq(GLn(K)). By Lemma 3.4.1, there is an H-prime ideal J ′ of Oq(Mn(K))

and a prime ideal P ′ ∈ SpecJ ′ Oq(Mn(K)) such that J ′[det−1
q ] = J and P ′[det−1

q ] = P .

It follows from Proposition 3.4.3 that

prim. deg P = K. dim SpecJ Oq(GLn(K)) + ht J − ht P (3.21)

and that

prim. deg P ′ = K. dim SpecJ ′ Oq(Mn(K)) + ht J ′ − ht P ′. (3.22)

Since P = P ′[det−1
q ] and J = J ′[det−1

q ], it follows from Corollary 3.4.2, (3.21), and

(3.22) that prim. deg P = prim. deg P ′. Since it is clear that rat. deg P = rat. deg P ′

and since Oq(Mn(K)) satisfies the strong Dixmier-Moeglin equivalence, we have

prim. deg P = prim. deg P ′ = rat. deg P ′ = rat. deg P.

This completes the proof. �



Chapter 4

Partition subalgebras and Cauchon

graphs

The material of this chapter comes from joint work with Prof. Stéphane Launois and

Prof. Tom Lenagan. Sections 4.1, 4.2, and 4.3 consist of known results, some of which

are rewritten in a fashion suitable for the purposes of the rest of the chapter; Sections

4.1, 4.2, and 4.3 are designed to set up Section 4.4, which consists of original results

(most of which are generalisations of results of Karel Casteels from [7] and [8]).

4.1 Partition subalgebras of quantum matrices

Let us fix positive integers c, d, m, n with c ≤ m and d ≤ n and let us fix a partition

λ = (λ1, . . . , λc) with d = λ1 ≥ · · · ≥ λc ≥ 1. Let Yλ be the Young diagram

corresponding to λ; Yλ is formed by taking a c × d rectangular array of boxes and

deleting the box in position (i, j) if and only if j > λi. In other words, Yλ has a box in

position (i, j) if and only if j ≤ λi. We shall often abuse notation slightly by saying

that (i, j) ∈ Yλ when we mean that Yλ has a box in position (i, j).

Example 4.1.1. Let c = d = 4 and consider the partition λ = (4, 3, 3, 1). Then the

Young diagram Yλ is
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Definition 4.1.2. We associate a subalgebra of Oq(Mm,n(K)) to the partition λ:

the partition subalgebra of Oq(Mm,n(K)) associated to the partition λ is denoted by

Oq(Mλ
m,n(K)) and is defined to be the subalgebra of Oq(Mm,n(K)) generated by all

those Xi,j such that (i, j) ∈ Yλ.

Example 4.1.3. Taking c = d = 4 and λ = (4, 3, 3, 1) as in Example 4.1.1, the

partition subalgebra Oq(Mλ
4,4(k)) is the subalgebra of Oq(M4,4(k)) generated by the

following elements:

X1,1 X1,2 X1,3 X1,4

X2,1 X2,2 X2,3

X3,1 X3,2 X3,3

X4,1

Definition 4.1.4. Let I = {i1 < . . . < it} ⊆ J1, mK and J = {j1 < . . . < jt} ⊆ J1, nK.

The pseudo quantum minor [I | J ] of Oq(Mλ
m,n(K)) is defined by

[I | J ] =
∑

σ∈St

(−q)ℓ(σ)Xi1,jσ(1)Xi2,jσ(2) · · ·Xit,jσ(t) ,

with the convention that Xi,j = 0 if (i, j) /∈ Yλ.

Remark 4.1.5. We use the term “pseudo quantum minor” as a reminder that we

may not be dealing with the full algebra of quantum matrices but rather a partition

subalgebra.

Example 4.1.6. Taking c = d = 4 and λ = (4, 3, 3, 1) as in Example 4.1.3, the

pseudo quantum minor [12 | 34] of Oq(Mλ
m,n(K)) is X1,3X2,4 − qX1,4X2,3, where X2,4

is interpreted as zero since (2, 4) /∈ Yλ. Hence we have [12 | 34] = −qX1,4X2,3.
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Although some of the standard quantum Laplace expansions for quantum minors of

Oq(Mm,n(k)) fail for pseudo quantum minors of Oq(Mλ
m,n(K)), it is evident immediately

from the definition that we may expand with the first row on the left or the last row

on the right:

Lemma 4.1.7 (quantum Laplace expansion with rows). Let I = {i1 < . . . < it} ⊆

J1, mK and J = {j1 < . . . < jt} ⊆ J1, nK. The pseudo quantum minor [I | J ] of

Oq(Mλ
m,n(K)) satisfies

(1) [I | J ] =
t∑

l=1
(−q)l−1Xi1,jl

[i2 · · · it | j1 · · · ĵl · · · jt];

(2) [I | J ] =
t∑

l=1
(−q)t−l[i1 · · · it−1 | j1 · · · ĵl · · · jt]Xit,jl

.

Useful for proving that we may also expand with the first column on the left or the

last column on the right will be the following expression for a pseudo quantum minor:

Lemma 4.1.8. If I = {i1 < . . . < it} ⊆ J1, mK and J = {j1 < . . . < jt} ⊆ J1, nK, then

the pseudo quantum minor [I | J ] of Oq(Mλ
m,n(K)) is given by

[I | J ] =
∑

σ∈St

(−q)ℓ(σ)Xiσ(1),j1Xiσ(2),j2 · · ·Xiσ(t),jt .

Proof. Let us assume for ease of notation that I = J = J1, tK (the proof for general I

and J is the same but the notation is more unwieldy). Let us set {1 · · · t | 1 · · · t} =∑
σ∈St

(−q)ℓ(σ)Xσ(1),1 · · ·Xσ(t),t. Our claim is that {1 · · · t | 1 · · · t} = [1 · · · t | 1 · · · t].

This claim clearly holds if t = 1 and we proceed by induction on t. We have

[1 · · · t | 1 · · · t] =
t∑

l=1
(−q)l−1X1,l[2 · · · t | 1 · · · l̂ · · · t] (Lemma 4.1.7(1))

=
t∑

l=1
(−q)l−1X1,l{2 · · · t | 1 · · · l̂ · · · t}. (induction hypothesis)
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Let us set {i1 < · · · < it−1} = {2 < · · · < t} and {jl
1 < · · · < jl

t−1} = {1 < · · · < l̂ <

· · · < t}, so that

[1 · · · t | 1 · · · t] =
t∑

l=1
(−q)l−1X1,l

 ∑
ρ∈St−1

(−q)ℓ(ρ)Xiρ(1),jl
1
· · ·Xiρ(t−1),jl

t−1


=

t∑
l=1

∑
ρ∈St−1

(−q)l−1+ℓ(ρ)X1,lXiρ(1),jl
1
· · ·Xiρ(t−1),jl

t−1
.

For all j < l and all s = 1, . . . , t− 1, the relations in Oq(Mλ
m,n(K)) (which come from

(2.6)) show that X1,l commutes with Xiρ(s),j and hence

[1 · · · t | 1 · · · t] =
t∑

l=1

∑
ρ∈St−1

(−q)l−1+ℓ(ρ)Xiρ(1),1 · · ·Xiρ(l−1),l−1X1,lXiρ(l),l+1 · · ·Xiρ(t−1),t

=
t∑

l=1

∑
σ ∈ St

σ(l) = 1

(−q)ℓ(σ)Xσ(1),1 · · ·Xσ(t),t

=
∑

σ∈St

(−q)ℓ(σ)Xσ(1),1 · · ·Xσ(t),t

= {1 · · · t | 1 · · · t},

as required. �

We get the following directly from Lemma 4.1.8:

Lemma 4.1.9 (quantum Laplace expansion with columns). Suppose that {i1 < · · · <

it} ⊆ J1, mK and that {j1 < · · · < jt} ⊂ J1, nK. Then we may expand the pseudo

quantum minor [i1 · · · it | j1 · · · jt] of Oq(Mλ
m,n(K)) with the first column on the left or

the last column on the right:

(1) [i1 · · · it | j1 · · · jt] =
t∑

l=1
(−q)l−1Xil,j1 [îl | ĵ1];

(2) [i1 · · · it | j1 · · · jt] =
t∑

l=1
(−q)t−l[îl | ĵt]Xil,jt.



4.2 Oq(Mλ
m,n(K)) as a CGL extension 54

4.2 Oq(Mλ
m,n(K)) as a CGL extension

The rational action of the algebraic torus (K×)m+n on Oq(Mm,n(K)) described in Ex-

ample 2.2.2 clearly restricts to the partition subalgebra Oq(Mλ
m,n(K)) so that (K×)m+n

acts by automorphisms on Oq(Mλ
m,n(K)) as follows:

(α1, . . . , αm, β1, . . . , βn) ·Xi,j = αiβjXi,j (4.1)

for all (α1, . . . , αm, β1, . . . , βn) ∈ H and all (i, j) ∈ Yλ; this action is clearly rational.

Because some details of the proof shall be useful to us, we check here the known fact

(see [24, Proposition 3.2]) that Oq(Mλ
m,n(K)) is a uniparameter CGL extension. Adding

the generators Xi,j ((i, j) ∈ Yλ) in lexicographical order, we may write the partition

subalgebra Oq(Mλ
m,n(K)) of the algebra Oq(Mm,n(K)) of quantum m× n matrices as

an iterated Ore extension

Oq(Mλ
m,n(K)) = K[X1,1] · · · [Xi,j; σi,j, δi,j] · · · [Xc,λc ; σc,λc , δc,λc ], (4.2)

where for each (a, b) ∈ Yλ, the automorphism σa,b and the left σa,b-derivation δa,b are

defined such that for each (i, j) ∈ Yλ satisfying (i, j) <lex (a, b), we have

σa,b(Xi,j) =


q−1Xi,j if i = a or j = b

Xi,j otherwise
(4.3)

and

δa,b(Xi,j) =


(q−1 − q)Xi,bXa,j i < a and j < b

0 otherwise.
(4.4)

(As such, it is easy to check that Oq(Mλ
m,n(K)) is a domain; it is noetherian by [18,

Theorem 2.6]; all its prime ideals are completely prime by [6, Theorem II.6.9].)
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Remark 4.2.1. In order to show that the expression (4.2) of Oq(Mλ
m,n(K)) as an

iterated Ore extension (with the action of H = (K×)m+n described in (4.1)), is a

uniparameter CGL extension with parameter q, it will suffice to show that

(i) The elements Xi,j ((i, j) ∈ Yλ) of Oq(Mλ
m,n(K)) are H-eigenvectors with rational

eigenvalues (it follows easily that the action of H is rational).

(ii) For every (a, b) ∈ Yλ \ {(1, 1)}, δa,b is locally nilpotent.

(iii) For every (a, b) ∈ Yλ \ {(1, 1)}, there exists qa,b ∈ K× not a root of unity such

that σa,b ◦ δa,b = qa,bδa,b ◦ σa,b.

(iv) For every (a, b) ∈ Yλ \ {(1, 1)} and every (i, j) ∈ Yλ such that (i, j) <lex (a, b),

there exists λ(a,b),(i,j) ∈ K× such that σa,b(Xi,j) = λ(a,b),(i,j)Xi,j .

(v) The set {α ∈ K× | there exists h ∈ H such that h ·X1,1 = αX1,1} is infinite.

(vi) For every (a, b) ∈ Yλ \{(1, 1)}, there exists ha,b ∈ H such that ha,b ·Xa,b = qa,bXa,b

and for all (i, j) <lex (a, b), ha,b ·Xi,j = λ(a,b),(i,j)Xi,j.

(vii) For every (a, b) ∈ Yλ \ {(1, 1)} and every (i, j) ∈ Yλ such that (i, j) <lex (a, b),

λ(a,b),(i,j) is an integral power of q.

Lemma 4.2.2. The expression (4.2) of Oq(Mλ
m,n(K)) as an iterated Ore extension,

along with the action of H = (K×)m+n described in (4.1), is a uniparameter CGL

extension with parameter q.

Proof. We show that the conditions of Remark 4.2.1 are satisfied.

(i) It is clear from (4.1) that each Xi,j ((i, j) ∈ Yλ) is an H-eigenvector with eigenvalue

H → K×; (α1, . . . , αm, β1, . . . , βn) 7→ αiβj. This eigenvalue is clearly rational, so

that condition (i) of Remark 4.2.1 is satisfied.

(ii) Fix any (a, b) ∈ Yλ \ {(1, 1)}. One can check easily from (4.4) that δ2
a,b = 0, so

that condition (ii) of Remark 4.2.1 is satisfied.
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(iii) Fix any (a, b) ∈ Yλ \ {(1, 1)}. We claim that σa,b ◦ δa,b = q−2δa,b ◦ σa,b. It suffices

to check that these two morphisms agree on each Xi,j with (i, j) <lex (a, b). Since

δa,b(Xi,j) is nonzero only if (i, j) <lex (a, b) and Xi,j is an eigenvector for σa,b, we

may assume that (i, j) <lex (a, b). In this case, we have

σa,b ◦ δa,b(Xi,j) = σa,b((q−1 − q)Xa,jXi,b) = q−2(q−1 − q)Xa,jXi,b (4.5)

and

δa,b ◦ σa,b(Xi,j) = δa,b(Xi,j) = (q−1 − q)Xa,jXi,b. (4.6)

Comparing (4.5) and (4.6), we get σa,b ◦ δa,b = q−2δa,b ◦ σa,b. Hence if we set

qa,b = q−2, then condition (iii) of Remark 4.2.1 is satisfied.

(iv) Fix any (a, b) ∈ Yλ \ {(1, 1)} and any (i, j) ∈ Yλ such that (i, j) <lex (a, b). It

follows immediately from (4.3) that if we set

λ(a,b),(i,j) =


q−1 if i = a or j = b

1 otherwise,

then condition (iv) of Remark 4.2.1 is satisfied.

(v) Condition (v) of Remark 4.2.1 follows immediately from the following observation:

for every α ̸= 0 belonging to the infinite field K, we have (α, 1, . . . , 1)·X1,1 = αX1,1.

(vi) Fix any (a, b) ∈ Yλ \{(1, 1)} and define the element ha,b = (α1, . . . , αm, β1, . . . , βn)

of H such that αa = βb = q−1 and all other entries are 1. Then ha,bXa,b =

q−2Xa,b = qa,bXa,b and for any (i, j) ∈ Yλ such that (i, j) <lex (a, b), we have

ha,b ·Xi,j =


q−1Xi,j if i = a or j = b

Xi,j otherwise,

so that ha,b ·Xi,j = λ(a,b),(i,j)Xi,j. This verifies condition (vi) of Remark 4.2.1.



4.3 Deleting derivations in Oq(Mλ
m,n(K)) 57

(vii) Condition (vi) of Remark 4.2.1 is immediate from part (iv) of this proof.

�

4.3 Deleting derivations in Oq(Mλ
m,n(K))

We established in Lemma 4.2.2 that Oq(Mλ
m,n(K)) is a uniparameter CGL extension

with parameter q. Let us denote by Aλ its associated skew-symmetric integral matrix

(whose entries all belong to the set {0, 1,−1} by part (iv) of the proof of Lemma 4.2.2).

We may apply the deleting-derivations algorithm (see Section 2.4) of Cauchon to

Oq(Mλ
m,n(K)). Recall that λ = (λ1, . . . , λc) is a partition with d = λ1 ≥ · · · ≥ λc ≥ 1,

c ≤ m, d ≤ n. It follows that (c, λc) is the largest element of Yλ with respect to the

lexicographical ordering.

Notation 4.3.1. Set Eλ = (Yλ\{(1, 1)})⊔{(c, λc+1)}. For (a, b) ∈ Yλ, let (a, b)+ be the

smallest (with respect to the lexicographical order) element of Eλ satisfying (a, b)+ >lex

(a, b). Clearly (1, 1)+ and (c, λc + 1) are respectively the smallest and largest elements

of Eλ with respect to the lexicographical order. Moreover Eλ = {(a, b)+ : (a, b) ∈ Yλ}.

For (a, b) ∈ Eλ, let (a, b)− be the largest (with respect to the lexicographical order)

element of Yλ satisfying (a, b)− <lex (a, b).

Set X
(c,λc+1)
i,j := Xi,j for all (i, j) ∈ Yλ. For each (a, b) ∈ Eλ \ {(c, λc + 1)}, Cauchon’s

deleting-derivations algorithm (see [10, Section 3] or Section 2.4 of this thesis) constructs

from (X(a,b)+

i,j )(i,j)∈Yλ
a family (X(a,b)

i,j )(i,j)∈Yλ
of elements of Frac(Oq(Mλ

m,n(K))). For each

(a, b) ∈ Eλ, the subalgebra of Frac(Oq(Mλ
m,n(K))) generated by the family (X(a,b)

i,j )(i,j)∈Yλ

is denoted by Oq(Mλ
m,n(K))(a,b); in particular, Oq(Mλ

m,n(K))(c,λc+1) = Oq(Mλ
m,n(K)).

By [10, Theorem 3.2.1], for each (a, b) ∈ Yλ, there is an isomorphism

Oq(Mλ
m,n(K))(a,b)+ ∼=−→ k[X1,1] · · · [Xa,b; σa,b, δa,b][Xa′,b′ ; τa′,b′ ] · · · [Xc,λc ; τc,λc ]

X
(a,b)+

i,j 7→ Xi,j for all (i, j) ∈ Yλ,
(4.7)
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where (a′, b′) := (a, b)+ and where for each (p, q) ∈ Yλ such that (p, q) ≥lex (a′, b′), τp,q

is the automorphism defined by

τp,q(Xi,j) :=


q−1Xi,j if i = p or j = q

Xi,j otherwise

for all (i, j) ∈ Yλ such that (i, j) <lex (p, q). In particular, by (4.7), there is an

isomorphism

Oq(Mλ
m,n(K))(1,1)+ ∼=−→ k[T1,1] · · · [Ti,j; τi,j] · · · [Tc,λc ; τc,λc ]

X
(1,1)+

i,j 7→ Ti,j

(4.8)

where for each (p, q) ∈ Yλ \ {(1, 1)}, the automorphism τp,q is defined by

τp,q(Ti,j) =


q−1Ti,j if i = p or j = q

Ti,j otherwise
(4.9)

for all (i, j) ∈ Yλ such that (i, j) <lex (p, q). The algebra k[T1,1] · · · [Ti,j ; τi,j ] · · · [Tc,λc ; τc,λc ]

is the uniparameter quantum affine space Kq,Aλ
[T1,1, . . . , Tc,λc ]; let us identify

Oq(Mλ
m,n(K))(1,1)+ with this quantum affine space via the isomorphism (4.8), so that

Oq(Mλ
m,n(K))(1,1)+ is generated by {Ti,j | (i, j) ∈ Yλ} with relations

Ti,jTi,l = qTi,lTi,j if (i, j), (i, l) ∈ Yλ and j < l;

Ti,jTk,j = qTk,jTi,j if (i, j), (k, j) ∈ Yλ and i < k;

Ti,jTk,l = Tk,lTi,j if (i, j), (k, l) ∈ Yλ, k ̸= i, and j ̸= l.

(4.10)

The deleting-derivations algorithm: Suppose that (a, b) ∈ Eλ \{(c, λc +1)} and

that the family (X(a,b)+

i,j )(i,j)∈Yλ
has been constructed. Notice that (4.7) shows in partic-

ular that X
(a,b)+

a,b is nonzero and hence invertible in Frac(Oq(Mλ
m,n(K))). To construct

the family (X(a,b)
i,j )(i,j)∈Yλ

from the family (X(a,b)+

i,j )(i,j)∈Yλ
, identify1 (X(a,b)+

i,j )(i,j)∈Yλ
with

1We make this identification in order that the term δn
a,b ◦ σ−n

a,b (X(a,b)+

i,j ) in (4.11) makes sense.
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(Xi,j)(i,j)∈Yλ
via the isomorphism (4.7) and for (i, j) ∈ Yλ, set

X
(a,b)
i,j :=


+∞∑
n=0

(1− qa,b)−n

[n]!qa,b

δn
a,b ◦ σ−n

a,b (X(a,b)+

i,j )(X(a,b)+

a,b )−n if (i, j) <lex (a, b);

X
(a,b)+

i,j if (i, j) ≥lex (a, b).
(4.11)

Lemma 4.3.2. Suppose that (a, b) ∈ Eλ\{(c, λc+1)} and that the family (X(a,b)+

i,j )(i,j)∈Yλ

has been constructed. Then for (i, j) ∈ Yλ, we have

X
(a,b)
i,j =


X

(a,b)+

i,j −X
(a,b)+

i,b (X(a,b)+

a,b )−1X
(a,b)+

a,j if i < a and j < b

X
(a,b)+

i,j otherwise.

Proof. We may assume that (i, j) <lex (a, b). One can check easily from (4.4) that

δ2
a,b = 0. Recall from Lemma 4.2.2 that qa,b = q−2. Now (4.11) gives X

(a,b)
i,j =

X
(a,b)+

i,j + (1− q−2)−1δa,b ◦ σ−1
a,b(X(a,b)+

i,j )(X(a,b)+

a,b )−1. There are two cases to consider.

• Suppose that either i = a or j ≥ b. Then σ−1
a,b(X(a,b)+

i,j ) is a scalar multiple

of X
(a,b)+

i,j by (4.3) and δa,b(X(a,b)+

i,j ) = 0 by (4.4). It follows immediately that

δa,b ◦ σ−1
a,b(X(a,b)+

i,j ) = 0 and hence X
(a,b)
i,j = X

(a,b)+

i,j .

• Suppose that i < a and that j < b. Then

X
(a,b)
i,j = X

(a,b)+

i,j + (1− q−2)−1δa,b ◦ σ−1
a,b(X(a,b)+

i,j )(X(a,b)+

a,b )−1

= X
(a,b)+

i,j + (1− q−2)−1(q−1 − q)(X(a,b)+

i,b X
(a,b)+

a,j )(X(a,b)+

a,b )−1 (by (4.3) and (4.4))

= X
(a,b)+

i,j + (1− q−2)−1(q−1 − q)q−1X
(a,b)+

i,b (X(a,b)+

a,b )−1X
(a,b)+

a,j

= X
(a,b)+

i,j −X
(a,b)+

i,b (X(a,b)+

a,b )−1X
(a,b)+

a,j .

�
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4.3.1 An injection of prime spectra

By [10, Section 4.3], for each (a, b) ∈ Eλ \ {(c, λc + 1)}, there is an injection

ϕa,b : Spec(Oq(Mλ
m,n(K))(a,b)+)→ Spec(Oq(Mλ

m,n(K))(a,b)).

We shall not describe the construction of this injection but we shall describe some of

its useful properties.

4.3.2 Identifying several total rings of fractions

Let (a, b) ∈ Eλ \ {(c, λc + 1)} and let Q be a prime ideal of Oq(Mλ
m,n(K))(a,b)+ . The

Lemmas [10, Lemme 5.3.1 and Lemme 5.3.2] give isomorphisms

Frac(Oq(Mλ
m,n(K))(a,b)+

/Q)
∼=−→ Frac(Oq(Mλ

m,n(K))(a,b)/ϕa,b(Q)). (4.12)

4.3.3 Relationships between generators

Fix a prime ideal P of Oq(Mλ
m,n(K)). For each (a, b) ∈ Eλ, set P (a,b) = ϕa,b ◦ · · · ◦

ϕc,λc(P ) ∈ Spec(Oq(Mλ
m,n(K))(a,b)) (which gives P (c,λc+1) = P ) and for each (i, j) ∈ Yλ,

let χ
(a,b)
i,j be the canonical image of X

(a,b)
i,j in Oq(Mλ

m,n(K))(a,b)/P (a,b). Let us denote by

G the total ring of fractions of Oq(Mλ
m,n(K))/P (which is a division ring since all prime

ideals of Oq(Mλ
m,n(K)) are completely prime) and by varying (a, b) over Eλ\{(c, λc +1)}

and Q over P (1,1)++
, . . . , P (c,λc+1) in the isomorphism (4.12), let us identify the total

ring of fractions of each noetherian domain Oq(Mλ
m,n(K))(a,b)/P (a,b) ((a, b) ∈ Eλ) with

G.

Some immediate consequences of this setup (noted in [10, Proposition 5.4.1]) are

that for each (a, b) ∈ Eλ,

• Oq(Mλ
m,n(K))(a,b)/P (a,b) is the subalgebra of G generated by (χ(a,b)

i,j )(i,j)∈Yλ
;

• there is a morphism of algebras fa,b : Oq(Mλ
m,n(K))(a,b) → G which sends each

X
(a,b)
i,j ((i, j) ∈ Yλ) to χ

(a,b)
i,j ;
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• the kernel of fa,b is P (a,b) and its image is Oq(Mλ
m,n(K))(a,b)/P (a,b).

Suppose that (a, b) ∈ Eλ\{(c, λc +1)}. By [10, Proposition 5.4.2], we may construct the

generators χ
(a,b)
i,j ((i, j) ∈ Yλ) of the algebra Oq(Mλ

m,n(K))(a,b)/P (a,b) from the generators

χ
(a,b)+

i,j ((i, j) ∈ Yλ) of the algebra Oq(Mλ
m,n(K))(a,b)+

/P (a,b)+ as follows: when we

identify2 (X(a,b)+

i,j )(i,j)∈Yλ
with (Xi,j)(i,j)∈Yλ

via the isomorphism (4.7), we get

χ
(a,b)
i,j =


+∞∑
n=0

(1− qa,b)−n

[n]!qa,b

λ−n
(a,b),(i,j)f(a,b)+(δn

a,b(X
(a,b)+

i,j ))(χ(a,b)+

a,b )−n if ∗;

χ
(a,b)+

i,j otherwise,
(4.13)

where, simply to reduce the length of the display, we denote by ∗ the conditions that

(i, j) <lex (a, b) and χ
(a,b)+

a,b ̸= 0. Let us restate (4.13) in a form which will be more

convenient for us:

Lemma 4.3.3. Suppose that (a, b) ∈ Eλ \ {(c, λc + 1)}. Then for all (i, j) ∈ Yλ, we

have

χ
(a,b)+

i,j =


χ

(a,b)
i,j + χ

(a,b)
i,b (χ(1,1)+

a,b )−1χ
(1,1)+

a,j if i < a, j < b, and χ
(1,1)+

a,b ̸= 0;

χ
(a,b)
i,j otherwise.

Proof. Suppose that (a, b) ∈ Eλ \ {(c, λc + 1)}.

• We claim first that for all (i, j) ∈ Yλ, we have

χ
(a,b)
i,j =


χ

(a,b)+

i,j − χ
(a,b)+

i,b (χ(a,b)+

a,b )−1χ
(a,b)+

a,j if i < a, j < b, and χ
(a,b)+

a,b ̸= 0;

χ
(a,b)+

i,j otherwise.
(4.14)

We may assume that χ
(a,b)+

a,b ̸= 0 and that (i, j) <lex (a, b). If i = a or j ≥ b, then

δa,b(X(a,b)+

i,j ) = 0 and hence χ
(a,b)
i,j = χ

(a,b)+

i,j . On the other hand, if i < a and j < b,

2We make this identification in order that the term δn
a,b(X(a,b)+

i,j ) in (4.13) makes sense.
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then since δ2
a,b = 0 (easily checked from (4.4)), we have

χ
(a,b)
i,j = χ

(a,b)+

i,j + (1− q−2)−1f(a,b)+(δa,b(X(a,b)+

i,j ))(χ(a,b)+

a,b )−1 (by (4.13))

= χ
(a,b)+

i,j + (1− q−2)−1f(a,b)+((q−1 − q)X(a,b)+

i,b X
(a,b)+

a,j )(χ(a,b)+

a,b )−1 (by (4.4))

= χ
(a,b)+

i,j + (1− q−2)−1(q−1 − q)χ(a,b)+

i,b χ
(a,b)+

a,j (χ(a,b)+

a,b )−1

= χ
(a,b)+

i,j + (1− q−2)−1(q−1 − q)q−1χ
(a,b)+

i,b (χ(a,b)+

a,b )−1χ
(a,b)+

a,j

= χ
(a,b)+

i,j − χ
(a,b)+

i,b (χ(a,b)+

a,b )−1χ
(a,b)+

a,j ,

establishing (4.14).

• We claim next that for all (i, j) ∈ Yλ, we have

χ
(a,b)+

i,j =


χ

(a,b)
i,j + χ

(a,b)
i,b (χ(a,b)

a,b )−1χ
(a,b)
a,j if i < a, j < b, and χ

(a,b)
a,b ̸= 0;

χ
(a,b)
i,j otherwise.

(4.15)

By (4.14), for all (i, j) ∈ Yλ, we have

χ
(a,b)
i,b = χ

(a,b)+

i,b , χ
(a,b)
a,b = χ

(a,b)+

a,b , and χ
(a,b)
a,j = χ

(a,b)+

a,j .

Substituting these identities back into (4.14) shows that for all (i, j) ∈ Yλ, we

have

χ
(a,b)
i,j =


χ

(a,b)+

i,j − χ
(a,b)
i,b (χ(a,b)

a,b )−1χ
(a,b)
a,j if i < a, j < b, and χ

(a,b)
a,b ̸= 0;

χ
(a,b)+

i,j otherwise,
(4.16)

which immediately gives (4.15).

• Finally, from (4.15) it follows easily that for any (a′, b′) ∈ Eλ satisfying (a′, b′) <lex

(a, b), we have χ
(a′,b′)+

a,b = χ
(a′,b′)
a,b and χ

(a′,b′)+

a,j = χ
(a′,b′)
a,j . Easy inductive arguments
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give

χ
(a,b)
a,b = χ

(1,1)+

a,b and χ
(a,b)
a,j = χ

(1,1)+

a,j .

Substituting these identities back into (4.15) completes the proof.

�

4.3.4 H-prime ideals of Oq(Mλ
m,n(K))

Let us now assume that P is not just a prime ideal but an H-prime ideal ofOq(Mλ
m,n(K)).

The canonical injection ϕ : Spec(Oq(Mλ
m,n(K)))→ Spec(Oq(Mλ

m,n(K))(1,1)+) is defined

by ϕ = ϕ(1,1)+ ◦ · · · ◦ ϕc,λc . By the results of Cauchon described in Subsection 2.4.4,

the action of H on Oq(Mλ
m,n(K)) induces an action of H on the quantum affine space

Oq(Mλ
m,n(K))(1,1)+ = Kq,Aλ

[T1,1, . . . , Tc,λc ] such that ϕ sends P to an H-prime ideal

ϕ(P ) (= P (1,1)+) of the quantum affine space Oq(Mλ
m,n(K))(1,1)+ = Kq,Aλ

[T1,1, . . . , Tc,λc ]

and ϕ(P ) is generated by {Ti,j | (i, j) ∈ B} for some subset B of Yλ. Let us colour the

squares of the Young diagram Yλ in the following way: for (i, j) ∈ Yλ, if (i, j) ∈ B,

then assign colour black to the square of Yλ in the (i, j)-position and if (i, j) /∈ B, then

assign colour white to the square of Yλ in the (i, j)-position; call the resulting diagram

C. By [24, Theorem 3.5], the diagram C is a Cauchon diagram (see Definition 4.3.4

below) and all Cauchon diagrams on Yλ arise from H-prime ideals of Oq(Mλ
m,n(K)) in

this way, giving us a one-to-one correspondence

H − SpecOq(Mλ
m,n(K))←→ Cauchon diagrams on the Young diagram Yλ. (4.17)

Definition 4.3.4. Let Y be a Young diagram. A Cauchon diagram on Y is an

assignment of the colours white and black to the squares of Y such that if a square

S is black, then either every square above S is black or every square to the left of S

is black. If C is a Cauchon diagram on Y , then we denote by BC and WC the set of

squares of Y which are coloured black and white respectively in C.
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Example 4.3.5. As in example 4.1.1, let c = d = 4 and consider the partition

λ = (4, 3, 3, 1). Below is an example of a Cauchon diagram on Yλ. If we call this

Cauchon diagram C, then we have BC = {(2, 1), (1, 2), (1, 3)} and

WC = {(1, 1), (1, 4), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3), (4, 1)}.

Since we have identified the division ring G = Frac(Oq(Mλ
m,n(K))/P ) with the total

ring of fractions of each noetherian domain Oq(Mλ
m,n(K))(a,b)/P (a,b) ((a, b) ∈ Eλ), we

have in particular identified G with the total ring of fractions of the algebra

Oq(Mλ
m,n(K))(1,1)+

/ϕ(P ) = Kq,Aλ
[T1,1, . . . , Tc,λc ]/⟨Ti,j | (i, j) ∈ BC⟩. (4.18)

For (i, j) ∈ Yλ, let ti,j denote the canonical image of Ti,j in the algebra (4.18), so that

ti,j = χ
(1,1)+

i,j and we may realise G as the total ring of fractions of the uniparameter

quantum torus B which is generated by {t±1
i,j | (i, j) ∈ WC} with relations

ti,jti,l = qti,lti,j if (i, j), (i, l) ∈ WC and j < l;

ti,jtk,j = qtk,jti,j if (i, j), (k, j) ∈ WC and i < k;

ti,jtk,l = tk,lti,j if (i, j), (k, l) ∈ WC, k ̸= i, and j ̸= l;

ti,jt
−1
i,j = 1 if (i, j) ∈ WC.

(4.19)

Remark 4.3.6. An easy way to understand these relations is as follows: Suppose that

a and b are squares in WC and that a <lex b. Then ta and tb commute unless a and

b are in the same row or column (i.e. unless b is east or south of a), in which case

tatb = qtbta.

Before stating the following very useful Corollary, we recap briefly on our setup and

on some identifications which we will use implicitly:
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Remark 4.3.7. We have fixed an H-prime ideal P of Oq(Mλ
m,n(K)) with corresponding

Cauchon diagram C on the Young diagram Yλ. For all (a, b) ∈ Eλ\{(c, λc+1)}, we define

P (a,b) := ϕa,b ◦ · · · ◦ ϕc,λc(P ) (which gives P (c,λc+1) = P ). For all (a, b) ∈ Eλ and all

(i, j) ∈ Yλ, we denote by χ
(a,b)
i,j the canonical image of X

(a,b)
i,j in Oq(Mλ

m,n(K))(a,b)/P (a,b).

We identify the total rings of fractions of the noetherian domains Oq(Mλ
m,n(K))(a,b)/P (a,b)

((a, b) ∈ Eλ) with the total ring of fractions G of Oq(Mλ
m,n(K))/P (which is a division

ring) and we realise G as the total ring of fractions of the quantum torus B (whose

relations are given in (4.19)).

Corollary 4.3.8. For all (a, b) ∈ Eλ \ {(c, λc + 1)} and all (i, j) ∈ Yλ, we have

χ
(a,b)+

i,j =


χ

(a,b)
i,j + χ

(a,b)
i,b t−1

a,bta,j if i < a, j < b, and (a, b) ∈ WC;

χ
(a,b)
i,j otherwise.

Proof. Since χ
(1,1)+

a,b = ta,b is nonzero if and only if (a, b) ∈ WC and since χ
(1,1)+

a,j = ta,j,

this result is an immediate consequence of Lemma 4.3.3. �

4.4 Cauchon graphs and path matrices

In this subsection, we generalise to partition subalgebras some results of Casteels [7]

for quantum matrices, in particular his graph-theoretic method for deciding which

quantum minors belong to a given H-prime ideal of Oq(Mm,n(K)). This section is

based closely on the papers [7] and [8] of Casteels.

We continue with the setup and notation of the previous section. Recall in particular

that λ = (λ1, . . . , λc) is a partition (with d = λ1 ≥ · · · ≥ λc ≥ 1, c ≤ m, and d ≤ n),

that P is an H-prime ideal of the partition subalgebra Oq(Mλ
m,n(K)) of Oq(Mm,n(K)),

and that C is the Cauchon diagram of P .
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4.4.1 The Cauchon graph

Recall that the Cauchon diagram C is defined on the Young diagram Yλ and that we

denote by WC and BC the set of squares of Yλ which are coloured white and black

respectively in C.

Notation 4.4.1. If (i, j) ∈ WC has at least one white square to its left, then denote

by (i, j−) the first white square to its left. If (i, j) ∈ WC has at least one white square

below it, then denote by (i+, j) the first white square below it.

The following is a generalisation of the notion of a Cauchon graph which appears in

[7, Definition 3.1]; in [7], Casteels considers Cauchon diagrams on rectangular Young

diagrams only, whereas we have a Cauchon diagram C on the not-necessarily-rectangular

Young diagram Yλ.

Definition 4.4.2 (cf. Definition 3.1 of [7]). We associate to C an edge-weighted

directed graph with weights in the quantum torus B called the Cauchon graph of C,

which we denote by GC and which we define as follows: When R = {r1, . . . , rc} and

C = {c1, . . . , cd}, the set of vertices of C is WC ⊔R ⊔ C. The set of weighted directed

edges is constructed as follows:

(i) For every i ∈ J1, cK such that there is a white square in row i, put a directed edge

from ri to the right-most white square in row i, say (i, p). Give this edge weight

ti,p ∈ B.

(ii) For every j ∈ J1, dK such that there is a white square in column j, put a directed

edge from the bottom-most white square in column j to cj and give this edge

weight 1 ∈ B.

(iii) For every (i, j) ∈ WC such that (i, j−) exists, put a directed edge from (i, j) to

(i, j−) and give this edge weight t−1
i,j ti,j− ∈ B.

(iv) For every (i, j) ∈ WC such that (i+, j) exists, put a directed edge from (i, j) to

(i+, j) and give this edge weight 1 ∈ B.
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Notation 4.4.3. • For us, “path” and “edge” shall always mean “directed path”

and “directed edge” respectively.

• Let v and v′ be vertices of GC. There is clearly at most one edge from v to v′ and

if it exists, we denote it by (v, v′).

• We denote the weight of an edge e of GC by w(e).

• Suppose that (i, j), (i, j′) ∈ WC and that there is an edge e = ((i, j), (i, j′)) in GC

(notice that this forces j > j′). Then we set row(e) = i, col1(e) = j, col2(e) = j′,

and col(e) = {j, j′}.

• If v0, v1, . . . , vk are vertices of GC such that the edges (v0, v1), (v1, v2), . . . , (vk−1, vk)

exist, then we write (v0, v1, . . . , vk) for the path from v0 to vk given by the conca-

tonation of the edges (v0, v1), (v1, v2), . . . , (vk−1, vk).

• For vertices v and v′ of GC, we write P : v =⇒ v′ to mean that P is a path from

v to v′.

Definition 4.4.4. By the weight of a path (v0, v1, . . . , vk) in GC, we mean the ordered

product

w(v0, v1)w(v1, v2) · · ·w(vk−1, vk)

of the weights of its edges. We denote the weight of a path P in GC by w(P ).

Definition 4.4.5. An edge or path in GC is called internal if its beginning and end

vertices belong to WC.

We embed the Cauchon graph GC in the plane in the following way: Place a vertex in

each white square of C, then place a vertex at the bottom of each column of C and to

the right of each row of C. For each i ∈ J1, cK, assign the label of ri to the vertex to the

right of the ith row of C and and for each j ∈ J1, dK, assign the label cj to the vertex at

the bottom of the jth column of C. We shall always assume that Cauchon graphs are

embedded in the plane in this way, which will allow us to use terms like horizontal,
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vertical, left, right, etc in reference to vertices and edges of a Cauchon graph, such as

in the following remark:

Remark 4.4.6. Since vertical edges in GC have weight 1, only horizontal edges con-

tribute to the weight of any path in GC. We shall often use this fact without explicit

mention.

Example 4.4.7. Let c = d = 4, let λ = (4, 3, 3, 1), and let C be the Cauchon diagram

on Yλ from Example (4.3.5). Below is the Cauchon graph GC superimposed onto C:

• •

• •

• • •

•

• r1

• r2

• r3

• r4

•c1

•c2 •c3

•c4

t1,4t−1
1,4t1,1

t−1
2,3t2,2 t2,3

t−1
3,2t3,1 t−1

3,3t3,2 t3,3

t4,1

Remark 4.4.8. We shall always superimpose Cauchon graphs onto their Cauchon

diagrams as in Example 4.4.7.

Proposition 4.4.9 (cf. Proposition 3.3 of [7]). The Cauchon graph GC has the

following properties:

(1) GC is acyclic i.e. has no directed cycles.

(2) The embedding of the Cauchon graph GC in the plane described above is a planar

embedding i.e. all edge crossings occur at vertices.

(3) An internal horizontal path P : (i, j2) =⇒ (i, j1) has weight t−1
i,j2ti,j1.
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(4) A path ri =⇒ (i, j) beginning at a row vertex and consisting solely of horizontal

edges has weight ti,j.

Proof. (1) Because all edges are directed leftwards or downwards, the graph GC cannot

have a directed cycle.

(2) If two edges cross, then one edge must be vertical and the other horizontal. Let

a vertical edge e1 = ((i1, j), (i2, j)) cross a horizontal edge e2 = ((i, j2), (i, j1)) at

a black square (i, j) of the Cauchon diagram C. The black square (i, j) has the

white square (i1, j) above it and the white square (i, j1) to its left, contradicting

the definition of a Cauchon diagram. It follows that the square (i, j) must be white

and that the edges e1 and e2 cross at the vertex (i, j).

(3) If the path P consists of a single edge, then the result follows from the definition of

the Cauchon graph GC. Suppose that the path P consists of n > 1 edges and that

the desired result holds for all internal horizontal paths in GC consisting of fewer than

n edges. Let (i, k) be an internal vertex of P . When P ′ and P ′′ are the horizontal

paths given by P ′ : (i, j2) =⇒ (i, k) and P ′′ : (i, k) =⇒ (i, j1), we have P = P ′P ′′.

Now the inductive hypothesis gives w(P ) = w(P ′)w(P ′′) = t−1
i,j2ti,kt−1

i,k ti,j1 = t−1
i,j2ti,j1 .

(4) This follows from part (3) and the definition of the Cauchon graph.

�

4.4.2 Commutation relations between weights of paths

Lemma 4.4.10 (cf. Lemma 3.4 of [7]). Let e and f be distinct internal horizontal

edges in GC such that row(f) ≤ row(e).

(1) If col(e) ∩ col(f) = ∅, then w(f)w(e) = w(e)w(f).

(2) Suppose that | col(e) ∩ col(f)| = 1.

(i) if col1(e) = col1(f) or col2(e) = col2(f), then w(f)w(e) = qw(e)w(f);
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(ii) if col1(e) = col2(f) or col2(e) = col1(f) and row(e) ̸= row(f), then w(f)w(e) =

q−1w(e)w(f);

(iii) if col2(e) = col1(f) and row(e) = row(f), then w(f)w(e) = qw(e)w(f).

(3) If | col(e) ∩ col(f)| = 2, then w(f)w(e) = q2w(e)w(f).

Proof. Notice that if d is any internal horizontal edge in the graph GC and col2(d) <

j < col1(d), then the square (row(d), j) is a black square in C which has the white

square (row(d), col2(d)) to its left, so that for all i ≤ row(d), the square (i, j) is black.

Let a, b, u, v be the vertices of GC such that e = (a, b) and f = (u, v).

(1) Suppose that col(e) ∩ col(f) = ∅. If row(e) ̸= row(f), then the result follows

immediately from the relations (4.19) because ta and tb commute with tu and tv.

Suppose that row(e) = row(f) and notice that we may assume without loss of

generality that u and v lie west of a and b; the following diagram illustrates the

situation:

• • • •v u abf e

The relations (4.19) now give tutb = qtbtu, tuta = qtatu, tvtb = qtbtv, and tvta =

qtatv. Hence

w(e)w(f) = t−1
a tbt

−1
u tv = qq−1t−1

a t−1
u tvtb = qq−1qq−1t−1

u tvt−1
a tb = w(f)w(e).

(2) Suppose that | col(e) ∩ col(f)| = 1.

(i) Suppose that col2(e) = col2(f) (the case where col1(e) = col1(f) is similar).

The following diagram illustrates the situation:

• •

• •

v u

ab

f

e
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The relations (4.19) now give tatu = tuta, tatv = tvta, tbtu = tutb, and

tvtb = qtbtv. Hence

w(e)w(f) = t−1
a tbt

−1
u tv = q−1t−1

u tvt−1
a tb = q−1w(f)w(e).

(ii) Suppose that row(e) ̸= row(f) and that col1(f) = col2(e) (the case where

row(e) ̸= row(f) and col2(f) = col1(e) is similar). The following diagram

illustrates the situation:

• •

• •

v u

ab

f

e

The relations (4.19) now give tatu = tuta, tatv = tvta, tbtv = tvtb, and

tutb = qtbtu. It follows that

w(e)w(f) = t−1
a tbt

−1
u tv = qt−1

u tvt−1
a tb = qw(f)w(e).

(iii) Suppose that row(e) = row(f) and that col2(e) = col1(f). Then the end

vertex of e is the starting vertex of f i.e. b = u. The following diagram

illustrates the situation:

• • •
v u

b ae

f

Now the relations (4.19) give tvtb = qtbtv, tvta = qtatv, and tbta = qtatb.

Hence

w(f)w(e) = t−1
b tvt−1

a tb = q2tvt−1
a = qt−1

a tv = qt−1
a tbt

−1
b tv = qw(e)w(f).

(3) Suppose that | col(e) ∩ col(f)| = 2. The following diagram illustrates the situation:
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• •

• •

v u

ab

f

e

The relations (4.19) show that tatv = tvta, tbtu = tutb, tvtb = qtbtv, and tuta = qtatu.

It follows that

w(e)w(f) = t−1
a tbt

−1
u tv = q−1t−1

a t−1
u tvtb = q−2t−1

u tvt−1
a tb = q−2w(f)w(e).

�

Remark 4.4.11. The reader may notice that part (2) of Lemma 4.4.10 differs from

part 2 of [7, Lemma 3.4]. This is to clear up a slight ambiguity in part 2(ii) of [7,

Lemma 3.4], namely that in the case where row(e) = row(f), part 2(ii) of [7, Lemma

3.4] only holds if e begins where f ends.

Lemma 4.4.12 (cf. Lemma 3.5 of [7]). Let K : v0 =⇒ v and L : v =⇒ vt be internal

paths in GC.

(1) If either K or L contains only vertical edges, then w(K)w(L) = w(L)w(K).

(2) If K contains a horizontal edge and L contains a horizontal edge, then w(K)w(L) =

q−1w(L)w(K).

Proof. (1) This follows immediately from the fact that vertical edges in CG have weight

1.

(2) Since all vertical edges have weight one, only the horizontal edges of K and L

contribute to their weights. Let k be the last horizontal edge in K and let l be the

first horizontal edge in L.
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••

• • •

•••

v0

v

vt

kl

l

This diagram illustrates the situation. A possible ex-

ample of K is drawn in straight lines and two possible

examples of L are drawn in zigzagging and coiling lines.

The horizontal edges of L are always south-west of those in K. By Lemma 4.4.10(1),

all edges in K \ {k} commute with all edges in L and all edges in L \ {l} commute

with all edges in K. By Lemma 4.4.10(2), we have w(k)w(l) = q−1w(l)w(k). Now

w(K)w(L) = w(K \ {k})w(k)w(l)w(L \ {l})

= q−1w(K \ {k})w(l)w(k)w(L \ {l})

= q−1w(l)w(L \ {l})w(K \ {k})w(k)

= q−1w(L)w(K).

�

Lemma 4.4.13 (cf. Lemma 3.6 of [7]). Let K : v =⇒ ci and L : v =⇒ cj be two

paths in GC which share their initial vertex and no other vertex. Let K be the path that

starts with a horizontal edge and let L be the path that starts with a vertical edge.

(1) If L consists only of vertical edges, then w(K)w(L) = w(L)w(K).

(2) If L has a horizontal edge then w(K)w(L) = qw(L)w(K).
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•••

••

•

•• • • •

•

••

v

• ci • cj

K

L

Possible examples of K and L

Proof. (1) This follows immediately from the fact that vertical edges have weight 1.

(2) Suppose that L has a horizontal edge. By the beginning of the proof of Lemma

4.4.10, no vertex of K lies (with respect to column coordinates) between the vertices

of a horizontal edge of L.

Claim: If e is any horizontal edge of L except the first horizontal edge of L, then

w(e)w(K) = w(K)w(e).

There are four possibilities for e:

Case (i): No vertex in K shares a column coordinate with either vertex of e. In

this case, Lemma 4.4.10(1) then shows that the weights of the horizontal edges of

K commute with w(e), so that w(e) commutes with w(K).

Case (ii): There are two distinct horizontal edges f ′ and f ′′ of K such that

| col(e) ∩ col(f ′)| = | col(e) ∩ col(f ′′)| = 1, col2(f ′) = col1(f ′′) = col2(e), and

col(e) ∩ col(f) = ∅ for all other edges f of K.

••

••

• •

f ′

f ′′

e

Possible examples of f ′, f ′′, e.

In this case, Lemma 4.4.10(2) shows that w(f ′)w(f ′′)w(e) = qq−1w(e)w(f ′)w(f ′′) =

w(e)w(f ′)w(f ′′). Now with Lemma 4.4.10(1), we can conclude that w(e)w(K) =
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w(K)w(e).

Case (iii): There are two distinct horizontal edges f ′ and f ′′ of K such that

| col(e) ∩ col(f ′)| = | col(e) ∩ col(f ′′)| = 1, col2(f ′) = col1(f ′′) = col1(e), and

col(e) ∩ col(f) = ∅ for all other edges of K.

••

••

••

f ′

f ′′

e

Possible examples of f ′, f ′′, e.

This case is similar to Case (ii).

Case (iv): There are edges f ′, f ′′, f ′′ of K such that | col(e)∩col(f ′′)| = 2, col2(f ′) =

col1(e), and col1(f ′′′) = col2(e).

••

••

••

••

f ′

f ′′

f ′′′

e

Possible examples of f ′, f ′′, f ′′′, e.

By Lemma 4.4.10 parts (2) and (3), we have

w(f ′)w(f ′′)w(f ′′′)w(e) = q−1q2q−1w(e)w(f ′)w(f ′′)w(f ′′′) = w(e)w(f ′)w(f ′′)w(f ′′′)

and now with Lemma 4.4.10(1), we can conclude that w(e)w(K) = w(K)w(e).

This establishes the claim that if e is any horizontal edge of L except the first

horizontal edge of L, then w(e)w(K) = w(K)w(e).

Let us turn now to the first horizontal edge e1 of L.

Claim: w(K)w(e1) = qw(e1)w(K).
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Let us denote by f1 the first horizontal edge of K. There are two cases to consider:

(i) Let us suppose that col2(f1) < col2(e1). Then Lemma 4.4.10(2) gives w(f1)w(e1) =

qw(e1)w(f1) and Lemma 4.4.10(1) allows us to conclude that w(K)w(e1) =

qw(e1)w(K).

(ii) Let us suppose that col2(f1) = col2(e1). Then the second horizontal edge f2

of K satisfies col1(f2) = col2(f1) = col2(e1). Then by Lemma 4.4.10 parts (2) and

(3), we have w(f1)w(f2)w(e1) = qw(e1)w(f1)w(f2) and now with Lemma 4.4.10(1),

we can conclude that w(K)w(e1) = qw(e1)w(K). This completes the proof of the

claim.

The result now follows from the two claims which we have proven, namely that if e

is any horizontal edge of L except the first horizontal edge of L, then w(K)w(e) =

w(e)w(K) and that if e1 is the first horizontal edge of L, then w(K)w(e1) =

qw(e1)w(K).

�

4.4.3 Path systems

Definition 4.4.14. Suppose that I = {i1 < · · · < it} ⊆ J1, cK and J = {j1 < · · · <

jt} ⊆ J1, dK. An R(I,J)-path system in GC is a collection P = (P1, . . . , Pt) of paths in

GC starting respectively at the row vertices ri1 , . . . , rit and ending respectively at the

column vertices cjσP (1) , . . . , cjσP (t) for some permutation σP ∈ St (called the permutation

of the path system P). The path system P is called vertex-disjoint if no two of its

paths share a vertex. The weight of the path system P = (P1, . . . , Pt) is defined simply

as the ordered product w(P1) · · ·w(Pt) of the weights of the paths P1, . . . , Pt.

Example 4.4.15. Let c = d = 4 and let λ = (4, 3, 3, 1). Below are the Cauchon

diagram on Yλ from Example 4.4.7, with a vertex-disjoint R({1,4},{1,4})-path system

marked in zigzagging lines and a non vertex-disjoint R({2,3},{2,3})-path system marked

in coiled and dashed lines; each path system has permutation (1 2) ∈ S2.
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•

•

• •

•

• r1

• r2

• r3

• r4

•c1

•c2 •c3

•c4

Because, unlike Casteels in [7], we deal here with Cauchon diagrams on not-necessarily-

rectangular Young diagrams, we shall need the following lemma which does not appear

in [7].

Lemma 4.4.16. Suppose that I = {i1 < · · · < it} ⊆ J1, cK and J = {j1 < · · · < jt} ⊆

J1, dK. Then all vertex-disjoint R(I,J)-path systems in GC have the same permutation.

Proof. The proof is by induction on t. The case t = 1 is obvious; so, suppose that

t > 1 and that the result holds for vertex disjoint path systems of smaller size than t.

Choose s as large as possible such that the Young diagram Yλ has a square in the

(is, jt) position. Let S denote any vertex-disjoint (RI , CJ)-path system. We claim that

the path Ss in S starting at ris must finish at cjt .

Suppose, for a contradiction, that the path Ss in S starting at ris does not end at

cjt . Then let l be such that the path Sl in S starting at ril
ends at cjt , forcing l < s.

Suppose that Ss ends at cju , and note that u < t. Then, the paths Ss : ris =⇒ cju

and Sl : ril
=⇒ cjt must cross, as ris is to the right of the path Sl and cju is to the

left of Sl; this crossing must occur at a vertex by Proposition 4.4.9(2). This gives the

desired contradiction and proves the claim that the path Ss in S starting at ris must

finish at cjt .
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• ril

• ris

•cju

•cjt

Ss

Sl

Consider any two vertex-disjoint (RI , CJ)-path systems P = (P1, . . . , Pt) and Q =

(Q1, . . . , Qt) in GC. The paths Ps and Qs which start at ris must finish at cjt . Now

P \ {Ps} and Q \ {Qs} are two vertex-disjoint R(I\{is},J\{jt})-path systems and hence

must have the same permutation by the induction hypothesis. The result follows

immediately. �

Lemma 4.4.17 (cf. Lemma 4.2 of [7]). Suppose that I = {i1 < · · · < it} ⊆ J1, cK and

J = {j1 < · · · < jt} ⊆ J1, dK. If P = (P1, . . . , Pt) is a non-vertex-disjoint R(I,J)-path

system in GC, then there exists s ∈ J1, t− 1K such that Ps and Ps+1 share a vertex.

Proof. Let d = min{|a − b| | a ≠ b and Pa and Pb share a vertex} and suppose that

d > 1. Let a < b be such that |a− b| = d and Pa shares a vertex with Pb. Let x be the

first vertex which is common to Pa and Pb and consider the subpaths P ′
a : ria =⇒ x

of Pa and P ′
b : rib

=⇒ x of Pb.

Since d > 1, there exists ℓ ∈ J1, tK such that a < ℓ < b. The path Pℓ ∈ P which

starts at riℓ
must intersect either P ′

a or P ′
b and this intersection must be at a vertex of

GC by Proposition 4.4.9(2), contradicting the minimality of d.



4.4 Cauchon graphs and path matrices 79

• ria

• rib

• ril

•x

P ′
a

P ′
b

�

4.4.4 Path matrices and their quantum minors

Definition 4.4.18. Define the path matrix MC = (MC[i, j])(i,j)∈J1,cK×J1,dK of C to be the

c× d matrix3 with entries from B such that for each (i, j) ∈ J1, cK× J1, dK, MC[i, j] is

the sum of the weights of all paths from ri to cj in the Cauchon graph GC of C. For

I = {i1 < . . . < it} ⊆ J1, cK and J = {j1 < . . . < jt} ⊆ J1, dK, we define the quantum

minor [I | J ] of MC as follows

[I | J ] =
∑

σ∈St

(−q)ℓ(σ)MC[i1, jσ(1)] · · ·MC[it, jσ(t)].

Naively adapting [7, Theorem 4.4] would suggest that for any I ⊆ J1, cK and J ⊆ J1, dK

which have the same cardinality, the quantum minor [I | J ] of MC is equal to the sum

of the weights of all vertex-disjoint R(I,J)-path systems in GC. However our situation is

slightly more complicated because (unlike when C is defined on a rectangular Young

diagram) when C is defined on a generic Young diagram, there can be vertex-disjoint

path systems whose permutation is not identity. Theorem 4.4.19 shows that the

appropriate adjustment is to scale by (−q)ℓ(σ(I,J)), where σ(I,J) is the permutation of

every vertex-disjoint R(I,J)-path system in GC (see Lemma 4.4.16).

3Recall that λ = (λ1, . . . , λc) is a partition with d = λ1 ≥ · · · ≥ λc ≥ 1, where c ≤ m and d ≤ n.
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Theorem 4.4.19 (cf. Theorem 4.4 of [7]). Let I ⊆ J1, cK and J ⊆ J1, dK have the same

cardinality and let σ(I,J) be the permutation of all vertex-disjoint (RI , CJ)-path systems

(see Lemma 4.4.16). Then the quantum minor [I | J ] of MC is given by

[I | J ] = (−q)ℓ(σ(I,J))∑
P

w(P), (4.20)

where P runs over all vertex-disjoint (RI , CJ)-path systems in GC. In particular, if

there are no vertex-disjoint (RI , CJ)-path systems in GC, then [I | J ] = 0.

Proof. For ease of notation, let us take I = J = {1, . . . , t} (the proof for general I and

J is the same but the notation is more unwieldy). By the definition of the path matrix,

we have

[I | J ] =
∑

σ∈St

(−q)ℓ(σ)MC[1, σ(1)] · · ·MC[t, σ(t)]

=
∑

σ∈St

(−q)ℓ(σ)

 ∑
P1 : r1 =⇒ cσ(1)

w(P1)
 ∑

P2 : r2 =⇒ cσ(2)

w(P2)
 · · ·

 ∑
Pt : rt =⇒ cσ(t)

w(Pt)


=
∑
P

(−q)ℓ(σP )w(P),

where, in the final sum, P runs over all (RI , CJ)-path systems.

When N is the set of non-vertex-disjoint (RI , CJ)-path systems, we claim that

∑
P∈N

(−q)ℓ(σP )w(P) = 0. (4.21)

To show that (4.21) holds, we construct a fixed-point-free involution π : N → N which

satisfies

(−q)ℓ(σP )w(P) = −(−q)ℓ(σπ(P))w(π(P)) (4.22)

for every P ∈ N .
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Let P = (P1, . . . , Pt) ∈ N and let i be minimal such that Pi and Pi+1 share a vertex

(this i exists by Lemma 4.4.17). Let x be the last vertex shared by Pi and Pi+1 and let

K1 : ri =⇒ x and L1 : x =⇒ cσP (i) be subpaths of Pi so that Pi = K1L1; define K2

and L2 from Pi+1 similarly. For any j ∈ J1, tK, set

π(Pj) =



K1L2 j = i

K2L1 j = i + 1

Pj otherwise

(see Example 4.4.20 for an example of the action of π). Define π(P) to be the (RI , CJ)-

path system (π(P1), . . . , π(Pt)). This gives us a map π : N → N which is clearly an

involution and which clearly has no fixed points. In order to prove (4.22), we may

assume without loss of generality that σP(i) < σP(i + 1), so that σπ(P) = σP(i i + 1)

satisfies ℓ(σπ(P)) = ℓ(σP) + 1. Notice that because x is the last vertex shared by Pi

and Pi+1, the assumption σP(i) < σP(i + 1) forces L1 to start with a horizontal edge.

We claim that w(Pi)w(Pi+1) = qw(π(Pi))w(π(Pi+1)). There are two cases to consider:

(i) Suppose that L2 has a horizontal edge. Then

w(Pi)w(Pi+1) = w(K1)w(L1)w(K2)w(L2)

= qw(K1)w(K2)w(L1)w(L2) (Lemma 4.4.12)

= q2w(K1)w(K2)w(L2)w(L1) (Lemma 4.4.13)

= q2q−1w(K1)w(L2)w(K2)w(L1) (Lemma 4.4.12)

= qw(π(Pi))w(π(Pi+1)).
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(ii) Suppose that L2 consists of vertical edges. Then w(L2) = 1 and we have

w(Pi)w(Pi+1) = w(K1)w(L1)w(K2)w(L2)

= w(K1)w(L2)w(L1)w(K2)

= qw(K1)w(L2)w(K2)w(L1) (Lemma 4.4.12)

= qw(π(Pi))w(π(Pi+1)).

Hence we have

w(P) =
i−1∏

j=1
w(Pj)

w(Pi)w(Pi+1)
 t∏

j=i+2
w(Pj)


=
i−1∏

j=1
w(π(Pj))

 qw(π(Pi))w(π(Pi+1))
 t∏

j=i+2
w(π(Pj))


= qw(π(P)).

Now

(−q)ℓ(σP )w(P) = (−q)ℓ(σP )qw(π(P))

= −(−q)ℓ(σP )+1w(π(P))

= −(−q)ℓ(σπ(P))w(π(P)),

proving that π : N → N satisfies (4.22); the claim (4.21) follows immediately. Moreover,

the claim (4.21) immediately gives

[I | J ] =
∑
P

(−q)ℓ(σP )w(P),

where P runs over all vertex-disjoint (RI , CJ)-path systems in GC. Lemma 4.4.16 shows

that σP = σ(I,J) for all such P , giving the result. �
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Example 4.4.20. Below left is an example of a non-vertex-disjoint R({1,2},{1,3})-path

system P = (P1, P2) on the Cauchon graph of a Cauchon diagram. Below right is the

non-vertex-disjoint R({1,2},{1,3})-path system π(P) = (π(P1), π(P2)).

•

•

••

•

•

•

•

•

• •

•

• r1

• r2

•c1 •c3

x

P1

P2

P1 marked with straight lines. P2 marked with

zigzagging lines.

•

•

••

•

•

•

•

•

• •

•

• r1

• r2

•c1 •c3

x

π(P1)

π(P2)

π(P1) marked with straight lines. π(P2)

marked with zigzagging lines.

Example 4.4.21. Let c = d = 4, let λ = (4, 3, 3, 1), and let C be the Cauchon diagram

on Yλ from Example (4.3.5). Below are C and GC:

• •

• •

• • •

•

• r1

• r2

• r3

• r4

•c1

•c2 •c3

•c4

t1,4t−1
1,4t1,1

t−1
2,3t2,2 t2,3

t−1
3,2t3,1 t−1

3,3t3,2 t3,3

t4,1

The only vertex-disjoint R({1,4},{1,4})-path system in GC is that which is marked with

zigzagging lines above; this path system has weight t1,4t4,1 and has permutation (1, 2) ∈

S2, whose length is 1. Theorem 4.4.19 predicts that the quantum minor [14 | 14] of MC

is −qt1,4t4,1. Computing the quantum minor [14 |14] of MC directly, we indeed get

[14 | 14] = MC[1, 1]MC[4, 4]− qMC[4, 1]MC[1, 4] = 0− qt4,1t1,4 = −qt1,4t4,1.
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There are no vertex-disjoint R({2,3},{1,2})-path systems in GC, so that Theorem 4.4.19

predicts that the quantum minor [23 | 12] of MC is zero. Computing the quantum minor

[23 | 12] of MC directly, we indeed get

[23 | 12] = MC[2, 1]MC[3, 2]− qMC[3, 1]MC[2, 2]

= (t2,2t
−1
3,2t3,1 + t2,3t

−1
3,3t3,1)(t3,2)− q(t3,1)(t2,3t

−1
3,3t3,2 + t2,2)

= t2,2t
−1
3,2t3,1t3,2 + t2,3t

−1
3,3t3,1t3,2 − qt3,1t2,3t

−1
3,3t3,2 − qt3,1t2,2

= qt2,2t3,1 + qt3,1t2,3t
−1
3,3t3,2 − qt3,1t2,3t

−1
3,3t3,2 − qt3,1t2,2

= 0.

4.4.5 Pseudo quantum minors in H-prime ideals

Definition 4.4.22 (cf. Definition 3.1.7 of [8]). Let v ∈ WC be a vertex of a path

P : ri =⇒ cj in GC. Let e be the edge of P which ends at v and let f be the edge of P

which begins at v. Then we say that v is a Γ-turn of P (or that P has a Γ-turn at v)

if e is horizontal and f is vertical and that v is a Γ-turn of P (or that P has a Γ-turn

at v) if e is vertical and f is horizontal.

Proposition 4.4.23 (cf. Proposition 3.1.8 of [8]). Let P : ri =⇒ cj be a path in GC.

If v1, v2, . . . , vt is the sequence of all Γ-turns and Γ-turns in P , then va is a Γ-turn for

odd values of a and a Γ-turn for even values of a, t is odd, and

w(P ) = tv1t−1
v2 tv3 · · · t−1

vt−1tvt .

Proof. It is clear that va is a Γ-turn for a odd and a Γ-turn for a even. Since P ends

with a vertical edge, t must be odd. Consider the subpaths:

P1 : ri =⇒ v1, P2 : v1 =⇒ v2, . . . , Pt : vt−1 =⇒ vt, Pt+1 : vt =⇒ cj
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of P . For a ∈ J1, t + 1K even (i.e. for a = 2, 4, . . . , t − 1, t + 1), the path Pa consists

solely of vertical edges and hence w(Pa) = 1. It follows that

w(P ) = w(P1)w(P2) · · ·w(Pt)w(Pt+1)

= w(P1)w(P3) · · ·w(Pt−2)w(Pt)

= tv1w(P3) · · ·w(Pt−2)w(Pt) (by Proposition 4.4.9(4)).

However, P3, . . . Pt−2, Pt are internal horizontal paths in GC and by Proposition 4.4.9(3),

their respective weights are t−1
v2 tv3 , . . . , t−1

vt−3tvt−2 , t−1
vt−1tvt . The result follows. �

Notation 4.4.24. Let M be any c× d matrix with entries from Z. Then tM denotes

the element ∏(i,j)∈WC t
M [i,j]
i,j of B, where the factors appear in lexicographical order.

Theorem 4.4.25 (cf. Theorem 4.1.9 [8]). Let I ⊆ J1, cK and J ⊆ J1, dK have the same

cardinality. Then the quantum minor [I | J ] of MC is zero if and only if there does not

exist a vertex-disjoint (RI , CJ)-path system in the Cauchon graph GC.

Proof. For ease of notation, let us take I = J = {1, . . . , t} (the proof for general I and

J is the same but notationally more unwieldy).

By Proposition 4.4.23, the weight of any vertex-disjoint (RI , CJ)-path system P is

equal to qαtMP for some integer α, where the c× d matrix MP = (MP [i, j])(i,j)∈JcK×JdK

is defined as follows:

MP [i, j] =



1 if there is a path in P with a Γ-turn at (i, j);

−1 if there is a path in P with a Γ-turn at (i, j);

0 otherwise.

Let P = (P1, . . . , Pt) and Q = (Q1, . . . , Qt) be vertex-disjoint (RI , CJ)-path systems

satisfying MP = MQ. Fix any i ∈ J1, tK and let (i, ℓ) be the first vertex where Pi turns

and (i, ℓ′) be the first vertex where Qi turns. Suppose that ℓ′ > ℓ, so that Pi goes

horizontally straight through (i, ℓ′) and in particular, (i, ℓ′) is a vertex of Pi but neither
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a Γ-turn nor a Γ-turn of Pi. However, since (i, ℓ′) is a Γ-turn of Qi and MP = MQ,

there must be a path P ̸= Pi in P which has a Γ-turn at (i, ℓ′), which is a contradiction

since P is a vertex-disjoint path system. Hence ℓ′ ≯ ℓ. A similar argument shows that

ℓ ≯ ℓ′, so that ℓ = ℓ′ i.e. the first turning vertices of Pi and Qi coincide. A similar

argument can be applied to the remaining turning vertices (if any) of Pi and Qi to

show that Pi and Qi have the same turning vertices and hence Pi = Qi. Since i ∈ J1, tK

was chosen arbitrarily, we conclude that P = Q.

We have shown that if P = (P1, . . . , Pt) and Q = (Q1, . . . , Qt) are distinct vertex-

disjoint (RI , CJ)-path systems, then MP ≠ MQ and hence MP [i, j] ̸= MQ[i, j] for some

(i, j) ∈ WC.

It follows easily that if there exists at least one vertex-disjoint (RI , CJ)-path system

in the Cauchon graph GC, then [I | J ] is a nontrivial linear combination of pairwise

distinct lex-ordered monomials in the t±1
i,j ((i, j) ∈ WC) and hence (since the lex-ordered

monomials in the t±1
i,j ((i, j) ∈ WC) form a basis for B) [I |J ] ̸= 0. Theorem 4.4.19 gives

the converse. �

Before reading the proof of the following theorem, the reader might want to review

the notation and the result of Corollary 4.3.8.

Theorem 4.4.26 (cf. Lemma 5.4 [7]). For each (i, j) ∈ Yλ, MC[i, j] is the canonical

image in Oq(Mλ
m,n(K))/P of Xi,j, namely MC[i, j] = χ

(c,λc+1)
i,j . For each (i, j) ∈

J1, cK× J1, dK \ Yλ, MC[i, j] is zero.

Proof. It is obvious that for each (i, j) ∈ J1, cK × J1, dK \ Yλ, MC[i, j] is zero, so for

the rest of this proof all boxes shall be in Yλ. For any (a, b), (i, j) ∈ Yλ, let us define

M
(a,b)
C [i, j] to be the sum of the weights of all paths P : ri =⇒ cj in GC which have no

Γ-turn after (a, b) with respect to the lexicographical order (i.e. whose Γ-turns v all

satisfy v ≤lex (a, b)). It will suffice to show that for any (a, b), (i, j) ∈ Yλ, we have

M
(a,b)
C [i, j] = χ

(a,b)+

i,j ; (4.23)
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setting (a, b) = (c, λc) in (4.23) gives the result. We prove the claim (4.23) by induction

on (a, b). If (i, j) ∈ BC, then there is no path P : ri =⇒ cj in GC which has no

Γ-turn after (1, 1) and we have M (1,1)[i, j] = 0 = ti,j = χ
(1,1)+

i,j . If (i, j) ∈ WC, then the

only path in GC from ri to cj which has no Γ-turn after (1, 1) is the path which runs

horizontally from ri to (i, j) and then vertically from (i, j) to cj; this path has weight

ti,j = χ
(1,1)+

i,j by Proposition 4.4.9(4), so that M (1,1)[i, j] = χ
(1,1)+

i,j .

Let (a, b) ∈ Eλ \ {(c, λc + 1)} be such that

M
(a,b)−

C [i, j] = χ
(a,b)
i,j (4.24)

for all (i, j) ∈ Yλ. For any (i, j) ∈ Yλ, let us define Fi,j to be the set of all paths in GC

from ri to cj which have a Γ-turn at (a, b) and no later Γ-turn; it will suffice to show

that for each (i, j) ∈ Yλ, χ
(a,b)+

i,j is obtained from χ
(a,b)
i,j by adding ∑P ∈Fi,j

w(P ).

We may assume that i < a, j < b, and (a, b) ∈ WC (since otherwise Fi,j is empty

and Corollary 4.3.8 gives χ
(a,b)+

i,j = χ
(a,b)
i,j ). By Corollary 4.3.8, we have χ

(a,b)+

i,j =

χ
(a,b)
i,j + χ

(a,b)
i,b t−1

a,bta,j, so that it will suffice to show that

∑
P ∈Fi,j

w(P ) = χ
(a,b)
i,b t−1

a,bta,j. (4.25)

There are two cases to consider:

(a) Suppose that (a, j) ∈ BC. Then Fi,j is empty and ta,j = 0; (4.25) follows immedi-

ately.

(b) Suppose that (a, j) ∈ WC. Let Fi be the set of all paths in GC from ri to cb

which have no Γ-turn after (a, b)− = (a, b− 1), so that ∑Q∈Fi
w(Q) = M

(a,b)−

C [i, b]

and hence ∑Q∈Fi
w(Q) = χ

(a,b)
i,b by the induction hypothesis (4.24). Let the path

Kj : (a, b) =⇒ cj be given by concatonating the horizontal path (a, b) =⇒ (a, j)

with the vertical path (a, j) =⇒ cj. Proposition 4.4.9(3) gives w(Kj) = t−1
a,bta,j.

Let Lb be the vertical path from (a, b) to cb. For any path P ∈ Fi,j, the subpath
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P ′ : ri =⇒ (a, b) of P is such that P = P ′Kj, P ′Lb ∈ Fi, and w(P ′Lb) = w(P ′).

Notice that each path in Fi has the form P ′Lb for a unique path P ∈ Fi,j.

We have

∑
P ∈Fi,j

w(P ) =
∑

P ∈Fi,j

w(P ′)w(Kj)

=
 ∑

P ∈Fi,j

w(P ′Lb)
w(Kj)

=
∑

Q∈Fi

w(Q)
w(Kj)

= χ
(a,b)
i,b w(Kj)

= χ
(a,b)
i,b t−1

a,bta,j,

establishing (4.25).

The proof is complete. �

As an immediate corollary of Theorems 4.4.25 and 4.4.26, we get the main result of

this section, which is a generalisation of the main result of [7]:

Theorem 4.4.27 (cf. Theorem 5.6 of [7]). Let P be an H-prime ideal of the partition

subalgebra Oq(Mλ
m,n(K)) corresponding to a Cauchon diagram C on the Young diagram

Yλ and let I ⊆ J1, cK and J ⊆ J1, dK have the same cardinality. Then the pseudo

quantum minor [I | J ] of Oq(Mλ
m,n(K)) belongs to P if and only if there exists no

vertex-disjoint (RI , CJ)-path system in the Cauchon graph GC of C.



Chapter 5

Quantum Plücker coordinates in

H-prime ideals of Oq(Gm,n(K))

The material of this chapter comes from joint work with Prof. Stéphane Launois and

Prof. Tom Lenagan. Sections 5.1, 5.2, and 5.3 consist of known results, some of which

are rewritten in a fashion suitable for the purposes of the rest of the chapter; Sections

5.1, 5.2, and 5.3 are designed to set up Section 5.4, which consists of original material.

Sections 5.5 and 5.6 contextualise the results of Section 5.4.

5.1 The quantum Grassmannian Oq(Gm,n(K))

Let us fix positive integers m < n. Consider the Grassmannian Gm,n(K), which

consists of the m-dimensional subspaces of Kn; this is a projective variety whose

homogeneous coordinate ring O(Gm,n(K)) can be constructed as follows: the coordinate

ring O(Mm,n(K)) of the affine variety of m × n matrices (which is simply the affine

space Kmn) is the polynomial algebra in the mn indeterminates Xi,j (i = 1, . . . , m, j =
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1, . . . , n), which we can arrange in a matrix


X1,1 · · · X1,n

... . . . ...

Xm,1 · · · Xm,n


and the homogeneous coordinate ring O(Gm,n(K)) of the Grassmannian Gm,n(K) is

the subalgebra of O(Mm,n(K))) generated by the maximal minors (namely the m×m

minors) of the matrix above. Analogously, the quantised homogeneous coordinate ring of

the Grassmannian Gm,n(K) (informally known as the (m×n) quantum Grassmannian),

denoted by Oq(Gm,n(K)), is defined as the subalgebra of Oq(Mm,n(K)) generated by

the maximal quantum minors of the matrix


X1,1 · · · X1,n

... . . . ...

Xm,1 · · · Xm,n

 (5.1)

of canonical generators of Oq(Mm,n(K)). By [21, Theorem 1.1], the quantum Grass-

mannian Oq(Gm,n(K)) is a noetherian domain.

Since an m×m quantum minor of the matrix (5.1) must involve each of the m rows

of (5.1), specifying a maximal quantum quantum minor of (5.1) requires one only

to specify m of the n columns. As such, the generators of Oq(Gm,n(K)) are written

as [γ1 · · · γm] where 1 ≤ γ1 < γ2 < · · · < γm ≤ n; [γ1 · · · γm] denotes the quantum

minor [1 · · ·m | γ1 · · · γm] of Oq(Mm,n(K)). These generators of Oq(Gm,n(K)) are

called its quantum Plücker coordinates and the set of quantum Plücker coordinates of

Oq(Gm,n(K)) is denoted Πm,n (we shall simply write Π, since m and n are understood).

We shall often identify Π with the set of all m-element subsets of J1, nK in the obvious

way.

There is a natural partial order on Π given by

[γ1 · · · γm] ≤ [γ′
1 · · · γ′

m] ⇐⇒ (γi ≤ γ′
i for all i ∈ J1, mK). (5.2)
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Coming from the column action of (K×)m+n by automorphisms on Oq(Mm,n(K)) (see

(2.10)), there is an action of the algebraic torus H = (K×)n by automorphisms on

Oq(Gm,n(K)) defined as follows: for any [γ1 · · · γm] ∈ Π and any (α1, . . . , αn) ∈ (K×)n,

(α1, . . . , αn) · [γ1 · · · γm] = αγ1 · · ·αγm [γ1 · · · γm]. (5.3)

By [21, Corollary 2.1], the algebra Oq(Gm,n(K)) has a K-basis consisting of products

of quantum Plücker coordinates. Since quantum Plücker coordinates are clearly

H-eigenvectors with rational eigenvalues, it follows easily that the action of H on

Oq(Gm,n(K)) is rational.

The goal of this chapter is to develop a graph-theoretic method for deciding whether

or not a given quantum Plücker coordinate belongs to a given H-prime ideal of

Oq(Gm,n(K)). In fact, given an H-prime ideal J of Oq(Gm,n(K)) and a quantum

Plücker coordinate α, we shall show that the question of whether or not α belongs to J

is equivalent to the question of whether or not a certain pseudo quantum minor belongs

to a certain H-prime ideal of a certain partition subalgebra of Oq−1(Mm,n−m(K)); by

Theorem 4.4.27, the latter is a question which we can answer.

5.2 Framing the question

For any γ ∈ Π, set Πγ = {α ∈ Π | α � γ}. By [24, Theorem 5.1], for every

P ∈ SpecOq(Gm,n(K)) except the irrelevant ideal ⟨Π⟩, there is a unique γ ∈ Π such

that γ /∈ P and Πγ ⊆ P . For any γ ∈ Π, let (H−) Specγ Oq(Gm,n(K)) denote the

subspace of SpecOq(Gm,n(K)) consisting of all those (H−)prime ideals J such that

γ /∈ J and Πγ ⊆ J ; we have

(H−) SpecOq(Gm,n(K)) =
⊔

γ∈Π
(H−) SpecγOq(Gm,n(K)) ⊔ ⟨Π⟩. (5.4)

Convention 5.2.1. For the rest of this chapter, let us fix some γ = [γ1 · · · γm] ∈ Π.
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If J ∈ H −Specγ Oq(Gm,n(K)), then by the definition of H −Specγ Oq(Gm,n(K)), we

know that γ /∈ J and that γ′ ∈ J for all γ′ ∈ Π such that γ′ � γ. What remains is to

decide which other quantum Plücker coordinates belong to J i.e. given α ∈ Π such that

α > γ, we seek to decide whether or not α belongs to J . The key to achieving this goal

is to exploit the correspondence (established in [24]) between H − Specγ Oq(Gm,n(K))

and the H-spectrum of a certain partition subalgebra of Oq−1Mm,n−m(K). We shall

describe this correspondence in the next section.

5.3 The correspondence of Launois, Lenagan, and

Rigal

5.3.1 Noncommutative dehomogenisation

The process of noncommutative dehomogenisation, introduced in [21, Section 3], is

the foundation for the construction of Launois, Lenagan, and Rigal [24] of a bi-

increasing one-to-one correspondence between H − Specγ(Oq(Gm,n(K))) and H −

Spec(Oq−1(Mλ
m,n−m(K))), where λ is a partition associated to γ.

We review here the general theory on noncommutative dehomogenisation from [21,

Section 3]. Let R = ⊕
i∈N Ri be an N-graded K-algebra, let x be a homogeneous normal

regular element of degree one, and set S := R[x−1]. For i < 0, define Ri := 0. For i ∈ Z

and j ∈ N, define Rix
−j to be the K-subspace of S consisting of all those elements of S

which can be expressed in the form rx−j with r ∈ Ri. For l ∈ Z, set Sl := ∑∞
t=0 Rl+tx

−t,

so that since Rix
−j ⊆ Ri+1x

−(j+1) for all i and j, we have

Sl =
∞⋃

t=0
Rl+tx

−t. (5.5)

We get a grading S = ⊕
l∈Z Sl on S.

Definition 5.3.1. Let R = ⊕
i∈N Ri be an N-graded K-algebra and let x be a homoge-

neous regular normal element of R of degree one. The noncommutatuve dehomogenisa-
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tion of R at x, written Dhom(R, x), is the subalgebra S0 = ∑∞
t=0 Rtx

−t = ⋃∞
t=0 Rtx

−t

of the Z-graded algebra R[x−1] = S = ⊕
l∈Z Sl.

Denote by σ the conjugation automorphism of S given by σ(s) = xsx−1 for all s ∈ S.

It is easy to check that σ restricts to an automorphism of Dhom(R, x) = S0 (which we

shall abusively denote by σ). By [21, Lemma 3.1], the inclusion Dhom(R, x) ↪→ R[x−1]

extends to an isomorphism

Dhom(R, x)[y±1; σ]
∼=−→ R[x−1]

which sends y to x.

5.3.2 Quantum Schubert varieties and quantum Schubert cells

By [26, Corollary 3.1.7], the ideal ⟨Πγ⟩ of Oq(Gm,n(K)) is completely prime, so that

the noetherian algebra S(γ) := Oq(Gm,n(K))/⟨Πγ⟩ is a domain. It is well known that

Oq(Gm,n(K)) is an N-graded K-algebra with each quantum Plücker coordinate being

homogeneous of degree 1; since the elements of Πγ are homogeneous, there is an induced

N-grading on S(γ). By [24, Remark 1.4], γ ∈ S(γ) is a homogeneous regular normal

element of degree one, so that we may dehomogenise S(γ) at γ (in fact this follows

from a more general result of Lenagan and Rigal [25, Lemma 1.2.1]).

Definition 5.3.2. The algebra S(γ) := OqGm,n(K)/⟨Πγ⟩ is called the quantum Schu-

bert variety associated to γ. The algebra So(γ) := Dhom(S(γ), γ) is called the quantum

Schubert cell associated to γ.

Remark 5.3.3. We shall later describe an isomorphism (established in [24, The-

orem 4.7]), between the quantum Schubert cell So(γ) and a partition subalgebra of

Oq−1(Mm,n−m(K)).

Definition 5.3.4. The ladder associated to γ is denoted by Lγ and defined by

Lγ = {(i, j) ∈ J1, mK× J1, nK | j > γm+1−i and j ̸= γl for all l ∈ J1, mK}.
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A generating set for the quantum Schubert cell So(γ) was described in [24, Proposition

4.4]: if, for (i, j) ∈ Lγ, one defines mi,j := [{γ1, . . . , γm} \ {γm+1−i} ⊔ {j}], then the

quantum Schubert cell So(γ) is generated by {mi,j γ̄
−1 | (i, j) ∈ Lγ}. Let us set

m̃i,j := mi,j γ̄
−1 for all (i, j) ∈ Lγ.

Since ⟨Πγ⟩ is clearly an H-invariant ideal of Oq(Gm,n(K)), the action of H on

Oq(Gm,n(K)) descends to S(γ). Since γ is an H-eigenvector of S(γ), the action of H

on S(γ) extends to S(γ)[γ−1]. This action of H on S(γ)[γ−1] restricts to So(γ); indeed

for any m̃i,j with (i, j) ∈ Lγ, and any (α1, . . . , αn) ∈ H, an elementary calculation

shows that

(α1, . . . , αn) · m̃i,j = α−1
γm+1−i

αjm̃i,j. (5.6)

Recall from the general theory of noncommutative dehomogenisation that when σ is

the restriction to So(γ) of the automorphism of S(γ)[γ−1] given by s 7→ γsγ−1 for all

s ∈ S(γ)[γ−1], the inclusion So(γ) ↪→ S(γ)[γ−1] extends to an isomorphism

So(γ)[y±1; σ]→ (Oq(Gm,n(K))/⟨Πγ⟩)[γ−1] (5.7)

which sends y to γ. Notice here that by [26, Lemma 3.1.4(v)], the automorphism σ

multiplies each m̃i,j ((i, j) ∈ Lγ) by q. The action of H on (Oq(Gm,n(K))/⟨Πγ⟩)[γ−1]

passes to So(γ)[y±1; σ] via the isomorphism (5.7) and this action of H on So(γ)[y±1; σ]

restricts to the action of H on So(γ) described in (5.6). In particular, the isomorphism

(5.7) is H-equivariant where H acts on So(γ) as in (5.6) and each (α1, . . . , αn) ∈ H

acts on y as follows

(α1, . . . , αn) · y = αγ1 · · ·αγmy (5.8)

(cf. (5.3)).

5.3.3 Quantum ladder matrix algebras

It was shown in [24] that the quantum Schubert cell So(γ) can be identified with

a well-behaved subalgebra of Oq(Mm,n(K)), which can in turn be identified with a
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partition subalgebra of Oq−1(Mm,n−m(K)). We describe these isomorphisms in detail

in this section.

Definition 5.3.5. The quantum ladder matrix algebra associated to γ is the subal-

gebra of Oq(Mm,n(K)) generated by all those Xi,j with (i, j) ∈ Lγ; it is denoted by

Oq(Mm,n,γ(K)).

By [24, Lemma 4.6], there is an isomorphism

So(γ)
∼=−→ Oq(Mm,n,γ(K))

m̃i,j 7→ Xi,j.
(5.9)

One may obtain the generators of Oq(Mm,n,γ(K)) as follows. Consider the matrix


X1,1 · · · X1,n

... . . . ...

Xm,1 · · · Xm,n

 (5.10)

of canonical generators of Oq(Mm,n(K)) and recall that γ = [γ1 · · · γm]. For each

i ∈ J1, mK, remove the ith-last entry of the γth
i column of (5.10) (namely the entry

Xm+1−i,γi
) and replace it with a bullet. For each bullet, replace all matrix entries

which are to its left and all matrix entries which are below it with stars. Then the

quantum ladder matrix algebra Oq(Mm,n,γ(K)) is the subalgebra of Oq(Mm,n(K)) which

is generated by the entries of the matrix (5.10) which survive this process (i.e. which

are not replaced by a bullet or a star).

Example 5.3.6. Let γ be the maximal quantum minor [1347] of Oq(G4,8(K)) and

consider the matrix


X1,1 X1,2 X1,3 X1,4 X1,5 X1,6 X1,7 X1,8

X2,1 X2,2 X2,3 X2,4 X2,5 X2,6 X2,7 X2,8

X3,1 X3,2 X3,3 X3,4 X3,5 X3,6 X3,7 X3,8

X4,1 X4,2 X4,3 X4,4 X4,5 X4,6 X4,7 X4,8


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of canonical generators of Oq(M4,8(K)). Applying the prescribed procedure, we are left

with 

∗ ∗ ∗ ∗ ∗ ∗ • X1,8

∗ ∗ ∗ • X2,5 X2,6 ∗ X2,8

∗ ∗ • ∗ X3,5 X3,6 ∗ X3,8

• X4,2 ∗ ∗ X4,5 X4,6 ∗ X4,8


(5.11)

The quantum ladder matrix algebra Oq(M4,8,γ(K)) is the subalgebra of Oq(M4,8(K))

generated by those Xi,j appearing in (5.11). After rotating (5.11) through 180◦ and

deleting the columns containing bullets, notice that the generators of Oq(M4,8,γ(K)) lie

in the Young diagram below

(5.12)

In fact it turns out that the quantum ladder matrix algebra Oq(M4,8,γ(K)) is isomorphic

to the partition subalgebra of Oq−1(M4,4(K)) corresponding to the partition whose Young

diagram is (5.12).

Notation 5.3.7. Notice that for each i ∈ J1, mK, γi− i = |{a ∈ J1, nK \ γ | a < γi}|. It

follows easily that if we define λi = n−m−(γi−i) for each i ∈ J1, mK, then (λ1, . . . , λm)

is a partition with n−m ≥ λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0. Let c be as large as possible such

that λc ̸= 0 and denote by λ the partition (λ1, . . . , λc). Recall from Definition 4.1.2,

that Oq−1(Mλ
m,n−m(K)) denotes the partition subalgebra of Oq−1(Mm,n−m(K)) associated

to the partition λ. Recall also that we denote by Yλ the Young diagram corresponding

to λ.

Let {a1 < · · · < an−m} = J1, nK \ γ and notice that all elements of Lγ take the form

(i, aj) for some i ∈ J1, mK and some j ∈ J1, n −mK. The following result appears in

the proof of [24, Theorem 4.7]. We write down the maps explicitly here as we shall

need them.
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Lemma 5.3.8. There is an isomorphism

f : Oq(Mm,n,γ(K))
∼=−→ Oq−1(Mλ

m,n−m(K))

such that

• f(Xi,aj
) = Xm+1−i,n−m+1−j for each (i, aj) ∈ Lγ;

• f−1(Xi,j) = Xm+1−i,an−m+1−j
for each (i, j) ∈ Yλ.

Proof. By the proof of [16, Corollary 5.9], there is an isomorphism Oq(Mn(K))
∼=−→

Oq−1(Mn(K)) which sends each Xi,j to Xn+1−i,n+1−j (this isomorphism can be thought

of as rotating the matrix of canonical generators for Oq(Mn(K)) through 180◦).

There is an isomorphism δ : Oq(Mm,n(K))
∼=−→ Oq−1(Mm,n(K)) such that for each

(i, j) ∈ J1, mK × J1, nK, δ(Xi,j) = Xm+1−i,n+1−j (this isomorphism can be thought

of as rotating the matrix of canonical generators for Oq(Mm,n(K)) through 180◦).

This isomorphism is constructed by identifying Oq(Mm,n(K)) with the subalgebra of

Oq(Mn(K)) generated by the last m rows of the matrix of canonical generators for

Oq(Mn(K)), identifying Oq−1(Mm,n(K)) with the subalgebra of Oq−1(Mn(K)) generated

by the first m rows of the matrix of canonical generators for Oq−1(Mn(K)), and applying

the isomorphism described in the previous paragraph.

There is an isomorphism δ(Oq(Mm,n,γ(K)))
∼=−→ Oq−1(Mλ

m,n−m(K)) which sends each

δ(Xi,aj
) = Xm+1−i,n+1−aj

((i, aj) ∈ Lγ) to Xm+1−i,n−m+1−j. Composing this isomor-

phism with δ (or rather the restriction of δ to Oq(Mm,n,γ(K))) gives the desired

isomorphism f .

�

The isomorphism f is simpler than the notation of Lemma 5.3.8 might make it seem.

The following example should illuminate the idea.

Example 5.3.9. In the situation of Example 5.3.6, where γ is the quantum Plücker

coordinate [1347] of Oq(G4,8(K)), the generators of the quantum ladder matrix algebra
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Oq(M4,8,γ(K)) are those appearing below



∗ ∗ ∗ ∗ ∗ ∗ • X1,8

∗ ∗ ∗ • X2,5 X2,6 ∗ X2,8

∗ ∗ • ∗ X3,5 X3,6 ∗ X3,8

• X4,2 ∗ ∗ X4,5 X4,6 ∗ X4,8


.

The action of the isomorphism δ : Oq(M4,8(K))
∼=−→ Oq−1(M4,8(K)) may be understood

as rotating this picture through 180◦:



X1,1 ∗ X1,3 X1,4 ∗ ∗ X1,7 •

X2,1 ∗ X2,3 X2,4 ∗ • ∗ ∗

X3,1 ∗ X3,3 X3,4 • ∗ ∗ ∗

X4,1 • ∗ ∗ ∗ ∗ ∗ ∗


(5.13)

Let λ be the partition associated to γ as in Notation 5.3.7, whose Young diagram is

The subalgebra of Oq−1(M4,8(K)) generated by the Xi,j appearing in (5.13) is clearly

isomorphic to the partition subalgebra Oq−1(Mλ
4,4(K)) of Oq−1(M4,4(K)).

The following is a more explicit statement of [24, Theorem 4.7].

Theorem 5.3.10. There is an isomorphism θ : So(γ)
∼=−→ Oq−1(Mλ

m,n−m(K)) such that

• θ(m̃i,aj
) = Xm+1−i,n−m+1−j for each (i, aj) ∈ Lγ;

• θ−1(Xi,j) = ˜mm+1−i,an−m+1−j
for each (i, j) ∈ Yλ.

Proof. When g is the isomorphism So(γ)
∼=−→ Oq(Mm,n,γ(K)) given in (5.9) and f is the

isomorphism Oq(Mm,n,γ(K))
∼=−→ Oq−1(Mλ

m,n−m(K)) given in Lemma 5.3.8, the desired

isomorphism θ is given by f ◦ g. �
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We may pass the action of H on So(γ) through θ to get an action of H on

Oq−1(Mλ
m,n−m(K)) described by

(α1, . . . , αn) ·Xi,j = α−1
γi

αan−m+1−j
Xi,j (5.14)

for all (α1, . . . , αn) ∈ H and all (i, j) ∈ Yλ. With this action of H on Oq−1(Mλ
m,n−m(K)),

the isomorphism θ is H-equivariant.

BWARNINGB Because it allows the isomorphism θ to be H-equivariant, the H-

action on Oq−1(Mλ
m,n−m(K)) which we shall use is that given in (5.14); this is NOT the

usual action of H on Oq−1(Mλ
m,n−m(K)) (which is given in (4.1)).

In spite of the warning above, the following lemma shows that in fact we may use

the term H-prime ideal of Oq−1(Mλ
m,n−m(K)) without ambiguity (cf. commentary in

[24] before Theorem 4.8).

Lemma 5.3.11. The same subsets (and in particular the same prime ideals) of

Oq−1(Mλ
m,n−m(K)) are invariant under H whether one uses the action of H described

in (5.14) or that described in (4.1).

Proof. Let us use “·” to denote the action of H on Oq−1(Mλ
m,n−m(K)) transferred

through θ from the action on So(γ) (described in (5.14)), let us use “#” to denote

the standard action of H on Oq−1(Mλ
m,n−m(K)) (described in (4.1)), and let us fix any

α = (α1, . . . , αn) ∈ H.

Define α′ = (α′
1, . . . , α′

n), α′′ = (α′′
1, . . . , α′′

n) ∈ H by α′
i = α−1

γi
for all i ∈ J1, mK,

α′
m+j = αan−m+1−j

for all j ∈ J1, n−mK, α′′
γi

= α−1
i for all i ∈ J1, mK and α′′

an−m+1−j
=

αm+j for all j ∈ J1, n−mK.

One checks easily that if (i, j) ∈ Yλ, then α ·Xi,j = α′#Xi,j and α#Xi,j = α′′ ·Xi,j.

Since these Xi,j generate Oq−1(Mλ
m,n−m(K)), we have α · x = α′#x and α#x = α′′ · x

for all x ∈ Oq−1(Mλ
m,n−m(K)). The result follows.

�
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5.3.4 The correspondence of Launois, Lenagan, and Rigal

Recall that we have set {a1 < · · · < an−m} = J1, nK \ γ and that all elements of Lγ

take the form (i, aj) for some i ∈ J1, mK and some j ∈ J1, n−mK.

When σ is the automorphism of Oq−1(Mλ
m,n−m(K)) which multiplies each Xi,j ((i, j) ∈

Yλ) by q, the H-equivariant isomorphism θ : So(γ)
∼=−→ Oq−1(Mλ

m,n−m(K)) (from Theorem

5.3.10) and the H-equivariant dehomogenisation isomorphism

So(γ)[y±1; σ]
∼=−→ (Oq(Gm,n(K))/⟨Πγ⟩)[γ−1]

given in (5.7) induce an H-equivariant isomorphism

Φ: Oq−1(Mλ
m,n−m(K))[y±1; σ]

∼=−→ (Oq(Gm,n(K))/⟨Πγ⟩)[γ−1]

Xi,j 7→ ˜mm+1−i,an−m+1−j
((i, j) ∈ Yλ)

y 7→ γ.

(5.15)

whose inverse we shall denote by Ψ.

Remark 5.3.12. Recall that the dehomogenisation isomorphism So(γ)[y±1; σ]
∼=−→

(Oq(Gm,n(K))/⟨Πγ⟩)[γ−1] extends the inclusion So(γ) ↪→ (Oq(Gm,n(K))/⟨Πγ⟩)[γ−1], so

that for any x ∈ So(γ), we have Ψ(x) = θ(x) ∈ Oq−1(Mλ
m,n−m(K)).

By [24, Theorem 5.4], there is a bi-increasing bijection

ξ : H − SpecγOq(Gm,n(K))
∼=−→ H − SpecOq−1(Mλ

m,n−m(K)) (5.16)

such that for any J ∈ H − SpecγOq(Gm,n(K)),

ξ(J) = Ψ(J [γ−1]) ∩ Oq−1(Mλ
m,n−m(K))
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and for any K ∈ H − SpecOq−1(Mλ
m,n−m(K)), ξ−1(K) is the preimage in Oq(Gm,n(K))

of

Φ
⊕

i∈Z
Kyi

 ∩ (Oq(Gm,n(K))/⟨Πγ⟩) .

Recall the one-to-one correspondence (4.17) (first established in [24, Theorem 3.5])

between the H-prime ideals of Oq−1(Mλ
m,n−m(K)) and the Cauchon diagrams on the

Young diagram Yλ. Composing this correspondence with ξ gives the one-to-one

correspondence

H − Specγ Oq(Gm,n(K))←→ Cauchon diagrams on Yλ (5.17)

which was established in [24, Corollary 5.5]: any J ∈ H − Specγ Oq(Gm,n(K)) corre-

sponds to the Cauchon diagram of the H-prime ideal ξ(J) of Oq−1(Mλ
m,n−m(K)) and

any Cauchon diagram C on the Young diagram Yλ corresponds to the image under ξ−1

of the H-prime ideal of Oq−1(Mλ
m,n−m(K)) which has Cauchon diagram C.

5.4 Exploiting the correspondence of Launois, Lena-

gan, and Rigal

Let us fix any J ∈ H−Specγ Oq(Gm,n(K)) and let us denote by C the Cauchon diagram

on Yλ which corresponds to J under (5.17). Let us also fix any α ∈ Π which satisfies

α > γ. Notice that there exist 1 ≤ i1 < · · · < it ≤ m and 1 ≤ j1 < · · · < jt ≤ n−m

such that ajl
> γil

for all l = 1, . . . , t and α = [(γ \ {γi1 , . . . , γit}) ⊔ {aj1 , . . . , ajt}].

Remark 5.4.1. Recall that by the definition of H − Specγ Oq(Gm,n(K)) (see the

beginning of Section 5.2), the question of whether or not a given quantum Plücker

coordinate belongs to J is settled trivially unless that quantum Plücker coordinate is

strictly greater than γ with respect to the partial order (5.2).

Notice that when h0 = (α1, . . . , αn) ∈ H is such that αi = q2 if i /∈ {γ1, . . . , γm}

and αi = q otherwise, the isomorphism σ of Oq−1(Mλ
m,n−m(K)) (which multiplies each
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Xi,j ((i, j) ∈ Yλ) by q) coincides with the action of h0. Moreover h0 · y = qmy by

(5.8). Hence the algebra Oq−1(Mλ
m,n−m(K))[y±1; σ], along with its H action, satisfies

[23, Hypothesis 2.1]. We shall use this fact in the proof of the following theorem.

Proposition 5.4.2. The condition that α belongs to J is equivalent to the condition

that Ψ(ᾱγ̄−1) belongs to ξ(J).

Proof. By [23, Lemma 2.2], we have ⊕i∈Z ξ(J)yi = Ψ((J/⟨Πγ⟩)[γ−1]), so that the

isomorphism Ψ induces an isomorphism

(Oq(Gm,n(K))/⟨Πγ⟩)[γ−1]
(J/⟨Πγ⟩)[γ−1]

∼=−→
Oq−1(Mλ

m,n−m(K))[y±1; σ]⊕
i∈Z ξ(J)yi

,

which in turn induces an isomorphism

Ψ: Oq(Gm,n(K))
J

[γ−1]
∼=−→
Oq−1(Mλ

m,n−m(K))[y±1; σ]⊕
i∈Z ξ(J)yi

.

We have α ∈ J if and only if ᾱγ̄−1 = 0 in (Oq(Gm,n(K))/J)[γ̄−1], which is true if and

only if Ψ(ᾱγ̄−1) = 0. Since

Ψ(ᾱγ̄−1) = Ψ(ᾱγ̄−1) ∈ Oq−1(Mλ
m,n−m(K))[y±1; σ]/

⊕
i∈Z

ξ(J)yi,

we have α ∈ J if and only if Ψ(ᾱγ̄−1) ∈ ⊕i∈Z ξ(J)yi. However the element ᾱγ̄−1 of

(Oq(Gm,n(K))/⟨Πγ⟩)[γ−1] in fact belongs to So(γ), so that Ψ(ᾱγ̄−1) ∈ Oq−1(Mλ
m,n−m(K))

by Remark 5.3.12; hence α ∈ J if and only if

Ψ(ᾱγ̄−1) ∈
⊕

i∈Z
ξ(J)yi

 ∩ Oq−1(Mλ
m,n−m(K)) = ξ(J).

�

For the proof of the following theorem, we shall need a set of relations, known to

hold in quantum Grassmannians, called the generalised quantum Plücker relations. We

shall also need a version of the quantum Muir Law of extensible minors.



5.4 Exploiting the correspondence of Launois, Lenagan, and Rigal 103

Quantum Muir Law (adapted from [26, Proposition 1.3]): Let r be a positive

integer. For s ∈ J1, rK, let Is, Js be m-element subsets of J1, nK and let cs ∈ K be such

that ∑r
s=1 cs[Is][Js] = 0 in Oq(Gm,n(K)). Suppose that D is a subset of J1, nK such that

(⋃r
s=1 Is) ∪ (⋃r

s=1 Js) does not intersect D. Then in Oq(Gm+|D|,n(K)), we have

r∑
s=1

cs[Is ⊔D][Js ⊔D] = 0. (5.18)

Generalised quantum Plücker relations [21, Theorem 2.1]: Let J1, J2, K ⊆ J1, nK

be such that |J1|, |J2| ≤ m and |K| = 2m− |J1| − |J2| > m. Then

∑
K′⊔K′′=K

(−q)ℓ(J1;K′)+ℓ(K′;K′′)+ℓ(K′′;J2)[J1 ⊔K ′][K ′′ ⊔ J2] = 0, (5.19)

where for any two sets I, J of integers, ℓ(I; J) denotes the cardinality of the set

{(i, j) ∈ I × J | i > j}.

Before reading the following proof, the reader might want to revisit the construction,

given in Notation 5.3.7, of the partition λ from the quantum Plücker coordinate γ.

Theorem 5.4.3. The isomorphism

Ψ: (Oq(Gm,n(K))/⟨Πγ⟩)[γ−1]
∼=−→ Oq−1(Mλ

m,n−m(K))[y±1; σ]

sends ᾱγ̄−1 to

(−q)ℓ({γi1 ,...,γit }; {aj1 ,...,ajt })[i1 · · · it | n−m + 1− jt · · ·n−m + 1− j1].

Proof. Suppose that t = 1. Then ᾱγ̄−1 = [(γ \ {γi1}) ⊔ {aj1}] = mm+1−i1,aj1
γ̄−1 =

˜mm+1−i1,aj1
, which is sent by Ψ to Xi1,n−m+1−j1 = [i1 | n − m + 1 − j1]. Since

ℓ({γi1}; {aj1}) = 0, the claim holds.

We proceed by induction on t. (In order to keep the notation managable here, we

denote a singleton set by its element i.e. we write a singleton set {z} simply as z.)
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Let us set ã = {aj2 , . . . , ajt} and γ̃ = {γi1 , . . . , γit}. Applying the generalised

quantum Plücker relations (5.19) with J1 = ã, J2 = ∅, K = aj1 ⊔ γ̃, and noticing that

ℓ(γil
; (aj1 ⊔ γ̃) \ γil

) = ℓ(γil
; aj1) + l − 1 (for all l = 1, . . . , t) and ℓ(ã; aj1) = t− 1, we

see that the following holds in Oq(Gt,n(K))

t∑
l=1

(−q)ℓ(̃a;γil
)+ℓ(γil

;aj1 )+l−1[ã ⊔ γil
][(aj1 ⊔ γ̃) \ γil

] + (−q)t−1+ℓ(aj1 ;γ̃)[aj1 · · · ajt ][γ̃] = 0.

Notice that no element of γ \ γ̃ appears in any of the quantum Plücker coordinates

in the above display, so that the quantum version of Muir’s Law (5.18) with D = γ \ γ̃

shows that in Oq(Gt+|D|,n(K)) = Oq(Gm,n(K)), we have

t∑
l=1

(−q)ℓ(̃a;γil
)+ℓ(γil

;aj1 )+l−1[(ã ⊔ γil
) ⊔ (γ \ γ̃)][

(γ\γil
)⊔aj1︷ ︸︸ ︷

((aj1 ⊔ γ̃) \ γil
) ⊔ (γ \ γ̃)]

+(−q)t−1+ℓ(aj1 ;γ̃)
α︷ ︸︸ ︷

[(γ \ γ̃) ⊔ {aj1 , . . . , ajt}]
γ︷ ︸︸ ︷

[γ̃ ⊔ (γ \ γ̃)] = 0.

Let s be maximal such that aj1 > γis , so that in S(γ) = Oq(Gm,n(K))/⟨Πγ⟩, we have

[(γ \ γil
) ⊔ aj1 ] = 0 for l > s. Notice that if l ≤ s, then ℓ(ã; γil

) = t− 1, ℓ(γil
; aj1) = 0,

and ℓ(aj1 ; γ̃) = s, so that we may conclude from the above display that the following

holds in S(γ):

ᾱγ̄ = −
s∑

l=1
(−q)l−1−s[(ã ⊔ γil

) ⊔ (γ \ γ̃)]mm+1−il,aj1
.

Now [26, Lemma 3.1.4 (v)] gives γmm+1−il,aj1
= qmm+1−il,aj1

γ for all l = 1, . . . , s, so

that in So(γ), we have

ᾱγ̄−1 = −q
s∑

l=1
(−q)l−1−s[(ã ⊔ γil

) ⊔ (γ \ γ̃)]γ−1mm+1−il,aj1
γ−1.
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Now if we write [îl | ̂n−m + 1− j1] for [i1 · · · îl · · · it | n−m + 1− jt · · ·n−m + 1− j2]

the induction hypothesis gives

Ψ(ᾱγ̄−1) =
s∑

l=1
(−q)l−s(−q)ℓ({γi1 ,...,γ̂il

,...,γit },̃a)[îl | ̂n−m + 1− j1]Xil,n−m+1−j1 .

For l ≤ s, we have

ℓ({γi1 , . . . , γit}; {aj1 , . . . , ajt})

= ℓ({γi1 , . . . , γ̂il
, . . . , γit}, ã) + ℓ(γil

, {aj1 , . . . , ajt}) + ℓ({γi1 , . . . , γit}; aj1)

= ℓ({γi1 , . . . , γ̂il
, . . . , γit}, ã) + 0 + t− s.

Now

Ψ(ᾱγ̄−1) =
s∑

l=1
(−q)ℓ({γi1 ,...,γit }; {aj1 ,...,ajt })+l−t[îl | ̂n−m + 1− j1]Xil,n−m+1−j1 .

If l > s, then aj1 < γl and hence |{j | aj < γil
}| ≥ j1. Now since |{j | aj < γil

}| = γil
−il

(see Notation 5.3.7), we have

γil
− il ≥ j1 for all l > s. (5.20)

If l > s, then (5.20) shows that n − m + 1 − j1 > n − m + il − γil
and hence

(il, n −m + 1 − j1) /∈ Yλ since the ith
l row of the Young diagram Yλ has only λil

=

n−m+ il−γil
squares (again see Notation 5.3.7), so that our convention (see Definition

4.1.4) says that Xil,n−m+1−j1 = 0. Hence we get the following expression for Ψ(ᾱγ̄−1):

(−q)ℓ({γi1 ,...,γit }; {aj1 ,...,ajt })
t∑

l=1
(−q−1)t−l[îl | ̂n−m + 1− j1]Xil,n−m+1−j1 .
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Quantum Laplace expansion in Oq−1(Mλ
m,n−m(K)) with the last column on the right

(Lemma 4.1.9(2))1 shows that, as required, we have

Ψ(ᾱγ̄−1) = (−q)ℓ({γi1 ,...,γit }; {aj1 ,...,ajt })[i1 · · · it | n−m + 1− jt · · ·n−m + 1− j1].

�

Recall the biincreasing bijection

ξ : H − SpecγOq(Gm,n(K))
∼=−→ H − SpecOq−1(Mλ

m,n−m(K))

given in (5.16). As in immediate consequence of Proposition 5.4.2 and Theorem 5.4.3,

we get

Corollary 5.4.4. The condition that α belongs to J is equivalent to the condition that

the pseudo quantum minor [i1 · · · it | n−m+1−jt · · ·n−m+1−j1] of Oq−1(Mλ
m,n−m(K))

belongs to the H-prime ideal ξ(J) of Oq−1(Mλ
m,n−m(K)).

Recall from Notation 5.3.7 that we have set λi = n − m − (γi − i) for each i ∈

J1, mK, chosen c as large as possible such that λc ̸= 0, and defined the partition λ

by λ = (λ1, . . . , λc). When d = λ1, if we can show that {i1, . . . , it} ⊆ J1, cK and

{n−m + 1− jt, . . . , n−m + 1− j1} ⊆ J1, dK, then the question of whether or not the

pseudo quantum minor [i1 · · · it | n−m + 1− jt · · ·n−m + 1− j1] of Oq−1(Mλ
m,n−m(K))

is zero can be settled by the graph-theoretic method of Theorem 4.4.27.

1Care is needed with the parameters q and q−1 here because in the proof of Theorem 5.4.3, we
are working with a partition subalgebra of Oq−1(Mm,n−m(K)), whereas Lemma 4.1.9 is stated for
partition subalgebras of Oq(Mm,n(K)).
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Lemma 5.4.5. We have

(i) {i1, . . . , it} ⊆ J1, cK and

(ii) {n−m + 1− jt, . . . , n−m + 1− j1} ⊆ J1, dK.

Proof. (i) Clearly it will suffice to show that λit > 0. Recall from Notation 5.3.7

that

λit = n−m− (γit − it)

= n−m− |{a ∈ J1, nK \ γ | a < γit}|.

Now if λit = 0, then |{a ∈ J1, nK \ γ | a < γit}| = n − m so that every a ∈

J1, nK \ γ = {a1 < · · · < an−m} satisfies a < γit ; this is impossible since ajt > γit .

(ii) Clearly it will suffice to show that λ1 ≥ n −m + 1 − j1. Recall from Notation

5.3.7 that λ1 = n−m− (γ1− 1), so that it will suffice to show that j1 ≥ γ1. Since

α > γ, γ cannot be the largest element [n−m + 1 · · ·n] of Π with respect to the

partial order on Π, so that γ1 ∈ J1, n−mK. Notice that aj = j for all j < γ1 and

aγ1 > γ1, so that inf{j ∈ J1, n −mK | aj > γ1} = γ1. Since aj1 > γi1 ≥ γ1, we

must have j1 ≥ γ1, as required.

�

This brings us to the main result of this chapter, which tells us that α belongs to J if

and only if there exists no vertex-disjoint R{i1,...,it},{n−m+1−jt,...,n−m+1−j1}-path system

in the Cauchon graph of C. For the sake of completeness, we include our conventions

in the statement of the theorem.
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Theorem 5.4.6. Let J ̸= ⟨Π⟩ be an H-prime ideal of Oq(Gm,n(K)) and let γ =

[γ1 < · · · < γm] be the unique quantum Plücker coordinate such that J ∈ H −

Specγ Oq(Gm,n(K)) (see [24, Theorem 5.1]). Let λ be the partition corresponding to

γ as in Notation 5.3.7 and let Yλ be the Young diagram of λ. Let C be the Cauchon

diagram on Yλ corresponding to J as in (5.17). Set {a1 < · · · < an−m} = J1, nK\γ. Let

α ∈ Π be such that α > γ and let 1 ≤ i1 < · · · < it ≤ m, 1 ≤ j1 < · · · < jt ≤ n−m be

such that α = [(γ \ {γi1 , . . . , γit}) ⊔ {aj1 , . . . , ajt}] and ajl
> γil

for all l ∈ J1, tK. Then

the quantum Plücker coordinate α belongs to J if and only if there does not exist a

vertex-disjoint R{i1,...,it},{n−m+1−jt,...,n−m+1−j1}-path system in the Cauchon graph GC of

C.

Proof. This follows immediately from Corollary 5.4.4, Lemma 5.4.5, and Theorem

4.4.27. �

5.5 A link with totally nonnegative Grassmannians

Theorem 5.4.6 provides a link between the quantum and totally nonnegative Grassman-

nians. Let F be any family of m-element subsets of J1, nK. Then F defines a nonempty

cell in the totally nonnegative Grassmannian Grtnn
m,n if and only if there is an H-prime

ideal J of Oq(Gm,n(K)) such that the quantum Plücker coordinates belonging to J are

exactly those corresponding to the members of F (see a result of Postnikov appearing

as Proposition 13 in [33]). Consequently, the main result of [33] gives alternative

descriptions of the families of quantum Plücker coordinates which belong to H-prime

ideals of Oq(Gm,n(K)).
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5.6 A possible link with the strong Dixmier-Moeglin

equivalence

Using the process of noncommutative dehomogenisation and some results from Chapter

3, it is easy to show that Oq(Gm,n(K)) satisfies the quasi strong Dixmier-Moeglin

equivalence. We conjecture that Oq(Gm,n(K)) in fact satisfies the strong Dixmier-

Moeglin equivalence. The key to proving this property for quantum Schubert cells was

an understanding of the inclusions between the torus-invariant prime ideals and we

believe that the same will be true for Oq(Gm,n(K)). We believe that Theorem 5.4.6

may assist in a description of the inclusions between the torus-invariant prime ideals

of Oq(Gm,n(K)); this would both solve an open problem and, we believe, provide the

key information for proving that Oq(Gm,n(K)) satisfies the strong Dixmier-Moeglin

equivalence.
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