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A mean-variance optimisation approach to collectively

pricing warranty policies

Ming Luo, Shaomin Wu∗

Kent Business School, University of Kent, Canterbury, Kent CT2 7PE, UK

Abstract

Warranty policy can influence the profit and cost of a product. In practice, a manufacturer

commonly produces more than one product, or a portfolio of products, and provides warranty

servicing for them. Many authors have attempted to optimise warranty policy to maximise

the profit or minimise the cost of each individual product. Warranty claims of the products

produced by the same manufacturer, however, may be due to common causes, since the products

may be designed by the same engineer team or using the same type of components. This implies

that the numbers of warranty claims of different products may be related, and optimisation of

warranty policies for each individual product may therefore cause biased decisions. To overcome

this disadvantage, this paper aims to collectively optimise a manufacturer’s total profit for a

portfolio of different products by using a mean-variance optimisation approach. A tool from

the probability theory, copulas, is used to depict the dependence among the warranty claims of

different products. Numerical examples are provided to illustrate the application of the proposed

methods.

Keyword Modern portfolio theory, warranty, risk, mean-variance, optimisation.

1 Introduction

1.1 Background

Warranty plays an important role in consumer and commercial transactions. It is essentially

offered with most durable products to promote product sales. Warranty is a tool to assure

consumers’ satisfaction with product performance over the warranty period (Liao, 2016). For a
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manufacturer, warranty is a contractual obligation: the manufacturer should compensate cus-

tomers through offering repair or replacement service in the event of occurrence of premature

failures of the warranted items or items’ inability to perform its intended function (Karim &

Suzuki, 2005; Wu, 2014b). There are several warranty acts enacted in the US over the last 100

years (UCC, Magnusson Moss Warranty Act, Tread Act, for example). The European Union

(EU) also passed legislation requiring a two-year warranty for all products sold in Europe (Wu,

2014b; Murthy & Djamaludin, 2002).

Warranty expense is an important part of the manufacturer’s operating expense. In the manu-

facturing industries, warranty incurs huge amount of cost, for example, the total cost of worldwide

warranty claims of U.S.-based firms is $26.4 billion in 2015; and the balance of their total warranty

reserves is $43.35 billion at the end of 2015 (WarrantyWeek, 2016).

A typical warranty transaction is: a consumer pays the warranty price when purchasing the

product and the manufacturer (or dealer) provides repair or replacement service for product

failures occurring during the warranty period. A good warranty policy will raise a firm’s brand

image and reputation among consumers. The assurance of warranty can reduce the costs associ-

ated with failure of the product purchased from a consumer’s perspective. Warranties highlight

product reliability and quality: a longer warranty can send out a strong signal about the prod-

ucts and service quality (Liao, 2016). However, warranty providers should be aware of two major

uncertainties in warranty management:

Uncertainty of warranty cost. The demands for repairs or replacements always come out

unexpectedly, and the number of warranty claims received during the warranty period

normally appears only as probability-based forecasts (Yenipazarli, 2014).

Uncertainties of sales volume. The sales volume of most goods may increase with the de-

crease of warranty price. It is true that high sales price of a product may increase the

profit per item; but it may become less attractive to its consumers and therefore reduce

the product total demand. Meanwhile, from a consumer’s perspective, longer warranty

length, which implies higher warranty price for the manufacturer, indicates better product

quality and reliability. It is reported that longer warranties bring more unnecessary cost to

manufacturers (Aggrawal, Anand, Singh, & Singh, 2014) than short ones. A manufacturer

should consider its total cost and profit comprehensively. The total profit is determined

by the total revenue and cost, where the total revenue is product price multiplying sales

volume, and the total cost is the sum of production cost, warranty cost and other operation

costs multiplying sales volume.

Both product price and warranty length are normally set by the manufacturer to reflect the
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current market. The goal of most manufacturers is to maximise profit, which may be achieved by

optimally pricing the warranty policy of their products. Meanwhile, warranty cost can be treated

as a random negative cash flow which depends on the sales volume and the length of warranty

period. By random, it means uncertainty, presenting the manager the expected warranty cost,

which is difficult to forecast. As such, precisely forecasting warranty cost is vitally important.

In existing publications relating optimisation of warranty policies, researchers have introduced

many methods to maximise profit through optimising product price and warranty length in dif-

ferent scenarios. For example, Yazdian, Shahanaghi, and Makui (2016) jointly optimises the

acquisition price, remanufacturing degree, selling price and warranty length of remanufactur-

ing products, assuming there are linear and non-linear demand functions. Wei, Zhao, and Li

(2015) investigates the optimal strategies on product price and warranty length of two comple-

mentary products from two manufacturers in a two-stage game theoretic perspective. Yeh and

Fang (2015) introduces a model to optimise product price and warranty length considering the

manufacturer’s production capacity and preventive maintenance program. Aggrawal et al. (2014)

present a method to optimise price and warranty length for a product based on a two dimensional

innovation diffusion model. Wu, Chou, and Huang (2009) develop a decision model to determine

the optimal price, warranty length and the production rate of a product to maximise profit based

on the pre-determined life cycle in a static demand market. Similar to these articles, all of the

other existing research, including Lin, Wang, and Chin (2009); Matis, Jayaraman, and Rangan

(2008); Ladany and Shore (2007); Huang, Liu, and Murthy (2007), etc., only maximises the profit

of each individual product for a manufacturer.

1.2 Motivation and novelty

The numbers of warranty claims of products produced by the same manufacturer may not be

statistically independent because they may be designed by the same team of engineers, manufac-

tured on the same production lines and share same types of components. As a result, they may

have common causes. For example, Ford’s turbocharged and direct injection gasoline engines,

belonging to the EcoBoost family, are applied on many different types of Ford cars, including Fo-

cus, Fiesta, Mondeo, etc. If any design or quality problems happened on the EcoBoost, warranty

claims from different products will crop up during a short period.

As can be seen from the above literature review, however, existing literature has been concen-

trated on warranty reserve optimisation for each individual product separately. Little attention

has been paid to collectively optimising warranty policies and reserves for a portfolio of different

products. To maximise the total profit for a manufacturer that sells a number of products, the
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prices of all products should be optimised collectively, which is the aim of this paper.

This paper is the first attempt that collectively optimises the prices of a portfolio of products

for a manufacturer, which creates novelty. It proposes to use an approach borrowed from the

modern portfolio theory, which is widely applied in the financial sector. It develops a novel

method that collectively optimises warranty reserves for a set of different products, considering

the dependence of the numbers of warranty claims. The warranty prices of the set of products

are then optimised under the mean-variance optimisation framework.

The paper uses a tool from the probability theory, copulas, to depict the dependence among

warranty claims of different products, which can reduce the bias that may be caused in modelling

a complicated dependence with a simple method such as covariance estimation. This is because

the covariance matrix can only reflect the linear correlation whereas copulas can model more

complicated nonlinear dependence

1.3 Overview

The other sections of the paper are structured as follows. Section 2 formulates the problem.

Section 3 investigates the existence of the optimal values for different scenarios and uses copulas

to depict the dependence among warranty claims of different products. Section 4 offers numerical

examples to illustrate the proposed methods. Section 5 concludes the paper and proposes future

work.

2 Formulation of the problem

Assume a manufacturer offers non-renewing free replacement warranty (NFRW) policies. Under

a NFRW policy, the manufacturer provides its customers with repair or replacement at no cost

within the warranty period, the original warranty is not altered upon a failed item, and the

manufacturer only guarantees satisfactory service on the item within the original warranty period.

We also assume the repair time is negligible. The items are new at t = 0 when they are sold.

The number of claims follows the homogeneous Poisson process (HPP). The numbers of warranty

claims and the claim cost are statistically independent.

In practice, warranty policies can be categorised into one- and two-dimensional (1-D and 2-D).

A 1-D policy is characterised by an interval, such as age or usage, as warranty limit and a 2-D

policy is characterised by a region in the 2-D plane (Ye & Murthy, 2016), such as age and usage.

In the literature, many methods are used to deal with the 2-D siutations, for example, some

authors use a so-called composite scale approach that integrates the two scales (age and usage)
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to create a single composite scale and model the claim arrival process (Wu, 2012). In this paper,

only one scale, the length of warranty, noted by Tk, is considered in modelling. Of course, one

mat regard Tk as the usage in 1-D warranty or the composite scale in 2-D warranty.

The notations in Table 1 are used throughout this paper.

Table 1: Notation table

Xk,i Cost of the ith warranty claim of product k

Nk(t) Number of warranty claims of product k within time interval (0, t)

Sk(t) Total cost of warranty claims of product k within time interval (0, t)

Pk Price of product k

Tk Warranty length of product k

λk Parameter of the claim arrival process of product k

µk Expected cost per claim of product k

ck Fixed manufacturing cost of product k

Mk(Pk, Tk)
Sales volume of product k when the warranty price is Pk and the warranty
length is Tk

M
Vector of all sales volume, M = [M1, ...,Mn]′, where [.]′ denotes the trans-
pose of a matrix/vector,

ωk(Pk, Tk)
Profit of product k when the warranty price is Pk and the warranty length
is Tk

Ω(P,T)
Total profit of the manufacturer when the warranty prices is P = [P1, ..., Pn]′

and the warranty length is T = [T1, ..., Tn]′.

2.1 The expected number of warranty claims and cost

Suppose a manufacturer produce n products. The aggregated warranty cost of product k follows

a stochastic process {Sk(t)}t≥0 over the time interval (0, t), which is expressed by the following

equation,

Sk(t) =

Nk(t)∑
i=1

Xk,i. (1)

In Eq. (1), the cost of claim i of product k is described by the random variable Xk,i and the

counting process Nk(t), which is the number of claims during (0, t) and is assumed to take a form

of a homogeneous Poisson process (HPP) with intensity λk > 0, P (Nk(t) = i) = (λkt)
ie−λkt

i!
. For

a given k, Xk,i are independent and identically distributed random variables which have finite

values on the positive half-line R>0 with the probabilities P (Xk,i). The frequency Nk(t) and

severity Xk,i are assumed to be independent.
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Then, the expected value of Sk(t) is given by

E[Sk(t)] = E[Nk(t)]E[Xk] = λkµkt, (2)

and the variance of Sk(t) is given by

Var [Sk(t)] = E[Nk(t)]Var[Xk] + Var[Nk(t)]E[Xk]
2

= λkt(Var[Xk] + E[Xk]
2)

= λkt(σ
2
k + µ2

k), (3)

where µk and σk are the mean and variance of Xk, respectively.

2.2 The sales volume and profit

In the literature, the sales volume of a product may be expressed in a linear (Yazdian et al.,

2016; Lin et al., 2009) or non-linear form (Ladany & Shore, 2007; Xie, Liao, & Zhu, 2014; Huang

et al., 2007), depending on different scenarios. For simplicity, this paper uses the linear form

proposed by Yazdian et al. (2016) and assumes the following linear relationship among the length

of warranty coverage, warranty price and sales amount of a product:

Mk = Ak − βkPk + ηkTk, (4)

where Pk is the warranty price, Tk is the warranty period of product k, Mk is the sales volume

of product k, respectively. Ak,βk and ηk > 0 are positive real numbers. The profit of one item of

product k is

rk = Pk − Sk(Tk)− ck, (5)

where ck is the fixed cost of one item of product k, including manufacturing cost, management

expenditures, etc.

Then, the profit of product k is

ωk(Pk, Tk) = Mk[Pk − Sk(Tk)− ck], (6)

the expected value of ωk(Pk, Tk) is

E[ωk(Pk, Tk)] = (Ak − βkPk + ηkTk)(Pk − Tkλkµk − ck),
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and the variance of ωk(Pk, Tk) is

Var[ωk(Pk, Tk)] = M2
kVar[Sk(t)] = M2

kTkλk(σ
2
k + µ2

k).

For the n products, the total profit of the manufacturer is

Ω(P ,T ) =
n∑
k=1

ωk(Pk, Tk). (7)

Ω(P ,T ) can be re-written as

Ω(P ,T ) =
n∑
k=1

ωk(Pk, Tk)

=
n∑
k=1

(Ak − βkPk + ηkTk) [Pk − Sk(Tk)] . (8)

The mean and variance of Ω(P ,T ) are

E[Ω(P ,T )] =
n∑
k=1

E[ωk(Pk, Tk)] =
n∑
k=1

(Ak − βkPk + ηkTk)(Pk − Tkλkµk − ck), (9)

and

Var(Ω(P ,T )) = M ′VM , (10)

respectively, where

M ′ =
[
M1,M2, . . . ,Mn

]
, (11)

and

V =


Var(S1(T1)) Cov(S1(T1), S2(T2)) . . . Cov(S1(T1), Sn(Tn))

Cov(S2(T2), S1(T1)) Var(S2(T2)) . . . Cov(S2(T2), Sn(Tn))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cov(Sn(Tn), S1(T1)) Cov(Sn(Tn), S2(T2)) . . . Var(Sn(Tn))

 . (12)

A manufacturer may wish to optimise P and T in the quantity Ω(P ,T ) in Eq. (7) to achieve

the maximum profit.

Each Tk in T may be either a commonly agreed quantity or an endogenous variable: If it is an

endogenous variable, Tk may be determined by the warranty provider; if it is a commonly agreed

quantity, Tk may be served as an exogenous variable. Since in reality, the length of warranty

is pre-specified and it can be from a small number of discrete positive integers, 12 months, 24
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months, 30 months, etc, for example. In this paper, each Tk in T is regarded as a commonly

agreed quantity. In other words, we mainly focus on optimally pricing warranty policies for a

given T , that is, to seek P so that the expected profit E[Ω(P ,T )] can be maximised.

3 Optimisation of the profit

For a manufacturer, Ω(P ,T ) in Eq. (7) can be maximised through seeking the optimal values

of P . Another idea is to use the mean-variance approach: since the variance of Ω(P ,T ) can be

regarded as a risk measure, one may integrate this risk when optimising Ω(P ,T ). These two

ideas are discussed in the following two sub-sections, respectively.

3.1 Maximising the expected profit

For the convenience of further discussion, this subsection gives the optimisation objective function

and does not consider the risk (i.e., the variance) of the portfolio of the warranty claim costs of

the n products and merely aims to optimise Ω(P ,T ), which is a commonly used setting.

The profit of product k can then be derived and expressed by

E[ωk(Pk, Tk)] = (Ak − βkPk + ηkTk)(Pk − Tkλkµk − ck), (13)

which is a bivariate quadratic function with respect to Tk and Pk.

Hence, we have the following proposition.

Proposition 1 If both P and T are vectors of decision variables and there are no other con-

straints, the optimum solution that maximises the expected profit, E[Ω(P ,T )] does not exist.

The proofs of all the propositions in this paper can be found in the Appendix.

In practice, the warranty length T is normally a discrete variable in a finite range, such as 24

months, 30 months, etc. If T is given, it is easy to prove that there is a maxima in E[Ω(P ,T )].

Proposition 2 If T is known and P is a vector of decision variables, there exists an optimum

solution that maximises the expected profit E[Ω(P ,T )].

In the following section, we assume T is known, and investigate the existence of the optimum

solutions of P when considering the risk against profit.

3.2 Mean-variance approach to pricing warranty policies

In this section, we use the mean-variance optimisation approach to pricing warranty policies.
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When both profits and risk are taken into consideration, manufacturers may have the following

options:

Option 1. to maximise a combination of the profit and the risk of the estimated profit;

Option 2. to maximise the profit and meanwhile to limit the risk of the estimated profit; and

Option 3. to minimise the risk of the estimated profit subject to the constraint that the lower

bound of the profit is greater than a pre-specified value.

The above three options are equivalent to the following three optimisation problems, respec-

tively.

Option 1. Maximise E[Ω(P ,T )]− SD[Ω(P ,T )], subject to M ≥ 1, where SD[Ω(P ,T )] is the

standard deviation of total profit andM ≥ 1 means the sale volume of each product should

not be less than 1 unit. 1 is the unit matrix with the same dimensions as those of M .

Option 2. Maximise E[Ω(P ,T )], subject to Var[Ω(P ,T )] ≤ ϕ, and M ≥ 1, which implies

maximising the expected total profit at a given risk level.

Option 3. Minimise Var[Ω(P ,T )], subject to E[Ω(P ,T )] ≥ ψ, and M ≥ 1. It implies min-

imising the risk at a given expected total profit.

On Option 1, we have the following Propositions 3 and 4.

Proposition 3 For product k, if the warranty length Tk is known and the price Pk is a decision

variable, there exists an optimum solution that maximises E[ωk(Pk, Tk)]− SD[ωk(Pk, Tk)].

As mentioned above, the warranty claims of different products could be dependent, which

implies the variance-covariance matrix of the portfolio includes non-zero covariances.

The covariance between product k and l is:

Cov[Sk(Tk), Sl(Tl)] = E[Sk(Tk)Sl(Tl)]− E[Sk(Tk)]E[Sl(Tl)]

= E[E[(

Nk(Tk)∑
i=1

Xk,i)(

Nl(Tl)∑
i=1

Xl,i)|N(Tk), N(Tl)]]− λkµkTkλkµlTl

= E[Nk(Tk)Nl(Tl)]E[XkXl]− λkµkTkλkµlTl
= Cov[Nk(Tk), Nl(Tl)]µkµl

Then we have the following Propositions 4, 5 and 6.
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Proposition 4 If P is a vector of decision variables and T is known, there exists an opti-

mum solution that maximises the combination of the profit and the risk of the estimated profit

E[Ω(P ,T )]− Var[Ω(P ,T )].

Proposition 5 If P is a vector of decision variables and T is known, there exists an optimum

solution that maximises E[Ω(P ,T )], subject to Var(Ω(P ,T )) ≤ ϕ.

Proposition 6 If P is a vector of decision variables and T is known, there exists an optimum

solution that minimises Var(Ω(P ,T )), subject to E[Ω(P ,T )] ≥ ψ.

3.3 Methods of estimating E[Ω(P ,T )] and Var(Ω(P ,T ))

For a given set of warranty claim data, one must estimate E[Ω(P ,T )] and Var(Ω(P ,T )) for the

three options discussed in Section 3.2 before any optimisation problems may be discussed. One

may estimate them with two methods:

Method 1. The non-parametric method, for example, the method of moments estimation, with

which there is no need to assume a probability distribution.

Method 2. The parametric method, for example, the maximum likelihood estimation method.

With this method, one needs to estimate a joint distribution of the numbers of warranty

claims and then derive E[Ω(P ,T )] and Var(Ω(P ,T )) from the distribution.

Similar to the fact that the Pearson correlation coefficient can only describe the linear relationship

between two random variables, the covariance can merely measure a linear correlation. As such,

one should note, Method 1 may not be able to capture the nonlinear relationship among the

numbers of warranty claims. In such cases, Method 2 may be advocated. Given the difficulty of

estimating a joint multivariate probability distribution, a tool, copula, which is a widely studied

topic in recent years and can be used to depict nonlinear relationships between random variables,

is borrowed to model the joint distribution of the numbers of warranty claims.

Copulas are widely used in constructing multivariate distributions and formalising the depen-

dence structures between random variables, whatever discrete or continuous. Abe Sklar first

introduced the notion of copula in 1959, in recent years copula has attracted considerable atten-

tion in both theoretical and application aspects. The Theorem of Sklar states that any cumulative

distribution function of a random vector can be written in terms of marginal distribution func-

tions and a copula that describes the dependence structure between the variables (Wu, 2014a).

Assume (X1, ..., Xd) is a given vector of random variables, its cumulative distribution function

is H(x1, ..., xd) = P (X1 ≤ x1, ..., Xd ≤ xd)), and its marginals are Fk(xk) = P (Xk ≤ xk), where
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k = 1, ...d. Sklar proved that H(x1, ..., xd) = C(F1(x1), ..., Fd(xd)), where C(.) is defined as

a copula. Copulas are useful in statistical applications because they allow one to estimate the

marginals and the copula separately when modelling and estimating the distribution of a random

vector (Wu, 2014a).

Similar to its work in modelling the dependence among continuous random variables, cop-

ula can also be used in constructing the joint probability distribution of discrete variables

(Nikoloulopoulos & Karlis, 2010). In this area, Joe and Hu (1996) introduce multivariate para-

metric families of copulas which are mixtures of max-infinitely divisible (max-id) bivariate cop-

ulas. Nikoloulopoulos and Karlis (2010) show this class of copulas has superiority to others,

because it allows flexible dependence among the random variables and has a closed form cdf

(cumulative distribution function) and thus computations are rather easy.

In our case, the claim arrival process of product k follows a homogeneous Poisson process,

i.e. Nk ∼ Pois(λktk). Assume that Mk items of product k have been sold to the market and

the claim processes of a given product’s items are mutual independent, then from time 0 to

time tk, the average number of claim per item also follows a homogeneous Poisson process, i.e.

N̄k ∼ Pois(λktk).

Denote uk(nk) = P (N̄k ≤ nk), the joint distribution of each products’ average number of claim

per item is

H(n1, n2, . . . , nk) = C(u1(n1), u2(n2), . . . , uk(nk)), (14)

where C is a copula. Then, the joint probability mass function is,

h(n1, n2, . . . , nk) =
∑

yj∈{nj ,nj−1}
1≤j≤k

(
H(y1, y2, . . . , yk)

k∏
i=1

sgn(yi)

)
, (15)

where yj is equal to nj or nj − 1, and

sgn(yj) =

1, yj = nj

−1, yj = nj − 1.
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Apparently,
∑

yj∈{nj ,nj−1}
1≤j≤k

has 2k elements in total. For example,

h(n1, n2, n3) =
∑

yj∈{nj ,nj−1}
1≤j≤3

[H(y1, y2, y3)
3∏
i=1

sgn(yi)]

= H(n1, n2, n3)−H(n1 − 1, n2, n3)−H(n1, n2 − 1, n3)−H(n1, n2, n3 − 1)

+H(n1 − 1, n2 − 1, n3) +H(n1 − 1, n2, n3 − 1) +H(n1, n2 − 1, n3 − 1)

−H(n1 − 1, n2 − 1, n3 − 1).

The expected total number of warranty claims of the manufacturer is

E[N ] =
∞∑
i=1

[h(n1,i, n2,i, . . . , nk,i)(n1,i + n2,i + · · ·+ nk,i)],

The expected total profit is

E[Ω(P ,T )] =
∞∑
i=1

{h(n1,i, n2,i, . . . , nk,i)[M1(P1− n1,iµ1− ci) + · · ·+Mk(Pk − nk,iµk − ck)]}. (16)

The variance of total expected profit is

Var[Ω(P ,T )] =
n∑
k=1

(Ak − βkPk + ηkTk)
2λkTk(σ

2
k + µ2

k) + 2
n∑

1≤k<l≤n

MkMlµkµlCov[Nk(Tk), Nl(Tl)],

(17)

where Cov[Nk(Tk), Nl(Tl)] can be calculated according to the joint probability mass function

h(n1, n2, . . . , nk).

Furthermore, the joint distribution of the total profit can also be estimated based on the joint

probability mass function h(n1, n2, . . . , nk),

P ((A1 − β1P1 + η1T1) [P1 − S1(T1)] = z1, ..., (An − βnPn + ηnTn) [Pn − Sn(Tn)] = zn) =

h(n1, n2, . . . , nn)

n1∏
i=1

P (X1,i =
z1

n1

)

n2∏
i=1

P (X2,i =
z2

n2

) · · ·
nn∏
i=1

P (Xn,i =
zn
nn

). (18)

4 Numeric example

Assume a manufacturer produces 3 products. The numbers of warranty claims follow homoge-

neous Poisson processes with intensity functions λ1, λ2, and λ3, respectively. The warranty claim
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costs of the three products follow normal distributions with means µ1, µ2, µ3, respectively; and

standard deviations σ1, σ2, and σ3, respectively.

The related parameters of these products are presented in Table 2. A, β, and η are the

parameter vectors of sales volume function; λ is the intensity vector of the HPPs; µ and σ are

the mean and standard deviation of claim cost; and c is the fixed cost vector.

Table 2: Parameters

A β η λ µ σ c
Product 1 A1 = 8000 β1 = 80 η1 = 5 λ1 = 0.08 µ1 = 6 σ1 = 1 c1 = 40
Product 2 A2 = 9000 β2 = 85 η2 = 6 λ2 = 0.09 µ2 = 5 σ2 = 0.8 c2 = 50
Product 3 A3 = 6000 β3 = 60 η3 = 10 λ3 = 0.1 µ3 = 7 σ3 = 1.5 c3 = 30

In this section, the unit of warranty length is assumed to be month and the unit of cost is

assumed to be GBP (Great Britain Pound).

4.1 Maximizing the expected profit

The maximum expected total profit is the sum of all products’ maximum expected profit. How-

ever, if Pk and Tk both are decision variables, the function, E[ωk(Pk, Tk)] = (Ak−βkPk+ηkTk)(Pk−
Tkλkµk − ck), does not have a maximum value.

Figure 1: Max{E[ωk(Pk, Tk)]} (on the Y -axis) against Tk (on the X-axis).
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Figure 2: E[ωk(Pk, Tk)] (on the Y -axis) against Pk (on the X-axis).

Based on Proposition 1, Fig. 1 shows the relationship between the maximised expected profit

Max{E[ωk(Pk, Tk)]} and the warranty length Tk of product k. For each given Tk, Max{E[ωk(Pk, Tk)]}
exists. When Tk increases, Max{E[ωk(Pk, Tk)]} keeps changing.

Based on Proposition 2, Fig. 2 presents the case that when Tk = 24 (k = 1, 2, 3), the

expected-profit against price curves are parabolic. There exists an optimal value Pk to max-

imise E[ωk(Pk, Tk)] for each product. If the warranty length of the products is 2 years, i.e. 24

months, Table 3 presents the optimal prices and the maximised expected profits, i.e. the values

at peak points of the curves in Fig. 2.

Table 3: Maximum profits of products with given warranty length, 2 years.

Warranty length T1=24 T2=24 T3=24

Optimal price P1=76.51 P2=84.19 P3=75.40
Maximised expected profit 49,960.01 46,495.81 49,077.60

4.2 Mean-variance optimisation approach

Based on Proposition 4, the manufacturer’s profit can be optimised when the risk is taken into

consideration. For product k, Fig. 3 presents the results of Option 1, as discussed in Section

3.2, in which the manufacturer tries to maximise E[ωk(Pk, Tk)] − SD[ωk(Pk, Tk)] when Tk = 24

14



(k = 1, 2, 3). This figure shows there exists an optimal Pk which maximise E[ωk(Pk, Tk)] −
SD[ωk(Pk, Tk)] for each product.

Figure 3: E[ωk(Pk, Tk)]− SD[ωk(Pk, Tk)] (on the Y -axis) against Pk (on the X-axis).

For Option 2 mentioned in Section 3.2, the covariance V shown in Eq. (12) should be esti-

mated. In this case, instead of estimating V , we simply assume its correlation matrix, as shown

in the following:

ρ =


1 0.3 0.4

0.3 1 0.5

0.4 0.5 1

 . (19)

Table 4 shows the result of Option 2, which agrees with Proposition 5 that there exists an

optimal solution. Under the assumption that the manufacturer’s goal is to maximise profit when

the variance of the profit should be less than 100,000. Table 4 presents the optimal prices when T

are varying within 24-month and 36-month. If the dependence among the products are ignored,

i.e. use identity matrix I instead of the correlation matrix ρ in computing, the optimal results

under the same assumption are presented in Table 5. The differences between the contents of

Tables 4 and 5 indicate that if the dependence among products are ignored, the manufacturer

may misprice individual products and overvalue the expected total profit.

Similarly, when the same ρ in Eq. (19) is used, Table 6 shows the result of Option 3, which
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Table 4: Maximum profits with different T at given variance, where Var[Ω(P ,T )] ≤ 100, 000.

Warranty length
T1=24, T2=24 T1=36, T2=24 T1=36, T2=36 T1=36, T2=36

T3=24 T3=24 T3=24 T3=36

Optimal price
P1=98.37 P1=102.25 P1=100.62 P1=98.71
P2=100.63 P2=99.66 P2=106.00 P2=105.30
P3=104.00 P3=102.46 P3=100.73 P3=106.00

Maximised expected profit 35,235.27 31,303.88 24,449.68 22,106.10

Table 5: Maximum profits with different T at given variance ignoring dependence, where
Var[Ω(P ,T )] ≤ 100, 000.

Warranty length
T1=24, T2=24 T1=36, T2=24 T1=36, T2=36 T1=36, T2=36

T3=24 T3=24 T3=24 T3=36

Optimal price
P1=92.92 P1=100.95 P1=99.80 P1=96.65
P2=96.98 P2=95.20 P2=102.93 P2=101.02
P3=103.81 P3=99.85 P3=98.53 P3=106.00

Maximised expected profit 61,632.49 53,951.25 42,455.64 39,544.61

agrees with Proposition 6 that there exists an optimal solution. Under the assumption that the

manufacturer’s goal is to minimise the variance of the profit when the expected profit should not

be less than 50,000, Table 6 presents the optimal prices when T are varying within 24-month

and 36-month. When the dependences among products are ignored, the optimal results under

the same assumption are presented in Table 7. The results in Table 6 and 7 indicate if the

manufacturer does not recognise the dependences among the products, the total risk level will

be undervalued.

Table 6: Minimum variance with different T at given expected profit level, where E[Ω(P ,T )] ≥
50, 000.

Warranty length
T1=24,T2=24 T1=36, T2=24 T1=36, T2=36 T1=36, T2=36

T3=24 T3=24 T3=24 T3=36

Optimal price
P1=94.33 P1=100.22 P1=97.85 P1=94.70
P2=100.36 P2=98.14 P2=103.52 P2=100.86
P3=103.65 P3=99.89 P3=97.36 P3=104.26

Minimised variance 147,995.66 176,226.69 218,509.72 258,176.05

4.3 Measuring dependence with copulas

In case more complicated dependence is assumed, as discussed in Section 3.3, the copulas can

be applied. Here, we assume that the multivariate Gumbel copula is applied. The multivariate
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Table 7: Minimum variance with different T at given expected profit level ignoring dependence,
where E[Ω(P ,T )] ≥ 50, 000.

Warranty length
T1=24,T2=24 T1=36, T2=24 T1=36, T2=36 T1=36, T2=36

T3=24 T3=24 T3=24 T3=36

Optimal price
P1=95.29 P1=101.45 P1=98.89 P1=94.43
P2=98.83 P2=95.46 P2=102.22 P2=98.75
P3=104.00 P3=100.43 P3=97.48 P3=106.00

Minimised variance 76,432.03 90,178.34 120,554.13 134,952.03

Gumbel copula can capture strong upper tail dependence and can be used in the case, for example,

there is a design problem on a type engine used on different types of car, many similar failures,

which cause warranty claims, may occur in the early life period, or the premature period. The

multivariate Gumbel copula is,

C(u1, u2, u3; θ1, θ2) = exp{−([(−lnu1)θ2 + (−lnu2)θ2 ]
θ1
θ2 + (−lnu3)θ1)

1
θ1 }. (20)

Assume θ1 = θ2 = 2 in this case. In practice, these parameters may be estimated by empirical

Table 8: Optimal solution based on trivariate Gumbel copula, where T ′ = {24, 24, 24} .

Option 1 Option 2 Option 3

Constraint
Var[Ω(P ,T )] ≤ 100, 000 E[Ω(P ,T )] ≥ 1, 000

M ≥ 1 M ≥ 1 M ≥ 1

Optimal price
P1=83.76 P1=83.75 P1=101.49
P2= 113.53 P2= 107.56 P2= 107.57
P3= 85.81 P3= 85.80 P3= 103.98

Optimised E[Ω(P ,T )]− SD[Ω(P ,T )] E[Ω(P ,T )] Var[Ω(P ,T )]
objective value =301,582.62 =299,770 =12,031

data. It is easy to obtain Eq.(18) by substituting θ1 = θ2 = 2 into Eq.(20). Then, the three

options mentioned in Section 3.2 can be solved. The results are shown in Table 8 and interpreted

below.

• In the 2nd column, the objective function E[Ω(P ,T )] − SD[Ω(P ,T )] is maximised with

the constraints that T ′ = {24, 24, 24} and M = A− βP + ηT ≥ 0.

• In the 3rd column, the objective function E[Ω(P ,T )] is maximised with the constraints

that T ′ = {24, 24, 24}, Var[Ω(P ,T )] ≤ 100, 000 and M ≥ 1.

• In the 4th column, the objective function Var[Ω(P ,T )] is minimised with the constraints

that T ′ = {24, 24, 24}, E[Ω(P ,T )] ≥ 1, 000 and M ≥ 1.
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4.4 Remarks

In this section, the optimal prices of the three products with various warranty lengths are il-

lustrated with numerical examples. Section 4.1 demonstrates the traditional warranty analysis

method, which does not consider the risk caused by the uncertainty of warranty claim. Sections

4.2 and 4.3 demonstrate the optimisation problems with a consideration of risks represented by

variance. Compared with the traditional methods, the proposed new methods have two advan-

tages: firstly both the expected profit and corresponding risk are considered in warranty policy

optimization, which can help the manufacturer to manage its operational risk in an efficient

manner; secondly, the warranty risk of a manufacturer are estimated collectively, which means

the warranty policies are optimized under more meaningful and accurate constraints than those

of the traditional methods.

5 Conclusion

This paper optimally prices warranty policies when the dependence among warranty claims of

different products is taken into consideration. Such optimisation is performed using the mean-

variance optimisation approach, which considers the profit of a portfolio of different products

with correlated numbers of warranty claims. The variance of the total profit is calculated based

on a copula-based discrete joint distribution of the number of warranty claims of the products.

This paper provides a collective warranty policy optimization method when the expected profit

and corresponding risk are taken into consideration. From a practical and applicable perspective,

this method emphasizes the risk and potential dependence in warranty management and provides

decision makers with a new approach to optimising the trade-off between the profit and risk in

operation.

In the discussion in this paper, the process of warranty claims is assumed to be the homogeneous

Poisson process (HPP). In addition to HPP, other processes, including the non-homogeneous

Poisson process, the doubly Poisson process, and the like, may be used to model the numbers

of warranty claims. In real application, one may analyse warranty claim data and then decide

which a stochastic process should be used.

Our future research will aim to answer the following questions:

(1) the mean-variance optimisation approach to the situation that the compound non-homogeneous

Poisson process is applied;

(2) the selection of a proper copula to construct the joint distribution;
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(3) the modelling of the varying dependence in case that the dependences among the products

are varying.
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Appendix

Proof of Proposition 1.

Proof. In this case, the expected profit of product k is

E[ωk(Pk, Tk)] = (Ak − βkPk + ηkTk)(Pk − Tkλkµk − ck)

= −βkP 2
k − ηkλkµkT 2

k + (Ak + βkck)Pk − (Akλkµk + ηkck)Tk

+(βkλkµk + ηk)PkTk − Akck,

which is a bivariate quadratic function with respect to Tk and Pk, respectively and can be denoted

as,

E[ωk(Pk, Tk)] = AP 2
k +BT 2

k + CPk +DTk + EPkTk + F,

then, we have

∆ = 4AB − E2

= 4(−βk)(−ηkλkµk)− (βkλkµk + ηk)
2

= −(βkλkµk − ηk)2 ≤ 0.

When ∆ < 0, i.e. βkλkµk 6= ηk, E[ωk(Pk, Tk)] dose not have maximum nor minimum. When

∆ = 0, i.e. βkλkµk = ηk, because 4AB − E2 = 0, DE − 2CB = 2AD − CE = 0, and A < 0,

E[ωk(Pk, Tk)] has a constant maximum with regardless of Tk. �

Proof of Proposition 2.

Proof. If T is known,

E[Ω(P )] =
n∑
k=1

E[ωk(Pk)],

to optimise E[Ω(P )] is equivalent to optimise E[ωk(Pk)].

By expanding E[ωk(Pk)], we have

E[ωk(Pk)] = (Ak − βkPk + ηkTk)(Pk − Tkλkµk − ck)

= −βkP 2
k + (Ak + βkck + βkλkµkTk + ηkTk)Pk − ηkλkµkT 2

k − (Akλkµk + ηkck)Tk − Akck.
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Let
dE[ωk(Pk)]

dPk
= −2βkPk + Ak + βkck + βkλkµkTk + ηkTk = 0,

then,

Pk =
Ak + βkck + βkλkµkTk + ηkTk

2βk
.

Because −2βk < 0, then, when Pk = Ak+βkck+βkλkµkTk+ηkTk
2βk

, E[Ω(P )] is maximised. �

Proof of Proposition 3.

Proof. The optimisation problem is

max E[ωk(Pk, Tk)]− SD[ωk(Pk, Tk)],

s.t. Ak − βkPk + ηkTk ≥ 1,

Pk > 0,

where Tk is known.

The second-order derivatives of E[ωk(Pk, Tk)]− SD[ωk(Pk, Tk)] respect to price Pk is

d2{E[ωk(Pk, Tk)]− SD[ωk(Pk, Tk)]}
dP 2

k

= −2βk < 0,

means E[ωk(Pk, Tk)]− SD[ωk(Pk, Tk)] is concave. Hence, the optimisation problem is equivalent

to:

min −E[ωk(Pk, Tk)] + SD[ωk(Pk, Tk)],

s.t. − Ak + βkPk − ηkTk + 1 ≤ 0,

−Pk < 0.

Let

L = −E[ωk(Pk, Tk)] + SD[ωk(Pk, Tk)]− h(Ak − βkPk + ηkTk − 1)− uPk

= (Ak − βkPk + ηkTk)

[
−(Pk − Tkλkµk − ck) +

√
Tkλk(σ2

k + µ2
k)− h

]
+ h− uPk,

where, h ≥ 0 and u ≥ 0 are Lagrange multipliers.
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The KKT (Karush-Kuhn-Tucker) conditions of this problem are

∂L

∂Pk
= 2βkPk − (βkλkµk + ηk)Tk − βk

√
Tkλk(σ2

k + µ2
k)− βkck − Ak + βkh− u = 0,

h(Ak − βkPk + ηkTk − 1) = 0,

uPk = 0,

h ≥ 0,

u ≥ 0,

−Ak + βkPk − ηkTk + 1 ≤ 0,

−Pk < 0.

Then, when

(βkλkµk + ηk)Tk + βk
√
Tkλk(σ2

k + µ2
k) + βkck + Ak

2βk
≤ Ak + ηkTk − 1

βk
,

the solution is

Pk =
(βkλkµk + ηk)Tk + βk

√
Tkλk(σ2

k + µ2
k) + βkck + Ak

2βk
;

when
(βkλkµk + ηk)Tk + βk

√
Tkλk(σ2

k + µ2
k) + βkck + Ak

2βk
>
Ak + ηkTk − 1

βk
,

the solution is

Pk =
Ak + ηkTk − 1

βk
.

�

Proof of Proposition 4.

Proof. The optimisation problem is

max F (P ,T ) = E[Ω(P ,T )]− Var[Ω(P ,T )],

s.t.M ≥ 1,

P > 0,
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where T is known.

Because T is known, E[Ω(P ,T )] and Var[Ω(P ,T )] can be denoted as

E[Ω(P ,T )] =
n∑
k=1

(Ak − βkPk + ak)(Pk − bk),

and

Var[Ω(P ,T )] =
n∑
k=1

(Ak − βkPk + ak)
2dk + 2

n−1∑
1≤k<l≤n

MkMlσ
2
k,l,

where ak = ηkTk, bk = Tkλkµk + ck, dk = λkTk(σ
2
k + µ2

k) and σ2
k,l = Cov[Sk(Tk), Sl(Tl)] all are

constants.

Then,

F (P ,T ) = E[Ω(P ,T )]− Var[Ω(P ,T )]

=
n∑
k=1

(Ak − βkPk + ak)(Pk − bk)−
n∑
k=1

(Ak − βkPk + ak)
2dk − 2

n−1∑
1≤k<l≤n

MkMlσ
2
k,l.

The partial derivative of F (P ,T ) with respect to Pk is

∂F

∂Pk
= −2βkPk + βkbk + Ak + ak + 2βk(Ak − βkPk + ak)dk + 2βk

n−1∑
1≤k<l≤n

Mlσ
2
k,l,

the second order derivatives are

∂2F

∂P 2
k

= −2βk(1 + βkdk),

and
∂2F

∂Pk∂Pl
= −2βkβlσ

2
k,l.
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The Hessian matrix is

H =


∂2F
∂P 2

1

∂2F
∂P1∂P2

. . . ∂2F
∂P1∂Pn

∂2F
∂P2∂P1

∂2F
∂P 2

2
. . . ∂2F

∂P2∂Pn

. . . . . . . . . . . .
∂2F

∂Pn∂P1

∂2F
∂Pn∂P2

. . . ∂2F
∂P 2

n



= −2


β1(1 + β1d1) β1β2σ

2
1,2 . . . β1βnσ

2
1,n

β2β1σ
2
2,1 β2(1 + β2d2) . . . β2βnσ

2
2,n

. . . . . . . . . . . .

βnβ1σ
2
n,1 β2β2σ

2
n,2 . . . βn(1 + βndn)



→ −2




Var[S1(T1)] Cov[S1(T1), S2(T2)] . . . Cov[S1(T1), Sn(Tn)]

Cov[S2(T2), S1(T1)] Var[S2(T2)] . . . Cov[S2(T2), Sn(Tn)]

. . . . . . . . . . . .

Cov[Sn(Tn), S1(T1)] Cov[Sn(Tn), S2(T2)] . . . Var[Sn(Tn)]

+


1
β1

0 . . . 0

0 1
β2

. . . 0

. . . . . . . . . . . .

0 0 . . . 1
βn




= −2(V +B),

where V is a covariance matrix, and B is a positive definite matrix; hence H is negative definite

and F (P ,T ) is concave.

Let ∂F
∂Pk

= 0, then, we have:

−2βkPk + βkbk + Ak + ak + 2βk(Ak − βkPk + ak)dk + 2βk

n−1∑
1≤k<l≤n

Mlσ
2
k,l = 0,

Pk =
βkbk + Ak + ak + 2βk(Ak + ak)dk + 2βk

∑n−1
1≤k<l≤nMlσ

2
k,l

2βk(1 + βk)

It means the solution, which maximises the objective function F (P ,T ) exists. �

Proof of Proposition 5.

Proof. The optimisation problem is

max E[Ω(P ,T )],

s.t. Var[Ω(P ,T )] ≤ ϕ,

where T is known.
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According to the proof of Proposition 2, E[Ω(P ,T )] is a concave function on P . Then, this

optimisation problem is equivalent to

min −E[Ω(P ,T )],

s.t. Var[Ω(P ,T )] ≤ ϕ,

where T is known.

Similar to the proof of Proposition 4, E[Ω(P ,T )] and Var[Ω(P ,T )] can be rewrote as

E[Ω(P ,T )] =
n∑
k=1

(Ak − βkPk + ak)(Pk − bk),

and

Var[Ω(P ,T )] =
n∑
k=1

(Ak − βkPk + ak)
2dk + 2

n−1∑
1≤k<l≤n

MkMlσ
2
k,l,

where ak = ηkTk, bk = Tkλkµk + ck, dk = λkTk(σ
2
k + µ2

k) and σ2
k,l = Cov[Sk(Tk), Sl(Tl)] all are

constants.

However,

∂Var(Ω(P ,T ))

∂Pk
= −2βk(Ak − βkPk + ak)dk − 2βk

n−1∑
1≤k<l≤n

Mlσ
2
k,l,

Then, 
∂2Var(Ω(P ,T ))

∂P 2
k

= 2β2
kdk

∂2Var(Ω(P ,T ))
∂Pk∂Pl

= 2βkβlσ
2
k,l.
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The Hessian matrix,

H =


∂2Var(Ω(P ,T ))

∂P 2
1

∂2Var(Ω(P ,T ))
∂P1∂P2

. . . ∂2Var(Ω(P ,T ))
∂P1∂PN

∂2Var(Ω(P ,T ))
∂P2∂P1

∂2Var(Ω(P ,T ))

∂P 2
2

. . . ∂2Var(Ω(P ,T ))
∂P2∂PN

. . . . . . . . . . . .
∂2Var(Ω(P ,T ))

∂PN∂P1

∂2Var(Ω(P ,T ))
∂PN∂P2

. . . ∂2Var(Ω(P ,T ))

∂P 2
N



→ 2



σ2
1 σ2

1,2 σ2
1,3 . . . σ2

1,n

σ2
2,1 σ2

2 σ2
2,3 . . . σ2

2,n

σ2
3,1 σ2

3,2 σ2
3 . . . σ2

3,n

. . . . . . . . . . . . . . .

σ2
n,1 σ2

n,2 σ2
n,3 . . . σ2

n


,

is positive-definite, means Var(Ω(P ,T )) is a convex function, and the Var(Ω(P ,T )) ≤ ϕ2 is a

convex set.

The Lagrange function is

L = −
n∑
k=1

(Ak − βkPk + ak)(Pk − bk) + ρ[
n∑
k=1

(Ak − βkPk + ak)
2dk + 2

n−1∑
1≤k<l≤n

MkMlσ
2
k,l − ϕ],

where, ρ > 0 is Lagrange multiplier ϕ is a positive constant.

Take the partial derivative respect to Pk and ρ, and let them equal 0, we have

∂L

∂Pk
= 2βk(1 + ρdk)Pk − 2ρβk(Akdk + akdk +

n−1∑
1≤k<l≤n

Mlσ
2
k,l)− βkbk − Ak − ak = 0,

where k = 1, 2, 3 . . . n, and

∂L

∂ρ
=

n∑
k=1

(Ak − βkPk + ak)
2dk + 2

n−1∑
1≤k<l≤n

MkMlσ
2
k,l − ϕ = 0.
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Hence, the optimal solution is the solution of the following equation set,

2β1(1 + ρd1)P1 − 2ρβ1(A1d1 + a1d1 +
∑n−1

l 6=1,l≤nMlσ
2
1,l)− β1b1 − A1 − a1 = 0

2β2(1 + ρd2)P2 − 2ρβ2(A2d2 + a2d2 +
∑n−1

l 6=2,l≤nMlσ
2
2,l)− β2b2 − A2 − a2 = 0

. . . . . . . . . . . . . . . . . . . . . . . .

2βn(1 + ρdn)Pn − 2ρβn(Andn + andn +
∑n−1

l<n Mlσ
2
n,l)− β2b2 − A2 − a2 = 0∑n

k=1(Ak − βkPk + ak)
2dk + 2

∑n−1
1≤k<l≤nMkMlσ

2
k,l − ϕ = 0

.

�

Proof of Proposition 6.

Proof. According to the proof of Proposition 5, when P is the decision variables, and

T is known, the Var(Ω(P ,T )) is a convex function, and −E[Ω(P ,T )] is a convex function.

Hence, −E[Ω(P ,T )] ≤ −ψ is a convex set; and there exists an optimum solution that minimises

Var(Ω(P ,T )), subject to E[Ω(P ,T )] ≥ ψ. The optimum solution can be obtained through the

method of Lagrange multipliers. �
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