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LID-senones and their statistics for language
identification

Ma Jin, Yan Song, Ian McLoughlin Senior Member, IEEE and Li-Rong Dai

Abstract—Recent research on end-to-end training structures
for language identification has raised the possibility that interme-
diate language-sensitive feature units exist which are analogous
to phonetically-sensitive senones in automatic speech recogni-
tion systems. Termed LID (language identification)-senones, the
statistics derived from these feature units have been shown to
be beneficial in discriminating between languages, particularly
for short utterances. This paper examines the evidence for the
existence of LID-senones before designing and evaluating LID
systems based on low and high level statistics of LID-senones
with both generative and discriminative models. For the standard
NIST LRE 2009 task on 23 languages, LID-senone based systems
are shown to outperform state-of-the art DNN/i-vector methods
both when LID-senones are used directly for classification and
when LID-senone statistics are used for i-vector formation.

Index Terms—Language identification deep neural network i-
vector LID-senones

I. INTRODUCTION

LANGUAGE identity is an inherent attribute of speech
utterances, but not one that is easy to conceptualise

in either acoustic or phonotactic terms. While the phonetic
content of utterances is relatively easy to model using end-to-
end schemes labelled at a frame level, it is difficult to map lan-
guage identity at a frame level, and therefore difficult to label
training data for supervised learning. Working backwards from
a language identification (LID) label, it becomes necessary to
find an effective utterance representation which is sensitive to
language information, but is in turn derived from frame-level
features extracted from a section of input speech.

i-vector based approaches [1] [2] currently achieve state-
of-the-art performance for LID. An i-vector utterance repre-
sentation is both compact and representative of the underlying
utterance. However, i-vectors are learned in an unsupervised
fashion without using language labels. They therefore rely
upon techniques such as linear discriminant analysis (LDA)
and within-class covariance normalization (WCCN) to build
backend models for LID.

In the search for LID-sensitive features, we note that deep
learning techniques such as deep neural networks (DNNs) [3],
[4], have demonstrated their capabilities in several related
fields to infer powerful feature extraction layers. DNNs have
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also been shown to improve i-vector performance in terms of
acoustic modelling.

Song et.al [5], Richardson et.al [6] and Jiang et.al [7]
each used deep bottleneck features (DBFs) for LID. These
features were extracted by deep bottleneck networks (DBNs)
that had been extensively pre-trained for automatic speech
recognition (ASR) [8]. DBFs, used in this way, were shown
to be inherently robust for different speakers, channels and
background noise. Meanwhile Lei et.al [9], Kenny et.al [10]
and Ferrer et.al [11] proposed systems which collected suffi-
cient statistics using structured DNNs to form effective repre-
sentations of the underlying phonemes or their states. These
together provide very good evidence that DNNs are effective
for both front-end frame-level feature extraction as well as
back-end utterance-level modelling, assuming that sufficient
good quality training data is available.

It is therefore clear that DBFs or senones, both derived
from DBN acoustic modelling, are effective at representing
language-based content, although hybrid combinations may be
better still. However these feature extractors must be trained
using phoneme or phoneme state labels rather than LID labels.
This means that languages with similar phonetic content and
statistics will be encoded with similar features, complicating
the task of the back-end LID classifier. Instead, we believe it
would be better if the feature extractors themselves produced
features which are more language-discriminative.

In an aim to construct more task-aware features, recent LID
research has tended towards building end-to-end schemes that
are trained with LID labels. For example, Jiang et.al [12]
showed that fine tuning pre-trained DNN parameters using an
LID-specific corpus can improve performance. However his
scheme used lattice-based optimisation to adjust parameters
of final layers, and this fine tuning did not back propagate to
earlier acoustic layers.

We also note that convolutional neural networks (CNNs)
have demonstrated impressive front-end feature representation
capabilities for large-scale speech and visual object recognition
tasks [13] [14]. Multi-layer CNNs can be decomposed into a
front-end stack of convolutional and pooling layers, followed
by a back end stack of fully-connected layers and then a
classifier. The convolution-pooling layer pairs in the front-
end stack can be thought of as feature extractors, whereas
the final stack maps frame-level features into an utterance
representation that is amenable to linear classification. For LID
tasks, Lozano-Diez et.al [15] evaluated different CNN struc-
tures and demonstrated early results for end-to-end methods
that performed comparably to shifted delta cepstra (SDC) i-
vector systems.
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Fig. 1. End-to-end LID-net system spanning DNN feature extractor (left), through deep CNN layers (centre), pooling and fully connected classifier (right).
The notation K@1×N means that there are K channels of 1 by N sized features.

Lopez-Moreno et.al [16] and Gonzalez-Dominguez et.al
[17] also presented end-to-end schemes that performed well
using large scale DNNs and long short-term memory (LSTM)
recurrent neural networks (RNN). Interestingly, the evidence
from these papers is that CNNs can perform well, but appear
to have different strengths to DNNs. Both machine learning
methods are able to learn useful and related, but quite different,
inferences.

With this background, the authors set out to combine the
strengths of DNN and CNN. Convinced by the need to incor-
porate end-to-end training, this could not be based around the
current state-of-the-art i-vector methods. Instead, a DNN-CNN
hybrid [18] was introduced, that combined powerful DBN-
based feature extraction followed by CNN-based language
modelling. The structure used a stack of convolutional layers
to form language-discriminative units from DNN deep bot-
tleneck feature inputs. These units, named LID-senones [18],
were then classified by being averaged over a context time
window using spatial pyramid pooling (SPP) [19] to form an
utterance representation. The entire system was trained end-to-
end with language labels. When tested on the six most highly
confused language pairs from the NIST LRE 2009 corpus, this
language identification network (LID-net) outperformed state-
of-the-art methods for short duration utterances, and matched
them on longer duration utterances [18]. While performance
was good, LID-net had several weaknesses. First it did not
make use of higher level statistics, basing its classification only
on averaging the LID-senones. Secondly, it named the units
LID-senones but did not explore this interesting idea further.
Thirdly, LID-net was evaluated with only the 6 most confused
LRE 2009 languages, only in terms of equal error rate (EER).

A. Contribution

Both the promise of the end-to-end DNN-CNN hybrid
approach and the interesting concept of LID-senones, raised
a number of questions that this paper sets out to explore.
In particular we design and evaluate two new task aware
structures that evaluate discriminative and generative versions
of the LID-senone based classifier. Results will be presented
below that show substantial performance improvement over
other published systems on NIST LRE 2009 for all utterance
durations. The specific contributions that this paper makes in
each area are shown below;
• The assumption that lower layers of a CNN, trained from

bottleneck features with language labels, can extract LID-
senones is examined further in Section IV to provide

a basis to build classifiers for these features and their
statistics.

• The spatial pyramid pooling (SPP) methods of LID-net
made use of averaging of LID-senones. Since i-vector
based systems benefit from higher order statistics, we ex-
periment with bilinear pooling to collect first and second
order LID-senone posterior statistics in Section V-C.

• Recent research has shown that outputs from different
network layers can contain complementary information
which is useful for classification in LID [20]. In Sec-
tion II-A, we design a new structure called LID-bnet
which explores the effectiveness of combining statistics
across different layers.

• Given that this make use of higher level statistics for
classification, we explore the possibility of using the same
information to form i-vectors in LID-net-i in Section V-D.

Our evaluations make use of all 23 languages of NIST LRE
2009 and report performance in standard terms using both
equal error rate (EER) and Cavg , with separate results for 30s,
10s and 3s utterances. Performance evaluation of each system
will be presented in Section V and discussed in Section VI.
Section VII will conclude this paper and present suggestions
for further work.

II. END-TO-END LID-NET STRUCTURES

A. LID-net system

LID-net is a task-aware neural network that spans from
frame to utterance level, as shown in Fig. 1 [18]. The whole
system includes a DNN front end followed by a deep CNN
comprising multiple convolutional layer blocks, then a spatial
pyramid pooling [19] (SPP) layer followed by a fully con-
nected classification layer. The DNN front end acts as a feature
transformer, trained to output task-specific language-sensitive
features (we call these LID-features) from general acoustic
input features, in this cases PLPs. Since DNN systems are
known to be effective at a frame level [16] [17], these layers
process acoustic features frame by frame.

Given that the lower DNN layers act as a feature extractor,
the subsequent layers can be considered an utterance represen-
tation extractor. We know that the statistics of senones can be
discriminative in languages [21] [11], but we aim for a similar
feature that is task-aware, which we name LID-senones. These
are derived by the CNN from LID-features and have statistics
that are even more discriminative for LID – we will explore
LID-senones further in Section IV-A.
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(a)

(b)

Fig. 2. LID-bnet showing second order pooling of statistics from (a) within the same convolutional block and (b) across different blocks. The notation
K@1×N means that there are K channels of 1 by N sized features.

The input to the DNN layers is current frame PLP, ∆PLP
and ∆∆PLP features over a 10 − 1 − 10 context window.
The DNN output is a compact vector representation (LID-
features) which is stacked across a further sliding time window
to form a two dimensional input image for the CNN. The CNN
contains a deep stack of convolutional blocks (each consisting
of a convolutional layer followed by a batch normalization
‘bnorm’ layer [22]), with SPP used to gather statistics of
output predictions from across each variable length utterance
into a vector which is then classified into a language identity
by the final fully connected layer.

As mentioned previously, the input data to the SPP block
(i.e. the output data from the end of the CNN convolutional
layer stack) are termed LID-senones and will be explored
further in Section IV. Unlike a normal pooling layer with
a fixed pooling size yielding variable output dimension for
variable input length, SPP maintains a fixed number of pools
irrespective of the length of input. If input feature vector size
is C channels of M ×M images (i.e. C@M ×M ), and we
implement [L,L] SPP, it means that the feature vector will
be segmented into L × L parts with a pooling size of

⌈
M
L

⌉
and stride is

⌊
M
L

⌋
, with every sub-spatial region executing

max/average pooling. By this mechanism, C channels would
give an L × L × C feature matrix, which is reshaped to an
(L×L×C)@1× 1 multi-dimensional matrix. The important
fact is that the output feature size is independent of M .

LID-net evaluated in this paper uses a SPP pooling size
of [1, 1] since this was found to give consistently better
performance than [1, 2] SPP. The fixed size SPP output vector
is then mapped to output language identity labels through
a single fully connected (fc) layer. The detailed design and
evaluation of LID-net will be given in Section V-B.

B. LID-bnet system

In LID-net, the SPP layer collects the mean of LID-senones
for classification. As we will see in Section V, this slightly
outperforms current state-of-the-art methods. But we note that

it has been demonstrated that other LID techniques gain a
substantial performance improvement by using higher order
senone statistics [7]. It is thus reasonable to expect that higher
order statistics from LID-senones will likewise be beneficial.
Since SPP cannot collect higher order statistics, we adopted
another pooling technique from the image processing domain,
where two dimensional feature maps are common. The bilinear
method of Lin et.al [23] works well on classification tasks,
which is essentially the machine learning task we are per-
forming in LID-net. Bilinear Pooling is computed in a spatial,
rather than temporal domain, although our image is formed
across a time context so does inherently incorporate temporal
information. The input image to be pooled is the utterance-
length stacked set of LID-senones that are output from the final
convolutional layer. The fixed size output from bilinear pooling
are LID-senone statistics over each utterance, and these are
then classified by two fully connected neural network layers,
into a language identity target. We name this LID-bnet, and
present the block diagram in Fig. 2

We will show later in Section V-C how bilinear pooling
can be adapted to yield equivalents of both first and second
order Baum-Welch statistics based upon the choice of pooling
inputs. We also note that bilinear pooling is where the pooling
inputs can be taken from two CNN layers within the same
convolutional block, or from layers in different convolutional
blocks. These two options are shown in Fig. 2 with the
top diagram showing bilinear pooling both from the final
convolutional block, and the lower diagram performing cross-
layer pooling from the final two convolutional blocks.

We will separately evaluate each pooling method and input
arrangement in Section V-B.

III. RELATED WORK

A. DNN/i-vector system

The baseline LID system used for comparison in this paper
is the DNN/i-vector method [5] [9] [10] using statistics from
bottleneck [7] features to form an i-vector [6] [11].
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Fig. 3. Structure of the DNN/i-vector system based on senone statistics

This well studied state-of-the-art technique requires a good
quality related dataset, usually from the ASR domain, to train
a DNN to extract phoneme states from either MFCC or PLP
input representations, generally with context (e.g. SDC). This
DNN, and its front-end layers before a bottleneck constriction,
are then used directly in the LID system, typically after fine
tuning with LID training data. For LID classification, the
trained network is used for front-end feature extraction, with
those features plus their statistics used for i-vector formation.
This process is shown in Fig. 3. The DNN network input con-
sists of PLP features (concatenated with ∆PLP and ∆∆PLP
features over a 10−1−10 context window), and the output are
senones. Deep bottleneck features (DBF) are activations from
an intermediate bottleneck layer which are used along with
senone posteriors for i-vector formation as shown in the right
half of Fig. 3, in four processing steps (S1 to S4). The full
detail on the baseline system can be found in [7]. The front end
DB feature extractor is trained using the SwitchBoard corpus.

In Fig. 3 the DNN stack is shown on the left, trained
with senone labels. The lower half of that stack is essentially
a feature extractor, producing DBFs from the constricted
bottleneck layer. In DNN/i-vector these DBF features are used,
along with the senone posteriors, for classification. However
each of the new systems proposed in this paper, such as LID-
net, use the same LID-features as input to their CNN stacks.
For fair comparison, these extractors are identical: The weights
of the trained DNN layers up to the bottleneck are transferred
to the new systems, and used as fixed front-end LID-feature
extractors.

IV. LID-SENONE ANALYSIS

A. What are LID-senones?

Senones are known as the individual and distinct repeated
units that make up a sequence of phones in spoken utterances.
By breaking words into triphones or senones, it is hoped that
the smaller units better encode how phones are affected by
context. The important characteristics of senones is that they
should be speaker, channel, language and noise insensitive but
should be sensitive to phone state. For ASR, senone based
techniques predominate in state-of-the-art systems [24] which
make use of between about 3000 to 9000 senones for English.

Senones have also performed well for speaker identification
(SID) [9], and for LID tasks, even though both language and
speaker information are unlikely to be completely encoded
phonetically.

For LID systems, the use of better machine learning tech-
niques has improved performance, but the rate of performance
improvement may be slowing. This prompts the question as
to whether more task-aware alternatives to ASR senones can
be found for LID. Such representation units would need to be
speaker, channel and noise insensitive, but language-sensitive.
Thus they would need to be trained with LID data using
language labels, rather than triphone state labels (ruling out
the existing DNN/i-vector methods which cannot be trained
end-to-end using language labels).

In the same way that DNN/i-vector systems build a feature
transformer from input PLP features, trained with senone
labels, to yield DBF features, LID-net trains a feature trans-
former from input DBF features (called LID-features), with
LID labels, to yield intermediate output features. We have
termed these LID-senones [18] and will now explore their
characteristics further.

B. LID-senone statistics

To explore the statistics from LID-senones, the activations
from the CNN convolutional block prior to the fully connected
layer in LID-net were captured and analysed. We did the same
for senones from the DNN/i-vector system for comparison,
extracted directly from the trained DNN classifier with senone
output (the left side of Fig. 3). In total, a selection of about 20
different short utterances were selected from the LID training
corpus for Dari and for Farsi, two highly confused languages.
The utterances had different phonetic content and were by
different speakers. The 20 Dari utterances were applied to the
DNN/i-vector system and to LID-net. Utterance-level features
were captured from each system – these were the senones and
LID-senones respectively. The process was repeated for the
20 Farsi utterances. The entire senone dimensionality is too
large to conveniently visualise, so we selected a random subset
of 30 senone and LID-senone activation statistics for display
(using the same features in each case). These are plotted in
Fig. 4. The Farsi utterances are plotted on top and the Dari
utterances below, with senone statistics on the left and LID-
senone statistics on the right. In each plot, statistics for the
same sequence of 30 features is presented along the x-axis
(left-to-right), for 20 difference utterances along the y-axis
(front-to-back), The plot firstly shows that senone statistics are
more sparse than those for LID-senones, but clearly shows
strong repeated structural features in the LID-senone plots
(running front-to-back). These indicate feature distribution
patterns that are quite distinctly unique for each language. In
fact, it should be noted that the plots were not normalized – if
the LID-senone plots are normalized to their peak activation
value, the intra-class similarity and inter-class difference is
even more apparent.

Together, this provides some evidence that LID-senone
statistics derived from LID-net are more discriminative for
language than senones derived from an ASR acoustic model.



This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TASLP.2017.2766023, IEEE/ACM
Transactions on Audio, Speech, and Language Processing

IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, VOL. XX, NO. X, MAY 2014 5

Fig. 4. 0th order activation statistics of 30 features for consecutive utterances for (a) Farsi senones, (b) Farsi LID-senones, (c) Dari senones and (d) Dari
LID-senones.

C. LID-senone extraction

Although the same type of LID-features are used in all
systems, LID-senones are extracted from the output of the
stack of CNN convolutional blocks in Figs. 1 and 2, and are
subject to a number of parameter choices within the CNN.

For two dimensional input features, CNNs analyse small
blocks across two axes in a stepwise fashion, usually with
dimensions such as 3 × 3 or 5 × 5. This is sensible because
pictures generally have very high spatial correlation across
those scales. However this is not true in practice for LID-
features, which tend to have very low spatial correlation.

To visualise this, the correlation matrix of a set of LID-
features is plotted in Fig. 5. Diagonal values are high, whereas
off-diagonal correlations are generally small or even negative,
giving little evidence for the use of small convolutional
kernels. We thus adopt a kernel size that covers the entire
dimension of LID-features, namely 1@50 × n where the
dimension of LID-features is 50, and the size of the features
after convolutional layer 1 is K1@1× (N − n+ 1).

Given this input feature map, to ascertain how many frames
of LID-features are suitable for constructing a LID-senone, we
explored different LID-feature contexts, with a filter length of

5 10 15 20 25 30 35 40 45 50

5
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20

25
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35
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-0.5

0
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1

Fig. 5. Autocorrelation matrix for typical 50 dimensional LID-features.

50 × n in the first convolutional layer, beginning with n =
1 and testing with a step size of 5 up to 31. For efficient
evaluation, we only used the 6 most confusable languages from
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Fig. 6. Evaluations with different convolutional filter lengths.

the NIST LRE 2009 corpus (namely the language-pairs of
Russian - Ukrainian, Hindi - Urdu and Dari - Farsi) to obtain
raw EER performance for each filter size and utterance length.

Results are presented in Fig. 6 and show that the trend in
all durations is that the best performance is obtained with a
context size of around 21. We therefore adopted a 1@50 ×
21 kernel size, which means a 10 − 1 − 10 sliding window
of LID-features is used to form the image input to the first
convolutional layer.

Since, from Section III-A, we note that LID-features in the
DNN/i-vector system are also derived from a fixed 10−1−10
context window of PLP features (i.e. 21 acoustic frames), it
means that a total span of 41 frames of acoustic features
contribute to each LID-senone. This contrasts to evidence
in [7] showing that just 21 frames of acoustic features are
the optimal contribution for each senone for LID tasks (hence
the use of 10− 1− 10 context in DNN/i-vector).

Having sized the feature dimensionality and context of LID-
senones, these features will form the basic input for all CNN
systems evaluated in this paper.

D. Using LID-senones to form i-vectors

If LID-senones can indeed represent basic units that are
discriminative for languages in a similar way to senones
for ASR tasks, this raises the question as to whether LID-
senones can replace senones in other systems. For example,
it may be possible to use total variability (TV) modelling
to obtain a language discriminant utterance representation i-
vector. This is effectively replacing the role of DBFs and
senones in the DNN/i-vector system with LID-senones. In
other words, LID-senones could replace the DBFs while LID-
senones posteriors replace the senone posteriors. If such a
hypothesis is reasonable, then the resulting system should be
more language sensitive than the DNN/i-vector baseline. We
therefore construct and evaluate just such a system, naming it
LID-net-i, with a structure as shown in Fig. 7.

The detailed structure and evaluation of the LID-net-i sys-
tem will be presented in Section V-D.

V. IMPLEMENTATION AND EVALUATION

A. Evaluation methodology and experimental data

To evaluate the effectiveness of the proposed systems and
compare against the baseline, we used the NIST LRE 2009
dataset and testing protocol. The 2009 language recognition

evaluation (LRE) comprised 23 target languages, namely:
Amharic, Bosnian, Cantonese, Creole, Croatian, Dari, English-
American, English-Indian, Farsi, French, Georgian, Hausa,
Hindi, Korean, Mandarin, Pashto, Portuguese, Russian, Span-
ish, Turkish, Ukrainian, Urdu and Vietnamese.

1) Training and testing data: Training utterances for each
language were from Conversational Telephone Speech (CTS)
and narrow band Voice of America (VOA) radio broadcasts.
The CTS data used for training incorporated material from
previous evaluations conducted by NIST (LRE 1996, LRE
2003, LRE 2005 and LRE 2007). The utterances were mainly
collected from CallFriend, CallHome and Mixer databases
The VOA partition data was from the NIST-provided datasets:
VOA2 and VOA3.

The training data for each language is quite imbalanced,
with recordings for languages like Mandarin and English-
American exceeding 100 hours. By contrast there was less
than 5 hours of English-Indian data. It should also be noted
that some language data was collected from only one of
the sources. Up to about 15 hours of each target language
was selected for training and approximately 80 separate 30s
duration utterances set aside for use as the development dataset
(the remainder was used for training).

The test utterances are also divided into three duration
groups, i.e. 30s, 10s and 3s, comprising 10,376, 10,427 and
10,375 speech utterances respectively.

2) Testing and Performance Evaluation: The language de-
tection task in LRE 2009 is to determine whether a hypoth-
esised language is spoken within a test segment or not [25].
Since test utterances vary in length, performance was evaluated
separately for approximate utterance lengths of 30s, 10s and
3s, with the latter task being particularly difficult since short
utterances could contain very little language-specific informa-
tion and were often too short to yield meaningful statistics.

Several metrics can be used to assess LID performance (in
terms of one-versus-all language detection). Classical equal
error rate (EER) gives the performance when false acceptance
and false rejection rates are equal. Average decision cost
(Cavg) [25] is a measure of the cost of taking incorrect
decisions over all languages;

Cavg =
1

2NT

∑
l∈LT

{
PM (l) +

1

NT − 1

∑
l′∈LN

PF (l, l′)

}
where PM and PF are the miss (rejection) and false miss

error rates respectively and LT and LN represent the target and
non-target languages (NT is the number of target languages).
We also made use of DET curves [26], to visualise the range
of possible system operating points.

For our evaluations, we trained and tested separate net-
works for the 30s, 10s and 3s tasks. Although they had the
same structure, they contained different weights after training.
As mentioned above, the 3s task was particularly difficult,
whereas the nature of the 30s task made it much easier. How-
ever we made use of training data augmentation techniques
to divide the longer utterances into shorter segments to help
train the 3s and 10s networks. The consequence is that those
networks enjoyed the benefits of far more training data than the
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Fig. 7. Structure of the CNN-DNN LID-net-i i-vector based system using LID-senone statistics gathered from the upper end-to-end system to form a
background model (steps S1 and S2) to create a total variability (T) matrix (S3), needed to obtain an i-vector from each utterance statistic (S4). Notation
K@1×N means that there are K channels of 1 by N sized features.

30s network, meaning that the performance of each network
is constrained in different ways.

DNN front end layers configuration and training

All LID-net, LID-bnet, LID-net-i and DNN/i-vector systems
utilised the same front end DNN layers. These began as a 6
layer DNN with central 50 dimensional bottleneck layer (i.e.
48 × 21 − 2048 − 2048 − 50 − 2048 − 2048 − 3020). We
used Switchboard for training the DNN to give DBFs. After
training, the layers up to the bottleneck layer were transferred
to each new system and then trained end-to-end using LRE
2009 training data. The posteriors at the output of the CNN
layers are denoted LID-senones. These layers are all listed in
Table I for each system.

Given that the DNN layers were pre-trained and fixed to
act as a feature extractor, the following CNN layers were then
trained directly on LID data to learn a mapping from input
LID-features to utterance-level LID labels. The configuration
settings used for each neural network stack are given in
Table I, with layers 10 and 11 for LID-net and LID-bnet
shown separately, since the former network ended at layer
11 rather than layer 12. Each CNN block actually consisted
of a convolutional layer followed by batch normalisation
(‘bnorm’). A dropout of 0.5 was also applied after the first
two convolutional blocks, and each system was trained with a
learning rate that began at 0.05, and was then multiplied by
0.1 after every 5 epochs, terminating after 15 epochs. Batch
size was variable (it was maximised to fit into GPU memory
of 12GBytes and therefore was dependant upon the size of

TABLE I
NEURAL NETWORK CONFIGURATIONS FOR LID-NET AND LID-BNET

SYSTEMS.

Layer Stage Input Size Configuration

1 DNN layer1 (48× 21)×N (48× 21)× 2048
2 DNN layer2 2048×N 2048× 2048
3 DNN layer3 2048×N 2048× 50

4 CNN block1 1@50×N 1@50× 21 / bnorm
5 CNN block2 512@1× (N − 20) 512@1× 1 / bnorm
6 CNN block3 512@1× (N − 20) 512@1× 1 / bnorm
7 CNN block4 512@1× (N − 20) 512@1× 1 / bnorm
8 CNN block5 512@1× (N − 20) 512@1× 1 / bnorm
9 CNN block6 512@1× (N − 20) 512@1× 1 / bnorm

10 (LID-net) SPP K@1× (N − 20) SPP [1, N − 20]

10 (LID-bnet) bilinear O2P K@1× (N − 20) from conv 5,6 & 6,6

11 (LID-net) full con. K@1× 1 K × 23 outputs
11 (LID-bnet) full con.1 (K ×K)@1× 1 (K ×K)× 512

12 (LID-bnet) full con.2 512@1× 1 512× 23 outputs

the training data set), ranging from 256 for the 3s LID-net
system, 128 for 3s LID-bnet, 64 and 32 respectively for the
10s systems, 16 and 8 for the 30s systems. All pooling layers
in these systems used average rather than max pooling.

B. Evaluation of LID-net system

As shown in Table I, LID-net had six convolutional layers,
taking LID-features derived from the DNN plus context as
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TABLE II
COMPARISON BETWEEN LID-NET, DBF/I-VECTOR AND GMM/I-VECTOR

FROM [11]. PERFORMANCE IS GIVEN IN EER (%) AND Cavg (%).

System 30s 10s 3s
EER Cavg EER Cavg EER Cavg

GMM/i-vector [11] - 1.15 - 1.98 - 6.82
DBF/i-vector 1.48 1.10 3.05 2.14 10.79 7.48
LID-net-32 1.49 1.05 2.74 1.54 7.67 6.02
LID-net-64 1.54 0.75 2.92 1.64 7.76 5.99
LID-net-128 1.55 0.91 2.89 2.00 7.58 6.15
LID-net-256 1.46 1.21 2.66 1.46 7.57 5.05
LID-net-512 1.50 0.74 2.81 1.49 7.79 6.64

input1. It was trained end-to-end with LID labels, using SPP to
collate utterance level statistics for classification by the single
fully connected layer 11. We evaluated LID-net with a number
of different pooling lengths from 32 to 512 in the feature
map after CNN block 6 for comparison. Its performance is
compared, in Table II, to the current state-of-the-art DBF/i-
vector system. A notation such as LID-net-32 means that the
feature map after CNN block 6 pooled across 32 features.

The benefits of end-to-end training are evident from the per-
formance: it outperformed the baseline DBF/i-vector system
over all scales, particularly for the most difficult 3s task. These
results lend some confidence to the idea of greater language
discriminating ability implicit in LID-senones. From these
results, pooling over 256 features appears to be a reasonable
choice, among tested configurations, for all scales.

C. Evaluation of LID-bnet system

The structure of LID-bnet is shown in Fig. 2 and its detailed
configuration given in Table I. It shared the same three lowest
layer structures and weights with LID-net, since DNN layers
1 to 3 were pre-trained in a bottleneck network on good
and extensive ASR material. The next six CNN convolutional
blocks had the same configuration as in LID-net, but different
weights and thus extracted different LID-senones. This due to
CNN layers being trained in a backwards direction from the
output end of the network, and that end of the network differed
substantially between LID-net and LID-bnet.

In LID-net, the frame-level LID-senones were pooled into
an utterance representation by SPP after CNN block 6, how-
ever this only made use of simple averaging. As mentioned in
Section II-A, in order to obtain higher order statistics it was
necessary to replace SPP.

LID-bnet configuration

The bilinear pooling function B can be written as fA,B =
B(fA,fB) [23]. Let fA and fB be the A and B feature
maps derived from structured CNN layers A and B. These
could be from the same CNN block or from different CNN
blocks (shown in Fig. 2 (a) and (b) respectively).

If fA,B is the output of bilinear pooling, the size of
fA and fB are (H × W ) × KA and (H × W ) × KB

1The notation used in this paper is that a size of K@H ×W means there
are K channels of height H features with width W .

respectively (reshaped from KA@H ×W and KB@H ×W
respectively), implying both fA and fB must have the same
feature dimension W and H to be compatible, but could
subsequently pool over different length sets of features.

The bilinear pooling operation can be developed to fA,B =
B(fA,fB) = P(fA

T · fB). The feature map outputs are
combined at each location using the matrix outer product,
thus the shape of (fA

T · fB) is simply KA ×KB . To obtain
an utterance representation descriptor, the pooling function P
aggregates the bilinear feature across the entire spatial domain
of one combination at different scales.

Elements in feature map fA are defined as fAd(t) (d =
1 . . .KA, t = 1 . . . N ) and fB , after the softmax operation,
becomes γ, which can be viewed as the posterior of corre-
sponding LID-senones at a frame level, with elements defined
as γk(t) (k = 1 . . .KB , t = 1 . . . N ). Using the feature map
fA and γ, the first order LID-senone statistics are,

fAB(k) =
1

N

N∑
t=1

γk(t) · fA(t) (1)

If we instead use feature maps fA and fB directly, the
bilinear pooling would model the second order LID-senone
statistics,

fAB =
1

N
fA

T · fB (2)

If fA and fB are from the same layer in the CNN,
this would be the formula to compute O2P in [27] (eqn.1).
In [27] it is a second order statistic computed over image
spatial dimensions, but in LID-bnet, features are derived across
acoustic analysis frame contexts. This means that while it
differs from a traditional Baum-Welch second order statistic,
it is effectively still a second order time domain statistic.

Same- or cross-layer pooling

After transferring trained LID-net parameters to the cor-
responding LID-bnet, we re-trained using the same training
data to verify whether bilinear pooling improves performance
further. Focusing on 3s utterances, we conducted many exper-
iments to explore the mechanism for computing first/second
order statistics through same- or cross-layer pooling.

TABLE III
PERFORMANCE OF CROSS- AND SAME-LAYER LID-BNET ON 3S

UTTERANCES FOR DIFFERENT POOLING LENGTHS K .

K
cross-layer network same-layer LID-net

2nd order 1st order 2nd order 0th order
EER ACC EER ACC EER ACC EER ACC

32 6.97 72.89 7.08 72.99 7.19 72.80 7.67 71.63
64 6.94 73.11 7.15 72.99 7.16 73.04 7.76 71.52
128 7.05 72.86 7.08 73.03 7.25 73.23 7.58 71.79
256 7.09 73.43 7.37 72.56 7.13 73.40 7.57 71.87
512 6.86 72.77 7.11 71.43 7.17 73.05 7.79 71.53

Table. III lists the performance for various systems on 3s
utterances. The number K in each row of the table indicates a
test that involved either LID-net-K or an LID-bnet initialised
from LID-net-K. Performance is given for both cross-layer
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and same-layer pooling and results for second and first-order
statistics are listed separately (except for same-layer pooling).
LID-net results are listed on the right for comparison, and we
see that all LID-bnet configurations outperformed the original
method. This is thanks to the robustness that is gained by using
high-order LID-senone statistics. Cross-layer bilinear pooling
performed better than same-layer pooling, which indicates that
additional useful information was being gained by incorporat-
ing statistics from an earlier layer. Using the second order
statistics was more robust in every case than that just first
order statistics. Therefore the following evaluations only list
the performance of the best configuration – second order LID-
senone statistics obtained from cross-layer bilinear pooling.

TABLE IV
PERFORMANCE OF CROSS LAYER BILINEAR NETWORK FOR ALL SCALES

WITH DIFFERENT POOLING LENGTHS K .

K 30s 10s 3s
EER Cavg EER Cavg EER Cavg

32 1.52 0.77 2.39 1.20 6.97 6.20
64 1.48 0.95 2.40 1.38 6.94 5.32

128 1.59 0.66 2.33 1.50 7.05 5.52
256 1.58 0.87 2.32 1.74 7.09 5.26
512 1.51 0.87 2.43 1.46 6.86 4.38

Performance of LID-bnet

Like LID-net, LID-bnet has six convolutional layers, and
again we evaluated with pooling between 32 and 512 feature
maps after CNN layer 6 for comparison. The performance is
shown in Table IV for each tested K, where an K of 32 means
the corresponding LID-net-32 pooled 32 feature maps after
CNN layer 6. Comparing this to the LID-net performance in
Table II, improvement is noted, especially at shorter utterance
scales in both EER and Cavg scores. Although the optimal
pooling length in LID-bnet was found to be different for each
utterance duration, the best performance tended to be achieved
with a shorter length than in LID-net. This highlights the
compactness of the the bilinear pooling method: pooling over
just 64 features in LID-bnet can outperform both the DBF/i-
vector and the LID-net EER for shorter utterances. While
the difficult 3s task benefits from improvements in system
architecture, the 30s task appears to be data-limited rather
than architecture-limited, and the newer architectures do not
contribute additional data to the task, hence yield only minimal
improvements for that scale.

D. Design and evaluation of the LID-net-i system

The LID-net-i structure hypothesised in Section IV-D, re-
places the use of DBFs and senones of the DNN/i-vector
system with LID-senones (as derived from LID-net).

In practice, after training a correspondingly sized LID-net
system, we extracted LID-senones and their posteriors, in
order to train a language independent GMM model. From
this we obtained zeroth, first and second order Baum-Welch
statistics to train a T matrix from which we could extract
an i-vector. The i-vectors derived from LID-senones should,
if our hypothesis is correct, incorporate a greater degree of

language discriminant information than those derived from
ASR senones.

To implement and evaluate this, we trained several LID-
net systems, each with six convolutional layers. The first five
layers had 512 channels while the sixth layer had a number of
channels which varied from 32 to 128 as required to evaluate
different lengths over which the statistics were pooled. The T
matrices were trained over five epochs and the performance
of the final system obtained in terms of EER (%) and Cavg

for all testing conditions. Results are presented in Table V.

TABLE V
COMPARISON BETWEEN LID-NET-I POOLING OVER 32, 64 AND 128

FEATURES AND DNN/I-VECTOR FOR ALL UTTERANCE LENGTH
CATEGORIES. GMM/I-VECTOR IS FROM [11].

System 30s 10s 3s
EER Cavg EER Cavg EER Cavg

GMM/i-vector [11] - 1.15 - 1.98 - 6.82
DBF/i-vector 1.48 1.10 3.05 2.14 10.79 7.48
LID-net-i-32 1.46 1.21 2.39 1.79 8.10 6.77
LID-net-i-64 1.43 1.10 2.44 1.87 8.30 7.38
LID-net-i-128 1.41 0.96 2.49 1.88 8.53 7.87

The results clearly show the advantages of LID-net-i over
the baseline DNN/i-vector system, as well as the GMM/i-
vector system using DBFs from Ferrer et. al. [11]. Since the
lower four systems are identical apart from the source of
the utterance level statistics (from senones and LID-senones
respectively), the results corroborate the hypothesis that LID-
senones are better able to represent language information than
senones.

To explore this in a different way, we have used t-SNE [28]
to obtain cluster manifolds for a set of six languages from each
system presented in this paper (four less confused languages
plus one relatively confused language pair were chosen in
an effort to highlight separability). t-SNE is a variant of
stochastic neighbour embedding (SNE) that is conveniently
able to visualise high-dimensional data by mapping it into
a lower dimensionality. In this case we reduce the trained 3s
statistics to three-dimensions and plot views of each system in
Fig. 8 that highlight features that include cluster sizes, overlap
and separability2. For i-vector systems the data is shown after
LDA and WCCN.

The manifold plots show much better class separability for
the new systems compared to the baseline – for example the
clusters in the LID-bnet plot are almost all linearly separable,
whereas the Mandarin, Cantonese and even American English
clusters in the DNN/i-vector system are highly overlapped.
This again highlights the advantages of LID-senones – whether
used in an end-to-end system (LID-net and LID-bnet) or
to provide the statistical utterance level information in an
otherwise traditional i-vector system (LID-net-i).

2Since it is difficult to visualize three dimensional information from a two
dimensional representation, we have made the original plots available for
download from http://www.lintech.org/LID/ in MATLAB .fig format.
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Fig. 8. Manifold plots [28] for (a) DNN/i-vector, (b) LID-net-i, (c) LID-net and (d) LID-bnet.

TABLE VI
EVALUATIONS ON DIFFERENT SYSTEMS INCLUDING DNN/I-VECTOR,

LID-NET, LID-BNET AND LID-NET-I. PERFORMANCE IS GIVEN IN EER
(%) AND Cavg (%) FOR ALL TEST CONDITIONS.

System name 30s 10s 3s
EER Cavg EER Cavg EER Cavg

DBF/i-vector 1.48 1.10 3.05 2.14 10.79 7.48
LID-net 1.46 0.74 2.66 1.46 7.57 5.05
LID-bnet 1.48 0.66 2.32 1.20 6.86 4.38
LID-net-i 1.41 0.96 2.39 1.79 8.10 6.77

VI. DISCUSSION OF RESULTS

A. System performance sumary

To summarise the new systems presented in this paper, the
final performance is given in Table. VI, alongside the state-
of-the-art baseline, with the best performing EER and Cavg

scores shown in bold.
Starting with the 30s utterances, which we believe is data-

limited, we see that LID-net-i achieves a 4.7% relative EER
improvement over the baseline. This is due to the advantages
of LID-senones and their statistics, which are designed to be
language discriminant, over the traditional senones. However,
the relative improvement is small because phoneme or tri-
phone state statisics do contain language specific information;
but this is only useful when their statistics are abundant enough
– and this is precisely the case for 30s utterances. As expected,
the 10s and 3s tasks show a greater relative gain in using LID-
senones, because the utterances are shorter and hence less able
to contribute discriminative senone statistics.

For 10s utterances, LID-bnet EER performance is better
by 23.9%, not only because it takes advantage of the dis-
criminative capability of the end-to-end structure, but also
because it extracts the high order statistics of the LID-senones.
LID-net-i achieves second best performance with a 21.6%
relative EER improvement over baseline. This is due to the
LID-senone statistics being more discriminative on languages,
as well as the utterance length being sufficient to collect
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Fig. 9. DET curve plots for all systems and all utterance scales.

meaningful statistics. LID-net also achieves a relative 10%
EER improvement over baseline, even though it only simply
averages the LID-senones to get their statistics (again, we note
that effectively this means that LID-senone statistics are better
than higher order senone statistics).

The most difficult 3s utterance task is the most interest-
ing, with the strong modelling capability of the end-to-end
approaches dominating so that both LID-net and LID-bnet
outperform the i-vector systems. We explain this by arguing
that when shorter utterances are modelled by a generative
model, since there are insufficient statistics available in the
speech, the accuracy of the model is compromised. The
generative method concentrates on the distribution of different
languages rather than pushing the same language into compact
clusters, and hence different languages have a larger variance
and greater overlap. End-to-end training allows LID-net to
achieve 29.8% relative EER improvement over baseline while
the bilinear higher order pooling of LID-bnet achieves 36.4%
relative EER improvement.

For all utterance durations, we note that LID-bnet achieves
the best Cavg performance – which we again attribute to the
power of LID-senones. The discriminative method looks for
boundaries between languages, so even when languages are
confusable, it is easier to find an appropriate threshold, and
hence have lower Cavg score than the generative modelling
techniques.

B. DET curve

DET curves [26] are plotted for all systems in Fig. 9,
showing the trade-offs possible between false positive and
false negative detections. The EER results of Table VI are
derived from DET curves (from the transect of a 45◦ line
from the origin with each curve), but the overall shape of
the curves yields additional useful information. From Fig. 9

we note firstly that the LID-bnet system is almost always the
highest performing method at all trade-off positions, whereas
the baseline DNN/i-vector system is almost always the worst
among tested systems, with the exception of low rates of
false negatives at the 30s utterance scale. Secondly, we note
that separation between curves at their centre positions, which
represent the span of EER results, are scale dependent. This
means that the 30s scale results are far closer in the centre
than are the 10s results while the 3s results are more separated.
The interpretation of this is that the 30s task is training data
limited, and hence improvements in architecture of statistics
quality have less effect than in the 10s or 3s tasks. For the
3s task, meanwhile, improvements in architecture lead to a
much greater relative gain in performance. Both of these
characteristics have been noted in the results presented up to
now.

C. Confusion matrices

Confusion matrices are plotted, normalized to the size of
test data, for each system over a 3s utterance scale in Fig. 10.
The highly confused language pairs are clearly identifiable
from these plots, but apart from those language pairs which
we already know to be inherently confusable, we note some
other interesting features. Firstly, while LID-net and LID-bnet
understandably share similar confusion tendencies, the other
systems are much less similar. In fact LID-net-i arguably
resembles DNN/i-vector confusions more closely. Secondly,
again apart from those six pairs, i-vector and SPP or bilinear
pooling methods – while they use identical information – draw
different conclusions. In fact there is sufficient dissimilarity in
the confusion matrices to raise the intriguing possibility that
a performance gain might be achievable through a fusion of
methods. This idea is left for future exploration.

VII. CONCLUSION

This paper has presented new language identification struc-
tures that utilise a well trained DNN front end for feature
extraction, followed by a deep stack of convolutional layers,
pooling methods and fully connected output classifiers. There
are several levels of time domain context implicit in the
structures, starting at frame level and culminating in pooling
of features or statistics across an utterance. The key features of
these methods are firstly that they can be trained end-to-end for
a language identification task and secondly that they form an
intermediate feature representation which we have called LID-
senones. The end-to-end training capability of these systems
allows them to be trained at an utterance level to be more
discriminative in terms of language identity, compared to
current state-of-the art systems such as the DNN/i-vector used
as a baseline in this paper, which is generative in nature. The
increased level of discrimination is borne out in the excellent
results that these methods achieve, particularly for the most
difficult 3s utterance LID task; in which they improve on
current state-of-the-art system performance by over 36% in
terms of EER and 41% in terms of Cavg .

The intermediate LID-senone representation derived within
the end-to-end structures is analogous to senones in an ASR
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Fig. 10. Normalized confusion matrices for 3s utterances for (a) DNN/i-vector, (b) LID-net, (c) LID-bnet and (d) LID-net-i.

system, and we have explored in some detail how they should
be language sensitive but relatively speaker, channel and
noise insensitive. Evidence presented in this paper shows that
LID-senones encode language identity; their distribution is
relatively unchanging in intra-language comparisons, but sig-
nificantly different in inter-language comparisons. LID-senone
systems are shown to perform well, even when a DNN/i-vector
system is constructed to use LID-senones instead of senones,
yielding significant performance improvements at all utterance
scales.

As future work it would be interesting to explore the noise
robustness of SPP operating over different scales or when
pooling a greater number of shorter statistics, perhaps at a
syllabic or word scale.
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