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We present a result characterising iterated inflations of cellular 
algebras, derived from the work of König and Xi. This 
result is intended to replace an incorrect proposition in the 
literature, and gives explicit and readily checked conditions 
which establish that an algebra is an iterated inflation of 
cellular algebras, and hence is cellular, with cellular data 
directly related to the cellular data of the constituent cellular 
algebras.

© 2017 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/).

The concept of a cellular algebra was introduced by Graham and Lehrer in [2], and 
has found wide application in the representation theory of finite groups and associative 
algebras; it has been especially useful in the study of diagram algebras. We refer the reader 
to the existing literature for the definition and basic properties of cellular algebras; we use 
the notation of [3]. We work over a field k, and all our k-algebras are finite-dimensional; 
since all tensor products are taken over k, we abbreviate ⊗k to ⊗.

In [4], König and Xi introduced the notion of an iterated inflation of cellular algebras. 
Informally, iterated inflation allows us to prove that an algebra is cellular by showing 
that it may be constructed using some family of existing cellular algebras in a certain 
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way. There are, however, various technical details and conditions which must be satisfied 
in order for such a construction to yield a cellular algebra as desired. In [4] and [5], 
these conditions are not presented in a single definition or result, but rather are devel-
oped in the course of the text. In [7], Xi gave the following lemma to provide a precise 
characterisation of iterated inflations of cellular algebras:

Lemma. (Xi — Lemma 3.3 in [7]) Let A be an algebra with an anti-involution σ. Suppose 
there is a vector space decomposition A =

⊕m
j=1 Vj ⊗ Bj ⊗ Vj where Vj is a vector 

space and Bj is a cellular algebra with respect to an anti-involution σj and a cell chain 
J

(j)
1 ⊆ · · · ⊆ J

(j)
sj = Bj for each j. Define Jt =

⊕t
j=1 Vj ⊗Bj ⊗ Vj. Assume that

(i) the restriction of σ on Vj ⊗Bj ⊗ Vj is given by w ⊗ b ⊗ v �−→ v ⊗ σj(b) ⊗ w

(ii) for each j, there is a bilinear form φj : Vj × Vj → Bj such that σj(φj(w, v)) =
φj(v, w) for all v, w ∈ Vj

(iii) for x, y, u, v ∈ Vj and b, c ∈ Bj, we have

(x⊗ b⊗ y)(u⊗ c⊗ v) = x⊗ bφj(y, u)c⊗ v (mod Ji−1)

(iv)
(
Vj ⊗ J

(j)
l ⊗ Vj

)
+ Jj−1 is an ideal in A for all l and j.

Then A is a cellular algebra.

This lemma was used, for example, to prove the cellularity of the partition algebra 
in [7], and of the BMW-algebra in [6]; both of these papers have become standard 
references for these facts. The lemma is, however, incorrect, as the following example 
shows. Recall that the matrix algebra Mn(k) is cellular with respect to the anti-involution 
which takes a matrix to its transpose. In particular, the field k is cellular with respect 
to the identity map. Let k be any field, and define A to be the k-algebra obtained by 
equipping M2(k) ⊕ k ⊕ k with the (commutative) multiplication

((
a11 a12

a21 a22

)
, α, β

)((
b11 b12

b21 b22

)
, γ, δ

)
=

((
γa11 δa12

δa21 γa22

)
+
(
αb11 βb12

βb21 αb22

)
, αγ, βδ

)
,

which has identity
((0 0

0 0

)
, 1, 1

)
.

Let σ be the anti-involution σ (M,α, β) =
(
MT , α, β

)
on A. Let V1 = V2 = V3 = k and 

define cellular algebras B1 = M2(k) and B2 = B3 = k. Thus we obtain an isomorphism 
of vector spaces
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A ∼=
(
V1 ⊗B1 ⊗ V1

)
⊕

(
V2 ⊗B2 ⊗ V2

)
⊕

(
V3 ⊗B3 ⊗ V3

)

from the mapping (M, α, β) �−→ (1 ⊗M⊗1, 1 ⊗α⊗1, 1 ⊗β⊗1). Define k-bilinear forms φ1, 
φ2, φ3, where φi maps Vi×Vi to Bi, by taking φ1 to be zero and φ2(1, 1) = φ3(1, 1) = 1. 
One may check that these definitions satisfy the hypotheses of Xi’s lemma (note that Bj

has cell chain {0} ⊆ Bj for each j). Suppose for a contradiction that A is cellular, and 
let

e =
((

0 0
0 0

)
, 0, 1

)
.

Then e is an idempotent of A, and one may see by direct calculation that eAe is a 
3-dimensional subspace of A upon which σ does not act as the identity map. Further, 
we have σ(e) = e and so by Proposition 4.3 of [3], the algebra eAe must be cellular 
with respect to the restriction of σ. But it follows easily from the definition of a cellular 
algebra (and the fact that the only expression of 3 as a sum of squares is 1 +1 + 1) that 
the anti-involution on a 3-dimensional cellular algebra is the identity map; thus A is not 
cellular.2

We now present a result which can serve as a convenient replacement for the incor-
rect lemma above. This result characterises iterated inflations via two readily checked 
conditions; these two conditions were noted for the Brauer algebra by König and Xi in 
[5] (Lemmas 5.4 and 5.5). The proof of this theorem is a straightforward verification of 
the axioms for a cellular algebra given in [2], and thus is omitted.

Theorem 1. Let A be a k-algebra, with an anti-involution σ. Suppose that we have, up 
to isomorphism of k-vector spaces, a decomposition

A ∼=
⊕
i∈I

Vi ⊗Bi ⊗ Vi

of A, where I is a finite partially ordered set, each Vi is a k-vector space, and each Bi is a 
cellular algebra over k with respect to an anti-involution σi and cellular data (Λi,Mi, C). 
We shall henceforth consider A to be identified with this direct sum of tensor products.

Suppose that for each i ∈ I, we have a basis Vi for Vi and a basis Bi for Bi, such that:

1. For each i ∈ I, we have for any u, v ∈ Vi and any b ∈ Bi that

σ(u⊗ b⊗ v) = v ⊗ σi(b) ⊗ u. (1)

2. Let A be the basis of A consisting of all elements u ⊗ b ⊗ v for all u, v ∈ Vi and all 
b ∈ Bi, as i ranges over I. Then for any i ∈ I we have maps φi : A × Vi → Vi and 

2 If k has characteristic 2, then A and σ may be shown to satisfy the alternative definition of cellularity 
given by Goodman and Graber in [1], demonstrating that this definition is indeed different from that given 
by Graham and Lehrer over fields of characteristic 2.
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θi : A × Vi → Bi such that for any u, v ∈ Vi and any b ∈ Bi, we have for any a ∈ A
that

a · (u⊗ b⊗ v) ≡ φi(a, u) ⊗ θi(a, u)b⊗ v mod J(< i) (2)

where J(< i) =
⊕

l<i Vl ⊗Bl ⊗ Vl.

Then A is cellular with respect to σ and the cellular data (Λ, M, C), where Λ is the set 
{(i, λ) : i ∈ I and λ ∈ Λi} with the lexicographic order, M(i, λ) is Vi × Mi(λ), and 
C

(i,λ)
(x,X),(y,Y ) = x ⊗ Cλ

X,Y ⊗ y.

Note that we may use any bases of the cellular algebras Bi to check the conditions of 
Theorem 1: we need not use the cellular bases of the Bi. This is convenient as cellular 
bases are often awkward to work with in practice.

Proposition 2. Let A be an algebra satisfying the hypotheses of Theorem 1. Then the 
multiplication in each “layer” of A is “governed” by a bilinear form as in Xi’s lemma: 
for each i ∈ I there is a unique Bi-valued k-bilinear form ψi on Vi such that for any 
u, v, x, y ∈ Vi and b, c ∈ Bi, we have ψi(y, u) = σi (ψi(u, y)) and

(x⊗ c⊗ y)(u⊗ b⊗ v) ≡ x⊗ c ψi(y, u)b⊗ v mod J(< i). (3)

Proof (outline). We shall show that there is a bilinear form ψi satisfying (3) by proving 
that we have a map ψi : Vi × Vi −→ Bi satisfying (3); the rest is then easy. First note 
that (1) holds even when u, v, b are not required to be basis elements, and likewise for 
v, b in (2); these equations are used extensively in what follows. By applying σ2 = idA

we may show that

(x⊗ c⊗ y)(u⊗ σi(b) ⊗ u) ≡ x⊗ c σi

(
θi(u⊗ b⊗ u, y)

)
⊗ φi(u⊗ b⊗ u, y) (4)

modulo J(< i), for u, x, y ∈ Vi and b, c ∈ Bi. Now for u, x, y ∈ Vi and c ∈ Bi, we may 
on the one hand apply (2) to (x ⊗ c ⊗ y)(u ⊗ 1Bi

⊗ u), and on the other hand we may 
expand 1Bi

in terms of the basis σ(Bi) and apply (4). By carefully comparing the results 
of these calculations, we may deduce that if θi(x ⊗ c ⊗ y, u) 
= 0 then φi(x ⊗ c ⊗ y, u) is 
some scalar multiple of x, say α(x, c, y, u)x, and further that

φi(x⊗ c⊗ y, u) ⊗ θi(x⊗ c⊗ y, u) ⊗ u = x⊗ c ψi(y, u) ⊗ u

for a value ψi(y, u) ∈ Bi depending only on y and u; hence we may deduce that 
α(x, c, y, u)θi(x ⊗ c ⊗ y, u) is equal to c ψi(y, u). Then for u, v, x, y ∈ Vi and b, c ∈ Bi, we 
apply (2) to the left-hand side of (3) and then apply the above results, and hence obtain 
the right-hand side of (3). �
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The first part of our final result is implicit in [4] and [5], and a more explicit formulation 
was given in [7]; we believe that the second part has not previously appeared in the 
literature. The proof is easy and is omitted.

Proposition 3. Let A be as in Theorem 1, let (i, λ) ∈ Λ, and let Δλ be the cell module of 
Bi corresponding to λ. The cell module Δ(i,λ) of A may be obtained by equipping Vi⊗Δλ

with the action given, for a ∈ A, x ∈ Vi and z ∈ Δλ, by

a(x⊗ z) = φi(a, x) ⊗ θi(a, x)z.

Recall that the simple modules of a cellular algebra may be obtained as quotients of the 
cell modules by the radicals of certain bilinear forms; with the above construction of the 
cell module, if 〈· , ·〉 is the bilinear form on Vi ⊗ Δλ and 〈· , ·〉λ is the bilinear form on 
Δλ, then for any x, y ∈ Vi and any z, w ∈ Δλ, we have

〈x⊗ z, y ⊗ w〉 = 〈z, ψi(x, y)w〉λ = 〈ψi(y, x)z, w〉λ.
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