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1 Introduction

The purpose of this short article is to present a classification of nonlinear partial
differential equations of second order of the general form

uxt = u+c0u
2 +c1uux +c2uuxx +c3u

2
x +d0u

3 +d1u
2ux +d2u

2uxx +d3uu
2
x , (1)

which in the case that c j = 0 for j = 0, 1, 2, 3 and d0 = d1 = 0, d3 = 2d2,
includes the short pulse equation derived by Schäfer and Wayne [29] as a model
of ultra-short optical pulses in nonlinear media; cf. Eq. (3) below. It was shown by
Sakovich and Sakovich [27] that the short pulse equation is integrable, in the sense that
it admits a Lax pair and a recursion operator that generates infinitely many commuting
symmetries; these authors also found a hodograph-type transformation connecting it
with the sine-Gordon equation. In fact, the short pulse equation and the construction of
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its associated linear scattering problem first appeared in differential geometry [1,26].
The integrability of the equation was further clarified by Brunelli [2], who obtained
a bi-Hamiltonian structure and used an alternative Lax representation to construct an
infinite sequence of conserved quantities.

Short pulses and their properties are a subject of current interest in nonlinear optics
and electrodynamics, both theoretically and experimentally. For instance, a rigorous
justification of the short pulse equation, starting from a quasilinear Klein-Gordon
equation (a toy model for Maxwell’s equations) was given in [25]. Moreover, for
electrons accelerated in short laser pulses, it was shown recently that, due to quantum
effects, the radiation reaction can be quenched by suitably tuning the pulse length,
although the lengths required are currently out of experimental reach [15].

In this paper we are concerned with generalized short pulse equations of the form
(1) from the viewpoint of integrability. The main result of the paper is the following.

Theorem If the Eq. (1) possesses an infinite hierarchy of local higher symmetries,
then up to rescaling u → λu, x → μx, t → νt it is one of the list

uxt = u +
(
u2

)
xx

, (2)

uxt = u +
(
u3

)
xx

, (3)

uxt = u + 4uuxx + u2x , (4)

uxt = u +
(
u2 − 4u2ux

)
x
, (5)

uxt = u + 2uuxx + u2x , (6)

uxt = u + u2uxx + uu2x , (7)

uxt = u + α
(
2uuxx + u2x

)
+ β

(
u2uxx + uu2x

)
, αβ �= 0. (8)

Remark The nonlinear terms in Eq. (8) are a linear combination of those in Eqs. (6)
and (7). Upon applying an affine linear transformation u → au + b together with a
Galilean transformation x → x − ct for suitable a, b, c, the derivative of (8), that is

uxxt = ux + α
(
2uuxx + u2x

)
x

+ β
(
u2uxx + uu2x

)
x
,

can be transformed to the case α = 0, β = 1, which is the derivative of (7); but for
the original Eq. (8) the quadratic terms cannot be removed in this way.

Equations of the form (1) are of interest for various reasons. Observe that, aswritten,
(1) is not an evolution equation for u, and if it is rewritten as one, solving for ut , then it
becomes nonlocal, involving the integration operator D−1

x . Physically, such equations
appear in the description of the short-wave behavior of nonlinear systems. For example,
the b-family of equations

mt + umx + buxm = 0, m = m0 + u − uxx , m0 = const, (9)
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which was introduced in [8] (see also [9,19]) and derived from shallow water theory
in [6,10], has a short-wave limit found by setting

x → εx, t → εt, m0 → −με−2, μ = const,

and then taking ε → 0, which yields

uxxt + bμux + uuxxx + buxuxx =
(
uxt + bμu + uuxx + 1

2
(b − 1)u2x

)
x

= 0.

(10)

After sending t → −t and rescaling u, (10) is seen to be the x derivative of an equation
of the form (1). It is known from [22] that (for b �= 0) the Eq. (9) is integrable, in the
sense that it admits an infinite hierarchy of commuting symmetries, if and only if b = 2
(Camassa–Holm [3]) or b = 3 (Degasperis–Procesi [7]). Surprisingly, comparison
with (2), (4) and (6) in the above theorem shows that in the short-wave limit, there are
three integrable cases of Eq. (10): not only b = 2 (Hunter–Saxton [17]) and b = 3
(Vakhnenko [30]), but also the case b = 3/2, which appears to be new.

The proof of the above theorem consists of two parts. The first part consists of
applying the perturbative symmetry approach, as described in [22], to obtain a set
of necessary conditions on the parameters c j , d j in (1) for the existence of a formal
recursion operator with local coefficients (i.e., functions of u and its derivatives only).
This part of the proof requires the use of computer algebra, and further details are
omitted. Once a finite list of equations has been obtained as above (by scaling c j , d j

suitably), the remainder of the proof consists of explicitly constructing a recursion
operator and associated infinite hierarchy of symmetries for each equation found.
Thus, in the rest of the paper, we consider each equation on the list in turn, and for
each one present the first higher symmetry, with flow variable τ , and a recursion
operatorR. The recursion operator is factored asR = HJ , in terms of a compatible
implectic–symplectic pair, with H being a Hamiltonian operator such that the flow
can be written as

uτ = H δu ρ,

where ρ is a density and δu denotes the variational derivative, i.e.,

δu ρ = δH

δu
, where H =

∫
ρ dx

is the Hamiltonian functional with density ρ; and the flow is also written as

J uτ = δu ρ̃,

using the symplectic operator J with another density ρ̃. In addition, for each item on
the list, we use a conservation law to define a reciprocal transformation, i.e., a change
of independent variables of hodograph type, which provides a link to other known
integrable equations. We also present a Lax pair in each case.
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Throughout the paper, subscripts with numbers are used to denote higher deriva-
tives, so that unx = ∂nu

∂xn for n ≥ 2, but we also write, e.g., uxx = u2x .

2 Properties of the generalized short pulse equations

2.1 Vakhnenko’s equation

The Eq. (2) was derived by Vakhnenko [30] as a model for the propagation of short-
wave perturbations in a relaxing medium. Its loop soliton solutions were studied
extensively in [23,31]. In [18], it was shown that the x derivative of (2) arises as
a short-wave, high-frequency limit of the Degasperis–Procesi equation. Sometimes
(2) is also referred to as the reduced Ostrovsky equation [12,13], since (up to rescal-
ing dependent and independent variables) it is the special case β = 0 of the Ostrovksy
equation

(
ut + uux + βuxxx

)
x

− γ u = 0,

which is a model of weakly nonlinear ocean waves under the influence of the Coriolis
force [24].

Higher symmetry The first higher symmetry of the Eq. (2) is

uτ =
(

u3x

(1 + 6u2x )
5
3

)

xx

. (11)

Hamiltonian structure and recursion operator In terms of the quantity

w = (6uxx + 1)−
1
3 ,

the symmetry (11) becomes

wτ = w5w5x + 5w4wxw4x + 10w4w2xw3x (12)

which takes the form

wτ = −1

2
Hδww−1, where H = w4D5

xw
4

is a Hamiltonian operator. The associated symplectic operator is

J = w−2Dx + Dxw
−2 +

(
2w−1w2x − w−2w2

x

)
D−1
x w−2

+w−2D−1
x

(
2w−1w2x − w−2w2

x

)
. (13)
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Thus, the recursion operator R = HJ generates the symmetries for (2) and

Jwτ = δw

(
−w3w2

3x + 8

3
w2w3

2x − 4ww2
xw

2
2x − w6

x

3w

)
.

Reciprocal transformation Viewed as a short-wave limit of the Degasperis–Procesi
equation, the x derivative of (2) can be written in the form

mt = 2umx + 6uxm, m = 1 + 6uxx ,

giving a conservation law for the density p = w−1 = (1 + 6uxx )1/3, that is

pt = 2 (up)x , p3 = m. (14)

This conservation law leads to the introduction of new independent variables X, T by
means of the reciprocal transformation

dX = p dx + 2pu dt, dT = dt,

so that (14) produces

(
p−1

)
T

+ 2uX = 0, p3 = 1 + 6p(puX )X . (15)

If we use the letter W to denote ux , then we have

W = puX .

The Eq. (2) becomes

WT = u + 2W 2,

and (15) can be rewritten as the pair of relations

(log p)T = W, p3 − 1 = 6pWX ,

which implies that p satisfies the Tzitzeica equation in the form

(log p)XT = 1

6

(
p2 − p−1

)
.

Lax pair In [32], a scalar Lax pair was presented for a reciprocally transformed version
of (2), and in [18] this was used to obtain a 3×3 matrix Lax pair for the original equa-
tion, which is equivalent to the following Lax representation with spectral parameter
λ:
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�x =
⎛
⎝

0 1 0
−2λux 0 1
− 1

3λ 2λux 0

⎞
⎠ �, �t =

⎛
⎝

0 2u −λ−1

1
3 (1 − 12λuux ) 0 2u

4
3λu

1
3 (1 + 12λuux ) 0

⎞
⎠ �.

(16)

2.2 The short pulse equation

The short pulse equation was first derived as an equation for pseudospherical surfaces
with an associated inverse scattering problem [1,26]. Its physical derivation in nonlin-
ear optics came later [29] and led to the construction of alternative forms of the Lax
pair, recursion operator and bi-Hamiltonian structure [2,27].

Higher symmetry The first higher symmetry of the Eq. (3) is

uτ =
⎛
⎝ ux

(
1 + 6u2x

) 1
2

⎞
⎠

xx

.

Hamiltonian structure and recursion operator The above symmetry takes the Hamil-
tonian form

uτ = −1

6
Dxδu p p =

(
6u2x + 1

) 1
2
,

withH = Dx being theHamiltonian operator. The symmetries of Eq. (3) are generated
by the recursion operator

R = DxJ = Dx

(
p−1Dx p

−1 + 6p−3u2x D
−1
x p−3u2x

)
,

and

J uτ = δu

(
p−5u22x

2

)
.

Reciprocal transformation The Eq. (3) has the conservation law

pt = 3
(
u2 p

)
x
, (17)

which leads to the introduction of new independent variables X, T according to

dX = p dx + 3u2 p dt, dT = dt.

In the new variables, the conservation law becomes

(
p−1

)
T

+ 3
(
u2

)
X

= 0,
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and by setting W = ux the original Eq. (3) gives

WT = up2, (18)

where we have used

p2 = 1 + 6W 2, uX = W

p
. (19)

Now if a new dependent variable is introduced as

ϕ = − i

2
log

(
1 + i

√
6W

1 − i
√
6W

)
,

then from (18) and (19), it follows that

u = ϕT√
6
,

and ϕ satisfies the sine-Gordon equation, that is

ϕXT = sin ϕ.

Lax pair Equation (3) admits the Lax representation

�x =
(

0 1 + i
√
6ux

−λ(1 − i
√
6ux ) 0

)
�,

�t =
(

i
√
6u/2 − 1

4λ + 3u2 + 3
√
6 i u2ux

1
4 + λ(−3u2 + 3

√
6 i u2ux ) −i

√
6u/2

)
�. (20)

2.3 Equation (4)

The Eq. (4) does not appear to have been considered before in the literature.

Higher symmetry The first higher symmetry of the Eq. (4) is

uτ = u5x

(1 + 6u2x )
10
3

− 30
u3xu4x

(1 + 6u2x )
13
3

+ 160
u33x

(1 + 6u2x )
16
3

. (21)

Hamiltonian structure and recursion operator Let w = (6u2x + 1)− 2
3 . Then the

symmetry (21) becomes

wτ = w5w5x + 5w4wxw4x + 5

2
w4w2xw3x + 15

4
w3w2

xw3x = −2Hδww−1, (22)
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where

H = w
5
2 D2

xw
3
2 Dxw

3
2 D2

xw
5
2

is a Hamiltonian operator. In terms of the quantityw, its symplectic operatorJ has the
same form as that for (2), being given by (13). Thus, the recursion operatorR = HJ
generates the symmetries for (4) and

Jwτ = δw

(
−w3w2

3x + 1

6
w2w3

2x − 1

4
ww2

xw
2
2x − w6

x

48w

)
.

Reciprocal transformation After rescaling u and taking t → −t , the x derivative of
Eq. (4) can be rewritten in the form

mt + umx + 3

2
uxm = 0, m = 2

3
+ uxx , (23)

which is a degenerate form of the b-family of peakon equations (9), with b = 3/2.
The quantity m2/3 is a conserved density, and the conservation law

pt + (pu)x = 0, p = m2/3

can be used to define the reciprocal transformation

dX = p dx − pu dt, dT = dt.

Hence, (23) leads to the equations

(
p−1

)
T

= uX , p3/2 = 2

3
+ p

(
puX

)
X

= 2

3
+ p

(
p

(
p−1

)
T

)
X

,

and the latter can be rewritten as

(log p)XT + p1/2 − 2

3
p−1 = 0, (24)

which is equivalent to the Tzitzeica equation.
Lax pair Starting from a 3 × 3 Lax representation for the Tzitzeica equation, it is
straightforward to obtain the following Lax representation for (23):

�x =
⎛
⎝

0 iλm 0
0 0 iλm

− 2
3λ 0 0

⎞
⎠ �, �t =

⎛
⎝

− 1
2ux −iλum 1

2λ
−1

i
2λ

−1 0 −iλum
2
3λu

i
2λ

−1 1
2ux

⎞
⎠ �. (25)
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2.4 Equation (5)

To the best of our knowledge, the Eq. (5) has not been studied before.

Higher symmetry The first higher symmetry of the Eq. (5) is

uτ =
(

u4x

(1 − 2ux )
10
3 (1 + 4ux )

5
3

+ 10
(8ux − 1)u2x u3x

(1 − 2ux )
13
3 (1 + 4ux )

8
3

+ 40
(1 − 6ux + 24u2x )u

3
2x

(1 − 2ux )
16
3 (1 + 4ux )

11
3

)

x

.

Hamiltonian structure and recursion operator The above symmetry takes the form

uτ = 1

8
Hδu p, where H = Dx (1 − 2ux )

−1Dx (1 − 2ux )
−1Dx

is a Hamiltonian operator, and p is given by

p = (1 − 2ux )
2/3(1 + 4ux )

1/3. (26)

The symmetry hierarchy of (5) can be generated by the recursion operatorR = HJ ,
where J is a symplectic operator given by

J = Dx

(
f Dx + Dx f + gD−1

x h + hD−1
x g

)
Dx ,

with

f = 1

2(1 − 2ux )2(1 + 4ux )2
; g = 8ux

(1 − 2ux )
1
3 (1 + 4ux )

2
3

;

h = u3x

(1 − 2ux )
8
3 (1 + 4ux )

7
3

+ 2(10ux − 1)

(1 − 2ux )
11
3 (1 + 4ux )

10
3

.

Indeed, we have

J uτ = δu
1

(4ux + 1)11/3(1 − 2ux )16/3

(
u24x
2

+ 2

3

(60ux − 7)u23x
(4ux + 1)(2ux − 1)

− 8
(360u2x − 62ux + 17)u22xu

2
3x

(4ux + 1)2(2ux − 1)2

+ 704

15

(12960u4x − 4032u3x + 2340u2x − 324ux + 31)u62x
(4ux + 1)4(2ux − 1)4

)
.

Reciprocal transformation The quantity p in (26) is a conserved density for (5), with
the conservation law

pt = −4(u2 p)x , (27)
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leading to the reciprocal transformation

dX = p dx − 4u2 p dt, dT = dt. (28)

Under the latter change of independent variables, the conservation law (27) is trans-
formed to the system

(
p−1

)
T

= 4(u2)X ,
(1 − 2W )2(1 + 4W )

p3
= 1, W = puX , (29)

while the Eq. (5) becomes

WT = up2

ψ
, (30)

where from the second equation in (29), it is consistent to introduce the quantity ψ

such that

ψ = 1 − 2W

p
,

1

ψ2 = 1 + 4W

p
. (31)

Then by (29) and (30) it follows that

(logψ)T = −2u,

and by taking the X derivative of the latter, using uX = W/p, and taking the difference
of the two equations in (31), an equation for ψ alone results, namely

(logψ)XT = 1

3

(
ψ − ψ−2

)
, (32)

which is a form of the Tzitzeica equation.
Lax pair The Eq. (5) has the 3 × 3 Lax representation

�x =
⎛
⎝

0 1 − 2ux 0
0 0 1 + 4ux

λ(1 − 2ux ) 0 0

⎞
⎠ �,

�t =
⎛
⎝

0 −4u2(1 − 2ux ) 1
3λ

−1

1
3 2u −4u2(1 + 4ux )

−4λu2(1 − 2ux ) 1
3 −2u

⎞
⎠ �. (33)

It is interesting to apply the reciprocal transformation (28) to the Lax pair. Upon
making this change of independent variables, (33) becomes
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�X =
⎛
⎝

0 p−1 − 2uX 0
0 0 p−1 + 4uX

λ (p−1 − 2uX ) 0 0

⎞
⎠ �, �T =

⎛
⎝

0 0 1
3λ

−1

1
3 2u 0
0 1

3 −2u

⎞
⎠ �.

(34)

The compatibility of the linear system (34) gives

(
p−1

)
T

= 4(u2)X , uXT − u

p
−

(
u2

)
X

= 0, (35)

where the second equation above arises as a differential consequence of the system
(29), and can be integrated to yield the more general equation

(1 − 2W )2(1 + 4W )

p3
= 1 + F(X), W = puX ,

where F is an arbitrary function. However, upon making a point transformation in X ,
so that

X̂ = G(X), u(X, T ) = û(X̂ , T ), p(X, T ) = G ′(X)−1 p̂(X̂ , T ),

the function F can be removed by choosing G(X) = ∫
(1 + F(X))1/3 dX .

The system (29) corresponds to a negative flow in the Sawada-Kotera hierarchy. To
see this, it is convenient to use the quantity ψ , as defined in (31), and then φ, the first
component of the vector �, satisfies the scalar Lax pair

φXXX + V φX = λ φ, φT = 1

3
λ−1

(
ψ φXX − ψX φX

)
, (36)

where

V = −ψXX

ψ
.

If V is not specified a priori, then the compatibility conditions for the scalar linear
system are

VT = −ψX , ψXX + V ψ = k, kX = 0, (37)

and, up sending to T → −T , (36) is equivalent to the Lax pair found for the recipro-
cally transformed Vakhnenko equation in [32] (see [18] for more details). In the case
at hand, we have k = 0, and substituting for V in terms of ψ in the first equation of
(37) and integrating produces

ψ2
(

(logψ)XT − ψ

3

)
= F̃(T )

3
,
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where F̃ is an arbitrary function; after sending ψ → F̃(T )1/3 ψ and making a point
transformation in T , this becomes the Tzitzeica equation in the form (32).

2.5 The Hunter–Saxton equation

In addition to the short-wave limit which takes the Camassa–Holm equation [i.e., (9)
with b = 2] to the Eq. (6), a further limit can be applied to remove the linear dispersion
term. Taking the limit

x → εx, t → −εt, u → 1

2
u, ε → 0

produces the equation

(ut + uux )x = 1

2
u2x ; (38)

a similar limit can be applied to remove the linear dispersion from other equations of
the form (1). The Eq. (38) was derived by Hunter and Saxton as an asymptotic model
of liquid crystals [17]. The x derivative of the Hunter–Saxton equation corresponds to
geodesic flow on an infinite-dimensional homogeneous space with constant positive
curvature (see [21] and references).

Higher symmetry The first higher symmetry of the Eq. (6) is

uτ = u3x

(1 + 4u2x )
3
2

.

Hamiltonian structure and recursion operator Notice that

Dxuτ = −1

4
δu

√
1 + 4u2x .

Thus, Dx is a symplectic operator. The symmetries of (6) can be generated by a
recursion operator

R = HDx =
(

1

1 + 4u2x
Dx + Dx

1

1 + 4u2x
− 8uτ D

−1
x uτ

)
Dx . (39)

The operators H and D−1
x form a compatible Hamiltonian pair, which is a particular

case of case V in Theorem 4 in [33].
Reciprocal transformation Considered as a short-wave limit of the Camassa–Holm
equation, the x derivative of (6) can be written in the form

mt = 2umx + 4uxm, m = 1 + 4uxx ,
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giving the conservation law

pt = 2 (up)x , p2 = m. (40)

Then introducing X, T according to

dX = p dx + 2up dt, dT = dt,

and setting W = ux , leads to the three equations

WT = u + W 2,
(
p−1

)
T

+ 2uX = 0, p2 = 1 + 4pWX , (41)

where the first equation, for WT , comes from (6), the second equation from (40), and
the third from the definition of p in terms of m. Now from the second equation in
(41) and the definition of W it follows that (log p)T = 2puX = 2W , so that upon
differentiating the latter with respect to X and using the third equation to eliminate
WX , an equation for p alone results, namely

(log p)XT = 1

2

(
p − p−1

)
.

Thus, by setting p = eiϕ , this yields the sine-Gordon equation in the formϕXT = sin ϕ.
Lax pair A Lax pair for the Hunter–Saxton equation in the form (38) was found in
[20]. For Eq. (6), with the inclusion of linear dispersion, a Lax representation is

�x =
(

0 1 + 4uxx
−λ 0

)
�,

�t =
(

ux − 1
4λ + 2u + 8uuxx

1
4 − 2λu −ux

)
�. (42)

2.6 The single-cycle pulse equation

The Eq. (7) was obtained recently by Sakovich [28] as a reduction of a coupled
integrable short pulse system due to Feng [11]. Sakovich showed that the envelope
soliton solution of (7) can only be as short as one cycle of its carrier frequency, and
hence called it the single-cycle pulse equation.

Higher symmetry The first higher symmetry of the Eq. (7) is

uτ = u3x(
1 + u2x

)3 − 3
uxu22x(
1 + u2x

)4 .
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Hamiltonian structure and recursion operator Notice that

Dxuτ = 1

2
δu

u22x(
1 + u2x

)3 .

Thus Dx is a symplectic operator. The symmetries of (7) can be generated by a recur-
sion operator

R = HDx =
(

1(
1 + u2x

)2 Dx + Dx
1(

1 + u2x
)2 − 4ux D

−1
x uτ − 4uτ D

−1
x ux

)
Dx .

The operators H and D−1
x form a compatible Hamiltonian pair, which is a particular

case of case IV in Theorem 4 in [33].
Reciprocal transformation From the conservation law

pt =
(
u2 p

)
x
, p = 1 + u2x ,

the reciprocal transformation

dX = p dx + u2 p dt, dT = dt (43)

yields the equations

(
p−1

)
T

+
(
u2

)
X

= 0, p = 1 + p2u2X . (44)

To see how the latter system is related to the sine-Gordon equation, it ismost convenient
to consider the Lax pair

�X =
(−iA 1

−λ iA

)
�, �T =

(
0 B λ−1

−B 0

)
� (45)

where

A = uXX + p−1 pXuX , B = 1

4

(
puX + i

puX − i

)
, B = 1

4

(
puX − i

puX + i

)
.

The compatibility conditions for this Lax pair mean that it is consistent to set

A = −1

2
ϑX , B = 1

4
eiϑ , B = 1

4
e−iϑ ,

where ϑ satisfies

ϑXT + sin ϑ = 0.
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The solution of (44) is given in terms of the variable ϑ by

u = −1

2
ϑT , p = sec2(ϑ/2).

Lax pair Using the inverse of the reciprocal transformation (43) to rewrite the Lax
pair (45) in terms of the original independent variables x, t gives a Lax representation
for Eq. (7), namely

�x =
( − iuxx

1+u2x
1 + u2x

−λ(1 + u2x )
iuxx
1+u2x

)
�,

�t =
⎛
⎝ − iu2uxx

1+u2x

(ux+i)
4λ(ux−i) + u2(1 + u2x )

− (ux−i)
4(ux+i) − λu2(1 + u2x )

iu2uxx
1+u2x

⎞
⎠ �. (46)

2.7 Equation (8)

As noted in the remark above, the Eq. (8) combines the nonlinear terms from (6) and
(7), but cannot be directly reduced to either equation.
Higher symmetry The first higher symmetry of the Eq. (8) is

uτ = u3x + 3β
α

(
1 + βu2x

)
uxu2x + β

2α2

(
1 + βu2x

)3
ux

((
1 + βu2x

)2 + 4αu2x
) 3

2

.

This reduces to the first higher symmetry of (6) when β = 0 and α = 1, but does not
behave well in the limit α → 0.
Hamiltonian structure and recursion operator Similarly, to the previous case, we have

Dxuτ = − 1

4α2 δu

((
1 + βu2x

)2 + 4αu2x

) 1
2

.

A recursion operator is given by

R =
(

1(
1 + βu2x

)2 + 4αu2x
Dx + Dx

1(
1 + βu2x

)2 + 4αu2x

−8α2uτ D
−1
x uτ + 2β2

α2 ux D
−1
x ux

)
Dx .

Notice that when β = 0 and α = 1, it leads to the recursion operator (39).
Reciprocal transformation In this subsection, wewillmake use of the higher symmetry
above to show that the Eq. (8) has a reciprocal link to an equation of third order, given
by (56) below, which is a symmetry of the Calogero–Degasperis–Fokas equation.
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For our purposes, it will be necessary to consider a solution u = u(x, t, τ ), which
depends on the time τ of the higher flow, in addition to x, t . Our ultimate goal will be
to show that, by means of a further change of dependent and independent variables,
the third-order equation we obtain can itself be reduced to the sine-Gordon equation.

The Eq. (8) can be rewritten as

uxt = u + vuxx + 1

2
vxux , v = 2αu + βu2, (47)

which leads to an equation with a form analogous to the Camassa–Holm equation [3],
namely

mt = vmx + 2vxm,

where

m =
(
1 + βu2x

)2 + 4αuxx , (48)

and this gives the conservation law

pt = (vp)x , p = m1/2. (49)

Upon introducing the reciprocal transformation

dX = p dx + pv dt, dT = dt,

the above relations between u and p are transformed to

(
p−1

)
T

+ 2 (α + βu) uX = 0, p2 =
(
1 + βp2u2X

)2 + 4αp(puX )X . (50)

In order to identify this symmetry in terms of known integrable equations of third
order, we take u = u(x, t, τ ) and extend the above reciprocal transformation to include
this additional flow. First of all, note that

uτ = 1

2α

(
px
p2

+ βux P

αp

)
, P = 1 + βu2x ,

which allows us to write

dX = p dx + pv dt + F dτ, dT = dt, dS = dτ,

where

F = pxx
p3

− 3p2x
2p4

+ βP

4α2

(
3 − P2

p2

)
.
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By applying the above reciprocal transformation to the symmetry, we consider the
ratio ρ = p/P , and then set

ρ = p

P
= eiϑ

to find the equation

ϑS = ϑXXX + 1

2
ϑ3
X − 3β

2α2 ϑX sin2 ϑ, (51)

which is a form of the Calogero–Degasperis–Fokas equation (see [4,14,16]). The Eq.
(51) is related via the Miura transformation

y = −i
ρX

ρ
−

√
β

2α

(
ρ − ρ−1

)
= ϑX − i

√
β

α
sin ϑ (52)

to the modified KdV (mKdV) equation in the form

yS = yXXX + 3

2
y2yX . (53)

Thus we see that under a reciprocal transformation, the Eq. (8) corresponds to a
symmetry of the mKdV equation.

The calculations involving the reciprocal transformation are most conveniently
carried out by introducing the variable W = ux , so that (8) becomes

WT = uP + αW 2, with W = puX , P = 1 + βW 2,

and the second equation in (50) gives

WX = p2 − P2

4αp
�⇒ WX

P
= i

2α
sin ϑ. (54)

Then, for ρ = p/P , we find

(log ρ)T = 2αW

P
�⇒ W

P
= i

2α
ϑT . (55)

Upon computing the X derivative of both sides, this yields

(log ρ)XT + 1

2

(
ρ − ρ−1

)
= 1

P

(
ρ − ρ−1

)

or equivalently

2

P
= ϑXT

sin ϑ
+ 1,
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which indicates that the symmetry of the Calogero–Degasperis–Fokas equation corre-
sponding to (8) is not the sine-Gordon equation, but something of higher order. Indeed,
differentiating the above equationwith respect to X and using PX = 2βWWX together
with (54) and (55) leads to the third-order equation

(
ϑXT

sin ϑ

)

X
+ β

α2

(
cosϑ

)
T

= 0. (56)

In terms of these transformed coordinates, the Lax pair for the T flow takes the form

�X =
(

iy
2 1

−λ − iy
2

)
�, �T =

(
0 η λ−1

ζ 0

)
�, (57)

where y is given by (52) and

η = −eiθ

4

(
θXT

sin θ
+

√
β

2α
θT

)
, ζ = − i

2
yT − η. (58)

With the introduction of the KdV potential

V = − i

2
yX + 1

4
y2, (59)

this corresponds to the negative KdV flow (see [18]) given by

VT = 2ηX , ηXXX + 4VηX + 2VXη = 0, (60)

but not the general solution of this. Indeed, integration of the second equation in (60)
gives

ηηXX − 1

2
η2X + 2Vη2 = F(T ),

[a form of the Ermakov–Pinney equation, cf. equation (4) in [5]] but from the expres-
sion (58) and (56) it follows that

F(T ) = 0, y = −i(log η)X , V = −ηXX

2η
+ η2X

4η2
,

in accordance with the compatibility of the linear system (57). Substituting the latter
expression for V in terms of η into the first equation in (60) yields an equation of third
order for η, which integrates to yield

η(log η)XT + 2η2 = 2G(T ),

and, after rescaling η → √
G(T ) η and redefining T so that ∂T → √

G(T ) ∂T , we see
that ϕ = i log η satisfies the sine-Gordon equation in the form ϕXT + 4 sin ϕ = 0.
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Lax pair In order to obtain a Lax pair for the Eq. (8), it is sufficient to rewrite (57) in
terms of the original independent variables x, t . However, due to the dependence on
p, this does not directly produce matrices which are rational functions of the original
field u and its derivatives. To obtain a rational Lax pair, it is convenient to put (57)
into scalar form and carry out a gauge transformation, which leads to the scalar linear
system

ψxx +
(
mλ + fxx

f
− 2

f 2x
f 2

)
ψ = 0,

ψt =
(

v − 1

4 f 2λ

)
ψx −

(
1

2
vx + fx

4 f 3λ

)
ψ, (61)

where m is given in (48), v is as in (47), and

f = 1 + i
√

β ux .

The scalar system (61) can readily be put into matrix form if desired.

3 Conclusions

The list of integrable generalized short pulse equations appears to contain three new
equations, namely (4), (5), and also (8), which combines the nonlinear terms of the
Hunter–Saxton equation and the single-cycle pulse equation. All of the equations
considered here are related by a reciprocal transformation to either the sine-Gordon
equation or the Tzitzeica equation. However, although Eqs. (2), (4) and (5) are all
related to the Tzitzeica equation, by comparing the expression for the differential
dX = p dx +· · · in each case, it is apparent that there are no direct links of Bäcklund
type between these three equations, without changing the independent variable x via
a hodograph-type transformation; the same remark applies to the Eqs. (3), (6) and (7).
In the case of Eq. (8), the link to the sine-Gordon equation is rather indirect, and the
equation that arises directly is the symmetry (56) of the Calogero–Degasperis–Fokas
equation, which does not seem to have been considered before. These reciprocal links
should be examined further, in order to derive explicit solutions of the new equations
in parametric form. Since the reciprocal transformation is only defined for sufficiently
smooth solutions, it is worth investigating situations where it breaks down: these
equations may admit interesting weak solutions, e.g., distributions with non-empty
singular support, as is the case for the b-family (9) mentioned above.
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