University of

"1l Kent Academic Repository

Smaus, Jan-Georg, Hill, Pat and King, Andy (1999) Mode Analysis Domains

for Typed Logic Programs. In: Bossi, Annalisa, ed. Logic-Based Program
Synthesis and Transformation 9th International Workshop. Lecture Notes

in Computer Science . Springer, Berlin, Germany, pp. 82-101. ISBN 978-3-540-67628-

Downloaded from
https://kar.kent.ac.uk/22064/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1007/10720327 6

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/22064/
https://doi.org/10.1007/10720327_6
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Mode Analysis Domains for Typed
Logic Programs

Jan-Georg Smaus!, Patricia M. Hill?, and Andy King?

! INRIA-Rocquencourt, France,
jan.smaus@inria.fr
2 University of Leeds, United Kingdom
hill@scs.leeds.ac.uk
8 University of Kent at Canterbury, United Kingdom
a.m.king@ukc.ac.uk

Abstract. Precise mode information is important for compiler optimi-
sations and in program development tools. Within the framework of ab-
stract compilation, the precision of a mode analysis depends, in part,
on the expressiveness of the abstract domain and its associated abstrac-
tion function. This paper considers abstract domains for polymorphically
typed logic programs and shows how specialised domains may be con-
structed for each type in the program. These domains capture the degree
of instantiation to a high level of precision. By providing a generic def-
inition of abstract unification, the abstraction of a program using these
domains is formalised. The domain construction procedure is fully im-
plemented using the Godel language and tested on a number of example
programs to demonstrate the viability of the approach.

Note: Some proofs have been omitted for space reasons. They can be
found in the full version of this paper [17].

1 Introduction

1.1 Background

Typed logic programming languages such as Mercury [19] and Godel [10] use a
prescriptive type system [15], which restricts the underlying syntax so that only
meaningful expressions are allowed. This enables most typographical errors and
inconsistencies in the knowledge representation to be detected at compile time.
An increasing number of applications using typed languages are being developed.

Our notion of modes is, in contrast, a descriptive one [3,7]: Modes charac-
terise the degree to which program variables are instantiated at certain program
points. This information can be used to underpin optimisations such as the
specialisation of unification and the removal of backtracking, and to support de-
terminacy analysis [9]. When a mode analysis is formulated in terms of abstract
interpretation, the program execution is traced using descriptions of data (the
abstract domain) rather than actual data, and operations on these descriptions
rather than operations on the actual data. The precision of a mode analysis
depends, in part, on the expressiveness of the abstract domain.

1.2 Contribution

The main contribution of this paper is to describe a generic method of deriving
precise abstract domains for mode analysis from the type declarations of a typed
program. Each abstract domain is specialised for a particular type and charac-
terises a set of possible modes for terms of that type. In particular it characterises
the property of termination, well-known for lists as nil-termination.

The procedure for constructing such domains is implemented (in Gdédel) for
Godel programs. By incorporating the constructed domains into a mode anal-
yser, the viability of the approach is demonstrated.

The abstract domains are used in an abstract compilation [4] framework: A
program is abstracted by replacing each unification with an abstract counterpart,
and then the abstract program is evaluated by applying a standard operational
semantics to it.

We believe that this work is the natural generalisation of [3,5] and takes
the idea presented there to its limits: Our abstract domains provide the highest
degree of precision that a generic domain construction should provide. Not only
can this work be used directly for the mode analysis of typed logic programs,
but it could be used as a basis for constructing (more pragmatic) domains as
well as providing a unifying theory for other proposals.

The paper is organised as follows. Section 2 introduces three examples. Sec-
tion 3 defines some syntax. Section 4 defines the concepts for terms and types
that are used in the definition of abstract domains. Section 5 defines abstract
domains and programs, and the relationship between concrete and abstract pro-
grams. Section 6 reports on experiments. Section 7 concludes.

2 Motivating and Illustrative Examples

We introduce three examples that we use throughout the paper. The syntax
is that of the typed language Gdodel [10], to avoid any confusion with the (un-
typed) language Prolog. Variables and (type) parameters begin with lower case
letters; other alphabetic symbols begin with upper case letters. We use Integer
(abbreviated as Int) to illustrate a type containing only constants (1,2,3...).

Ezample 2.1. This is the usual list type. We give its declarations to illustrate
the type description language of Godel.

CONSTRUCTOR List/1.
CONSTANT Nil: List(u).
FUNCTION Cons: u * List(u) -> List(u).

List is a (type) constructor; u is a type parameter; Nil is a constant of type
List (u);and Cons is the usual list constructor. We use the standard list notation
[...]...] where convenient. It is common to distinguish nil-terminated lists from
open lists. For example, [] and [1, x,y] are nil-terminated, but [1,2|y] is open.

Previous approaches cannot deal with the following two examples [3, 5, 21].

Ezample 2.2. This example was invented to disprove a common point of crit-
icism that “list flattening” cannot be realised in Gddel, that is terms such as
[1,[2,3]] cannot be defined, let alone flattened. The Nests module formalises
nested lists by the type Nest (v). A trivial nest is constructed using function E,
a complex nest by “nesting” a list of nests using function N. The declaration for
N is remarkable in that the range type, Nest(v), is a proper sub“term” of the
argument type List (Nest(v)).

IMPORT Lists, Integers.
CONSTRUCTOR Nest/1.
FUNCTION E: v => Nest(v);

N: List(Nest(v)) -> Nest(v).

Example 2.3. A table is a data structure containing an ordered collection of
nodes, each of which has two components, a key (of type String) and a value,
of arbitrary type. We give part of the Tables module which is provided as a
system module in Godel.

IMPORT Strings.
BASE Balance.
CONSTRUCTOR Table/1.
CONSTANT Null: Table(u);
LH, RH, EQ: Balance.
FUNCTION Node: Table(u) * String * u * Balance * Table(u) -> Table(u).

Tables is implemented in G6del as an AVL-tree [22]: A non-leaf node has a key
argument, a value argument, arguments for the left and right subtrees, and an
argument which represents balancing information.

3 Notation and Terminology

The set of polymorphic types is given by the term structure T'(X,,U) where X,
is a finite alphabet of constructor symbols which includes at least one base
(constructor of arity 0), and U is a countably infinite set of parameters (type
variables). We define the order < on types as the order induced by some (for
example lexicographical) order on constructor and parameter symbols, where
parameter symbols come before constructor symbols. Parameters are denoted
by u,v. A tuple of distinct parameters ordered with respect to < is denoted by
@. Types are denoted by o, p, T, ¢, w and tuples of types by 7, 7.

Let X'y be an alphabet of function (term constructor) symbols which in-
cludes at least one constant (function of arity 0) and let X, be an alpha-
bet of predicate symbols. Each symbol in X (resp. Xp) has its type as sub-
script. If fir, 7.7 € Xy (vesp. piry..7,y € Xp) then (r,...,7,) € T(X,,U)*
and 7 € T(X,U)\U. If fir,. .+, - € Xy, then every parameter occurring in
(11, ... ,T) must also occur in 7. This condition is called transparency condi-
tion. We call 7 the range type of fi,, . - and {r...7,} its domain types.
A symbol is often written without its type if it is clear from the context. Terms
and atoms are defined in the usual way [10, 16]. In this terminology, if a term has
a type o, it also has every instance of o.! If V is a countably infinite set of vari-

! For example, the term Nil has type List(u), List(Int), List(Nest(Int)) etc.

ables, then the triple L = (X}, X¥f, V) defines a polymorphic many-sorted
first order language over 7' (X, U). Variables are denoted by x,y; terms by
t,r,s; tuples of distinct variables by Z,7; and a tuple of terms by ¢. The set of
variables in a syntactic object o is denoted by vars(o).

Programs are assumed to be in normal form. Thus a literal is an equation
of the form & =, .y y or & =(,) f(y), where f € X, or an atom p(y), where
p € XYp. A query G is a conjunction of literals. A clause is a formula of the
form p(y) < G. If S is a set of clauses, then the tuple P = (L, S) defines a
polymorphic many-sorted logic program.

A substitution (denoted by @) is a mapping from variables to terms which
is the identity almost everywhere. The domain of a substitution @ is dom(©) =
{z | @ # z}. The application of a substitution @ to a term ¢t is denoted as t6.
Type substitutions are defined analogously and denoted by ¥.

4 The Structure of Terms and Types

An abstract term characterises the structure of a concrete term. It is clearly a
crucial choice in the design of abstract domains which aspects of the concrete
structure should be characterised [21,23]. In this paper we show how this choice
can be based naturally on the information contained in the type subscripts of
the function symbols in X';. This information is formalised in this section. First
we formalise the relationship between the range type of a function to its domain
types. We then define termination of a term, as well as functions which extract
certain subterms of a term. In the following, we assume a fixed polymorphic
many-sorted first order language L = (X, X'y, V) over T(X;,U).

4.1 Relations between Types

Definition 4.1 (subterm type). A type o is a direct subterm type of ¢
(denoted as o <1 ¢) if there is fi,, .. -y € Xy and a type substitution ¥ such that
T¥ = ¢ and ;¥ = o for some i € {1,...,n}. The transitive, reflexive closure of
< is denoted as <*. If 0 <* ¢, then ¢ is a subterm type of ¢.

The relation < can be visualised as a type graph (similarly defined in [18,23]).
The type graph for a type ¢ is a directed graph whose nodes are subterm types
of ¢. The node ¢ is called the initial node. There is an edge from o; to o9 if and
only if o9 < 0;.

Ezample 4.1. Figure 1 shows a type graph for each example in Sect. 2. The left
hand type graph illustrates Ex. 2.1 where u</List(u) and List(u) <List(u).
The other two type graphs illustrate Exs. 2.2 and 2.3, respectively.

A simple type is a type of the form C(a), where C € X.. We impose the
following two restrictions on the language.

Simple Range Condition: For all f., . -y € Xy, 7is a simple type.

/_\
List(u) Nest(v) List(Nest(v)) Table(u) [Baance
N L

Fig. 1. Some type graphs, with initial node highlighted

Reflexive Condition: For all C € X and types 0 = C(5),7 = C(7), if 0 <* 7,
then o is a sub“term” (in the syntactic sense) of 7.

The Simple Range Condition allows for the construction of an abstract domain
for a type such as List(o) to be described independently of the type o. In
Mercury (and also in typed functional languages such as ML or Haskell), this
condition is enforced by the syntax [19]. Being able to violate this condition can
be regarded as an artefact of the Godel syntax.

The Reflexive Condition ensures that, for a program and a given query, there
are only finitely many types and hence, the abstract program has only finitely
many abstract domains and the type graphs are always finite. It rules out, for
example, a function symbol of the form f(rs¢(rnt),List(u)) Since this would imply
that List(Int) <*List(u). We do not know of any real programs that violate
the Reflexive Condition or the Simple Range Condition.

Definition 4.2 (recursive type and non-recursive subterm type). A type
o is a recursive type of ¢ (denoted as o > ¢) if 0 <* ¢ and ¢ <* 0.

A type o is a non-recursive subterm type (NRS) of ¢ if ¢ 4* o and there
is a type 7 such that o <7 and 7 < ¢. We write N (¢) = {o | o is an NRS of ¢}.
If N(¢) = {o1,...,0m} and 0; < oj4q for all j € {1,...,m — 1}, we abuse
notation and denote the tuple (o1, ...,0m,) by N(¢) as well.

It follows immediately from the definition that, for any types ¢, o, we have ¢ > ¢
and, if o € N'(¢), then o th ¢. Consider the type graph for ¢. The recursive types
of ¢ are all the types in the strongly connected component (SCC) containing ¢.
The non-recursive subterm types of ¢ are all the types o not in the SCC but
such that there is an edge from the SCC containing ¢ to o.

Ezample 4.2. Consider again Ex. 4.1 and Fig. 1. Then List(u) b List(u), and
this is non-trivial in that, in the type graph for List (u), there is an edge from
List(u) to itself. Furthermore List(Nest(v)) > Nest(v). Non-recursive sub-
term types of simple types are often parameters, as in A'(List(u)) = (u) and
N (Nest(v)) = (v). However, this is not always the case, since N'(Table(u)) =
(u,Balance, String).

The following simple lemma is used in the proof of Lemma 4.2.

Lemma 4.1. Let ¢, 7,0 be types so that o <* 7 <* ¢ and o > ¢. Then 7 > ¢.

Proof. Since o > ¢, it follows that ¢ <* o. Thus, since o <* 7, it follows that
¢ <1* 7. Furthermore 7 <* ¢, and therefore 7 < ¢. O

4.2 Traversing Concrete Terms

From now on, we shall often annotate a term ¢ with a type ¢ by writing ¢t?. The
use of this notation always implies that the type of ¢ must be an instance of ¢.
The annotation ¢ gives the (type) context in which ¢ is used. If S is a set of
terms, then S? denotes the set of terms in S, each annotated with ¢.

Definition 4.3 (subterm). Let t® be a term where t = firrmm (s 5 t0)
and ¢ = 7%. Then t7'Y is a subterm of t* (denoted as t7'¥ t?) for each
i € {1,...,n}. As in Def. 4.1, the transitive, reflexive closure of < is denoted
by <*.

It can be seen that s <* t? implies o <* ¢. When the superscripts are ignored,
the above is the usual definition of a subterm. The superscripts provide a uniform
way of describing the “polymorphic type relationship” between a term and its
subterms, which is independent of further instantiation.

Nest(v)

Ezample 4.3. x' is a subterm of E(x) , and 77 is a subterm of E(7)"**(").

Definition 4.4 (recursive subterm). Let s and ¢” be terms such that
s7 <*t7, and ¢ a type such that o > ¢ and 7 <* ¢. Then s is a ¢-recursive
subterm of . If furthermore 7 = ¢, then s is a recursive subterm of ¢7.

In particular, for every type ¢, a variable is always a ¢-recursive subterm of itself.
The correspondence between subterms and subterm types can be illustrated by
drawing the term as tree that resembles the corresponding type graph.

Ezample 4.4.

The term tree for ¢ = N(E(7))™) e |
is given in Fig. 2 where the node for NCEDD | e | [N]
t is highlighted. Each box drawn with ‘== P e N 1

solid lines stands for a subterm. We can
map this tree onto the type graph for
Nest(v) in Fig. 1 by replacing the sub-
graphs enclosed with dotted lines with corresponding nodes in the type graph.
Thus the recursive subterms of ¢ occur in the boxes corresponding to nodes in
the SCC of Nest(v). All subterms of ¢ except 7V are recursive subterms of ¢.

Note that E(7)"%*(") is a Nest (v)-recursive subterm of [E(7)]%5t(Mest(¥) (in
Def. 4.4, take 0 = ¢ = Nest(v) and 7 = List(Nest(v))). However, E(7)" is not a
recursive subterm of [E(7)]**(®), Thus whether or not a member of a list should
be regarded as a recursive subterm of that list depends on the context.

Fig. 2: Term tree for N([E(7)])"**"

We now define termination of a term. For a term t?, where ¢ is simple, termi-
nation means that no recursive subterm of ¢ is a variable.

Definition 4.5 (termination function Z). Let ¢t” be a term and ¢ be a
type such that 7 > ¢. Define Z(t7,¢) = false if a ¢-recursive subterm of
t™ is a variable, and true otherwise. For a set ST of terms define Z(S7,¢) =
Nies Z(t7,¢). We omit 7 in the expression Z(t7,¢) whenever ¢ = 7. We say
that ¢ is terminated if 7 is simple and Z(¢,7) = true, and ¢ is open if it is not
terminated.

Example 4.5. Any variable x is open. The term 7 has no variable subterm,
so Z(7,Int) = true and 7 is terminated. The term [x]****(®) has itself and
Nilst(W) as recursive subterms, so Z([x],List(u)) = true and [x] is termi-
nated. However, [x]MstMest(v) has x¥est(V) a5 a Nest (v)-recursive subterm, so
Z([x]"*=*@=* (") Nest(v)) = false. Furthermore, N([x])"***(") has x¥*s*(") as a
recursive subterm, so Z(N([x]),Nest(v)) = false and N([x]) is open.

The abstract domain should also characterise the instantiation of subterms of a
term. We define functions which extract sets of subterms from a term.

Definition 4.6 (extractor £° for o). Let t” be a term and ¢, o be types such
that 7 > ¢ and o € N (¢). Let R be the set of ¢-recursive subterms of ¢7. Define

E(t",¢) =wvars(R) U {s|r” € Rand s” Qr’}.

For a set S™ of terms define £7(S7,¢) = ,cs €7 (t7,¢). As with Z, we write
E7(t7,) simply as E7 (¢, 7).

Ezample 4.6. For N([E(7)]) of type Nest (Int), we have EY(N([E(7)]), Nest(v)) =
{7}. The type Table(u) has three non-recursive subterm types u, Balance and
String, and so there are three extractor functions: &%, which extracts all value
subterms; £831n¢¢ which extracts the argument containing balancing informa-
tion; and £5%¥1"8, which extracts all key subterms. Note that for a term ¢ of type
Table(String), both £5¥1"8(¢) and £%(¢) would contain terms of type String.

Note that a priori, the extracted terms have no type annotation. This is because,
in the proofs, we sometimes need to write an expression such as £ (£°(t, 7)*¥, ¢),
which reads: first compute £°(¢,7), then annotate it with p¥, then pass it to £7.

Note also that if ¢ has a ¢-recursive subterm which is a variable, then this
variable is always extracted. Intuitively this is because this variable might later
be instantiated to a term which has variable subterms of type o. Thus the
property “£9(t,7) does not contain variables” is closed under instantiation.

The following theorem shows that Z and £7 can be expressed in terms of
the immediate subterms of a term. This provides the basis for defining the ab-
straction of a (normal form) equation in a concrete program, which naturally
involves a term and its immediate subterms.

Theorem 4.2. Let t = f(;, ;. r(t1,...,t,) be a term and o € N (7). Then

Z(t,7) = N 27,7

T DT

Et,r)={t; | =0} U U E0(t],).

T DT

Proof. If for some i € {1,...,n} where 7; > 7, r? is a T-recursive subterm of
t7*, then p a7 and r? <*¢7. Thus 7” is a T-recursive subterm of ¢7.

If P is a 7-recursive subterm of ¢7, then either r”» = t” or, for some i €
{1,...,n}, r» <*t]*. In the latter case, p<*7;, 7, <7 and p > 7. Hence, by
Lemma 4.1, 7; > 7 so that r? is a T-recursive subterm of ¢;".

Thus the T-recursive subterms of ¢ are t, together with the T-recursive sub-
terms of ¢;', where 7; > 7. The result then follows from Defs. 4.5 and 4.6. O

Counsider simple types ¢, 7 such that 7¥ > ¢ for some type substitution ¥ (for
example ¢ = Nest(v), 7 = List(u) and and ¥ = {u/Nest(v)}). The following
theorem relates ¢ with 7 with respect to the termination and extractor functions.

Theorem 4.3 (Proof see [17]). Let ¢ and 7 be simple types such that 7% < ¢
for some ¥, let ¢ be a term having a type which is an instance of 7¥, and

o € N(¢). Then

ZEY,) = ZtTA N\ ZELT)7,0) (1)
PEN(T)
13400

e, 9)= |Jerwnu e, e (2)
PEN(T) PEN(T)
pT= pDIgh

Ezample 4.7. First let ¢ = 7 = List(u) and ¥ be the identity. Then by Def. 4.2
there is no p such that p € N(7) and p¥ > ¢. Therefore in both equations of
Thm. 4.3, the right half of the right hand side is empty. Furthermore there is
exactly one p such that p¥ = o, namely p = o. Thus the equations read

Z(t,7) = Z(t,7) (1)

g (t,m) =&7(t,7) (2)

Similarly, Thm. 4.3 reduces to a trivial statement for Ex. 2.3 and in fact for most

types that are commonly used. However for Ex. 4.4, Thm. 4.3 says that

Z([E(?)]LiSt(NeSt(v)),NeSt(V)) —

Z([E(7)], List()) A Z(E*([E(T)], List(u)), Nest(v)) (1)
Ev([E(7)]LiSt(NeSt(V)),Nest(v)) —

/ U E(E([E(T)), List(w)), Nest (v)) (2)

5 Abstract Terms and Abstract Programs

In this section, we first define the abstraction function for terms. Then we define
termination and extractor functions for abstract terms. Finally, we define an
abstract program and show how it approximates its concrete counterpart.

5.1 Abstraction of Terms

We first define an abstract domain for each type. Each abstract domain is a
term structure, built using the constant symbols Bot, Any, Ter, Open, and the
function symbols C4, for each C € X.

Definition 5.1 (abstract domain). If ¢ is a parameter, define
Dy = {Bot, Any}.

If C(a) is a simple type with N'(C(a)) = (o1,...,0m) and ¢ = C(@)¥ where ¥
is a type substitution, define

Dy = {CA(by,..., by, Ter) | b; € Dyw} U {C*#(Any, ..., Any,Open), Any}.
——————

m times

Dy is the abstract domain for ¢. If b € Dy, then b is an abstract term for ¢.

In [17], it is proven that every domain is well-defined. We shall see later that
if an abstract term C(by,...,b,,, Ter) abstracts a term ¢, then each b; corre-
sponds to a non-recursive subterm type o; of C(@). It characterises the degree
of instantiation of the subterms extracted by £97.

The termination flags Ter and Open in the last argument position of an
abstract term are Boolean flags. The flag Ter abstracts the property of a term
being terminated and Open that of being open. Note that for some types, for
example Int, a term can be open only if it is a variable. In these cases, the
termination flag can be omitted in the implementation (see Sect. 6).

Example 5.1. Consider the examples in Sect. 2 and Fig. 1.

Drne = {Int?(Ter), Int*(Open), Any}.

4

The following examples illustrate that Def. 5.1 is “parametric”.

Drist(1at) = {List?(i,Ter) | i € D} U{List*(Any,Open), Any}
DList(string) = {ListA(i, Ter) | i € Dstring} U{List“(Any, Open), Any}
Drise(u) = {List™(i,Ter) | i € Dy} U{List*(Any, Open), Any}.
Some further examples are, assuming that u < Balance < String:
Diatance = {Balance”(Ter), Balance”(Open), Any}
Dsering = {String”(Ter), String” (Open), Any}
DTable(Int) = {TableA (Za b7 S, Ter) | 1€ DInt; be DBalance; S € DString}U
{Table”(Any, Any, Any, Open), Any}
Dyest(1nt) = {NestA(i,Ter) | i € Diue} U {Nest*(Any, Open), Any}.

We now define an order on abstract terms which has the usual interpretation
that “smaller” stands for “more precise”.

Definition 5.2 (order < on abstract terms). For the termination flags de-
fine Ter < Open. For abstract terms, < is defined as follows:

Bot < b if b # Bot,
b < Any if b # Any,
CA(b1, ..., bm,c) < CADY, ..., b,,c)if ¢ < ¢ and b; <bj,j€efl,...,m}

For a set S of abstract terms, let .S denote the least upper bound of S.

We now define the abstraction function for terms. This definition needs an ab-
straction of truth values as an auxiliary construction.

Definition 5.3 (abstraction function o for terms). Let 7 = C(@) and
N(7) = (o1,...,0m,). For the truth values define a(true) = Ter and «(false) =
Open. If S is a set of terms, define

a(S) = Ufa(t) | ¢ € S},
where «(t) is defined as:

Any if ¢ is a variable,
CHa(E7(t,7)), ., a7 (t,7)), a(Z(t, 7)) it = firymy (b, tn).

Note that this definition is based on the fact that () = Bot. From this it
follows that the abstraction of a constant ¢ = fy is CA(Bot,...,Bot, Ter).
The least upper bound of a set of abstract terms gives a safe approximation
for the instantiation of all corresponding concrete terms. Safe means that each
concrete term is at least as instantiated as indicated by the least upper bound.

Ezample 5.2. We illustrate Def. 5.3.
a(7) = Int*(Ter) (r =Int,m =0,n=0)

a(Nil) (r = List(u),N(7) = (u),n = 0)
= List(a(l), a(Z(Nil,T)))
= List“}(Bot, Ter)

a(Cons(7,Nil)) (r =List(u), N (1) = (u),n = 2)
= List*(U{a(7)},a(Z(Cons(7,Nil), 7)))
= List(Int*4(Ter), Ter).

The table below gives some further examples.

term type abstraction

X u Any

[7,x] List(Int) List“(Any, Ter)

[71x] List(Int) List“(Any,Open)

E(7) Nest (Int) Nest(Int*(Ter), Ter)

[E(7)] List (Nest (Int)) List” (NestA(IntA(Ter) Ter), Ter)
N([E(7)]) Nest(Int) Nest#(Int(Ter), Ter)
N([E(7),x]) Nest (Int) Nest“(Any, Open)

Note that there is no term of type Int whose abstraction is Int“(0Open).
The following theorem show that the abstraction captures groundness.

Theorem 5.1 (Proof see [17]). Let S be a set of terms having the same type.
Then a variable occurs in an element of S (that is S is non-ground) if and only
if Any or Open occurs in «(S).

5.2 Traversing Abstract Terms

In order to define abstract unification and, in particular, the abstraction of an
equation in a program, we require an abstract termination function and ab-
stract extractors similar to those already defined for concrete terms. The type
superscript annotation for concrete terms is also useful for abstract terms.

Definition 5.4 (abstract termination function and extractor for o).
Let ¢ and 7 = C(@) be simple types such that 7¥ i ¢ for some ¥, and N (1) =

(01,...,0m). Let b be an abstract term for an instance of 7.
1. Abstract termination function.
AZ(b™, ¢) = Open if b = Any
AZ(™Y, ¢) = Ter if b = Bot
AZW . ¢) =cn \ AZ(0TY,0) if b= CA(by,...,bm,c).
O'J'WDQ(ﬁ

2. Abstract extractor for o. Let o € N (¢).

AE7 (b7, ¢) = Any if b = Any
AET (b, ¢) = Bot if b = Bot
AET(b™, ¢) = U({b; | 0;¥ = o}U
{AE7 (7Y ,¢) | oW s 8}) if b= CA(by, ..., bm,0).

We omit the superscript 7% in the expressions AZ(b7%,¢) and AE7(b7Y, ¢)
whenever ¢ = 7 and ¥ is the identity. In this (very common) case, the abstract
termination function is merely a projection onto the termination flag of an ab-
stract term (or Open if the abstract term is Any). Similarly, the abstract extractor
for ¢ is merely a projection onto the j* argument of an abstract term, where
o = 0;. Note the similarity between the above definition and Thm. 4.2.

Ezample 5.5.

AZ(List”(Any, Ter)-tst(¥est(v)) Nest(v)) = Ter A AZ(Any,Nest(v)) = Open.
AE¥ (ListA(Any, Ter)stMest()) Nest(v)) = Any.
AZ(List*(Nest?(Int*(Ter), Ter), Ter)tstWest(V) Nest(v)) =
Ter A AZ(Nest*(Int*(Ter), Ter), Nest(v)) = Ter.
AEY (List*(Nest? (IntA(Ter), Ter), Ter)ListWest(V) Nest(v)) =

AE” (NestA(IntA(Ter), Ter), Nest(v)) = Int”(Ter).

The following theorem states the fundamental relationship between concrete and
abstract termination functions and extractors.

Theorem 5.2. Let ¢ and 7 = C(u) be simple types such that 7% > ¢ for some
¥, and o € N (¢). Let t"¥ be a term. Then

a(Z(t™, 9))
a(€(t,)
Proof. We only show (2), as the proof for (1) is similar. The proof is by induction

on the structure of ¢. First assume ¢ is a variable x or a constant d. Here we omit
the type superscripts because they are irrelevant.

AZ(a()™, ¢) (1)
AE7 (a(®)™, ¢) (2)

a(&7(x, ¢))=U{a(x) }=Any=AE’ (Any, §)=AEL" (a(z), §)-

a(E7(d, ¢))=U P=Bot=AE" (C*(Bot, . ..,Bot, Ter), ¢)=AE (a(d),).

Now assume ¢ is a compound term. Let N (1) = (o1,...,0m)- In the following
sequences of equations, * marks steps which use straightforward manipulations
such as rearranging least upper bounds or applications of « to sets.

AE7 (a(t)™, ¢) = (Def. 5.3)
AET(CA(a(E2 (t, 7)),y ..., a(E7m (t, 7)), a(Z(t, 7)Y, ¢) = (Def. 5.4)
U{a(€7 (t,7)) | 0% = 0} U {AE7(a(E7 (£, 9))77,) | 0¥ 1 ¢}) =
(x & hyp.)
u(U & (7))} U JA{eE €5 t,n7Y,)} =
o T=c oW
’ (* & Thm. 4.3)
a(E7 (177, 9)).
O

Ezample 5.4. This illustrates Thm. 5.2 for ¢ = 7¥ = List(u) and o = u.

a(Z([7],List(u))) = Ter = AZ(List”(Int"*(Ter),Ter),List(u))
a(&%([7],List(u))) = IntA(Ter) = AE*(List?(Int*(Ter), Ter), List(u)).

5.3 Abstract Compilation

We now show how the abstract domains can be used in the context of abstract
compilation. We define an abstract program and show that it is a safe approxi-
mation of the concrete program with respect to the usual operational semantics.

In a (normal form) program, each unification is made explicit by an equation.
We now define an abstraction of such an equation. For an equation of the form
z = f(y1,...,Yn), the abstraction is an atom of the form fqep(b,b1,...,bn),
where fqep is a predicate defined in the abstract program.

Definition 5.5 (faep). Let fir. r.-y € ¥y where 7 = C(u) and N(1) =
(1,...,0m). Then fqep(b,b1,...,by) holds if

b=Cay,...,am,c) where
a; = L ({bl | T; = 0']'} U {Ang (b;rl,’r) | TiT}) for all je{l,....m} (].)
c= \ AZ(b]',7) (2)
Ti}T

Example 5.5. To give an idea of how Def. 5.5 translates into code, consider Cons.
Assuming that Lub(a, b, ¢) holds if ¢ = Li{a, b}, one clause for Consgep might be:

Cons_dep(List_a(c,Ter) ,b,List_a(a,Ter)) <-
Lub(a,b,c).

The following theorem shows that fqep correctly captures the dependency be-
tween a(f(t1,...,tn)) and a(ty),...,a(ty)-

Theorem 5.3. If t = f(t1,...,t,) then faep(a(t), a(t1),...,a(t,)) holds.
Proof. Suppose N(1) = {(o1,...,0m,) and T = C(i). By Def. 5.3

a(t) = CMa(E7 (t,7)), ..., a(E™ (t,T)), a(Z(t, T))).
We show that (1) in Def. 5.5 holds. For each o; € N(1),

a(E (t,T))
=al{ti|m =0} U U E%(t],T)) (Thm. 4.2)

=U{alt) |7 =0 U{a(E% (], 1)) | Tixr}) (moving « inwards)

[3

=U{at) |7 =0 U{AE (a(t:)™,T) | Tier}) (Thm. 5.2).
Equation (2) in Def. 5.5 is proven in a similar way. O

Definition 5.6 (abstraction X of a program). For a normal form equation
e define

N(e) = e if e is of the form z =y
= faep(®,y1, .-, yn) if € is of the form = = f(y1,...,yn)-

For a normal form atom a and clause K = h < g1 A--- A g; define

N(a) =a
R(K) = R(h) ¢ R(g1) A--- AR(gr).

For a program P = (L, S) define
R(P) ={X(K) | K € S} U{faep(a,a1,...,ap) | faep(a,a1,...,an) holds}.

Example 5.6. In the following we give the usual recursive clause for Append in
normal form and its abstraction.

Jiconcrete clause %abstract clause

Append (xs,ys,zs) <- Append (xs,ys,zs) <-
xs = [x|x1s] & Cons_dep(xs,x,xls) &
zs = [x]|z1s] & Cons_dep(zs,x,zls) &
Append (x1s,ys,zls). Append(x1s,ys,zls).

We now define the operational semantics of concrete and abstract programs.
We assume a fixed language L and program P = (L,S), and a left-to-right
computation rule. A program state is a tuple (G, @) where G is a query and @
a substitution. It is an initial state if @ is empty. We write C' €. S if C is a
renamed variant of a clause in S.

Definition 5.7 (reduces to). The relation — (“reduces to”) between states
is defined by the following rules:

(hy - h,0) = (hy:--:1y,00")
if hy is ‘¢ = and 200’ =tOO" (1)
(hi - h,0) = (G :hy:--:h;,00")

if h+ G €. S and hOO' = h,00" (2)
53 for j > 0 and —* are defined in the usual way. If for an initial query G,
(G,0) === (p(x1,...,2,) : H,O) —*(H,0O),

we call p(x1,...,2,)0 a call pattern and p(xy,...,x,)0" an answer pattern for
p.

Note that this notion of “reduces” with arbitrary unifier is considered in [13].

The next theorem shows that for all call and answer patterns, which may
arise in a derivation of a concrete program, there are corresponding patterns in
a derivation of the abstract program.

Theorem 5.4. Let H, H' be queries, © a substitution and j > 0. If (H, () —-J

R(P) ;

(H',0), then (N(H), By —7 (X(H"),0%), where O% = {z/a(zO) | x € dom(O)}.

Proof. By Def. 5.7, (H,0) =i (H',0) if and only if (H,0) —i(H',0), and
likewise for R(P). Therefore it is enough to show that for all j >0

(H,0) =5 (H',0) implies (N(H),0%) “3J (R(H'),0%). (3)
The proof is by induction on j. The base case j = 0 holds since (R(H), @) 2530
(N(H),©%). For the induction step, assume (3) holds for some j > 0. We show

that for every query H"

(H,0) 5i+1(H" 0) implies (R(H),O0%) B+t (R(H"), 0).

If (H,0) +it1(H", 0) is false, the result is trivial. If (H, @) —+i+1 (H", 0O),
then

(H,0O) —i (H',0) — (H",0) for some query H', and

(N(H),0%) “28i (R(H'),0°) by hypothesis.

It only remains to be shown that (R(H'), 0%) “Z3 (R(H"), ©%). We distinguish
whether Rule (1) or (2) of Def. 5.7 was used for the step (H',0) — (H",0).
(1): H =hy :---: hy where hy is ‘e = ¢, and t =y or t = f(x1,...,zp). In the
first case N(h;) = hy. Since zO = y0O, it follows that {z/a(z0),y/a(z@)} C O
and therefore zO* = yO@°. Thus (X(H'),0%) “Z (R(H"),0%) by Rule (1). In
the second case R(h1) = faep(T, 21, .., %y,). Since 20 = f(2,0,...,2,0),

{z/a(f(x10,...,2,0)),21/a(x10),...,2,[a(z,0)} C O%.

Thus, by Thm. 5.3, faep(z,Z1, ..., 2Ty) O holds so that faep(z,z1,...,2,) O €
R(P) by Def. 5.6. Thus (R(H'),0%) X (X(H"), 0% by Rule (2).

(2): H = hy : --- : hy where h «+ G €, S and h® = h;0. By Def. 5.6,
R(hy < G) €. X(P). Furthermore X(h) has the form p(z), and N(h;) has the
form p(y). Since TO = yO it follows that p(z) O = p(y) O. a

6 Implementation and Results

From now on we refer to the abstract domains defined in this paper as typed do-
mains. We have implemented our mode analysis for object programs in Gddel.
This implementation naturally falls into two stages: In the first stage, the lan-
guage declarations are analysed in order to construct the typed domains, and
the program clauses are abstracted. In the second stage, the abstract program
is evaluated using standard abstract compilation techniques.

We have implemented the first stage in Gdédel, using the Goédel meta-pro-
gramming facilities. Godel meta-programming is slow, but this first stage scales
well, as the time for abstracting the clauses of a program is linear in their number.
Analysing the type declarations is not a problem in practice. We have analysed
contrived, complex type declarations within a couple of seconds.

The second stage was implemented in Prolog, so that an existing analyser
could be used. Abstract programs produced by the first stage were transformed
into Prolog. All call and answer patterns, which may arise in a derivation of an
abstract program for a given query, are computed by the analyser. By Thm. 5.4,
these patterns correspond to patterns in the derivation of the concrete program.
For example a call p(Any, Int”(Ter)) in the abstract program indicates that
there may be a call p(x,7) in the concrete program.

We now demonstrate the precision of the typed domain for Table(Int). The
arguments of the predicate Insert represent: a table ¢, a key k, a value v, and
a table obtained from ¢ by inserting the node whose key is & and whose value

Table 1. Some call and answer patterns for Insert

Insert(Tab?
Insert(Tab?

(

(
Insert(Tab™
Insert(Tab™

,Str™ Int?, Any) leads to answer pattern
,Str?, Int*, Tab? (Int*, Bal?, Str?, Ter)).

IntA7 BalA7 Str'A, Ter
IntA7 BalA7 StrA,
IntA7 BalA7 StrA, r
IntA7 BalA7 StrA, Ter

Ter
Te

~ — ~— ~—

~~

S
, St Any, Any) leads to answer pattern
,Str?, Any, Tab”? (Any, Bal*, Str, Ter)).

is v. Table 1 shows some initial call patterns and the answer pattern that is
inferred for each call pattern. For readability, we have used some abbreviations
and omitted the termination flag for types Integer, Balance and String.

Clearly, inserting a ground node into a ground table gives a ground table.
This can be inferred with the typed domains, but it could also be inferred using
a domain which can only distinguish between ground and non-ground terms [4].
Now consider the insertion of a node with an uninstantiated value into a ground
table. With typed domains, it can be inferred that the result is still a table but
whose values may be uninstantiated.

We used a modified form of the analyser of [8] running on a Sun SPARC
Ultra 170. The analysis times for the two example analyses using Insert were
were (.81 seconds and 2.03 seconds, respectively. Comparing this to an analysis
using a domain which can only distinguish ground and non-ground terms, the
times were 0.09 seconds and 1.57 seconds, respectively. Apart from Tables, we
also analysed some small programs, namely Append, Reverse, Flatten (from
the Nests module), TreeToList, Qsort, and Nqueens. For these, all analysis
times were below 0.03 seconds and thus too small to be very meaningful.

Our experience is that the domain operations, namely to compute the least
upper bound of two abstract terms, are indeed the bottleneck of the analysis.
Therefore it is crucial to avoid performing these computations unnecessarily.
Also one might compromise some of the precision of the analysis by considering
widenings [6] for the sake of efficiency. In order to conduct more experiments, one
would need a suite of bigger typed logic programs. A formal comparison between
analyses for typed logic programs and untyped ones is of course difficult.

7 Discussion and Related Work

We have presented a general domain construction for mode analysis of typed
logic programs. This analysis gives more accurate information than one based
on a ground/non-ground domain [4]. For common examples (lists, binary trees),
our formalism is simple and yields abstract domains that are comparable to the
domains in [3]. The novelty is that the construction is described for arbitrary
types. In contrast, in [3], an abstract domain for obtaining this degree of precision
for, say, the types in the Tables module, would have to be hand-crafted.

The fundamental concepts of this work are recursive type and non-recursive
subterm type, which are generalisations of ideas presented in [3] for lists. The
resulting abstract domains are entirely in the spirit of [3,5] and we believe that

they provide the highest degree of precision that a generic domain construction
should provide. Even if type declarations that require the full generality of our
formalism are rare, we think that our work is an important contribution because
it helps to understand other, more ad-hoc and pragmatic domain constructions
as instances of a general theory. One could always simplify or prune down our
abstract domains for the sake of efficiency.

In its full generality the formalism is, admittedly, rather complex. This is
mainly due to function declarations where the range type occurs again as a proper
sub“term” of an argument type, such as the declaration of N in Ex. 2.2. This
phenomenon occurs in the declarations for rose trees [14], that is, trees where
the number of children of each node is not fixed. One should note that while the
theory which allows for a domain construction for, say, Nest (Int) is conceptually
complex, the computational complexity of the domain operations for Nest (Int)
is lower than for, say, List (List(List(Int))). In short, the complexity of the
abstract domains depends on the complexity of the type declarations.

We have built on the ideas presented in [5] for untyped languages. Notably
the title of [5] says that type, not mode, dependencies are derived. Even in an
untyped language such as Prolog, one can define types as sets of terms given
by some kind of “declaration”, just as in a typed language [1]. In this case
type analysis (that is, inferring that an argument is instantiated to a term of
a certain type) is inseparable from mode analysis. It seems that [5] provides a
straightforward domain construction for arbitrary types, but this is not the case.
It is not specified what kind of “declarations” are implied, but the examples
and theory suggest that all types are essentially lists and trees. The Tables and
Nests examples given in Sect. 2 are not captured.

Recursive modes [21] characterise that the left spine, right spine, or both,
of a term are instantiated. The authors admit that this may be considered an
ad-hoc choice, but on the other hand, they present good experimental results.
They do not assume a typed language and thus cannot exploit type declarations
in order to provide a more generic concept of recursive modes, as we have done
by the concept of termination.

A complex system for type analysis of Prolog is presented in [23]. As far as
we can see, this system is not in a formal sense stronger or weaker that our mode
analysis. The domain Pat(Type) used there is infinite, so that widenings have
to be introduced to ensure finiteness, and “the design of widening operators
is experimental in nature” [23]. In contrast, we exploit the type declarations
to construct domains that are inherently finite and whose size is immediately
dictated by the complexity of the type declarations.

Mercury [19] has a strong mode system based on instantiation states. These
are assertions of how instantiated a term is. An instantiation state is similar to
an abstract term. Indeed, given some type declarations, it is possible to define an
instantiation state in Mercury syntax which, while not being exactly the same,
is comparable in precision to an abstract term in our formalism. The difference
is that for a given type, there are potentially infinitely many instantiation states.

The current Mercury implementation does not support instantiation states in
their full generality, although a version supporting partially instantiated data-
structures is being developed. Within the limits of the expressiveness of the
mode system, Mercury does a combination of mode analysis and mode checking
of modes declared by the user.

Even if instantiation states were supported in their full generality, the po-
tentially infinite number of instantiation states means that mode inference must
always be approximate. Since our abstract terms formalise what might be called
a “reasonable” degree of precision, we believe that our proposal could serve as
a basis for this approximation. One could envisage a Mercury implementation
doing a combination of mode inference and checking, based on the set of modes
which is expressible using our abstract domains. Hence our domains could also
be used to declare modes.

The mode system in Mercury is based on [18], where the Simple Range Con-
dition and the Reflexive Condition that we impose are not explicitly required.
However, [18] does not define the type system precisely, instead referring to [15],
whose formal results have been shown to be incorrect [16]. It is therefore difficult
to assess whether that approach would work for programs which violate these
conditions. We know of no real Gédel programs that violate either of the Sim-
ple Range or Reflexive Conditions. We have found that violating the Reflexive
Condition raises fundamental questions about decidability in typed languages,
which seem to be related to the concept of polymorphic recursion [11,12].

There is another potential application of our work. In Gédel, the delay decla-
rations which state that a predicate is delayed until an argument (or a subterm
of the argument) is ground or non-variable, cannot describe the behaviour of
the Godel system predicates precisely. We have observed that, typically, the de-
gree of instantiation for a Goédel system predicate to run safely without delaying
could be specified by an abstract term in our typed domains. Thus they could
provide a good basis for declaring conditions for delaying.

Our approach may also be applicable to untyped languages, if we have infor-
mation at hand that is similar to type declarations. Such information might be
obtained by inferring declarations [2] or from declarations as comments [20]. Cer-
tainly our analysis would then regain aspects of type rather than mode inference,
which it had lost by transferring the approach to typed languages.

Acknowledgements

We thank Tony Bowers, Henning Christiansen, Bart Demoen, Andrew Heaton,
Fergus Henderson, Jonathan Martin and Lambert Meertens for helpful dis-
cussions and comments. Jan—Georg Smaus was supported by EPSRC Grant
No. GR/K79635.

References

1. A. Aiken and T. K. Lakshman. Directional type checking of logic programs. In
SAS ’94, pages 43—60. Springer-Verlag, 1994.

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

. H. Christiansen. Deriving declarations from programs. Technical report, Roskilde

University, P.O.Box 260, DK-4000 Roskilde, 1997.

M. Codish and B. Demoen. Deriving polymorphic type dependencies for logic
programs using multiple incarnations of Prop. In SAS’94, pages 281-297. Springer-
Verlag, 1994.

M. Codish and B. Demoen. Analyzing logic programs using “PROP”-ositional
logic programs and a Magic Wand. Journal of Logic Programming, 25(3):249-274,
1995.

M. Codish and V. Lagoon. Type dependencies for logic programs using ACI-
unification. In Israeli Symposium on Theory of Computing and Systems, pages
136-145. IEEE Press, 1996.

P. Cousot and R. Cousot. Comparing the Galois connection and widen-
ing/narrowing approaches to abstract interpretation. In M. Bruynooghe and
M. Wirsing, editors, PLILP’92, LNCS, pages 269-295. Springer-Verlag, 1992.

J. Gallagher, D. Boulanger, and H. Saglam. Practical model-based static analysis
for definite logic programs. In J. W. Lloyd, editor, ILPS’95, pages 351-365. MIT
Press, 1995.

A.J. Heaton, P.M. Hill, and A.M. King. Analysing logic programs with delay for
downward-closed properties. In N.E. Fuchs, editor, LOPSTR’97, LNCS. Springer-
Verlag, 1997.

P.M. Hill and A. King. Determinacy and determinacy analysis. Journal of Pro-
gramming Languages, 5(1):135-171, 1997.

P.M. Hill and J.W. Lloyd. The Gddel Programming Language. MIT Press, 1994.
S. Kahrs. Limits of ML-definability. In H. Kuchen and S. D. Swierstra, editors,
PLILP’96, LNCS, pages 17-31. Springer-Verlag, 1996.

A. J. Kfoury, J. Tiuryn, and P. Urzyczyn. Type recursion in the presence of poly-
morphic recursion. ACM Transactions on Programming Languages and Systems,
15(2):290-311, 1993.

J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.

L. Meertens. First steps towards the theory of rose trees. CWI, Amsterdam; IFIP
Working Group 2.1 working paper 592 ROM-25, 1988.

A. Mycroft and R. O’Keefe. A polymorphic type system for Prolog. Artificial
Intelligence, 23:295-307, 1984.

F. Pfenning, editor. Types in Logic Programming, chapter 1. MIT Press, 1992.
J.-G. Smaus, P. M. Hill, and A. M. King. Mode analysis domains for typed logic
programs. Technical Report 2000.06, School of Computer Studies, University of
Leeds, 2000. (© Springer-Verlag.

Z. Somogyi. A system of precise modes for logic programs. In ICLP’87, pages
769-787. MIT Press, 1987.

Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury,
an efficient purely declarative logic programming language. Journal of Logic Pro-
gramming, November 1996.

K. Stroetmann and T. Glaf. A semantics for types in Prolog: The type system of
PAN version 2.0. Technical report, Siemens AG, Miinchen, Germany, 1995.
Jichang Tan and I-Peng Lin. Recursive modes for precise analysis of logic programs.
In ILPS’97, pages 277-290. MIT Press, 1997.

M. van Emden. AVL tree insertion: A benchmark program biased towards Prolog.
Logic Programming Newsletter 2, 1981.

P. Van Hentenryck, A. Cortesi, and B. Le Charlier. Type analysis of Prolog using
type graphs. Technical Report CS-93-52, Brown University Box 1910, Providence,
RI 02912, November 1993.

L
ALY

Fig. 3. The sequence of non-recursive subterm types

A Proofs

The following lemma states that the relation < is closed under instantiation of
its arguments.

Lemma A.1. Let 0, ¢ be types and ¥ a type substitution. If o <1 ¢ then oW < ¢W.
If o <* ¢ then oW <* ¢V

Proof. For the first statement, there is f;, . ;) € Xy and a type substitution
V' such that for some i € {1,...,n}, ;%' = o and 7¥' = ¢. Consequently
79’0 = oW and TPV = ¢¥, so o¥ < ¢¥. The second statement follows from
the first. O

The next lemma ensures that the abstract domains are well-defined. It states
that any sequence of non-recursive subterm types terminates.

Lemma A.2. Let 7 € T(X,;,U)\U and I" C ¥,. Let I be a non-empty index
set (finite or infinite) starting at 1 and {(C;(@;), 7, %;) | i € I} a sequence where
C,el',n =Ci ()P =71, dom(¥,) C 4, and, for each i € I where i > 1:

o C; el dom(sp,-) C u; and C,'(ﬂ,‘)ﬂp,' =¥ _1,
e T; € T(F, U) and 7; € N(C,'_l(ﬂ,i_l)).

Then I and hence {(C;(a;),7:,%;) | i € I} is finite.

Proof. Let ¥, be the identity substitution. The sequence is illustrated in Fig. 3.
First note that, by Lemma A.1 and Def. 4.2, for each ¢ € I where i > 2, we have
TiWi—1 <" T;_1W¥;—o. Thus, for all 7,5 € I where i > j, 7;¥;_1 <* Ti¥i_1.

Let d(p) be the number of occurrences of constructors in a type p. If I C X,
define

DIhp)=dp+ Y. | 3 do)

Cely \oeN(C(u))

The proof is by induction on D(I', 7). Since 7 ¢ U, it follows that D(I,7) > 1.
If D(F,T) =]., then 7 = Cl(’L_Ll), N(Cl(ﬂl)) g U and |I| S 2.

Suppose that D(I,7) = M > 1. Assume that, for all types p and sets of
constructors I'y C I" such that D(Ip, p) < M, the result holds. Since the result

C3 = String C>(uz) = Table(uz) Ci(uy) = List(uy)

Uy =) / ¥, = {u,/Int} / ¥, = {u;/Table(Int)}

String NRS Table(Int) NRS List(Table(Int))
A A
P2 / 141 / V=0
T3 = String T2 = 71 = List(Table(Int))

Fig. 4. An example of the sequence of non-recursive subterm types

obviously holds if |I| < 2, suppose |I| > 2 so that 7» is not a parameter. Consider
the sequence {(C;(@;), 7, ®}) | i € I'} where I' is an index set starting at 2, ¥ is
the identity substitution and, for each i € I', we have C;(@;)¥] = 7;¥}_,. Since
7, € N(Ci_1(ti—1)), T/¥, = ¥, for each i € I'. As in the first paragraph, for each
i€ l', ;¥_, <" 7». However, o € N(C1(@1)). Thus, by the Reflexive Condition
and Lemma 4.1, for each i € I', we have C; # C;. Thus, for each i € I', we have
C; € I'" where I'" = '\ {C1}. However,

D(I",m) = d(n) +D(Iy7) —d(r) — Y d(o),
geN(C1(1))

Hence, as d(7) > 0 and » € N(Cy(@)), D(I",7) < M and we can use the
induction hypothesis. Hence I’ is finite.

Assume now that I' is maximal wrt. to the above conditions and that |I'| =
N’ and suppose K = N'+1€ [. (If K ¢ I, then, as I’ is finite, I is finite.) Then
TP}, = u where u is parameter since, if Tk W) ; = Ck (ax)¥j, then K also
satisfies the above conditions so that I' is not maximal. Thus ¥}, _, is the identity
substitution and 7x = wu. By the transparency condition, since 7x <* Cy (1),
u € Uy. As Uiy = Vg _ ¥, we have U1 = ¥ and 7k Pk _1 € @1¥;. Hence
d(TkWPK_1) < d(T) so that

D(F, TKWKfl) < D(F, T).

Hence, the inductive hypothesis can be applied to the remaining sequence start-
ing at 7. Thus the subsequence starting at 7x is finite and therefore the com-
plete sequence starting at 7 is finite. a

Example A.1. Figure 4 gives an example of a sequence of types as constructed
in Lemma A.2. The abstract domain for List(Table(Int)) is defined in terms of
the abstract domain for Table(Int), and the abstract domain for Table(Int) is

defined in terms of the abstract domain for String. Therefore it is crucial that
any such chain is finite.

The following lemmas are needed in the proof of Thm. 4.3.

Lemma A.3. Let ¢ be a type, ¥ a type substitution, and ¢ a term having a
type which is an instance of ¢¥. If s7 is a subterm of ¢?, then s has a type which
is an instance of 7.

Proof. Induction on the depth of subterms. O

Lemma A.4. Let 01,092,03 be types. If o1 < 02 and 02¥ > g3 for some type
substitution ¥ then o1V > o3.

Proof. By Lemma A.1 it follows that 01¥ <* o3 and o3 <* 01 V. a

Theorem 4.3. Let ¢ and 7 be simple types such that 7 > ¢ for some ¥, let
t be a term having a type which is an instance of 7%, and o € N'(¢). Then

Z,g) = Zt,m)A N\ ZE(T),9) (1)
pPEN(T)

e o= |Jewnu |JeeErwn, e (2)
pPEN(T) PEN(T)
pU=0c PP

Proof. The proof consists of four parts. In Part 1, we define a number of sets
of subterms of t. We then show six propositions which say that each expression
occurring in (1) and (2) can be expressed in terms of these sets. In Part 2 we
show how the left and right hand sides of both (1) and (2) can be related using
these sets. This is then used in Part 3 to show (1), and in Part 4 to show (2).

Part 1: To avoid confusion between the many symbols occurring in the proof,
keep in mind that ¢, 7, o and ¥ occur in the statement and thus are fired. We
use f as an abbreviation for f;1 .+ ;1 (not fir,..r,,7), as earlier in this paper),
and 7 to denote (rq,...,7,). Superscripts are omitted where irrelevant. Define

R = {r*|r“ is a ¢-recursive subterm of t"*}
S ={ri| f(f)TIW’ € Rand 7/¥' =0}
A = {r* | r¥ is a T-recursive subterm of ¢" }.

Note that, by Lemma A.3, each 7 € A has a type which is an instance of w?.
Furthermore for all p € N(7) define

B ={r; | f(A)™" € Aand 7/¥' = p}.

Note that, by Lemma A.3, each r; € B? has a type which is an instance of
TIW'W (= p¥). For all p € N (1) with p¥ 1 ¢ define

C? = {r¥ | r¥ is a ¢-recursive subterm of some s*¥ s € B}
D? ={r; | f()"Y € C and T/¥' = 5}.

S1-S6 state how these sets relate to the computations of (1) and (2).

S1 Z(t™,¢) = false if and only if vars(R) # 0.

S2 Z(t,7) = false if and only if vars(A) # 0.

S3 &7(t™,$) = vars(R) U S.

S4 For each p € N (1), E°(t,7) = vars(4) U B*.

S5 For each p € N(7) with p@ 1 ¢, Z(E°(t, 7)PY, ¢) = false iff vars(CP UA) #
0

S6 For each p € N (1) with pW¥ > ¢, E7(E°(t, 7)Y, ¢) = vars(A) Uvars(CP) U
Dr.

S1 and S2 follow from Def. 4.5 and the definitions of R and A. S3 and S4 follow
from Def. 4.6 and the definitions of R, .S, A and B”. S5 and S6 are proved below.
First we prove S5.

Z(EP(t,T)PY, ¢) = false <=

(by 54)

Z((vars(A) U BP)*Y | ¢) = false <>
(by Def. 4.5)
vars({r* | r* is a ¢—recursive subterm of s*¥, s € vars(4) U B*}) # () <
(by Def. 4.4)

vars(A) U vars({r® | r is a ¢—recursive subterm of s*¥ s € B*}) # () <
(by Def. of C?)
vars(A) U vars(C*) # (.

We now prove S6.

E7(EP(t,)7, ¢) =
(by S4)
£ ((vars(4) U B),) =
(by Def. 4.6)
vars({r* | r* is a ¢—recursive subterm of s*¥,s € vars(A) U B*}) U
{ri | f(F)TIg” is a ¢—recursive subterm of s*¥ s € B, 7/¥' =0} =
(by Def. 4.4)
vars(A) U vars({r* | r* is a ¢—recursive subterm of s*¥,s € B*})U
{ri | f(7)™"" is a ¢—recursive subterm of s*¥ s € B?,7/¥0' = ¢} =
(by Def. of C?, D*)
vars(A) U vars(C?) U DP.

Part 2: Let 7 be a subterm of ¢” at depth d. We show by induction on d that
r“¥ € Rif and only if r* € A or ¥ € C” for some p € N (1) with p¥ > ¢. For
d = 0 this follows from the definitions of R and A.

Suppose now that 7% is a subterm of t” at depth d > 0. Then there exists a
subterm f(f)T’W’ of t™ at depth d — 1 such that for some ¢ € {1,...,n},r=1r;
and w = T1/¥'.

“=7: Assume that 7% € R. Since w¥ > ¢, it follows from Lemma 4.1 that
T'U'W 1 ¢ so that f(F)TIg"W € R. By the induction hypothesis there are two
possibilities:

a) f()™Y € A. Since 7'W' v« 7, either w b 7 or w € N (7). If w > 7 then
¥ € A. If w € N(7), that is w € N(7), then r € B* and hence r*¥ € C¥,
and therefore r“¥ € C? for some p € N (7).

b) f(F)TY'Y € C? for some p € N(r) with p¥ > ¢. Since w¥ < ¢ it follows
that ¥ € C°.

“<”: Again we break this up into cases:

a) r¥ € A. Since w < 7, it follows by Lemma 4.1 that 7/%' > 7 so that
f(7)™Y € A. By the induction hypothesis f(7)”?'? € R. Since w > 7 and
TV 1 ¢, it follows by Lemma A.4 that r*¥ € R.

b) r*¥ € C* for some p € N(1) with p¥ > ¢. By definition of C” there are
two possibilities: either € B?, in which case w = p and f(7)"? € A, or
w¥ 1 ¢ and f(7)7?'Y is a subterm of an element of B”. In the latter case,
by Lemma 4.1, 7'%'W¥ < ¢ so that f(F)TIg"W € Cr.

In both cases, by the induction hypothesis f(7)”?'?Y € R. In the first case,
since w = p and p¥ 1 ¢, it follows that r“¥ € R. In the second case, since
w¥ ¢, 1% € R.

Part 3: We prove (1). By S1, Z(t"¥,¢) = false if and only if vars(R) # 0.
By Part 2, vars(R) # 0 if and only if vars(A) # 0 or vars(C?) # () for some
p € N (1) with p¥ > ¢. Then, by S2 and S5, this holds if and only if

Zt,)n N\ ZE(L), ¢) = false.

PEN (o)
P

Part 4: We prove (2) by showing that:

vars(R)U S = U (vars(A) U B?) U U (vars(C*) U D*).

V=0 pY <1

The result then follows from S3, S4, and S6.

“C”: For a variable € R it follows by Part 2 that x € A, or x € C* for
some p € N(7) with p¥ 1 ¢. For a term r € S, there is f(7)” "% € R such that
r =r;, and T/9'W = ¢. By Part 2, either f(i)"% € A, or f(F)"¥'¥ € C* for
some p € N(7) with p? > ¢.

Assume first f(7)”% € A. We show that r € B? for some p € N(r) with
p¥ = o, namely p = 7/¥'. Since by construction of A, 7/¥’ <* 7, we only have
to show that not 7/’ > 7. By Lemma A.4, 7/¥' > 7, together with 7& > ¢,
would imply 7/@'W® > ¢. This however is a contradiction, since it follows from
TIW'W = o that 7/¥'¥ € N(¢).

Assume now f(7)” 'Y € C* for some p € N'(7) with p¥ b ¢. Since 7/¥'¥ =
o it follows that r € D?”.

“D”: For a variable z € A, or z € C” for some p € N(7) with p¥ 1 ¢, it
follows by Part 2 that x € R.

Secondly assume r € B? for some p € N(7) with p¥ = o. By definition,
there is f(7)™ %" € A such that r = r; and 7/%' = p. By Part 2, f(7)"¥'? € R,
and since 7/¥'¥ = o, it follows that r € S.

Thirdly assume r € D? for some p € N(7) with p¥ > ¢. By definition, there
is f(7)"%'% € C” such that r = r; and 7/¥'¥ = ¢. By Part 2, f(7)"¥'? € R,
and since 7/¥'¥ = o, it follows that r € S. a

To prove Thm. 5.1, we need the following auxiliary lemma.

Lemma A.5. Let t™ be a term. Every subterm of ¢” is either a recursive subterm
of t7, or a subterm of a term in £7(¢,7), for some o € N (7).

Proof. The proof is by induction on the depth of subterms of ¢". For the base
case observe that ¢™ is a recursive subterm of itself.

Now suppose the result holds for all subterms of t” up to depth i. Let r” be
a subterm of 7 at depth ¢ and w* < r”. If r? is not a recursive subterm of ¢7,
then 7 is a subterm of a term in £9(¢,7) for some o € N (1), and thus w* is
also a subterm of a term in £7(¢, 7). If ? is a recursive subterm of ¢7, then since
p > 7 and w<p, by Def. 4.2 either w < 7 or w € N(7). Thus either w* is a
recursive subterm of ¢ or w € £¥(t, 7). a

Theorem 5.1. Let S be a set of terms having the same type. Then a variable
occurs in an element of S (that is S is non-ground) if and only if Any or Open
occurs in a(S).

Proof. There are three cases depending on whether S is empty, contains a vari-
able, or neither.

Case 1: S is empty. Then a(S) = Bot.

Case 2: S contains a variable z. Then a(z) = Any and thus a(S) = Any.

Case 3: S contains no variables but contains a non-variable term. Then the type
of terms in S is of the form 7¥ for some type substitution ¥ and simple type
7 = C(u). Suppose that N(7) = (o1,...,0n,) for some m > 0. Then there are
abstract terms by, ... , b, and termination flag b, such that

a(S) = CAby,... bm,b).

There are two subcases.
Case 3a: For some t € S and variable z, z” is a recursive subterm of ¢”. Then
Z(t,7) = Open. Hence b = Open and

a(S) = C4(by,... ,bm,0pen).

Case 3b: No term in S has a recursive subterm that is a variable. Then Z(¢,7) =
Ter for each t € S. Hence, by Def. 5.2, b = Ter. The proof for this case is by
induction on the length of the longest NRS-sequence (see Lemma A.2) for 7¥.
The base case is when m = 0. Then by Lemma A.5, every term in S is ground
and a(S) = CA(Ter).

Now suppose m > 0. By Lemma, A.5, S contains a non-ground term if and
only if £97 (¢, 7) contains a non-ground term for some ¢t € S and j € {1,...,m}.
By Def. 5.3

a(S) = L{CA(a(E7 (t,T)),...,a(E7™ (t, 7)), Ter) | t™ € S}.

Thus, by Def. 5.2 and Def. 5.3, for each j € {1,...,m}, b; = a(£79(S, 7)). Let
jeA{l,...,m}. If £7i(S,7) is empty, by case 1 above, a(€9 (S, 7)) = Bot. If
£79 (S, T) contains a variable, by case 2 above, a(£%(S,7)) = Any. Otherwise,
£ (S, T) contains a non-variable term and the terms in £79 (S, 7) have type o;¥,
for which, by induction hypothesis, the result holds. Hence b; has an occurrence
of Any or Open if and only if £97 (S, 7) contains a non-ground term. It follows that
a(S) has an occurrence of Any or Open if and only if S contains a non-ground
term. a

