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Mode Analysis Domains for TypedLogi
 ProgramsJan{Georg Smaus1, Patri
ia M. Hill2, and Andy King31 INRIA-Ro
quen
ourt, Fran
e,jan.smaus�inria.fr2 University of Leeds, United Kingdomhill�s
s.leeds.a
.uk3 University of Kent at Canterbury, United Kingdoma.m.king�uk
.a
.ukAbstra
t. Pre
ise mode information is important for 
ompiler optimi-sations and in program development tools. Within the framework of ab-stra
t 
ompilation, the pre
ision of a mode analysis depends, in part,on the expressiveness of the abstra
t domain and its asso
iated abstra
-tion fun
tion. This paper 
onsiders abstra
t domains for polymorphi
allytyped logi
 programs and shows how spe
ialised domains may be 
on-stru
ted for ea
h type in the program. These domains 
apture the degreeof instantiation to a high level of pre
ision. By providing a generi
 def-inition of abstra
t uni�
ation, the abstra
tion of a program using thesedomains is formalised. The domain 
onstru
tion pro
edure is fully im-plemented using the G�odel language and tested on a number of exampleprograms to demonstrate the viability of the approa
h.Note: Some proofs have been omitted for spa
e reasons. They 
an befound in the full version of this paper [17℄.1 Introdu
tion1.1 Ba
kgroundTyped logi
 programming languages su
h as Mer
ury [19℄ and G�odel [10℄ use apres
riptive type system [15℄, whi
h restri
ts the underlying syntax so that onlymeaningful expressions are allowed. This enables most typographi
al errors andin
onsisten
ies in the knowledge representation to be dete
ted at 
ompile time.An in
reasing number of appli
ations using typed languages are being developed.Our notion of modes is, in 
ontrast, a des
riptive one [3, 7℄: Modes 
hara
-terise the degree to whi
h program variables are instantiated at 
ertain programpoints. This information 
an be used to underpin optimisations su
h as thespe
ialisation of uni�
ation and the removal of ba
ktra
king, and to support de-termina
y analysis [9℄. When a mode analysis is formulated in terms of abstra
tinterpretation, the program exe
ution is tra
ed using des
riptions of data (theabstra
t domain) rather than a
tual data, and operations on these des
riptionsrather than operations on the a
tual data. The pre
ision of a mode analysisdepends, in part, on the expressiveness of the abstra
t domain.



1.2 ContributionThe main 
ontribution of this paper is to des
ribe a generi
 method of derivingpre
ise abstra
t domains for mode analysis from the type de
larations of a typedprogram. Ea
h abstra
t domain is spe
ialised for a parti
ular type and 
hara
-terises a set of possible modes for terms of that type. In parti
ular it 
hara
terisesthe property of termination, well-known for lists as nil-termination.The pro
edure for 
onstru
ting su
h domains is implemented (in G�odel) forG�odel programs. By in
orporating the 
onstru
ted domains into a mode anal-yser, the viability of the approa
h is demonstrated.The abstra
t domains are used in an abstra
t 
ompilation [4℄ framework: Aprogram is abstra
ted by repla
ing ea
h uni�
ation with an abstra
t 
ounterpart,and then the abstra
t program is evaluated by applying a standard operationalsemanti
s to it.We believe that this work is the natural generalisation of [3, 5℄ and takesthe idea presented there to its limits: Our abstra
t domains provide the highestdegree of pre
ision that a generi
 domain 
onstru
tion should provide. Not only
an this work be used dire
tly for the mode analysis of typed logi
 programs,but it 
ould be used as a basis for 
onstru
ting (more pragmati
) domains aswell as providing a unifying theory for other proposals.The paper is organised as follows. Se
tion 2 introdu
es three examples. Se
-tion 3 de�nes some syntax. Se
tion 4 de�nes the 
on
epts for terms and typesthat are used in the de�nition of abstra
t domains. Se
tion 5 de�nes abstra
tdomains and programs, and the relationship between 
on
rete and abstra
t pro-grams. Se
tion 6 reports on experiments. Se
tion 7 
on
ludes.2 Motivating and Illustrative ExamplesWe introdu
e three examples that we use throughout the paper. The syntaxis that of the typed language G�odel [10℄, to avoid any 
onfusion with the (un-typed) language Prolog. Variables and (type) parameters begin with lower 
aseletters; other alphabeti
 symbols begin with upper 
ase letters. We use Integer(abbreviated as Int) to illustrate a type 
ontaining only 
onstants (1; 2; 3 : : : ).Example 2.1. This is the usual list type. We give its de
larations to illustratethe type des
ription language of G�odel.CONSTRUCTOR List/1.CONSTANT Nil: List(u).FUNCTION Cons: u * List(u) -> List(u).List is a (type) 
onstru
tor; u is a type parameter; Nil is a 
onstant of typeList(u); and Cons is the usual list 
onstru
tor. We use the standard list notation[: : : j : : : ℄ where 
onvenient. It is 
ommon to distinguish nil-terminated lists fromopen lists. For example, [℄ and [1; x; y℄ are nil-terminated, but [1; 2jy℄ is open.Previous approa
hes 
annot deal with the following two examples [3, 5, 21℄.



Example 2.2. This example was invented to disprove a 
ommon point of 
rit-i
ism that \list 
attening" 
annot be realised in G�odel, that is terms su
h as[1; [2; 3℄℄ 
annot be de�ned, let alone 
attened. The Nests module formalisesnested lists by the type Nest(v). A trivial nest is 
onstru
ted using fun
tion E,a 
omplex nest by \nesting" a list of nests using fun
tion N. The de
laration forN is remarkable in that the range type, Nest(v), is a proper sub\term" of theargument type List(Nest(v)).IMPORT Lists, Integers.CONSTRUCTOR Nest/1.FUNCTION E: v -> Nest(v);N: List(Nest(v)) -> Nest(v).Example 2.3. A table is a data stru
ture 
ontaining an ordered 
olle
tion ofnodes, ea
h of whi
h has two 
omponents, a key (of type String) and a value,of arbitrary type. We give part of the Tables module whi
h is provided as asystem module in G�odel.IMPORT Strings.BASE Balan
e.CONSTRUCTOR Table/1.CONSTANT Null: Table(u);LH, RH, EQ: Balan
e.FUNCTION Node: Table(u) * String * u * Balan
e * Table(u) -> Table(u).Tables is implemented in G�odel as an AVL-tree [22℄: A non-leaf node has a keyargument, a value argument, arguments for the left and right subtrees, and anargument whi
h represents balan
ing information.3 Notation and TerminologyThe set of polymorphi
 types is given by the term stru
ture T (�� ; U) where ��is a �nite alphabet of 
onstru
tor symbols whi
h in
ludes at least one base(
onstru
tor of arity 0), and U is a 
ountably in�nite set of parameters (typevariables). We de�ne the order � on types as the order indu
ed by some (forexample lexi
ographi
al) order on 
onstru
tor and parameter symbols, whereparameter symbols 
ome before 
onstru
tor symbols. Parameters are denotedby u; v. A tuple of distin
t parameters ordered with respe
t to � is denoted by�u. Types are denoted by �; �; �; �; ! and tuples of types by ��; �� .Let �f be an alphabet of fun
tion (term 
onstru
tor) symbols whi
h in-
ludes at least one 
onstant (fun
tion of arity 0) and let �p be an alpha-bet of predi
ate symbols. Ea
h symbol in �f (resp. �p) has its type as sub-s
ript. If fh�1:::�n;�i 2 �f (resp. ph�1:::�ni 2 �p) then h�1; : : : ; �ni 2 T (�� ; U)?and � 2 T (�� ; U) n U . If fh�1:::�n;�i 2 �f , then every parameter o

urring inh�1; : : : ; �ni must also o

ur in � . This 
ondition is 
alled transparen
y 
ondi-tion. We 
all � the range type of fh�1:::�n;�i and f�1 : : : �ng its domain types.A symbol is often written without its type if it is 
lear from the 
ontext. Termsand atoms are de�ned in the usual way [10, 16℄. In this terminology, if a term hasa type �, it also has every instan
e of �.1 If V is a 
ountably in�nite set of vari-1 For example, the term Nil has type List(u), List(Int), List(Nest(Int)) et
.



ables, then the triple L = h�p; �f ; V i de�nes a polymorphi
 many-sorted�rst order language over T (�� ; U). Variables are denoted by x; y; terms byt; r; s; tuples of distin
t variables by �x; �y; and a tuple of terms by �t. The set ofvariables in a synta
ti
 obje
t o is denoted by vars(o).Programs are assumed to be in normal form. Thus a literal is an equationof the form x =hu;ui y or x =hu;ui f(�y), where f 2 �f , or an atom p(�y), wherep 2 �p. A query G is a 
onjun
tion of literals. A 
lause is a formula of theform p(�y)  G. If S is a set of 
lauses, then the tuple P = hL; Si de�nes apolymorphi
 many-sorted logi
 program.A substitution (denoted by �) is a mapping from variables to terms whi
his the identity almost everywhere. The domain of a substitution � is dom(�) =fx j x� 6= xg. The appli
ation of a substitution � to a term t is denoted as t�.Type substitutions are de�ned analogously and denoted by 	 .4 The Stru
ture of Terms and TypesAn abstra
t term 
hara
terises the stru
ture of a 
on
rete term. It is 
learly a
ru
ial 
hoi
e in the design of abstra
t domains whi
h aspe
ts of the 
on
retestru
ture should be 
hara
terised [21, 23℄. In this paper we show how this 
hoi
e
an be based naturally on the information 
ontained in the type subs
ripts ofthe fun
tion symbols in �f . This information is formalised in this se
tion. Firstwe formalise the relationship between the range type of a fun
tion to its domaintypes. We then de�ne termination of a term, as well as fun
tions whi
h extra
t
ertain subterms of a term. In the following, we assume a �xed polymorphi
many-sorted �rst order language L = h�p; �f ; V i over T (�� ; U).4.1 Relations between TypesDe�nition 4.1 (subterm type). A type � is a dire
t subterm type of �(denoted as ���) if there is fh�1:::�n;�i 2 �f and a type substitution 	 su
h that�	 = � and �i	 = � for some i 2 f1; : : : ; ng. The transitive, re
exive 
losure of� is denoted as �� . If ��� �, then � is a subterm type of �.The relation � 
an be visualised as a type graph (similarly de�ned in [18, 23℄).The type graph for a type � is a dire
ted graph whose nodes are subterm typesof �. The node � is 
alled the initial node. There is an edge from �1 to �2 if andonly if �2��1.Example 4.1. Figure 1 shows a type graph for ea
h example in Se
t. 2. The lefthand type graph illustrates Ex. 2.1 where u�List(u) and List(u)�List(u).The other two type graphs illustrate Exs. 2.2 and 2.3, respe
tively.A simple type is a type of the form C(�u), where C 2 �� . We impose thefollowing two restri
tions on the language.Simple Range Condition: For all fh�1:::�n;�i 2 �f , � is a simple type.
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List(Nest(v))
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BalanceTable(u)

StringFig. 1. Some type graphs, with initial node highlightedRe
exive Condition: For all C 2 �� and types � = C(��); � = C(�� ), if ��� � ,then � is a sub\term" (in the synta
ti
 sense) of � .The Simple Range Condition allows for the 
onstru
tion of an abstra
t domainfor a type su
h as List(�) to be des
ribed independently of the type �. InMer
ury (and also in typed fun
tional languages su
h as ML or Haskell), this
ondition is enfor
ed by the syntax [19℄. Being able to violate this 
ondition 
anbe regarded as an artefa
t of the G�odel syntax.The Re
exive Condition ensures that, for a program and a given query, thereare only �nitely many types and hen
e, the abstra
t program has only �nitelymany abstra
t domains and the type graphs are always �nite. It rules out, forexample, a fun
tion symbol of the form fhList(Int);List(u)i sin
e this would implythat List(Int)�� List(u). We do not know of any real programs that violatethe Re
exive Condition or the Simple Range Condition.De�nition 4.2 (re
ursive type and non-re
ursive subterm type). A type� is a re
ursive type of � (denoted as � ./ �) if ��� � and ��� �.A type � is a non-re
ursive subterm type (NRS) of � if � 6�� � and thereis a type � su
h that �� � and � ./ �. We write N (�) = f� j � is an NRS of �g:If N (�) = f�1; : : : ; �mg and �j � �j+1 for all j 2 f1; : : : ;m � 1g, we abusenotation and denote the tuple h�1; : : : ; �mi by N (�) as well.It follows immediately from the de�nition that, for any types �; �, we have � ./ �and, if � 2 N (�), then � 6./ �. Consider the type graph for �. The re
ursive typesof � are all the types in the strongly 
onne
ted 
omponent (SCC) 
ontaining �.The non-re
ursive subterm types of � are all the types � not in the SCC butsu
h that there is an edge from the SCC 
ontaining � to �.Example 4.2. Consider again Ex. 4.1 and Fig. 1. Then List(u) ./ List(u), andthis is non-trivial in that, in the type graph for List(u), there is an edge fromList(u) to itself. Furthermore List(Nest(v)) ./ Nest(v). Non-re
ursive sub-term types of simple types are often parameters, as in N (List(u)) = hui andN (Nest(v)) = hvi. However, this is not always the 
ase, sin
e N (Table(u)) =hu; Balan
e; Stringi.The following simple lemma is used in the proof of Lemma 4.2.Lemma 4.1. Let �; �; � be types so that ��� � �� � and � ./ �. Then � ./ �.



Proof. Sin
e � ./ �, it follows that ��� �. Thus, sin
e ��� � , it follows that��� � . Furthermore � �� �, and therefore � ./ �. ut4.2 Traversing Con
rete TermsFrom now on, we shall often annotate a term t with a type � by writing t�. Theuse of this notation always implies that the type of t must be an instan
e of �.The annotation � gives the (type) 
ontext in whi
h t is used. If S is a set ofterms, then S� denotes the set of terms in S, ea
h annotated with �.De�nition 4.3 (subterm). Let t� be a term where t = fh�1:::�n;�i(t1; : : : ; tn)and � = �	 . Then t�i	i is a subterm of t� (denoted as t�i	i � t�) for ea
hi 2 f1; : : : ; ng. As in Def. 4.1, the transitive, re
exive 
losure of � is denotedby �� .It 
an be seen that s� �� t� implies ��� �. When the supers
ripts are ignored,the above is the usual de�nition of a subterm. The supers
ripts provide a uniformway of des
ribing the \polymorphi
 type relationship" between a term and itssubterms, whi
h is independent of further instantiation.Example 4.3. xv is a subterm of E(x)Nest(v), and 7v is a subterm of E(7)Nest(v).De�nition 4.4 (re
ursive subterm). Let s� and t� be terms su
h thats� �� t� , and � a type su
h that � ./ � and � �� �. Then s� is a �-re
ursivesubterm of t� . If furthermore � = �, then s� is a re
ursive subterm of t� .In parti
ular, for every type �, a variable is always a �-re
ursive subterm of itself.The 
orresponden
e between subterms and subterm types 
an be illustrated bydrawing the term as tree that resembles the 
orresponding type graph.Example 4.4.The term tree for t = N([E(7)℄)Nest(v)is given in Fig. 2 where the node fort is highlighted. Ea
h box drawn withsolid lines stands for a subterm. We 
anmap this tree onto the type graph forNest(v) in Fig. 1 by repla
ing the sub- 7

E(7) N([E(7)]) [E(7)] NilFig. 2: Term tree for N([E(7)℄)Nest(v)graphs en
losed with dotted lines with 
orresponding nodes in the type graph.Thus the re
ursive subterms of t o

ur in the boxes 
orresponding to nodes inthe SCC of Nest(v). All subterms of t ex
ept 7v are re
ursive subterms of t.Note that E(7)Nest(v) is a Nest(v)-re
ursive subterm of [E(7)℄List(Nest(v)) (inDef. 4.4, take � = � = Nest(v) and � = List(Nest(v))). However, E(7)u is not are
ursive subterm of [E(7)℄List(u). Thus whether or not a member of a list shouldbe regarded as a re
ursive subterm of that list depends on the 
ontext.We now de�ne termination of a term. For a term t�, where � is simple, termi-nation means that no re
ursive subterm of t� is a variable.



De�nition 4.5 (termination fun
tion Z). Let t� be a term and � be atype su
h that � ./ �. De�ne Z(t� ; �) = false if a �-re
ursive subterm oft� is a variable, and true otherwise. For a set S� of terms de�ne Z(S� ; �) =Vt2S Z(t� ; �). We omit � in the expression Z(t� ; �) whenever � = � . We saythat t is terminated if � is simple and Z(t; �) = true, and t is open if it is notterminated.Example 4.5. Any variable x is open. The term 7 has no variable subterm,so Z(7; Int) = true and 7 is terminated. The term [x℄List(u) has itself andNilList(u) as re
ursive subterms, so Z([x℄; List(u)) = true and [x℄ is termi-nated. However, [x℄List(Nest(v)) has xNest(v) as a Nest(v)-re
ursive subterm, soZ([x℄List(Nest(v)); Nest(v)) = false. Furthermore, N([x℄)Nest(v) has xNest(v) as are
ursive subterm, so Z(N([x℄); Nest(v)) = false and N([x℄) is open.The abstra
t domain should also 
hara
terise the instantiation of subterms of aterm. We de�ne fun
tions whi
h extra
t sets of subterms from a term.De�nition 4.6 (extra
tor E� for �). Let t� be a term and �, � be types su
hthat � ./ � and � 2 N (�). Let R be the set of �-re
ursive subterms of t� . De�neE�(t� ; �) = vars(R) [ fs j r� 2 R and s� � r�g:For a set S� of terms de�ne E�(S� ; �) = St2S E�(t� ; �). As with Z , we writeE�(t� ; �) simply as E�(t; �).Example 4.6. For N([E(7)℄) of type Nest(Int), we have Ev(N([E(7)℄); Nest(v)) =f7g: The type Table(u) has three non-re
ursive subterm types u, Balan
e andString, and so there are three extra
tor fun
tions: Eu, whi
h extra
ts all valuesubterms; EBalan
e, whi
h extra
ts the argument 
ontaining balan
ing informa-tion; and EString, whi
h extra
ts all key subterms. Note that for a term t of typeTable(String), both EString(t) and Eu(t) would 
ontain terms of type String.Note that a priori, the extra
ted terms have no type annotation. This is be
ause,in the proofs, we sometimes need to write an expression su
h as E�(E�(t; �)�	 ; �),whi
h reads: �rst 
ompute E�(t; �), then annotate it with �	 , then pass it to E� .Note also that if t has a �-re
ursive subterm whi
h is a variable, then thisvariable is always extra
ted. Intuitively this is be
ause this variable might laterbe instantiated to a term whi
h has variable subterms of type �. Thus theproperty \E�(t; �) does not 
ontain variables" is 
losed under instantiation.The following theorem shows that Z and E� 
an be expressed in terms ofthe immediate subterms of a term. This provides the basis for de�ning the ab-stra
tion of a (normal form) equation in a 
on
rete program, whi
h naturallyinvolves a term and its immediate subterms.Theorem 4.2. Let t = fh�1:::�n;�i(t1; : : : ; tn) be a term and � 2 N (�). ThenZ(t; �) = ^�i./�Z(t�ii ; �)E�(t; �) = fti j �i = �g [ [�i./�E�(t�ii ; �):



Proof. If for some i 2 f1; : : : ; ng where �i ./ � , r� is a � -re
ursive subterm oft�ii , then � ./ � and r��� t� . Thus r� is a � -re
ursive subterm of t� .If r� is a � -re
ursive subterm of t� , then either r� = t� or, for some i 2f1; : : : ; ng, r��� t�ii . In the latter 
ase, ��� �i, �i� � and � ./ � . Hen
e, byLemma 4.1, �i ./ � so that r� is a � -re
ursive subterm of t�ii .Thus the � -re
ursive subterms of t are t, together with the � -re
ursive sub-terms of t�ii , where �i ./ � . The result then follows from Defs. 4.5 and 4.6. utConsider simple types �; � su
h that �	 ./ � for some type substitution 	 (forexample � = Nest(v), � = List(u) and and 	 = fu=Nest(v)g). The followingtheorem relates � with � with respe
t to the termination and extra
tor fun
tions.Theorem 4.3 (Proof see [17℄). Let � and � be simple types su
h that �	 ./ �for some 	 , let t be a term having a type whi
h is an instan
e of �	 , and� 2 N (�). ThenZ(t�	 ; �) = Z(t; �) ^ ^�2N(�)�	./�Z(E�(t; �)�	 ; �) (1)E�(t�	 ; �) = [�2N(�)�	=�E�(t; �) [ [�2N(�)�	./�E�(E�(t; �)�	 ; �) (2)Example 4.7. First let � = � = List(u) and 	 be the identity. Then by Def. 4.2there is no � su
h that � 2 N (�) and �	 ./ �. Therefore in both equations ofThm. 4.3, the right half of the right hand side is empty. Furthermore there isexa
tly one � su
h that �	 = �, namely � = �. Thus the equations readZ(t; �) = Z(t; �) (1)E�(t; �) = E�(t; �) (2)Similarly, Thm. 4.3 redu
es to a trivial statement for Ex. 2.3 and in fa
t for mosttypes that are 
ommonly used. However for Ex. 4.4, Thm. 4.3 says thatZ([E(7)℄List(Nest(v)); Nest(v)) =Z([E(7)℄; List(u)) ^ Z(Eu([E(7)℄; List(u)); Nest(v)) (1)Ev([E(7)℄List(Nest(v)); Nest(v)) =; [ Ev(Eu([E(7)℄; List(u)); Nest(v)) (2)5 Abstra
t Terms and Abstra
t ProgramsIn this se
tion, we �rst de�ne the abstra
tion fun
tion for terms. Then we de�netermination and extra
tor fun
tions for abstra
t terms. Finally, we de�ne anabstra
t program and show how it approximates its 
on
rete 
ounterpart.



5.1 Abstra
tion of TermsWe �rst de�ne an abstra
t domain for ea
h type. Ea
h abstra
t domain is aterm stru
ture, built using the 
onstant symbols Bot, Any, Ter, Open, and thefun
tion symbols CA, for ea
h C 2 �� .De�nition 5.1 (abstra
t domain). If � is a parameter, de�neD� = fBot; Anyg:If C(�u) is a simple type with N (C(�u)) = h�1; : : : ; �mi and � = C(�u)	 where 	is a type substitution, de�neD� = fCA(b1; : : : ; bm; Ter) j bj 2 D�j	g [ fCA(Any; : : : ; Any| {z }m times ; Open); Anyg:D� is the abstra
t domain for �. If b 2 D�, then b is an abstra
t term for �.In [17℄, it is proven that every domain is well-de�ned. We shall see later thatif an abstra
t term CA(b1; : : : ; bm; Ter) abstra
ts a term t, then ea
h bj 
orre-sponds to a non-re
ursive subterm type �j of C(�u). It 
hara
terises the degreeof instantiation of the subterms extra
ted by E�j .The termination 
ags Ter and Open in the last argument position of anabstra
t term are Boolean 
ags. The 
ag Ter abstra
ts the property of a termbeing terminated and Open that of being open. Note that for some types, forexample Int, a term 
an be open only if it is a variable. In these 
ases, thetermination 
ag 
an be omitted in the implementation (see Se
t. 6).Example 5.1. Consider the examples in Se
t. 2 and Fig. 1.DInt = fIntA(Ter); IntA(Open); Anyg:The following examples illustrate that Def. 5.1 is \parametri
".DList(Int) = fListA(i; Ter) j i 2 DIntg [fListA(Any; Open); AnygDList(String) = fListA(i; Ter) j i 2 DStringg [fListA(Any; Open); AnygDList(u) = fListA(i; Ter) j i 2 Dug [fListA(Any; Open); Anyg:Some further examples are, assuming that u � Balan
e � String:DBalan
e = fBalan
eA(Ter); Balan
eA(Open); AnygDString = fStringA(Ter); StringA(Open); AnygDTable(Int) = fTableA(i; b; s; Ter) j i 2 DInt; b 2 DBalan
e; s 2 DStringg[fTableA(Any; Any; Any; Open); AnygDNest(Int) = fNestA(i; Ter) j i 2 DIntg [ fNestA(Any; Open); Anyg:We now de�ne an order on abstra
t terms whi
h has the usual interpretationthat \smaller" stands for \more pre
ise".



De�nition 5.2 (order < on abstra
t terms). For the termination 
ags de-�ne Ter < Open. For abstra
t terms, < is de�ned as follows:Bot < b if b 6= Bot,b < Any if b 6= Any,CA(b1; : : : ; bm; 
) � CA(b01; : : : ; b0m; 
0) if 
 � 
0 and bj � b0j , j 2 f1; : : : ;mg:For a set S of abstra
t terms, let tS denote the least upper bound of S.We now de�ne the abstra
tion fun
tion for terms. This de�nition needs an ab-stra
tion of truth values as an auxiliary 
onstru
tion.De�nition 5.3 (abstra
tion fun
tion � for terms). Let � = C(�u) andN (�) = h�1; : : : ; �mi. For the truth values de�ne �(true) = Ter and �(false) =Open. If S is a set of terms, de�ne�(S) = tf�(t) j t 2 Sg;where �(t) is de�ned as:Any if t is a variable,CA(�(E�1 (t; �)); : : : ; �(E�m(t; �)); �(Z(t; �))) if t = fh�1:::�n;�i(t1; : : : ; tn).Note that this de�nition is based on the fa
t that �(;) = Bot. From this itfollows that the abstra
tion of a 
onstant t = fh�i is CA(Bot; : : : ; Bot; Ter).The least upper bound of a set of abstra
t terms gives a safe approximationfor the instantiation of all 
orresponding 
on
rete terms. Safe means that ea
h
on
rete term is at least as instantiated as indi
ated by the least upper bound.Example 5.2. We illustrate Def. 5.3.�(7) = IntA(Ter) (� = Int;m = 0; n = 0)�(Nil) (� = List(u);N (�) = hui; n = 0)= ListA(�(;); �(Z(Nil; �)))= ListA(Bot; Ter)�(Cons(7; Nil)) (� = List(u);N (�) = hui; n = 2)= ListA(tf�(7)g; �(Z(Cons(7; Nil); �)))= ListA(IntA(Ter); Ter):The table below gives some further examples.term type abstra
tionx u Any[7,x℄ List(Int) ListA(Any; Ter)[7|x℄ List(Int) ListA(Any; Open)E(7) Nest(Int) NestA(IntA(Ter); Ter)[E(7)℄ List(Nest(Int)) ListA(NestA(IntA(Ter); Ter); Ter)N([E(7)℄) Nest(Int) NestA(IntA(Ter); Ter)N([E(7),x℄) Nest(Int) NestA(Any; Open)



Note that there is no term of type Int whose abstra
tion is IntA(Open).The following theorem show that the abstra
tion 
aptures groundness.Theorem 5.1 (Proof see [17℄). Let S be a set of terms having the same type.Then a variable o

urs in an element of S (that is S is non-ground) if and onlyif Any or Open o

urs in �(S).5.2 Traversing Abstra
t TermsIn order to de�ne abstra
t uni�
ation and, in parti
ular, the abstra
tion of anequation in a program, we require an abstra
t termination fun
tion and ab-stra
t extra
tors similar to those already de�ned for 
on
rete terms. The typesupers
ript annotation for 
on
rete terms is also useful for abstra
t terms.De�nition 5.4 (abstra
t termination fun
tion and extra
tor for �).Let � and � = C(�u) be simple types su
h that �	 ./ � for some 	 , and N (�) =h�1; : : : ; �mi. Let b be an abstra
t term for an instan
e of �	 .1. Abstra
t termination fun
tion.AZ(b�	 ; �) = Open if b = AnyAZ(b�	 ; �) = Ter if b = BotAZ(b�	 ; �) = 
 ^ ^�j	./�AZ(b�j	j ; �) if b = CA(b1; : : : ; bm; 
):2. Abstra
t extra
tor for �. Let � 2 N (�).AE�(b�	 ; �) = Any if b = AnyAE�(b�	 ; �) = Bot if b = BotAE�(b�	 ; �) = t(fbj j �j	 = �g[fAE�(b�j	j ; �) j �j	 ./ �g) if b = CA(b1; : : : ; bm; 
):We omit the supers
ript �	 in the expressions AZ(b�	 ; �) and AE�(b�	 ; �)whenever � = � and 	 is the identity. In this (very 
ommon) 
ase, the abstra
ttermination fun
tion is merely a proje
tion onto the termination 
ag of an ab-stra
t term (or Open if the abstra
t term is Any). Similarly, the abstra
t extra
torfor � is merely a proje
tion onto the jth argument of an abstra
t term, where� = �j . Note the similarity between the above de�nition and Thm. 4.2.Example 5.3.AZ(ListA(Any; Ter)List(Nest(v)); Nest(v)) = Ter ^AZ(Any; Nest(v)) = Open:AEv(ListA(Any; Ter)List(Nest(v)); Nest(v)) = Any:AZ(ListA(NestA(IntA(Ter); Ter); Ter)List(Nest(v)); Nest(v)) =Ter ^ AZ(NestA(IntA(Ter); Ter); Nest(v)) = Ter:AEv(ListA(NestA(IntA(Ter); Ter); Ter)List(Nest(v)); Nest(v)) =AEv(NestA(IntA(Ter); Ter); Nest(v)) = IntA(Ter):



The following theorem states the fundamental relationship between 
on
rete andabstra
t termination fun
tions and extra
tors.Theorem 5.2. Let � and � = C(�u) be simple types su
h that �	 ./ � for some	 , and � 2 N (�). Let t�	 be a term. Then�(Z(t�	 ; �)) = AZ(�(t)�	 ; �) (1)�(E�(t�	 ; �)) = AE�(�(t)�	 ; �) (2)Proof. We only show (2), as the proof for (1) is similar. The proof is by indu
tionon the stru
ture of t. First assume t is a variable x or a 
onstant d. Here we omitthe type supers
ripts be
ause they are irrelevant.�(E�(x; �))=tf�(x)g=Any=AE�(Any; �)=AE�(�(x); �):�(E�(d; �))=t ;=Bot=AE�(CA(Bot; : : : ; Bot; Ter); �)=AE�(�(d); �):Now assume t is a 
ompound term. Let N (�) = h�1; : : : ; �mi. In the followingsequen
es of equations, � marks steps whi
h use straightforward manipulationssu
h as rearranging least upper bounds or appli
ations of � to sets.AE�(�(t)�	 ; �) = (Def. 5.3)AE�(CA(�(E�1 (t; �)); : : : ; �(E�m(t; �)); �(Z(t; �)))�	 ; �) = (Def. 5.4)t(f�(E�j (t; �)) j �j	 = �g [ fAE�(�(E�j (t; �))�j	 ; �) j �j	 ./ �g) =(� & hyp.)t( [�j	=�f�(E�j (t; �))g [ [�j	./�f�(E�(E�j (t; �)�j	 ; �))g) =(� & Thm. 4.3)�(E�(t�	 ; �)): utExample 5.4. This illustrates Thm. 5.2 for � = �	 = List(u) and � = u.�(Z([7℄; List(u))) = Ter = AZ(ListA(IntA(Ter); Ter); List(u))�(Eu([7℄; List(u))) = IntA(Ter) = AEu(ListA(IntA(Ter); Ter); List(u)):5.3 Abstra
t CompilationWe now show how the abstra
t domains 
an be used in the 
ontext of abstra
t
ompilation. We de�ne an abstra
t program and show that it is a safe approxi-mation of the 
on
rete program with respe
t to the usual operational semanti
s.In a (normal form) program, ea
h uni�
ation is made expli
it by an equation.We now de�ne an abstra
tion of su
h an equation. For an equation of the formx = f(y1; : : : ; yn), the abstra
tion is an atom of the form fdep(b; b1; : : : ; bn),where fdep is a predi
ate de�ned in the abstra
t program.



De�nition 5.5 (fdep). Let fh�1:::�n;�i 2 �f where � = C(�u) and N (�) =h�1; : : : ; �mi. Then fdep(b; b1; : : : ; bn) holds ifb = CA(a1; : : : ; am; 
) whereaj = t (fbi j �i = �jg [ fAE�j (b�ii ; �) j �i./�g) for all j2f1;:::;mg (1)
 = ^�i./�AZ(b�ii ; �) (2)Example 5.5. To give an idea of how Def. 5.5 translates into 
ode, 
onsider Cons.Assuming that Lub(a; b; 
) holds if 
 = tfa; bg, one 
lause for Consdep might be:Cons_dep(List_a(
,Ter),b,List_a(a,Ter)) <-Lub(a,b,
).The following theorem shows that fdep 
orre
tly 
aptures the dependen
y be-tween �(f(t1; : : : ; tn)) and �(t1); : : : ; �(tn).Theorem 5.3. If t = f(t1; : : : ; tn) then fdep(�(t); �(t1); : : : ; �(tn)) holds.Proof. Suppose N (�) = h�1; : : : ; �mi and � = C(�u). By Def. 5.3�(t) = CA(�(E�1 (t; �)); : : : ; �(E�m(t; �)); �(Z(t; �))):We show that (1) in Def. 5.5 holds. For ea
h �j 2 N (�),�(E�j (t; �))= �(fti j �i = �jg [ [�i./� E�j (t�ii ; �)) (Thm. 4.2)= t (f�(ti) j �i = �jg [ f�(E�j (t�ii ; �)) j �i./�g) (moving � inwards)= t (f�(ti) j �i = �jg [ fAE�j (�(ti)�i ; �) j �i./�g) (Thm. 5.2).Equation (2) in Def. 5.5 is proven in a similar way. utDe�nition 5.6 (abstra
tion � of a program). For a normal form equatione de�ne�(e) = � e if e is of the form x = yfdep(x; y1; : : : ; yn) if e is of the form x = f(y1; : : : ; yn):For a normal form atom a and 
lause K = h g1 ^ � � � ^ gl de�ne�(a) = a�(K) = �(h) �(g1) ^ � � � ^ �(gl):For a program P = hL; Si de�ne�(P ) = f�(K) j K 2 Sg [ ffdep(a; a1; : : : ; an) j fdep(a; a1; : : : ; an) holdsg:Example 5.6. In the following we give the usual re
ursive 
lause for Append innormal form and its abstra
tion.



%
on
rete 
lause %abstra
t 
lauseAppend(xs,ys,zs) <- Append(xs,ys,zs) <-xs = [x|x1s℄ & Cons_dep(xs,x,x1s) &zs = [x|z1s℄ & Cons_dep(zs,x,z1s) &Append(x1s,ys,z1s). Append(x1s,ys,z1s).We now de�ne the operational semanti
s of 
on
rete and abstra
t programs.We assume a �xed language L and program P = hL; Si, and a left-to-right
omputation rule. A program state is a tuple hG;�i where G is a query and �a substitution. It is an initial state if � is empty. We write C 2� S if C is arenamed variant of a 
lause in S.De�nition 5.7 (redu
es to). The relation P�! (\redu
es to") between statesis de�ned by the following rules:hh1 : � � � : hl; �i P�! hh2 : � � � : hl; ��0iif h1 is `x = t' and x��0 = t��0 (1)hh1 : � � � : hl; �i P�! hG : h2 : � � � : hl; ��0iif h G 2� S and h��0 = h1��0 (2)P�! j for j � 0 and P�!� are de�ned in the usual way. If for an initial query G,hG; ;i P�!� hp(x1; : : : ; xn) : H;�i P�!� hH;�0i;we 
all p(x1; : : : ; xn)� a 
all pattern and p(x1; : : : ; xn)�0 an answer pattern forp.Note that this notion of \redu
es" with arbitrary uni�er is 
onsidered in [13℄.The next theorem shows that for all 
all and answer patterns, whi
h mayarise in a derivation of a 
on
rete program, there are 
orresponding patterns ina derivation of the abstra
t program.Theorem 5.4. Let H;H 0 be queries, � a substitution and j � 0. If hH; ;i P�! jhH 0; �i, then h�(H); ;i �(P )�! j h�(H 0); ��i, where�� = fx=�(x�) j x 2 dom(�)g.Proof. By Def. 5.7, hH; ;i P�! j hH 0; �i if and only if hH;�i P�! j hH 0; �i, andlikewise for �(P ). Therefore it is enough to show that for all j � 0hH;�i P�! j hH 0; �i implies h�(H); ��i �(P )�! j h�(H 0); ��i: (3)The proof is by indu
tion on j. The base 
ase j = 0 holds sin
e h�(H); ��i �(P )�!0h�(H); ��i. For the indu
tion step, assume (3) holds for some j � 0. We showthat for every query H 00hH;�i P�! j+1 hH 00; �i implies h�(H); ��i �(P )�! j+1 h�(H 00); ��i:



If hH;�i P�! j+1 hH 00; �i is false, the result is trivial. If hH;�i P�! j+1 hH 00; �i,thenhH;�i P�! j hH 0; �i P�! hH 00; �i for some query H 0, andh�(H); ��i �(P )�! j h�(H 0); ��i by hypothesis.It only remains to be shown that h�(H 0); ��i �(P )�! h�(H 00); ��i. We distinguishwhether Rule (1) or (2) of Def. 5.7 was used for the step hH 0; �i P�! hH 00; �i.(1): H 0 = h1 : � � � : hl where h1 is `x = t', and t = y or t = f(x1; : : : ; xn). In the�rst 
ase �(h1) = h1. Sin
e x� = y�, it follows that fx=�(x�); y=�(x�)g � ��and therefore x�� = y��. Thus h�(H 0); ��i �(P )�! h�(H 00); ��i by Rule (1). Inthe se
ond 
ase �(h1) = fdep(x; x1; : : : ; xn). Sin
e x� = f(x1�; : : : ; xn�),fx=�(f(x1�; : : : ; xn�)); x1=�(x1�); : : : ; xn=�(xn�)g � ��:Thus, by Thm. 5.3, fdep(x; x1; : : : ; xn)�� holds so that fdep(x; x1; : : : ; xn)�� 2�(P ) by Def. 5.6. Thus h�(H 0); ��i �(P )�! h�(H 00); ��i by Rule (2).(2): H 0 = h1 : � � � : hl where h  G 2� S and h� = h1�. By Def. 5.6,�(h1  G) 2� �(P ). Furthermore �(h) has the form p(�x), and �(h1) has theform p(�y). Sin
e �x� = �y� it follows that p(�x)�� = p(�y)��. ut6 Implementation and ResultsFrom now on we refer to the abstra
t domains de�ned in this paper as typed do-mains. We have implemented our mode analysis for obje
t programs in G�odel.This implementation naturally falls into two stages: In the �rst stage, the lan-guage de
larations are analysed in order to 
onstru
t the typed domains, andthe program 
lauses are abstra
ted. In the se
ond stage, the abstra
t programis evaluated using standard abstra
t 
ompilation te
hniques.We have implemented the �rst stage in G�odel, using the G�odel meta-pro-gramming fa
ilities. G�odel meta-programming is slow, but this �rst stage s
aleswell, as the time for abstra
ting the 
lauses of a program is linear in their number.Analysing the type de
larations is not a problem in pra
ti
e. We have analysed
ontrived, 
omplex type de
larations within a 
ouple of se
onds.The se
ond stage was implemented in Prolog, so that an existing analyser
ould be used. Abstra
t programs produ
ed by the �rst stage were transformedinto Prolog. All 
all and answer patterns, whi
h may arise in a derivation of anabstra
t program for a given query, are 
omputed by the analyser. By Thm. 5.4,these patterns 
orrespond to patterns in the derivation of the 
on
rete program.For example a 
all p(Any; IntA(Ter)) in the abstra
t program indi
ates thatthere may be a 
all p(x,7) in the 
on
rete program.We now demonstrate the pre
ision of the typed domain for Table(Int). Thearguments of the predi
ate Insert represent: a table t, a key k, a value v, anda table obtained from t by inserting the node whose key is k and whose value



Table 1. Some 
all and answer patterns for InsertInsert(TabA(IntA; BalA; StrA; Ter); StrA; IntA; Any) leads to answer patternInsert(TabA(IntA; BalA; StrA; Ter); StrA; IntA; TabA(IntA; BalA; StrA; Ter)):Insert(TabA(IntA; BalA; StrA; Ter); StrA; Any; Any) leads to answer patternInsert(TabA(IntA; BalA; StrA; Ter); StrA; Any; TabA(Any; BalA; StrA; Ter)):is v. Table 1 shows some initial 
all patterns and the answer pattern that isinferred for ea
h 
all pattern. For readability, we have used some abbreviationsand omitted the termination 
ag for types Integer, Balan
e and String.Clearly, inserting a ground node into a ground table gives a ground table.This 
an be inferred with the typed domains, but it 
ould also be inferred usinga domain whi
h 
an only distinguish between ground and non-ground terms [4℄.Now 
onsider the insertion of a node with an uninstantiated value into a groundtable. With typed domains, it 
an be inferred that the result is still a table butwhose values may be uninstantiated.We used a modi�ed form of the analyser of [8℄ running on a Sun SPARCUltra 170. The analysis times for the two example analyses using Insert werewere 0.81 se
onds and 2.03 se
onds, respe
tively. Comparing this to an analysisusing a domain whi
h 
an only distinguish ground and non-ground terms, thetimes were 0.09 se
onds and 1.57 se
onds, respe
tively. Apart from Tables, wealso analysed some small programs, namely Append, Reverse, Flatten (fromthe Nests module), TreeToList, Qsort, and Nqueens. For these, all analysistimes were below 0.03 se
onds and thus too small to be very meaningful.Our experien
e is that the domain operations, namely to 
ompute the leastupper bound of two abstra
t terms, are indeed the bottlene
k of the analysis.Therefore it is 
ru
ial to avoid performing these 
omputations unne
essarily.Also one might 
ompromise some of the pre
ision of the analysis by 
onsideringwidenings [6℄ for the sake of eÆ
ien
y. In order to 
ondu
t more experiments, onewould need a suite of bigger typed logi
 programs. A formal 
omparison betweenanalyses for typed logi
 programs and untyped ones is of 
ourse diÆ
ult.7 Dis
ussion and Related WorkWe have presented a general domain 
onstru
tion for mode analysis of typedlogi
 programs. This analysis gives more a

urate information than one basedon a ground/non-ground domain [4℄. For 
ommon examples (lists, binary trees),our formalism is simple and yields abstra
t domains that are 
omparable to thedomains in [3℄. The novelty is that the 
onstru
tion is des
ribed for arbitrarytypes. In 
ontrast, in [3℄, an abstra
t domain for obtaining this degree of pre
isionfor, say, the types in the Tables module, would have to be hand-
rafted.The fundamental 
on
epts of this work are re
ursive type and non-re
ursivesubterm type, whi
h are generalisations of ideas presented in [3℄ for lists. Theresulting abstra
t domains are entirely in the spirit of [3, 5℄ and we believe that



they provide the highest degree of pre
ision that a generi
 domain 
onstru
tionshould provide. Even if type de
larations that require the full generality of ourformalism are rare, we think that our work is an important 
ontribution be
auseit helps to understand other, more ad-ho
 and pragmati
 domain 
onstru
tionsas instan
es of a general theory. One 
ould always simplify or prune down ourabstra
t domains for the sake of eÆ
ien
y.In its full generality the formalism is, admittedly, rather 
omplex. This ismainly due to fun
tion de
larations where the range type o

urs again as a propersub\term" of an argument type, su
h as the de
laration of N in Ex. 2.2. Thisphenomenon o

urs in the de
larations for rose trees [14℄, that is, trees wherethe number of 
hildren of ea
h node is not �xed. One should note that while thetheory whi
h allows for a domain 
onstru
tion for, say, Nest(Int) is 
on
eptually
omplex, the 
omputational 
omplexity of the domain operations for Nest(Int)is lower than for, say, List(List(List(Int))). In short, the 
omplexity of theabstra
t domains depends on the 
omplexity of the type de
larations.We have built on the ideas presented in [5℄ for untyped languages. Notablythe title of [5℄ says that type, not mode, dependen
ies are derived. Even in anuntyped language su
h as Prolog, one 
an de�ne types as sets of terms givenby some kind of \de
laration", just as in a typed language [1℄. In this 
asetype analysis (that is, inferring that an argument is instantiated to a term ofa 
ertain type) is inseparable from mode analysis. It seems that [5℄ provides astraightforward domain 
onstru
tion for arbitrary types, but this is not the 
ase.It is not spe
i�ed what kind of \de
larations" are implied, but the examplesand theory suggest that all types are essentially lists and trees. The Tables andNests examples given in Se
t. 2 are not 
aptured.Re
ursive modes [21℄ 
hara
terise that the left spine, right spine, or both,of a term are instantiated. The authors admit that this may be 
onsidered anad-ho
 
hoi
e, but on the other hand, they present good experimental results.They do not assume a typed language and thus 
annot exploit type de
larationsin order to provide a more generi
 
on
ept of re
ursive modes, as we have doneby the 
on
ept of termination.A 
omplex system for type analysis of Prolog is presented in [23℄. As far aswe 
an see, this system is not in a formal sense stronger or weaker that our modeanalysis. The domain Pat(Type) used there is in�nite, so that widenings haveto be introdu
ed to ensure �niteness, and \the design of widening operatorsis experimental in nature" [23℄. In 
ontrast, we exploit the type de
larationsto 
onstru
t domains that are inherently �nite and whose size is immediatelydi
tated by the 
omplexity of the type de
larations.Mer
ury [19℄ has a strong mode system based on instantiation states. Theseare assertions of how instantiated a term is. An instantiation state is similar toan abstra
t term. Indeed, given some type de
larations, it is possible to de�ne aninstantiation state in Mer
ury syntax whi
h, while not being exa
tly the same,is 
omparable in pre
ision to an abstra
t term in our formalism. The di�eren
eis that for a given type, there are potentially in�nitely many instantiation states.



The 
urrent Mer
ury implementation does not support instantiation states intheir full generality, although a version supporting partially instantiated data-stru
tures is being developed. Within the limits of the expressiveness of themode system, Mer
ury does a 
ombination of mode analysis and mode 
he
kingof modes de
lared by the user.Even if instantiation states were supported in their full generality, the po-tentially in�nite number of instantiation states means that mode inferen
e mustalways be approximate. Sin
e our abstra
t terms formalise what might be 
alleda \reasonable" degree of pre
ision, we believe that our proposal 
ould serve asa basis for this approximation. One 
ould envisage a Mer
ury implementationdoing a 
ombination of mode inferen
e and 
he
king, based on the set of modeswhi
h is expressible using our abstra
t domains. Hen
e our domains 
ould alsobe used to de
lare modes.The mode system in Mer
ury is based on [18℄, where the Simple Range Con-dition and the Re
exive Condition that we impose are not expli
itly required.However, [18℄ does not de�ne the type system pre
isely, instead referring to [15℄,whose formal results have been shown to be in
orre
t [16℄. It is therefore diÆ
ultto assess whether that approa
h would work for programs whi
h violate these
onditions. We know of no real G�odel programs that violate either of the Sim-ple Range or Re
exive Conditions. We have found that violating the Re
exiveCondition raises fundamental questions about de
idability in typed languages,whi
h seem to be related to the 
on
ept of polymorphi
 re
ursion [11, 12℄.There is another potential appli
ation of our work. In G�odel, the delay de
la-rations whi
h state that a predi
ate is delayed until an argument (or a subtermof the argument) is ground or non-variable, 
annot des
ribe the behaviour ofthe G�odel system predi
ates pre
isely. We have observed that, typi
ally, the de-gree of instantiation for a G�odel system predi
ate to run safely without delaying
ould be spe
i�ed by an abstra
t term in our typed domains. Thus they 
ouldprovide a good basis for de
laring 
onditions for delaying.Our approa
h may also be appli
able to untyped languages, if we have infor-mation at hand that is similar to type de
larations. Su
h information might beobtained by inferring de
larations [2℄ or from de
larations as 
omments [20℄. Cer-tainly our analysis would then regain aspe
ts of type rather than mode inferen
e,whi
h it had lost by transferring the approa
h to typed languages.A
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�= = =	2 	1 	0	3 	2 	1: : :: : : NRS NRS NRSFig. 3. The sequen
e of non-re
ursive subterm typesA ProofsThe following lemma states that the relation � is 
losed under instantiation ofits arguments.Lemma A.1. Let �; � be types and 	 a type substitution. If ��� then �	 ��	 .If ��� � then �	 �� �	 .Proof. For the �rst statement, there is fh�1:::�n;�i 2 �f and a type substitution	 0 su
h that for some i 2 f1; : : : ; ng, �i	 0 = � and �	 0 = �. Consequently�i	 0	 = �	 and �	 0	 = �	 , so �	 ��	 . The se
ond statement follows fromthe �rst. utThe next lemma ensures that the abstra
t domains are well-de�ned. It statesthat any sequen
e of non-re
ursive subterm types terminates.Lemma A.2. Let � 2 T (�� ; U) n U and � � �� . Let I be a non-empty indexset (�nite or in�nite) starting at 1 and f(Ci(�ui); �i; 	i) j i 2 Ig a sequen
e whereC1 2 � , �1 = C1(�u1)	1 = � , dom(	1) � �u1 and, for ea
h i 2 I where i > 1:� Ci 2 � , dom(	i) � �ui and Ci(�ui)	i = �i	i�1,� �i 2 T (�;U) and �i 2 N (Ci�1(�ui�1)).Then I and hen
e f(Ci(�ui); �i; 	i) j i 2 Ig is �nite.Proof. Let 	0 be the identity substitution. The sequen
e is illustrated in Fig. 3.First note that, by Lemma A.1 and Def. 4.2, for ea
h i 2 I where i � 2, we have�i	i�1�� �i�1	i�2. Thus, for all i; j 2 I where i > j, �i	i�1�� �j	j�1.Let d(�) be the number of o

urren
es of 
onstru
tors in a type �. If �0 � �� ,de�ne D(�0; �) = d(�) + XC2�00� X�2N (C(�u)) d(�)1A :The proof is by indu
tion on D(�; �). Sin
e � =2 U , it follows that D(�; �) � 1.If D(�; �) = 1, then � = C1(�u1), N (C1(�u1)) � U and jI j � 2.Suppose that D(�; �) = M > 1. Assume that, for all types � and sets of
onstru
tors �0 � � su
h that D(�0; �) < M , the result holds. Sin
e the result



�3 = String �2 = u1 �1 = List(Table(Int))
C3 = String C2(u2) = Table(u2) C1(u1) = List(u1)
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�String Table(Int) List(Table(Int))	2 	1 	0 = ;	3 = ; 	2 = fu2=Intg 	1 = fu1=Table(Int)gNRS NRS
Fig. 4. An example of the sequen
e of non-re
ursive subterm typesobviously holds if jI j � 2, suppose jI j > 2 so that �2 is not a parameter. Considerthe sequen
e f(Ci(�ui); �i; 	 0i) j i 2 I 0g where I 0 is an index set starting at 2, 	 01 isthe identity substitution and, for ea
h i 2 I 0, we have Ci(�ui)	 0i = �i	 0i�1. Sin
e�i 2 N (Ci�1(�ui�1)), 	 0i	1 = 	i for ea
h i 2 I 0. As in the �rst paragraph, for ea
hi 2 I 0, �i	 0i�1�� �2. However, �2 2 N (C1(�u1)). Thus, by the Re
exive Conditionand Lemma 4.1, for ea
h i 2 I 0, we have Ci 6= C1. Thus, for ea
h i 2 I 0, we haveCi 2 � 0 where � 0 = � n fC1g. However,D(� 0; �2) = d(�2) +D(�; �) � d(�) � X�2N (C1(�u)) d(�):Hen
e, as d(�) > 0 and �2 2 N (C1(�u)), D(� 0; �2) < M and we 
an use theindu
tion hypothesis. Hen
e I 0 is �nite.Assume now that I 0 is maximal wrt. to the above 
onditions and that jI 0j =N 0 and suppose K = N 0+1 2 I . (If K =2 I , then, as I 0 is �nite, I is �nite.) Then�K	 0K�1 = u where u is parameter sin
e, if �K	 0K�1 = CK(�uK)	 0K , then K alsosatis�es the above 
onditions so that I 0 is not maximal. Thus 	 0K�1 is the identitysubstitution and �K = u. By the transparen
y 
ondition, sin
e �K �� C1(�u1),u 2 �u1. As 	K�1 = 	 0K�1	1, we have 	K�1 = 	1 and �K	K�1 2 �u1	1. Hen
ed(�K	K�1) < d(�) so that D(�; �K	K�1) < D(�; �):Hen
e, the indu
tive hypothesis 
an be applied to the remaining sequen
e start-ing at �K . Thus the subsequen
e starting at �K is �nite and therefore the 
om-plete sequen
e starting at � is �nite. utExample A.1. Figure 4 gives an example of a sequen
e of types as 
onstru
tedin Lemma A.2. The abstra
t domain for List(Table(Int)) is de�ned in terms ofthe abstra
t domain for Table(Int), and the abstra
t domain for Table(Int) is



de�ned in terms of the abstra
t domain for String. Therefore it is 
ru
ial thatany su
h 
hain is �nite.The following lemmas are needed in the proof of Thm. 4.3.Lemma A.3. Let � be a type, 	 a type substitution, and t a term having atype whi
h is an instan
e of �	 . If s� is a subterm of t�, then s has a type whi
his an instan
e of �	 .Proof. Indu
tion on the depth of subterms. utLemma A.4. Let �1; �2; �3 be types. If �1 ./ �2 and �2	 ./ �3 for some typesubstitution 	 then �1	 ./ �3.Proof. By Lemma A.1 it follows that �1	 �� �3 and �3�� �1	 . utTheorem 4.3. Let � and � be simple types su
h that �	 ./ � for some 	 , lett be a term having a type whi
h is an instan
e of �	 , and � 2 N (�). ThenZ(t�	 ; �) = Z(t; �) ^ ^�2N(�)�	./�Z(E�(t; �)�	 ; �) (1)E�(t�	 ; �) = [�2N(�)�	=�E�(t; �) [ [�2N(�)�	./�E�(E�(t; �)�	 ; �) (2)Proof. The proof 
onsists of four parts. In Part 1, we de�ne a number of setsof subterms of t. We then show six propositions whi
h say that ea
h expressiono

urring in (1) and (2) 
an be expressed in terms of these sets. In Part 2 weshow how the left and right hand sides of both (1) and (2) 
an be related usingthese sets. This is then used in Part 3 to show (1), and in Part 4 to show (2).Part 1: To avoid 
onfusion between the many symbols o

urring in the proof,keep in mind that �, � , � and 	 o

ur in the statement and thus are �xed. Weuse f as an abbreviation for fh� 01:::� 0n;� 0i (not fh�1:::�n;�i, as earlier in this paper),and �r to denote (r1; : : : ; rn). Supers
ripts are omitted where irrelevant. De�neR = fr! j r! is a �{re
ursive subterm of t�	gS = fri j f(�r)� 0	 0 2 R and � 0i	 0 = �gA = fr! j r! is a �{re
ursive subterm of t�g:Note that, by Lemma A.3, ea
h r! 2 A has a type whi
h is an instan
e of !	 .Furthermore for all � 2 N (�) de�neB� = fri j f(�r)� 0	 0 2 A and � 0i	 0 = �g:Note that, by Lemma A.3, ea
h ri 2 B� has a type whi
h is an instan
e of� 0i	 0	 (= �	). For all � 2 N (�) with �	 ./ � de�neC� = fr! j r! is a �-re
ursive subterm of some s�	 ; s 2 B�gD� = fri j f(�r)� 0	 0 2 C� and � 0i	 0 = �g:S1-S6 state how these sets relate to the 
omputations of (1) and (2).



S1 Z(t�	 ; �) = false if and only if vars(R) 6= ;.S2 Z(t; �) = false if and only if vars(A) 6= ;.S3 E�(t�	 ; �) = vars(R) [ S.S4 For ea
h � 2 N (�), E�(t; �) = vars(A) [ B�.S5 For ea
h � 2 N (�) with �	 ./ �, Z(E�(t; �)�	 ; �) = false i� vars(C�[A) 6=;.S6 For ea
h � 2 N (�) with �	 ./ �, E�(E�(t; �)�	 ; �) = vars(A) [ vars(C�) [D�.S1 and S2 follow from Def. 4.5 and the de�nitions of R and A. S3 and S4 followfrom Def. 4.6 and the de�nitions of R;S;A and B�. S5 and S6 are proved below.First we prove S5.Z(E�(t; �)�	 ; �) = false() (by S4)Z((vars(A) [ B�)�	 ; �) = false() (by Def. 4.5)vars(fr! j r! is a ��re
ursive subterm of s�	 ; s 2 vars(A) [ B�g) 6= ; ()(by Def. 4.4)vars(A) [ vars(fr! j r! is a ��re
ursive subterm of s�	 ; s 2 B�g) 6= ; ()(by Def. of C�)vars(A) [ vars(C�) 6= ;:We now prove S6.E�(E�(t; �)�	 ; �) = (by S4)E�((vars(A) [ B�)�	 ; �) = (by Def. 4.6)vars(fr! j r! is a ��re
ursive subterm of s�	 ; s 2 vars(A) [B�g) [fri j f(�r)� 0	 0 is a ��re
ursive subterm of s�	 ; s 2 B�; � 0i	 0 = �g =(by Def. 4.4)vars(A) [ vars(fr! j r! is a ��re
ursive subterm of s�	 ; s 2 B�g)[fri j f(�r)� 0	 0 is a ��re
ursive subterm of s�	 ; s 2 B�; � 0i	 0 = �g =(by Def. of C�; D�)vars(A) [ vars(C�) [D�:Part 2: Let r! be a subterm of t� at depth d. We show by indu
tion on d thatr!	 2 R if and only if r! 2 A or r!	 2 C� for some � 2 N (�) with �	 ./ �. Ford = 0 this follows from the de�nitions of R and A.Suppose now that r! is a subterm of t� at depth d > 0. Then there exists asubterm f(�r)� 0	 0 of t� at depth d � 1 su
h that for some i 2 f1; : : : ; ng, r = riand ! = � 0i	 0.\)": Assume that r!	 2 R. Sin
e !	 ./ �, it follows from Lemma 4.1 that� 0	 0	 ./ � so that f(�r)� 0	 0	 2 R. By the indu
tion hypothesis there are twopossibilities:



a) f(�r)� 0	 0 2 A. Sin
e � 0	 0 ./ � , either ! ./ � or ! 2 N (�). If ! ./ � thenr! 2 A. If ! 2 N (�), that is ! 2 N (�), then r 2 B! and hen
e r!	 2 C!,and therefore r!	 2 C� for some � 2 N (�).b) f(�r)� 0	 0	 2 C� for some � 2 N (�) with �	 ./ �. Sin
e !	 ./ � it followsthat r!	 2 C�.\(": Again we break this up into 
ases:a) r! 2 A. Sin
e ! ./ � , it follows by Lemma 4.1 that � 0	 0 ./ � so thatf(�r)� 0	 0 2 A. By the indu
tion hypothesis f(�r)� 0	 0	 2 R. Sin
e ! ./ � and�	 ./ �, it follows by Lemma A.4 that r!	 2 R.b) r!	 2 C� for some � 2 N (�) with �	 ./ �. By de�nition of C� there aretwo possibilities: either r 2 B�, in whi
h 
ase ! = � and f(�r)� 0	 0 2 A, or!	 ./ � and f(�r)� 0	 0	 is a subterm of an element of B�. In the latter 
ase,by Lemma 4.1, � 0	 0	 ./ � so that f(�r)� 0	 0	 2 C�.In both 
ases, by the indu
tion hypothesis f(�r)� 0	 0	 2 R. In the �rst 
ase,sin
e ! = � and �	 ./ �, it follows that r!	 2 R. In the se
ond 
ase, sin
e!	 ./ �, r!	 2 R.Part 3: We prove (1). By S1, Z(t�	 ; �) = false if and only if vars(R) 6= ;.By Part 2, vars(R) 6= ; if and only if vars(A) 6= ; or vars(C�) 6= ; for some� 2 N (�) with �	 ./ �. Then, by S2 and S5, this holds if and only ifZ(t; �) ^ ^�2N(�)�	./�Z(E�(t; �)�	 ; �) = false:Part 4: We prove (2) by showing that:vars(R) [ S = [�	=�(vars(A) [ B�) [ [�	./�(vars(C�) [D�):The result then follows from S3, S4, and S6.\�": For a variable x 2 R it follows by Part 2 that x 2 A, or x 2 C� forsome � 2 N (�) with �	 ./ �. For a term r 2 S, there is f(�r)� 0	 0	 2 R su
h thatr = ri, and � 0i	 0	 = �. By Part 2, either f(�r)� 0	 0 2 A, or f(�r)� 0	 0	 2 C� forsome � 2 N (�) with �	 ./ �.Assume �rst f(�r)� 0	 0 2 A. We show that r 2 B� for some � 2 N (�) with�	 = �, namely � = � 0i	 0. Sin
e by 
onstru
tion of A, � 0i	 0�� � , we only haveto show that not � 0i	 0 ./ � . By Lemma A.4, � 0i	 0 ./ � , together with �	 ./ �,would imply � 0i	 0	 ./ �. This however is a 
ontradi
tion, sin
e it follows from� 0i	 0	 = � that � 0i	 0	 2 N (�).Assume now f(�r)� 0	 0	 2 C� for some � 2 N (�) with �	 ./ �. Sin
e � 0i	 0	 =� it follows that r 2 D�.\�": For a variable x 2 A, or x 2 C� for some � 2 N (�) with �	 ./ �, itfollows by Part 2 that x 2 R.



Se
ondly assume r 2 B� for some � 2 N (�) with �	 = �. By de�nition,there is f(�r)� 0	 0 2 A su
h that r = ri and � 0i	 0 = �. By Part 2, f(�r)� 0	 0	 2 R,and sin
e � 0i	 0	 = �, it follows that r 2 S.Thirdly assume r 2 D� for some � 2 N (�) with �	 ./ �. By de�nition, thereis f(�r)� 0	 0	 2 C� su
h that r = ri and � 0i	 0	 = �. By Part 2, f(�r)� 0	 0	 2 R,and sin
e � 0i	 0	 = �, it follows that r 2 S. utTo prove Thm. 5.1, we need the following auxiliary lemma.Lemma A.5. Let t� be a term. Every subterm of t� is either a re
ursive subtermof t� , or a subterm of a term in E�(t; �), for some � 2 N (�).Proof. The proof is by indu
tion on the depth of subterms of t� . For the base
ase observe that t� is a re
ursive subterm of itself.Now suppose the result holds for all subterms of t� up to depth i. Let r� bea subterm of t� at depth i and w! � r�. If r� is not a re
ursive subterm of t� ,then r� is a subterm of a term in E�(t; �) for some � 2 N (�), and thus w! isalso a subterm of a term in E�(t; �). If r� is a re
ursive subterm of t� , then sin
e� ./ � and !� �, by Def. 4.2 either ! ./ � or ! 2 N (�). Thus either w! is are
ursive subterm of t� or w 2 E!(t; �). utTheorem 5.1. Let S be a set of terms having the same type. Then a variableo

urs in an element of S (that is S is non-ground) if and only if Any or Openo

urs in �(S).Proof. There are three 
ases depending on whether S is empty, 
ontains a vari-able, or neither.Case 1: S is empty. Then �(S) = Bot.Case 2: S 
ontains a variable x. Then �(x) = Any and thus �(S) = Any.Case 3: S 
ontains no variables but 
ontains a non-variable term. Then the typeof terms in S is of the form �	 for some type substitution 	 and simple type� = C(�u). Suppose that N (�) = h�1; : : : ; �mi for some m � 0. Then there areabstra
t terms b1; : : : ; bm and termination 
ag b, su
h that�(S) = CA(b1; : : : ; bm; b):There are two sub
ases.Case 3a: For some t 2 S and variable x, x� is a re
ursive subterm of t� . ThenZ(t; �) = Open. Hen
e b = Open and�(S) = CA(b1; : : : ; bm; Open):Case 3b: No term in S has a re
ursive subterm that is a variable. Then Z(t; �) =Ter for ea
h t 2 S. Hen
e, by Def. 5.2, b = Ter. The proof for this 
ase is byindu
tion on the length of the longest NRS-sequen
e (see Lemma A.2) for �	 .The base 
ase is when m = 0. Then by Lemma A.5, every term in S is groundand �(S) = CA(Ter).



Now suppose m > 0. By Lemma A.5, S 
ontains a non-ground term if andonly if E�j (t; �) 
ontains a non-ground term for some t 2 S and j 2 f1; : : : ;mg.By Def. 5.3�(S) = tfCA(�(E�1 (t; �)); : : : ; �(E�m (t; �)); Ter) j t� 2 Sg:Thus, by Def. 5.2 and Def. 5.3, for ea
h j 2 f1; : : : ;mg, bj = �(E�j (S; �)). Letj 2 f1; : : : ;mg. If E�j (S; �) is empty, by 
ase 1 above, �(E�j (S; �)) = Bot: IfE�j (S; �) 
ontains a variable, by 
ase 2 above, �(E�j (S; �)) = Any: Otherwise,E�j (S; �) 
ontains a non-variable term and the terms in E�j (S; �) have type �j	 ,for whi
h, by indu
tion hypothesis, the result holds. Hen
e bj has an o

urren
eof Any or Open if and only if E�j (S; �) 
ontains a non-ground term. It follows that�(S) has an o

urren
e of Any or Open if and only if S 
ontains a non-groundterm. ut


