
Tran, Trung Hieu, Nagy, Gábor, Nguyen, Thu Ba T. and Wassan, Niaz A. 
(2018) An efficient heuristic algorithm for the alternative-fuel station location 
problem.  European Journal of Operational Research, 269 (1). pp. 159-170. 
ISSN 0377-2217. 

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/64349/ The University of Kent's Academic Repository KAR 

The version of record is available from
https://doi.org/10.1016/j.ejor.2017.10.012

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
CC BY-NC-ND (Attribution-NonCommercial-NoDerivatives)

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. 
Cite as the published version. 

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type 
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title 
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date). 

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record 
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see 
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies). 

https://kar.kent.ac.uk/64349/
https://doi.org/10.1016/j.ejor.2017.10.012
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies


An E�cient Heuristic Algorithm for the Alternative-Fuel Station

Location Problem

Trung Hieu Tran1∗, Gábor Nagy2, Thu Ba T. Nguyen3, Niaz A. Wassan2

1Laboratory for Urban Complexity and Sustainability, University of Nottingham, Nottingham NG7 2RB, UK

2Kent Business School, University of Kent, Canterbury, Kent CT2 7PE, United Kingdom

3Southampton Business School, University of Southampton, Southampton SO17 1BJ, United Kingdom

Abstract

We have developed an e�cient heuristic algorithm for location of alternative-fuel stations. The algo-

rithm is constructed based on solving the sequence of subproblems restricted on a set of promising station

candidates, and �xing a number of the best promising station locations. The set of candidates is initially

determined by solving a relaxation model, and then modi�ed by exchanging some stations between the

promising candidate set and the remaining station set. A number of the best station candidates in the

promising candidate set can be �xed to improve computation time. In addition, a parallel computing

strategy is integrated into solving simultaneously the set of subproblems to speed up computation time.

Experimental results carried out on the benchmark instances show that our algorithm outperforms ge-

netic algorithm and greedy algorithm. As compared with CPLEX solver, our algorithm can obtain all

the optimal solutions on the tested instances with less computation time.

Keywords: location; alternative-fuel vehicle; heuristic algorithm; parallel computing.

1 Introduction

The problem of alternative-fuel station location is a recent, but very applicable research topic within location

science. In essence, what make the problem of determining locations of alternative-fuel refuelling stations

di�erent from those of petrol stations is the scarcity of current infrastructure. In fact, alternative-fuel

vehicles require a very dense refuelling infrastructure, as these vehicle typically have a short driving range.

The alternative-fuel industry is su�ering from a �vicious circle�: there is little appetite for infrastructure

investment as there are not a su�cient number of alternative-fuel vehicles, the automotive industry can

only produce these vehicles at high process as there are not su�cient economies of scales due to limited

demand, and customers are discouraged from buying such vehicles due to both their price and the limited

refuelling infrastructure. For more information on the current state of the alternative-fuel infrastructure, see

European Commission (2013). This topic is especially timely in the light of the recent European directive

requiring Member States to provide a minimum coverage of refuelling points for alternative fuels (European

∗Correspondence author.
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1

CC BY-NC-ND



Commission, 2014). The directive provides a regulatory framework for alternative fuels such as hydrogen,

electricity, lique�ed natural gas and compressed natural gas. The targets are very ambitious. Compressed

natural gas stations and hydrogen stations are to be built along the European TEN-T core network at intervals

of 400 and 300 kilometres, respectively. The electricity refuelling network is to be multiplied signi�cantly,

from about 12,000 to 800,000 charging stations. For further information of the European plans, see European

Commission (2013). Thus, this is the right time for Operational Researchers to devote their energies to �nding

optimal or near-optimal locations for alternative-fuel refuelling facilities.

From an Operational Research point of view, the problem is clearly one of location. However, traditional

covering models, such as maximum-cover, are not applicable, as these related to demand arising at nodes. In

the context of refuelling, the demand arises from vehicle journeys, thus origin-destination �ows rather than

single points. Since the seminal paper of Hodgson (1981), a steady stream of research has been devoted to

such ��ow-capturing� problems of which our �ow-refuelling problem is a subtle variation. The main aim of

this paper is to take this research somewhat further by developing an e�cient heuristic algorithm based on

the concept of restricted subproblems. Moreover, we wish to present a comparison of models and formulations

to enable the reader to get an insight into the state of the art.

We �rst review the literature review of this problem, then discuss the mathematical models proposed for it

in detail. Sections 4 and 5 present our new heuristic algorithm and show our numerical experimentation with

it, respectively. Finally, we draw some conclusions from our study and o�er ideas for future research.

2 Literature review

We aim to present a relatively extensive although not comprehensive review of relevant literature. We believe

this will help the reader understand the variety of approaches and model variants that exist for our problem.

Moreover, the method put forward in this paper is potentially extensible to the variants discussed in this

section.

2.1 The �ow-capturing location model

The �ow-refuelling location model (FRLM), introduced by Kuby and Lim (2005), has its origins in the

�ow-capturing location model (FCLM) of Hodgson (1990). Hodgson originally investigated the concept of

�locating facilities on the home-to-work journey�, see Hodgson (1981). He observed that, unlike traditional

location models, where facilities are to be sited near customer locations, in some cases it makes more sense to

locate facilities near routes that customers already take. The example mentioned is that of locating childcare

centres. Hodgson (1990) formalised this, creating the so-called �ow-capturing location model. A main theme

of this paper is that of cannibalisation, that is, the multiple (and thus unnecessary) capturing of the same

�ows by di�erent facilities. A cannibalising and a non-cannibalising heuristic are compared, showing the

superiority of the latter. The author showed that basing locational decisions simply on arc �ow volumes is

not su�cient as locating facilities on this basis may lead to cannibalisation, because origin-destination �ows

traverse multiple arcs on a single path. Instead, models should be based on detailed origin-destination �ow

data, which can be counted as captured only once. This seminal work spurred a number of �ow-capturing

papers, some of which we review here. It may be interesting to point out that models that combine both �ow
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and node capturing exist, see for example Hodgson and Rosing (1992) and Berman (1997), who combined

�ow-capturing and p-median/max-cover objectives.

An important aspect of the FCLM is that any �ow (origin-destination pair) is captured by a single facility.

This is sensible as one would not, for example, stop at every roadside supermarket on the way home, one

stop is su�cient to satisfy one's shopping needs. However, some variations exist. For example, Hodgson and

Berman (1997) considered facilities (roadside advertisement billboards) where one billboard can be considered

to �capture� a passing motorist, but seeing the same advertisement again will �reinforce the message� and is

thus bene�cial. Another interesting example is given in Hodgson et al. (1996), where a facility cannot capture

the entire �ow (origin-destination trip). The problem at hand was locating inspection stations where drunk

drivers or drivers of unlicensed hazardous waste material may be intercepted. The drivers are prevented

from causing damage �downstream� from the inspection station but the station cannot prevent accidents or

spillages on the previous part of the journey.

It is often assumed that in order to capture a �ow, a facility must lie on the origin-destination path. However,

it may also be reasonable to assume, especially if the network of facilities is very sparse, that drivers would

make some reasonable detours to visit a facility. Berman et al. (1995) allowed a �ow to be captured if it

passes a facility within a speci�ed distance. Variations of the model are also considered, most importantly

an assumption whereby a portion of the �ow is captured proportional to the distance between facility and

path. Berman (1997) considered a median-objective problem with deviation distances.

2.2 The �ow-refuelling location model

The main di�erence of the FRLM from the FCLM is that a single facility may be unable to capture an entire

�ow. This is due to the issue of �limited range�, namely, that a vehicle may not be able to undertake a given

origin-destination journey with a single refuelling stop. This model is most applicable to vehicles powered by

alternative fuels, such as hydrogen or electricity. Such vehicles normally can cover a shorter distance on a full

tank than traditional gas-guzzling vehicles. In addition, the availability of alternative fuel refuelling stations

is very limited. However, as pointed out by Zockaie et al. (2016), the model is also applicable to the location

of conventional refuelling stations in developing countries where infrastructure is as yet lacking. Likewise, it

can be applicable to territories with sparse population (and hence sparse refuelling infrastructure).

Kuby and Lim (2005) introduced the FRLM, motivating the new model with the above concept of vehicle

range. They observe that origin-destination data, rather than simple tra�c count on edges, is required to

model this problem properly. Multiple facilities may be required to serve individual journeys. Unlike in the

FCLM, it can be shown that it is not su�cient to consider only node locations for facilities, thus making the

problem harder to solve. An integer programming formulation is provided; this will be looked at in Section

3. The authors drew the following conclusions from their experimentation:

• The longer the vehicles' range the fewer facilities are needed to capture all the demand, but placing

facilities only at nodes (junctions) may be unable to provide total coverage.

• There is a lack of convexity in the trade-o� curve between the number of refuelling stations opened and

the volume of �ow they capture, unlike in the FCLM that exhibits convexity.

• Greedy solution approaches tend to give very poor results, much poorer for the same instances as they

give for the FCLM.
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• Unlike in maximum cover location problems, alternate optima do not often occur in the FRLM. (The

authors hypothesise that in this respect the FCLM may fall between the FRLM and the max-cover

problem.)

Upchurch et al. (2009) extended the above model to the case of capacitated facilities. An integer programming

formulation is presented. (We do not consider the case of capacity limitations and hence this model will not be

discussed in detail.) While in the previous papers (and indeed in a large part of the literature), the objective

is to maximise the �ow captured, the model of Wang and Lin (2009) aims to minimise costs such that all

�ows are served. The authors devised a "vehicle refueling logic" that is more involved but also more �exible

than that of previous models. Another important di�erence is that this model requires only knowledge of

origin-destination distances, but not of the origin-destination �ow data. Lim and Kuby (2010) designed some

heuristic algorithms for the FRLM. One of their motivations for doing so is the complexity of the Kuby and

Lim (2005) mathematical formulation. There are three heuristics but with a common subroutine to evaluate

the objective function value:

• The �greedy-adding� or �add� algorithm simply adds one more facility in each iteration so as to maximise

the increase in �ow capture.

• The �greedy-adding with substitution� or �add-swap� algorithm also attempts in each iteration to replace

an existing facility with a potential facility. Thus, each iteration consists of an �add� and a �swap� move.

• The genetic algorithm is based on the chromosome representation of a list of open facilities. (As the

number of facilities is �xed in advance, this is more reasonable than a 0-1 representation.)

Unlike, say, the maximum covering problem, the evaluation of a given solution is not a straightforward task.

For a given solution, i.e. a set of facilities, the evaluation subroutine must evaluate every origin-destination

path to see whether it is refuelable � if so, its �ow is added to the objective function value. We note that all

the algorithms are capable of handling pre-existing facilities. The authors found that the greedy algorithms

perform quite well, nearly as well as the genetic algorithms (except for the case of a very short vehicle range),

and are signi�cantly faster.

Lately, research has focused on obtaining more e�cient formulations to the FRLM. The motivation for

this is that the original Kuby and Lim (2005) model requires a massive preprocessing e�ort. All facility

combinations must be checked whether they can refuel each origin-destination journey and the resulting

coe�cients inserted as input into the integer programming model. This takes an immense amount of time,

so much so, that the authors could not even generate the integer programming model for their benchmark

instance, let alone solve it. Capar and Kuby (2012) put forward a more complex model, but without the

above preprocessing requirement. This new formulation is in fact as fast as the greedy heuristics of Lim and

Kuby (2010). Capar et al. (2013) o�ered a more e�cient formulation than Capar and Kuby (2012). While the

previous model used a �node-cover/path-cover� logic, the authors propose an �arc-cover/path-cover� model.

In the model of MirHassani and Ebrazi (2013), the number of facilities is not �xed in advance, as it explicitly

takes into account their establishment costs. The logic of their formulation is developed from a single-path

to a multi-path formulation. The di�erences between these models will be analysed in more detail in Section

3.

Nie and Ghamami (2013) considered the particular case of locating refuelling stations along a travel corridor.

Their objective was cost minimisation rather than �ow maximisation, and this included battery production
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cost. Apart from recharging electric vehicles (which takes considerable time) the authors have also considered

the concept of "battery swapping" (replacing a depleted car battery with a fully charged one which takes

just a few minutes). Wen et al. (2014) investigated both maximal �ow capture and total �ow capture (cost-

minimising) models. Their formulations are based on set covering and do not require the evaluation of all

feasible combinations of locations. Ghamami et al. (2016) extended the corridor model of Nie and Ghamami

(2013), allowing for congestion and delay at charging stations. Their formulation is based on the assignment

problem. The authors have also designed a simulated annealing metaheuristic.

2.3 FRLM with deviation

The FRLM assumes that refuelling stations are located on origin-destination paths. However, just like in

the FCLM (see Berman et al., 1995, and Berman, 1997), one could consider the situation where driver make

some detour from their shortest path in order to refuel. This is a very reasonable assumption given that the

network of alternative-fuel stations is a very sparse one at the moment.

Kim and Kuby (2012) introduced the deviation-�ow refuelling location model. It is assumed that drivers

are willing to make some detour from their shortest paths to visit a refuelling facility, that they would visit

the facility/facilities that represent the smallest possible detour, and that the volume of �ow captured by a

facility decreases with the deviation distance required to reach it. Similarly to the FRLM the preprocessing is

not a straightforward task. Evaluating all possible detour journeys is even more cumbersome than evaluating

simple origin-destination paths. (This is further complicated by the fact that shortest paths do not contain

loops but shortest feasible deviation paths may contain loops.) Then, as facilities on detours do not capture

100% of the �ow, another algorithm is required to calculate the volume of �ow captured. Finally, as in the

FRLM, these paths must be evaluated to see whether they can refuel an origin-destination journey. (This

is further complicated by the possibility that a round-trip journey may be optimally refuelled by di�erent

facilities on the outbound and the inbound legs.) The authors presented an extension of the Kuby and Lim

(2005) integer programming model to account for deviations. Their discussion focuses on the e�ects of vehicle

range, lack of convexity in the trade-o� curve, e�ects of the deviation distance, e�ects of the function relating

the volume of �ow captured to the deviation distance, and the e�ects of multiple shortest paths. Kim and

Kuby (2013) applied a network transformation heuristic to mitigate the preprocessing issues encountered

by Kuby and Lim (2005) and then solve the deviation-�ow FRLM using the �add� and �add-swap� greedy

heuristics of Lim and Kuby (2010). Kang and Recker (2015) considered drivers' routing decisions and thus

explicitly allow detours in their location-routing type model. The multi-period models of Bhatti et al. (2015)

and Miralinaghi et al. (2016) also allow drivers to make detours. Huang et al. (2015) considered multiple

deviation paths; this model also requires �nding the vehicle routes as here drivers do not necessarily take

the shortest path. Yildiz et al. (2016) also integrated �nding drivers' deviation routes into the refuelling

location problem; they present improved models and solves these via branch-and-price. Zockaie et al. (2016)

considered capacitated refuelling stations. Their objective was to minimise refuelling detours. A simulated

annealing metaheuristic was designed.

We note that this problem is somewhat similar to the vehicle routing allocation problem, a subproblem of

the family of location-routing problems. (The reader is referred to Nagy and Salhi, 2007, Prodhon and Prins,

2014, and Drexl and Schneider, 2015, for more information.) In the next subsection we look at location-

routing type refuelling models.
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2.4 Location-routing type refuelling models

Location-routing is a generic name for locational problems where routing aspects are taken into account.

This approach is useful as ignoring these aspects can easily lead to suboptimal locational solutions. Such

problems are usually solved by an iterative approach (one that iterates between locational and routing phases)

or an integrated approach (where the routing algorithm is integrated into the location algorithm). For good

overviews and a summary of recent work see the review papers of Nagy and Salhi (2007), Prodhon and Prins

(2014) and Drexl and Schneider (2015).

Kang and Recker (2015) devised a location-routing type model for location alternative-fuel stations. The

location part is based on set covering and the routing part is formed by the �household activity pattern

problem.� This latter problem captures people's day-to-day activities and is a more involved model than

just considering home-to-work journeys as in the FRLM. As it is more suited to shorter journeys, the model

does not need to consider the issue of multiple refuelling stops. However, time windows considerations are

introduced. The authors present an integer programming formulation, based on set covering. The di�erences

from standard location-routing problems are highlighted. Numerical experimentation shows that including

tour-planning aspects in choosing locations gives a better model with more robust locational decisions; in

particular, it shows that a sparser infrastructure network is su�cient than a nodal-demand based model

would suggest. Jung et al. (2014) named this type of problem �itinerary interception� problem, and further-

more consider dynamic problems with stochastic service demand and queueing delay. Yang and Sun (2015)

considered a location-routing model where the facilities are refuelling stations. An iterative heuristic is put

forward.

2.5 Multi-objective FRLM

The FRLM, like its predecessor the FCLM, is based on the concept of demand arising out of �ows (journeys),

rather than nodes (customer locations) as in traditional location models. However, already the proponents of

the FCLM noted that both type of demand may coexist, see Hodgson and Rosing (1992) and Berman (1997).

There is a very limited literature on the FRLM that takes into account also the fact that customers may

prefer to refuel close to home, possibly to enable them to undertake short frequent local trips not captured

by FRLM models that focus on long-distance journeys. Evidence for the use of this model is limited, with a

survey by Kelley and Kuby (2013) concluding that drivers, if faced with a choice, are ten times more likely

to refuel at a facility with the shortest detour rather than at the one closest to their home.

Wang and Wang (2010) extended the model of Wang and Lin (2009) to take into account both �intercity and

intra-city travel� by adding set covering constraints to account for node coverage. The authors consider the

dual objectives of minimising facility cost and maximising population coverage. They discuss the trade-o�s

between objectives and the in�uence of the vehicle range and the coverage distance on the solution. Badri-

Koohi and Tavakkoli-Moghaddam (2012) observed that the number of stations was �xed in most previous

models and stated a preference for the model to determine this value. To this end, they considered the costs

of establishing alternative-fuel stations. A long-term planning approach was adopted, taking into account

depreciation and in�ation. Flow demand in their model is broken up into segments of routes and then

approximated by node demand. Moreover, the location model used is continuous, rather than the discrete

location model used in all other FRLM papers.
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2.6 Multi-period FRLM

Most refuelling models (as indeed most locational models) assume that the locational decision is based on

static data and is a one-o� decision. However, in reality demand and other input data may change over time

and locations may either need to be adjusted periodically to account for this or planned at the outset in

such a way that they serve well such stochastic demand. Often such models are called dynamic or stochastic,

see Ballou (1968) and Rosenhead et al. (1972). They are also used in combined location-routing models,

see Nambiar et al. (1989), Salhi and Nagy (1999) and Albareda-Sambola et al. (2012). These models are

especially applicable to the FRLM, as demand for alternative fuels is likely to rise. Bhatti et al. (2015)

and Hosseini and MirHassani (2015) both considered two-stage models where facilities are established in two

tranches. The former propose a two-stage model with learning, whereby the decision-maker is able to reap

information about demand once the �rst set of facilities is established. In the latter model, �rstly permanent

stations are established and these are supplemented later with mobile refuelling stations. This model uses

the refuelling logic of MirHassani and Ebrazi (2013). Chung and Kwon (2015) and Miralinaghi et al. (2016)

allowed for more than two time periods; the former allows locations to change in each time period while the

latter requires the locations to be �xed for the entire planning horizon. Miralinaghi et al. (2016) observed that

this di�erence makes the former model more applicable to electric and the latter to hydrogen vehicles. Chung

and Kwon (2015) based their model on the expanded network of MirHassani and Ebrazi (2013). Miralinaghi

et al. (2016) used branch-and-bound and Lagrangean relaxation.

3 Models for the alternative-fuel station location

3.1 Nomenclature and parameters

In the subsection, we present all notations of indices, sets, parameters and decision variables that are used

in the formulations and the proposed algorithm for the alternative-fuel station location problem. The for-

mulations of Kuby and Lim (2005), Capar and Kuby (2012), Capar et al. (2013) and MirHassani and Ebrazi

(2013), denoted by [P1], [P2], [P3] and [P4] respectively, will be described in details in next subsection. Our

heuristic algorithm is labeled as [HA]. Since some common notations are used in four of the formulations, we

notice the referred formulations in the last column. In addition, to present the formulations in a uniform way

we changed some notations from the original notations used in the literature. This should hopefully help the

reader in appreciating the di�erences between the formulations.

Indices and sets:

i, j, k, n Indices for nodes (i.e., station locations/sites) [P1]-[P4]

q Index for paths (i.e., origin-destination pairs) [P1]-[P4]

h Index for combinations of nodes [P1]

m, r Indices of the order of candidate nodes on a given path [P2]

t Index of the state of a candidate node (t = 0 : station built, t = 1 : station not built) [P2]

kqm Index i corresponding to the mth candidate node in Nq [P2]

N Set of nodes, N = {1, 2, ..., n} [P1]-[P4]

Q Set of paths [P1]-[P4]

H Set of all potential node combinations [P1]

Nh Set of nodes in combination h: Nh = {i ∈ N |ahi = 1} [P1]
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Mq Number of candidate nodes within the distance interval (0, Dq −R/2) on path q, [P2]

if (Dq −R/2 ≤ 0), then Mq = 0

Nq Set of candidate nodes on path q sorted in sequential order from origin to destination [P2]

Nq = {1 (origin), 2, 3, ..., nq(destination)}

Aq Set of arcs on path q in the original network G = (Nq, Aq)

Nq
mt Set of candidate nodes accessible from the mth candidate node on path q: [P2]

Nq
mt =


{Nq|dqmr ≤ R, r > m}, ∀q ∈ Q, m = 1, 2, ...,Mq, t = 1,

{Nq|dqmr < R, r > m}, ∀q ∈ Q, m = 2, ...,Mq, t = 0,

{Nq|dqmr ≤ R/2, r > m}, ∀q ∈ Q, m = 1, t = 0.

~ajk Directed arc starting from node j and ending at node k [P3]
~Aq Set of directed arcs on path q, sorted from origin to destination and back to origin [P3]

Kq
jk Set of candidate nodes that can refuel the directed arc ~ajk ∈ ~Aq [P3]

Qi Subset of Q which contains all the paths passing candidate node i [P4]

N̂q Extended set of candidate nodes on path q (including source and sink dummy nodes) [P4]

Âq Extended set of arcs in the extended network, GE = (N̂q, Âq) [P4]

N∗ Set of promising nodes for restricted subproblems [HA]

N0 Set of non-promising nodes, N0 ∪N∗ = N [HA]

N∗1 Set of promising nodes in which xi is �xed to be 1 when solving subproblems [HA]

N∗0 Set of non-�xed promising nodes, N∗1 ∪N∗0 = N∗ [HA]

N∗m mth neighboring set of promising nodes generated by k-exchange [HA]

Q∗ Set of promising paths de�ned by N∗ [HA]

Parameters:

R Range of vehicles [P1]-[P4]

fq Volume of tra�c �ow on path q [P1]-[P4]

p Number of stations to be located [P1]-[P4]

ahi Coe�cient that equals to 1 if station i is in combination h and 0 otherwise [P1]

bqh Coe�cient that equals to 1 if combination h can refuel path q and 0 otherwise [P1]

dqmr Distance between the mth and rth candidate nodes in Nq [P2]

Dq Length of the shortest path for path q [P2]

ε A very small positive number [HA]

UB Upper bound [HA]

LB Lower bound [HA]

Decision variables:

xi =

 1 if station is located at node i,

0 otherwise.
[P1]-[P4]

yq =

 1 if the �ow on path q is refueled,

0 otherwise.
[P1],[P2],[P3]
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vh =

 1 if all facilities in combination h are opened,

0 otherwise.
[P1]

cqm0 =



1 if xkq
m

= 0 and vehicles on path q have enough fuel remaining

at the mth candidate site to be able to reach the next

open fuel station on path q without running out of fuel,

0 if xkq
m

= 0 and it cannot reach to an open fuel station.

[P2]

cqm1 =



1 if xkq
m

= 1 and vehicles on path q have enough fuel after

refueling at the mth candidate site to be able to reach the next

open fuel station on path q without running out of fuel,

0 if xkq
m

= 1 and it cannot reach to an open fuel station.

[P2]

yqij = �ow on an arc (i, j) ∈ Âq in the extended network of path q. [P4]

3.2 Formulations of the alternative-fuel station location

Kuby and Lim (2005) introduced the FRLM, an extension of the FCLM, which locates p refuelling facilities to

maximise the number of trips refueled. In the �rst model, the authors proposed a mixed-integer programming

formulation for the nodes-only version of the problem. The model is supported by an algorithm to determine

all combinations of nodes that can refuel a path given. The combinations of nodes depend on the length of

the path and the maximum vehicle range assumed. Based on the de�nitions of sets, parameters and decision

variables described for [P1] in Section 3.1, the mathematical formulation can be presented as follows

[P1]: (Kuby and Lim, 2005)

max
∑
q∈Q

fqyq (1)

s.t.
∑
h∈H

bqhvh ≥ yq, ∀q ∈ Q, (2)

ahixi ≥ vh, ∀h ∈ H, i ∈ Nh, (3)

∑
i∈N

xi = p, (4)

xi, yq, vh ∈ {0, 1} , ∀i ∈ N, q ∈ Q, h ∈ H. (5)
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The objective function (1) aims to maximise the total tra�c volume which can be refueled. Constraints (2)

require at least one valid combination of nodes available for path q to be refueled. Constraints (3) keep vh

to be zero unless all the facilities i in combination h are built. Constraint (4) ensure exactly p facilities to be

located. Finally, constraints (5) de�ne binary variables.

Unfortunately, generating the valid combinations of nodes H can be computationally burdensome. Some

e�orts have been performed to reformulate the problem by eliminating the usage of pre-generation of valid

combinations. Capar and Kuby (2012) presented such a mixed-binary-integer programming formulation

for solving e�ciently the problem. By introducing new decision variables cqm0 and c
q
m1, along with removing

variables vh relevant to the combinations, and modifying some corresponding constraints, a new mathematical

model is formulated by

[P2]: (Capar and Kuby, 2012)

max
∑
q∈Q

fqyq (6)

s.t. cqmt + (−1)txkq
m
≤ 1− t, ∀q ∈ Q, t ∈ {0, 1},m = 1, 2, ...,Mq, if Mq 6= 0, (7)

cqmt −
∑

n∈Nq
mt

xn ≤ 0, ∀q ∈ Q, t ∈ {0, 1},m = 1, 2, ...,Mq, if Mq 6= 0, (8)

cqm1 −
∑

n∈xk
q
m
∪Nq

m1

xn ≤ 0, ∀q ∈ Q,m = Mq + 1, (9)

cqm0 = 0, ∀q ∈ Q,m = Mq + 1, (10)

Mq+1∑
m=1

∑
t∈{0,1}

cqmt = (Mq + 1)yq, ∀q ∈ Q, (11)

∑
i∈N

xi = p, (12)

xi, yq, c
q
m0, c

q
m1 ∈ {0, 1} , ∀i ∈ N, q ∈ Q,m = 1, 2, ...,Mq. (13)

The objective function (6) is identical to that in [P1]. Constraints (7) governs the relationship between

variables cqmt for the m
th node on path q and variables x at the same node to ensure that cqmt equals to one in

the right scenario. Constraints (8) governs the relationship between variables cqmt for the m
th node on path

10



Figure 1: An example of fuel station location on a single path for formulation [P3].

q and variables x further along the path to ensure that cqmt equals to zero unless another refuelling station

can be reached from the mth node on path q. Constraints (9) and (10) handle the scenario of nodes within

half the range of the destination of path q. Constraints (11) allow the tra�c �ow on path q to be completely

refueled if the sum of the refueled stations on the path equals to the number of the stations considered (i.e.,

Mq + 1). Constraint (12) is the same with constraint (4) in [P1] that build exactly p facilities. Finally,

constraints (13) de�ne binary variables.

Although [P2] is more e�cient than [P1] as it eliminates the usage of combination pre-generation, the number

of new decision variables and constraints signi�cantly increases the size of the model. Hence, [P2] may not

be e�cient for real-world applications with large size. Capar et al. (2013) developed an arc cover-path-

cover formulation for the alternative-fuel station location problem as replacing the usage of combination

pre-generation by the concept that a path can be refueled if all directed arcs on the round-trip path are

served. For example, in Figure 1 path q (i.e., A-D pair) can be refueled if the tra�c volumes in all directed

arcs (A, B), (B, C), (C, D), (D, C), (C, B), and (B, A) are served. For each directed arc ~ajk on path q,

a set of candidate sites Kq
jk which can refuel the arc has to be determined based on the vehicle range R.

For example, in Figure 1 (with R = 100) the set of candidate sites for directed arc ~aCD is {B, C}, since

only if refuelling at station B or C we can drive to D without running out of fuel. The arc cover-path-cover

mathematical formulation can be described as follows:

[P3]: (Capar et al., 2013)

max z0 =
∑
q∈Q

fqyq (14)

s.t.
∑

i∈Kq
jk

xi ≥ yq, ∀q ∈ Q, ~ajk ∈ ~Aq, (15)

∑
i∈N

xi = p, (16)

11



Figure 2: An example of original network vs. extended network for formulation [P4].

xi, yq ∈ {0, 1} , ∀i ∈ N, q ∈ Q. (17)

The objective function (14) is still to maximise the total tra�c volume which can be refueled. Constraints

(15) represent the innovative formulation in which path q is refuelable if and only if every directed arc along

the path is travelable after refuelling at one of the facilities built. Constraint (16) makes sure that only p

facilities are located, while constraints (17) are to de�ne binary variables.

MirHassani and Ebrazi (2013) considered the case where the number of facilities is not �xed in advance

but is determined from the input data of the facility establishment cost. The authors proposed a �exible

reformulation for a general refuelling station location problem, in which some paths may not be covered by

station sites just located at the nodes of the network. In particular, the formulation allows to consider the

number of candidate sites modi�ed on the arcs of the paths to refuel the tra�c �ows by the additional midarc

sites. In their paper, the midarc sites were uniformly generated (i.e., identical length of midarcs) along the

arc in order to prevent the network from existing uncovered paths. A variation of their formulation was also

presented for the case of a set value of p. This includes a new variable yqsl given by

yqsl =

 1 if the �ow on path q cannot be refueled,

0 otherwise,

where s and l denote the dummy source and sink nodes respectively, which are added to construct the

extended network. In Figure 2, G = (Nq, Aq) represents the original network with the set of candidate

nodes and arcs on path q (known as Nq and Aq respectively), where q is the path from node A to D. The

distance between nodes in the network is given, along with a range of vehicles R = 100. In the extended

network GE = (N̂q, Âq), the dummy source and sink nodes are included into the set of candidate nodes

(referred to as N̂q). In addition, other additional arcs with respect to new decision variables yqij are built

by a four-step procedure in MirHassani and Ebrazi (2013). In particular, an arc is added if the distance

between two nodes (de�ned by the arc) does not exceed the range of vehicle (for example, the additional arcs

sB,BD,Cl). Finally, an arc between two dummy nodes is modi�ed to construct the set of arcs Âq in the

extended network.

[P4]: (MirHassani and Ebrazi, 2013)
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Table 1: A comparison of the sizes of the four formulations for the alternative-fuel station location problem.

Formulation No. of binary variables No. of continuous variables No. of constraints

[P1] |N | |H|+ |Q|
H∑

h=1

|N̄h|+ |Q|+ 1

[P2] |N |+ |Q| 2

Q∑
q=1

|Mq| 4

Q∑
q=1

|Mq|+ 3|Q|+ 1

[P3] |N | |Q|
Q∑

q=1

| ~Aq|+ 1

[P4] |N |
Q∑

q=1

|Âq|
Q∑

q=1

|N̂q|+
N∑
i=1

|Qi|+ 1

max
∑
q∈Q

fq(1− yqsl) (18)

s.t.
∑

{j|(i,j)∈Âq}

yqij −
∑

{j|(j,i)∈Âq}

yqji =


1, i = s,

−1, i = l,

0, i 6= s, l,

∀q ∈ Q, i ∈ N̂q , (19)

∑
{j|(j,i)∈Âq}

yqji ≤ xi, ∀i ∈ N, q ∈ Qi, (20)

∑
i∈N

xi = p, (21)

xi ∈ {0, 1} , ∀i ∈ N, (22)

yqij ≥ 0, ∀q ∈ Q, (i, j) ∈ Âq. (23)

The objective function (18) is to maximise the total tra�c volume which can be served. Constraints (19) are

�ow conservation equations for the extended network GE . Constraints (20) make sure that an in�ow passes

through a site only if a refuelling station is located at that site. Constraint (21) ensures that only p facilities

are located. Constraints (22) and (23) de�ne location variables as binary variables and �ow variables as

nonnegative, respectively.

A comparison of the four formulations based on the number of variables (i.e., binary and continuous) and

the number of constraints is shown in Table 1. In the table, |.| is the number of elements in a set. Since some

binary variables in the formulations can be relaxed in a mixed-integer program (solved by CPLEX solver)

13



as continuous variables with an upper bound of 1 without impact to the optimal integer solution, to make a

fair comparison we relaxed as many as possible binary variables of the formulations. Only the formulation

introduced by Kuby and Lim (2005) needs a support procedure to generate valid combinations of stations

H. It takes a lot of time to do and is thus known as the less e�cient model.

Common assumptions used to formulate the problem consist of

• The tra�c �ow between an origin-destination pair is only through a single path (i.e., shortest path)

and its volume is given.

• Drivers have full knowledge of refuelling station locations along their path and know when to refuel in

order to complete their trip without running out of fuel.

• All vehicles have the same vehicle range R.

• Only nodes in the network are considered to be refuelling station locations.

• Refuelling stations are uncapacitated.

• Fuel consumption is proportional to traveling distance.

4 A heuristic algorithm for the FRLM

The idea of using the optimal solution obtained by relaxing the integrality constraints of the mixed-integer

linear programming (MILP) problems to generate a set of initial solutions for well-known meta-heuristic

algorithms appeared in some research works (for example, Singh and Sharma (2008) with simulated annealing

for facility layout problem, Tran and Ng (2011) with water �ow algorithm for vehicle routing problem, etc.).

However, such metaheuristic algorithms only used the information of the optimal solution in the �rst iteration,

but did not use to support search process in next iterations. Recently, the idea of using the information of the

optimal solution to support search process further (i.e., to establish a set of promising candidate variables) has

been developed by Angelelli et al. (2010), known as Kernel Search. This method identi�es subsets of decision

variables for the MILP problem by solving the relaxation problem and then solves the restricted problems to

optimality by commercial MILP solvers. It has been successfully applied for several optimisation problems,

such as the multi-dimensional knapsack problem (Angelelli et al., 2010), the portfolio selection problem

(Angelelli et al., 2012), the index tracking problem (Guastaroba and Speranza, 2012a), the multi-source

capacitated facility location problem (Guastaroba and Speranza, 2012b), and the single-source capacitated

facility location problem (Guastaroba and Speranza, 2014). Following the successful applications, we develop

an e�cient heuristic algorithm, based on the concept of restricted subproblems, for solving the alternative-fuel

station location problem. Compared with Kernel Search algorithm, our algorithm has some small di�erences

as follows:

• Although there are two sets of binary variables in the problem, we only explicitly restricted on the

location variables xi. The number of path variables yq is determined based on the restricted location

variables. Thus, there is implicit restriction. Restricting on one set of binary variable may help the

proposed algorithm obtain the good balance of solution quality and CPU time, instead of restricting

on all the sets of binary variables as in Kernel Search algorithm.
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a)

b)

Figure 3: Illustration of a) constructing the set of restricted nodes and b) �xing a number of station locations
in the set for the subproblems.

• The size of the restricted subproblems equals to the number of location variables with positive value

(i.e., x∗i > 0, where x∗ denotes the optimal location as solving the relaxation model initially). In Kernel

Search algorithm, size of the restricted subproblems is usually a given arbitrary parameter. As a result,

initial promising variable set may include x∗i = 0 or remove some promising variables x∗i > 0, which

may lead to spend additional CPU time to �nd the best solutions.

• k-exchange neighborhood is used to generate a pool of the restricted subproblems for parallel computing

strategy in the proposed algorithm.

In the next subsection, we describe how to construct the restricted subproblems in the proposed algorithm.

Then,we show how to integrate a parallel computing strategy with k-exchange neighborhood structure for

improvement of the computation time of the algorithm. Finally, we present the framework of the proposed

algorithm for solving the FRLM.

4.1 Restricted subproblems

The formulation of alternative-fuel station location problem [P3] in Capar et al. (2013) is referred as the

original problem (labeled by ASLP) in the heuristic algorithm. As described in the section above, the

objective function (14) is to maximise the round-trip tra�c volume served. Constraints (15) ensure that a

�ow on path q is refueled if and only if each directed arc on the path is travelable after refueled by one of

the opening stations. Constraint (16) makes sure that only p stations are located to serve vehicles in the

transport network. Finally, constraints (17) de�ne binary variables. The formulation [P3] is modi�ed to

generate restricted subproblems in the algorithm.

To construct the restricted subproblems, we need to determine the set of promising nodes N∗ and the

corresponding set of promising paths Q∗. In the algorithm, the set of promising nodes can be obtained by
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solving the relaxation model of the original problem [ASLP] with the relaxed constraints of binary variables.

Then, we de�ne N∗ = {i ∈ N |x∗i > 0}, and Q∗ = {q ∈ Q|Nq ∩N∗ 6= ∅}. Figure 3a illustrates how to build

N∗. To improve the computation time for solving the restricted subproblem, we �xed a number of the best

promising station locations in N∗ by adding constraints xj = 1,∀j ∈ N∗1 (Figure 3b). To determine set

N∗1, we sorted node i ∈ N∗ by two following criteria (with descending order): solution value x∗i obtained

by solving the relaxation model, and the tra�c volume through node i. Then, we choose |N∗1| the best

promising candidate nodes in N∗ to be located.

The restricted subproblems are de�ned by

[R-ASLP]

max z1 =
∑
q∈Q∗

fqyq (24)

s.t.
∑

i∈Kq
jk∩N∗

xi ≥ yq, ∀q ∈ Q∗, ~ajk ∈ ~Aq, (25)

∑
i∈N∗

xi = p, (26)

xi = 1, ∀i ∈ N∗1, (27)

xi, yq ∈ {0, 1} , ∀i ∈ N∗, q ∈ Q∗. (28)

The size of set Q∗ may be reduced by removing paths that cannot be refueled by a set of restricted nodes.

Then, the size of the restricted subproblems is improved signi�cantly.

4.2 Parallel computing strategy

To integrate a parallel computing strategy into the algorithm, we need to generate a pool of restricted

subproblems, and divide them into L disjoint sets of subproblems corresponding to the number of CPU

cores. By allocating a disjoint set of subproblems to each CPU core and then solving them simultaneously,

we are able to save signi�cantly computation time.

A pool of restricted subproblems is constructed on k-exchange neighborhood structure. In particular, we

replace k less promising nodes in N∗ by k other nodes in N0 to generate a new subproblem. The neigh-

borhood structure for the alternative-fuel station location problem can be illustrated in Figure 4. From the

preliminary experiment, we see that 2-exchange neighborhood can produce e�ciently the restricted problems,

as considering balance between solution quality and computation time. In this work, we thus performed 2-

exchange to generate a pool of the restricted subproblems for the parallel computing strategy of the proposed

algorithm.
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Figure 4: k-exchange neighborhood structure to construct the restricted subproblems.

4.3 Framework of the proposed algorithm

A framework of the proposed algorithm can be described as follows.

Algorithm

Step 1: Solve the original problem [ASLP] relaxed on the constraints of binary variables;

Denote (x∗, y∗) and z∗0 be the optimal solution and the objective value, respectively;

Step 2: If (x∗, y∗) are integer values, then stop and output the optimal solution (x∗, y∗);

Else set upper bound UB = z∗0 , and update the set of promising nodes N∗ = {i ∈ N |x∗i > 0}
and the set of remaining nodes N0 = {i ∈ N |x∗i = 0};

Step 3: Determine the corresponding set of restricted paths Q∗, de�ned by N∗;

Solve the restricted subproblem [R-ASLP], update the best solution and lower bound LB = z∗1 ;

Step 4: If (UB − LB < ε), then stop and output the best solution found;

Else go to next step;

Step 5: Solve the restricted subproblems [R-ASLP] with a parallel computing strategy as follows

Do the following procedure until one of termination conditions is satis�ed:

(i) Construct sets of restricted nodes N∗1 , N
∗
2 , ..., N

∗
L by exchanging k nodes between N∗and N0

(ii) Assign each set of restricted nodes into each CPU core and solve [R-ASLP];

(iii) Update the best solution and LB, and check termination conditions:

+ UB − LB < ε

+ All the restricted subproblems solved

+ Reach the number of restricted subproblems given
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In the algorithm, we used three termination conditions:

• The algorithm stops if we obtain UB − LB < ε.

• The algorithm terminates if all the restricted subproblems have been considered (in which generating

the restricted subproblems is based on k-exchange neighborhood structure).

• The algorithm stops if the number of restricted subproblems given is reached.

5 Experimental results

In this section, we investigate the computational e�cacy of solving the FRLM with the heuristic algorithm

proposed. We evaluate the performance of the heuristic algorithm on three well-known datasets from the

literature and one randomly generated dataset, and then compare the obtained results with the optimal

solutions from CPLEX solver as well as other heuristic algorithms.

The models and the proposed algorithm were implemented in Visual C++ and run on the same Microsoft

Windows 7 Enterprise PC with an Intel Core i7-4810MQ processor (2.80 GHz per chip) and 16 GB of RAM.

The models were built and solved using the IBM ILOG CPLEX version 12.4 callable library. Based on some

preliminary experiments, parameter values for the proposed algorithm were chosen as follows: the number

of the best promising station locations �xed |N∗1| = dp/5e; 2-exchange neighborhood used; ε = 0.01; the

number of restricted subproblems given was set to 16 and 32 for p ≤ 15 and p > 15, respectively; and the

number of parallel computing threads was 8 (the number of cores on the Intel Core i7 processor). In addition,

to reduce computation time for solving the restricted subproblems, we added the constraint of setting a cut-o�

value to the objective function. The cut-o� value is retrieved from LB.

5.1 Datasets and parameters

The computational experiments were run on three well-known benchmark datasets and one randomly gener-

ated dataset of the FRLM, taken from the literature.

• Hodgson dataset (Hodgson, 1990): This is a 25-node alternative-fuel station location network. The �ow

volumes fq in the 25× 25 origin-destination matrix are estimated using a gravity model. The �ows are

then assigned to their shortest paths. The candidate sites are limited to the 25 nodes of the network.

The network has 300 origin-destination pairs.

• Florida dataset (Kuby et al., 2009): This is a Florida state highway network consisting of 302 nodes

(i.e., junctions) and 495 arcs. Each of nodes serves as a candidate site. Of the 302 candidate sites, there

are 74 origin-destination nodes for trips. Since the return trip is assumed to be refuelable, the network

of 74 origin-destination nodes only requires 2,701 unique origin-destination pairs. The road network

includes all inter-state, toll, U.S. highways and other important state highways. Florida's inter-city

volumes were based on a spatial interaction model, but short intra-zonal �ows are excluded.

• California dataset (Arslan et al., 2014): This is a California state road network consisting of 339 nodes

and 617 arcs. We consider all 1,167 possible origin-destination pairings of the urban population centers

in California, in which their population is more than 50,000 and their distance is not closer than 30

kilometers. Volume of the �ow on each pair is calculated using the gravity model of Hodgson (1990).
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• Capar-Kuby dataset: A set of instances are randomly generated by Capar and Kuby (2012). In the

experiment, only the instances with large network size (e.g., n =500, 750 and 1,000 nodes) are considered

to test our algorithm. For each instance, m out of n are randomly chosen to be origin-destination nodes,

and then m(m− 1)/2 origin-destination pairs are determined to build the shortest paths. Here, we test

our algorithm on m = 40 and 80 nodes (i.e., 780 and 3,160 paths respectively). The tra�c �ow for each

pair is generated using the gravity model of Fotheringham and O'Kelly (1989).

For the evaluation of computational experiments, a set of scenarios are generated by changing the range of

vehicles R and the number of stations to be located p. Range of vehicles R = 4, 8, and 12 are used for

Hodgson network; 60, 100, and 200 miles are used for Florida network; 100, 150 and 200 kilometers are used

for California network; and 250, 500 and 1,000 are used for Capar-Kuby network. Hodgson, Florida and

California networks are investigated with p = {5; 10; 15; 20; 25}, while p = {5; 10; 15; 20; 25; 30; 35; 40; 45; 50}
is for Capar-Kuby network.

5.2 Computational results

We compare the performance of the proposed heuristic algorithm (i.e., HA) with genetic algorithm (LKGenA)

and greedy algorithm (LKGreA) developed by Lim and Kuby (2010). In addition, we evaluate our solutions

over the optimal solutions obtained by CPLEX solver with 8 threads mode setting (for the formulations of

Capar and Kuby (2012), Capar et al. (2013) and MirHassani and Ebrazi (2013), denoted by CK, CKLT and

ME respectively) on four benchmark datasets mentioned. Tables 2, 3, 4 and 5 show the comparison results

with the objective function measured by trips (%) on Hodgson, Florida, California and Capar-Kuby instances,

respectively. In the tables, Opt. represents the optimal objective value, ∆ is the percentage gap between the

objective value found (Best) and the optimal objective value (see Equation (29)), 4̄ is the average percentage

gap, and the computational time is measured by seconds.

∆ =
(Opt.−Best)

Opt.
× 100. (29)

From Table 2, we can see that our algorithm obtained the optimal solutions for all Hodgson instances with

less average CPU time than CPLEX solver on the formulations CK, CKLT and ME. Since the CPU time of

the compared algorithms (i.e., LKGenA and LKGreA) was not reported in Lim and Kuby (2010), we do not

present them in this paper. In terms of solution quality, our algorithm outperforms LKGreA in four cases,

while there is no di�erence as compared with LKGenA.
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Table 2: Comparison for the formulations and the algorithms on Hodgson instances.

CK CKLT ME LKGenA LKGreA HA
R p Opt. ∆ Time (s) ∆ Time (s) ∆ Time (s) ∆ ∆ ∆ Time (s)
4 5 25.88 0 0.24 0 0.12 0 0.13 0 0 0 0.12

10 50.72 0 0.20 0 0.14 0 0.12 0 10.75 0 0.13
15 62.64 0 0.18 0 0.08 0 0.10 0 0 0 0.05
20 68.58 0 0.18 0 0.08 0 0.10 0 0 0 0.05
25 69.14 0 0.16 0 0.10 0 0.10 0 0 0 0.05

8 5 58.56 0 0.28 0 0.14 0 0.14 0 0.49 0 0.15
10 82.81 0 0.32 0 0.18 0 0.18 0 0.93 0 0.26
15 97.24 0 0.28 0 0.14 0 0.15 0 0 0 0.27
20 98.33 0 0.20 0 0.12 0 0.11 0 0.15 0 0.05
25 98.33 0 0.18 0 0.10 0 0.10 0 0 0 0.06

12 5 61.61 0 0.84 0 0.16 0 0.44 0 0 0 0.21
10 93.99 0 0.30 0 0.16 0 0.16 0 0 0 0.07
15 99.85 0 0.24 0 0.14 0 0.13 0 0 0 0.07
20 100.00 0 0.28 0 0.14 0 0.14 0 0 0 0.07
25 100.00 0 0.20 0 0.12 0 0.11 0 0 0 0.07

Average 0 0.27 0 0.13 0 0.15 0 0.82 0 0.11

Table 3 continues to show that our algorithm can �nd the optimal solutions for all Florida instances with

less average CPU time than CK, CKLT and ME. Especially, the average CPU time of CK and ME is about 8

and 4 times slower than our CPU time, respectively. Also, our algorithm outperforms the three formulations

in terms of CPU time on all Florida instances. As compared with LKGenA and LKGreA, our algorithm even

outperforms signi�cantly these algorithms in terms of solution quality and CPU time. For example, we only

need 129.02 seconds to �nd the optimal solution for Florida instance (R = 100, p = 25), while LKGenA and

LKGreA take 10,646 seconds (approximate 3 hours) and 1,800 seconds (approximate a half hour) respectively

but do not �nd the optimal solution. In Table 3, we denoted �-� for the instances which were not solved and

reported by LKGenA and LKGreA.

The e�ciency of our algorithm, as compared with the formulations CK, CKLT and ME, are more clearly

demonstrated in solving other large-sized instances. Tables 4 and 5 show that our algorithm can obtain the

optimal solutions on all California and Capar-Kuby instances with less computation time. In particular, the

proposed algorithm improved the average CPU time about 39-86 times than CK, twice than CKLT and 35-65

times than ME as solving the instances.
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Table 3: Comparison of the formulations and the algorithms on Florida instances.

CK CKLT ME LKGenA LKGreA HA
R p Opt. ∆ Time (s) ∆ Time (s) ∆ Time (s) ∆ Time (s) ∆ Time (s) ∆ Time (s)
60 5 56.12 0 56.74 0 14.70 0 24.31 - - - - 0 11.04

10 77.17 0 74.50 0 14.25 0 38.52 - - - - 0 12.56
15 83.55 0 132.00 0 21.75 0 64.10 - - - - 0 20.15
20 87.60 0 234.58 0 21.21 0 127.19 - - - - 0 20.54
25 91.39 0 197.18 0 31.80 0 95.69 - - - - 0 30.55

100 5 64.89 0 148.08 0 34.02 0 76.34 0.71 182 0 33 0 27.76
10 81.22 0 209.84 0 29.04 0 101.22 0.41 1,352 0.43 174 0 28.58
15 87.84 0 340.82 0 32.13 0 165.31 0.16 2,412 0.50 456 0 30.25
20 92.44 0 491.62 0 75.03 0 250.89 0.10 5,800 0.31 1,132 0 73.56
25 95.37 0 999.12 0 138.42 0 512.36 0.10 10,646 0.38 1,800 0 129.02

200 5 69.19 0 240.36 0 41.85 0 123.58 - - - - 0 34.44
10 86.03 0 342.66 0 48.54 0 177.23 - - - - 0 39.49
15 92.92 0 533.72 0 57.33 0 260.76 - - - - 0 52.71
20 96.65 0 841.50 0 104.07 0 415.39 - - - - 0 100.46
25 98.17 0 1,172.02 0 174.72 0 592.12 - - - - 0 150.16

Average 0 400.98 0 55.92 0 201.67 0 50.75

Table 4: Comparison of the formulations and our algorithm on California instances.

CK CKLT ME HA
R p Opt. ∆ Time (s) ∆ Time (s) ∆ Time (s) ∆ Time (s)

100 5 67.08 0 25.15 0 2.46 0 23.23 0 1.83
10 87.98 0 28.63 0 4.10 0 26.33 0 2.29
15 95.01 0 26.55 0 3.89 0 23.68 0 2.03
20 98.41 0 197.50 0 7.25 0 75.47 0 4.28
25 99.79 0 442.92 0 17.99 0 443.26 0 9.80

150 5 79.94 0 30.56 0 6.45 0 27.39 0 3.12
10 92.98 0 76.70 0 9.56 0 62.98 0 4.96
15 98.35 0 205.46 0 12.05 0 108.19 0 5.69
20 99.89 0 336.50 0 11.36 0 268.58 0 5.52
25 100.00 0 1,979.90 0 5.97 0 1,225.62 0 3.87

200 5 85.18 0 31.18 0 11.23 0 32.33 0 4.21
10 95.64 0 69.64 0 13.54 0 64.86 0 4.96
15 99.21 0 195.32 0 18.51 0 116.57 0 5.74
20 99.97 0 630.88 0 19.79 0 830.78 0 6.07
25 100.00 0 1,638.47 0 15.20 0 1,187.77 0 4.65

Average 0 394.36 0 10.62 0 301.14 0 4.60
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Table 5: Comparison of the formulations and our algorithm on Capar-Kuby instances.

CK CKLT ME HA

n m R ∆̄ Time (s) ∆̄ Time (s) ∆̄ Time (s) ∆̄ Time (s)

500 40 250 0 400.51 0 7.07 0 367.13 0 3.69
500 0 420.26 0 8.25 0 435.18 0 3.82

1,000 0 859.58 0 15.89 0 829.65 0 8.60
80 250 0 1,429.43 0 16.36 0 1,309.33 0 8.36

500 0 2,298.23 0 27.60 0 2,033.15 0 13.80
1,000 0 5,405.47 0 65.41 0 5,325.93 0 31.25

750 40 250 0 1,999.48 0 81.95 0 2,053.62 0 49.02
500 0 2,579.40 0 118.20 0 2,374.37 0 62.04

1,000 0 3,760.46 0 169.58 0 3,310.76 0 87.66
80 250 0 2,015.79 0 104.13 0 2,084.84 0 58.32

500 0 3,716.89 0 197.32 0 3,629.60 0 105.69
1,000 0 8,540.25 0 385.59 0 8,350.28 0 244.17

1,000 40 250 0 1,661.72 0 201.24 0 1,356.83 0 83.72
500 0 3,318.69 0 326.70 0 2,708.65 0 159.67

1,000 0 5,524.13 0 447.29 0 3,967.22 0 227.97
80 250 0 3,789.75 0 207.68 0 2,914.45 0 97.51

500 0 6,183.12 0 315.33 0 5,829.33 0 156.54
1,000 0 10,327.50 0 489.45 0 8,715.05 0 261.77

Average 0 3,568.37 0 176.95 0 3,199.74 0 92.42

As parallelisation is an integral part of our solution method we do not present here results without parallel

computing. We note though that our heuristic is approximately twice as fast in parallel mode than using

just a single thread.

6 Conclusions and future work

The design of a heuristic algorithm for the alternative-fuel station location problem is an important issue that

has not received appropriate attention in the research. In the paper, we thus develop an e�cient heuristic

algorithm to locate optimal fueling stations for the maximisation of round-trip tra�c volume. The algorithm

is constructed on solving the sequence of restricted problems by a set of promising station candidates, and

by a number of the best promising stations to be located. To determine the initial set of candidates we

solve a relaxation model of the original problem with the constraints of integer variables relaxed, and then

update the set in next iterations by performing 2-exchange between the set of promising candidates and the

remaining station set. As solving the restricted problems, we locate the best stations in the set of promising

candidates to improve the computation time of the algorithm. Besides that, we use a parallel computing

strategy to simultaneously solve a number of restricted problems with less computation e�ort for large-sized

instances. Experimental results show that the proposed algorithm can obtain the optimal solutions with less

computation time (compared with CPLEX solver), and outperforms the other compared algorithms (i.e.,

genetic algorithm and greedy algorithm) with respect to solution quality as well as computation time.

From the successful results obtained, we can extend the heuristic algorithm to handle other interesting

alternative-fuel station location problems, such as:
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• The capacitated FRLM (Upchurch et al., 2009, Zockaie et al., 2016),

• The FRLM with deviation (Kim and Kuby, 2012, Kim and Kuby, 2013, Zockaie et al., 2016),

• The budget-constrained FRLM (Badri-Koohi and Tavakkoli-Moghaddam, 2012, Capar et al. (2013),

MirHassani and Ebrazi, 2013),

• The multi-period FRLM (Chung and Kwon, 2015, Miralinaghi et al., 2016).

It would be very interesting to apply our algorithm to practical applications, which we believe may arise

in the near future, especially in the light of the recent EU directive on the establishment of a Europe-

wide alternative fuel infrastructure (European Commission, 2014). In this respect, the reader is referred to

the recent application study by Kuby et al. (2017), focusing on natural gas refuelling stations in the E.U.

Another possible application would be for the location of alternative fuel stations for the railways. While

the algorithms presented in the literature could be just as applicable to rail transport as to automobiles,

most papers tackle the FRLM in the context of automobile refuelling stations. Yet, as Kuby and Lim (2005)

has already pointed out, there is much better origin-destination �ow data available for railways, making this

mode of transport an ideal �eld of applying FRLM models.
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