
Heaton, Andrew and King, Andy (2000) Abstracting Builtins for Groundness
Analysis. University of Kent, School of Computing, Computing Laboratory,
8 pp.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/22058/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/22058/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Abstra
ting Builtins for Groundness AnalysisAndy Heaton and Andy KingS
hool of Computer Studies, University of Leeds, LS2 9JT, UK.Computing Laboratory, University of Kent, CT2 7NF, UK.Abstra
tThis note
lari�es how to handle solution gathering meta-
alls, asserts and retra
tsin the groundness analysis of Prolog.1 Introdu
tionMost work on stati
 program analysis for Prolog has
on
entrated on thedesign of abstra
t domains and their operations, rather than issues of howbuiltins su
h as meta-
alls and dynami
 predi
ates should be handled. Manyrealisti
 programs
ontain su
h builtins, however, and so this is an importantissue to address when
onstru
ting an analyser [2{4,6,7℄. This note details howbuiltins are handled in a groundness analyser developed at the University ofKent in
ollaboration with the Universities of Ben-Gurion and Leeds. Thisanalyser is
omposed to two
ore modules: an abstra
ter module whi
h takes,as input, a program and produ
es, as output, an abstra
t version of the pro-gram that only expresses grounding dependen
y information; a �xpoint enginewhi
h tra
es the dependen
ies in the abstra
t program to infer whi
h argu-ments of the input program are ground. Builtins pose (at least) four problemsfor stati
 analysis and, in parti
ular, program abstra
tion:meta-
all problem The problem with a goal su
h as
all(G) is that the prin-
ipal fun
tor of the goal G might not be known until run-time and thus we
annot in general tra
e the
all to G and dedu
e its answer (and those itspossibly generates through sub-goals). Analogous safety problems
an o

urwith bagof, �ndall, on
e, not and setof.solution gathering problem A parti
ular problem that o

urs in solution gath-ering meta-
alls su
h as �ndall(T , p(S, T), B) is that they
annot simplybe abstra
ted as p(S, T) or even p(S, B). This is be
ause the goal �ndall(T ,p(S, T), B) neither instantiates S nor T (though it might ground B). Anal-ogous problems o

ur with bagof and setof.Preprint submitted to Elsevier Preprint 20 De
ember 1999

assert problem The problem with assert goals is that they
an extend theprogram at run-time and thereby introdu
e new
alls and answers. Spe
if-i
ally, suppose that a program
onsists of the fa
ts p(
) and q() and the
lause r(X) :- assert((p(Y) :- q(Y))), p(X). The query r(X) will
all the as-sert goal. This asserts the
lause p(Y) :- q(Y) whi
h, in turn, introdu
es anew
omputation path through q(Y) (whi
h has true as its
all and answerpatterns) and leads to answer pattern of true for the top-level goal r(X). Ifthe assert was merely ignored, then
all and answer patterns for q would bemissed, and an in
orre
t answer pattern for r would be inferred.retra
t problem The problem with a retra
t goal is basi
ally one of pre
i-sion. Consider a program that shares data between two program pointsusing dynami
 predi
ates to implement a bla
kboard me
hanism. The
allassert(data(I)) will write (and extend) the bla
kboard and elsewhere inthe program the
all retra
t(data(O)) will read (and prune) the bla
k-board. The goal retra
t(data(O))
an be safely abstra
ted by true. Pre
ision
ould be improved, however, if we
an infer that I is ground when the goalassert(data(I)) is
alled be
ause then retra
t(data(O)) must ground O.To resolve the meta-
all problem (and mu
h of the assert problem) we followthe elegant analysis model set out in [3,4℄ in whi
h there are assumed to betwo versions of the program: one (virgin) program that is unanalysed; andanother (renamed) version that is
ompletely analysed. The idea is for therenamed version to only express information about the
alls that the analysisis able to tra
e. The renamed program is
onstru
ted by substituting ea
hatom (that is not a builtin) in the virgin program, G = p(t1; : : : ; tn), withnew atom, G0 = p0(t1; : : : ; tn). Hen
eforth, G0 will denote the rename of G.Top-level
alls, as su
h those spe
i�ed in the export de
larations of a moduleinterfa
e, are dire
ted at the renamed predi
ates. Renaming ensures that
allsin one version of the program
annot normally invoke predi
ates in the other.One ex
eption is with meta-
alls whi
h o

ur in the renamed program. Thesebuild unrenamed goals and thus
all the virgin program. The other ex
eptionis with asserts that o

ur in the renamed program. The bodies of asserted
lauses are
omposed of unrenamed goals and therefore
an
all into the virginprogram. The important point is that these
alls (and those they generate) donot need to be tra
ked to safely reason about the
all and answer patterns ofthe renamed program. This means that, if desired, a meta-
all su
h as
all(G)
an safely be ignored during analysis. Note, however, that pre
ision may beimproved by repla
ing
all(G) with the goalG0 if its prin
ipal fun
tor is known.To summarise, the two program model of [3,4℄ essentially buys safety at theexpense of doubling the size of the program.With this model in mind, se
tion 2 details how meta-
alls and solution gath-ering goals are handled, and se
tions 3 and 4 explains how assert and retra
tgoals are dealt with. As far as we aware, previous work has not
onsideredthe solution gathering problem and also the literature on handling assert and2

retra
t
ontains a number of holes. The appendix lists the groundness abstra
-tions for a set of (less problemati
) builtins. Se
tion 5
on
ludes.2 Meta-
all and bagof problemThe two program model of [2,4℄ enables meta-
alls to G to be (essentially)ignored during analysis. If the prin
ipal fun
tor of G is known, however, it isusually better to repla
e the meta-
all with a
all to G0 as is des
ribed below.2.1 The
all, on
e and not goalsGoals su
h as
all(G) and on
e(G)
an be handled as if they were G0. Goalssu
h as not(G) and n+(G), however, are repla
ed with the goal p(X1; : : : ; Xn)where p is a new predi
ate symbol and var(G) = fX1; : : : ; Xng. The newpredi
ate is de�ned as the
lause p(X1; : : : ; Xn) :- G0, !, fail and the fa
tp(X1; : : : ; Xn). This essentially unfolds the de�nition of not(G0).2.2 The bagof, setof and �ndall goalsThese goals are not entirely straightforward to abstra
t sin
e they
annot betreated as normal meta-
alls. The meta-
all bagof(T , G, B) binds B to a listof instan
es of the template T generated through all the proofs of the goal G.(To simplify the presentation, we assume that T and B are variables.) Themeta-
all fails if G fails. More generally, meta-
alls
an take the form bagof(T ,Y1b : : :bYnbG, B) where b denotes existential quanti�
ation. Variables that arenot quanti�ed (and do not
orrespond to T)
an be bound by a proof ofG. The goal bagof(T , Y1b : : :bYmbG, B)
an be handled by repla
ing it withp(X1; : : : ; Xn; B) where var(G) n fT; Y1; : : : ; Ymg = fX1; : : : ; Xng and p is anew predi
ate de�ned by the
lause p(X1; : : : ; Xn; B) :- G0,
opy term(T , B).G0
annot propagate bindings through Y1; : : : ; Ym sin
e these variables are notarguments of p. The setof meta-
all
an be treated similarly.The meta-
all �ndall(T , G, B) di�ers from bagof and setof in that it alwayssu

eeds and never binds any variables of G. Furthermore, the solution listis made up of variants of the instan
es of T that are generated through solv-ing G. The meta-
all is thus handled by repla
ing �ndall(T , G, B) with thegoal p(X1; : : : ; Xn; B) where var(G) n fTg = fX1; : : : ; Xng and p is a newpredi
ate de�ned by the
lauses p(X1; : : : ; Xn; B) :- G0,
opy term(T , B) andp(X1; : : : ; Xn; B) :- ground(B). 3

Observe that
opy term(T;B) is not des
ribed by the grounding dependen
yB T . If it were, the groundness of T and B after the exe
ution of the
ompound goal
opy term(T;B), T = a would be des
ribed by (B T)^T =T ^ B, whi
h is in
orre
t. To handle
opy term a

urately it is ne
essaryto extend the �xpoint engine to ground B if T is ground when the goal isen
ountered.3 The assert problemThe database mutation predi
ates are assert, retra
t and abolish. The retra
tand abolish builtins remove
lauses from the database,
annot a�e
t safety,and thus are not as problemati
 as assert. With the two program model,however, asserts
an be handled safely.3.1 Exploiting dynami
 de
larationsOne simple ta
ti
 is based on inspe
ting the dynami
 de
larations of the pro-gram sin
e it is normally only permissible to assert
lauses whose head predi-
ate symbols are dynami
 [8℄. If p=n is de
lared dynami
, then a (nop)
lausep0(X1; : : : ; Xn)
an be added to the renamed program so as to ensure thatthe answer pattern
al
ulated for p0 is safe. The nop
lause is a devi
e thatis introdu
ed temporarily for analysis: it should not appear in the
ode gen-erated for the renamed program. In this s
heme, the assert goals in both thevirgin and renamed program must be retained and the behaviour of assert(slightly) revised. Spe
i�
ally, a
all assert((H :- B1; : : : ; Bn)) must both addH :- B1; : : : ; Bn to the virgin program and add H 0 :- B1; : : : ; Bn to the re-named program. This ensures
onsisten
y between the two versions of theprogram. The semanti
s of retra
t also needs to be amended to keep both ver-sions of the program
onsistent. Note that the body atoms of both asserted
lauses are not renamed and thus only generate
alls into the virgin program.The asserted
lauses do not therefore
ompromise the safety of the
all andanswer patterns
al
ulated for the renamed predi
ates.3.2 Exploiting prin
ipal fun
tor informationThe dynami
 de
larations provide a useful safety net for handling asserts.Often, however, the prin
ipal fun
tors of all the head and body atoms of all theasserted
lauses are known at
ompile-time. This enables asserts to be analysedwithout resorting to safe (albeit impre
ise) nop
lauses. Spe
i�
ally,
onsider4

the goal assert((H :- B1; : : : ; Bn)) and suppose that the prin
ipal fun
tors ofH, B1; : : : ; Bn are all known (rather than, say, uninstantiated variables). Thenthe H 0 :- B01; : : : ; B0n
lause
an be added to the renamed program for thepurposes of analysis. As with nop
lauses, the renamed
lause is merely ananalysis devi
e and should not appear in the
ode generated for the renamedprogram. Also like before, the assert goals must be retained. With the modi�edassert semanti
s, this again adds H :- B1; : : : ; Bn to the virgin program andH 0 :- B1; : : : ; Bn to the renamed program. The
hief advantage of this ta
ti
over just exploiting dynami
 de
larations is that it may improve the pre
isionof the answer pattern of an asserted
lause.In
ases where we do not have full knowledge at
ompile-time of all the asserted
lauses, we still need to resort to the nop ta
ti
. Spe
i�
ally, if a program
ontains an assert with a
lause that
ontains a body atom whose prin
iplefun
tor is not known at
ompile-time, then the nop ta
ti
 has to be applied.Similarly, if the program
ontains a meta-
all to a goal whose prin
iple fun
toris not known, then the nop ta
ti
 has to be applied. This is be
ause, in general,unknown meta-
alls and body atoms may take the form assert(p(X1; : : : ; Xn))where p=n is dynami
.3.3 Exploiting groundness informationIf the program does not need to
ontain nop
lauses (for the reasons explainedabove), then pre
ision
an be further improved by inferring the groundnessinformation that des
ribes the program state at the time at whi
h the as-sert goal is en
ountered. Spe
i�
ally, for the goal assert((H :- B1; : : : ; Bn)),the ta
ti
 is to dedu
e the grounding dependen
ies between fX1; : : : ; Xmg =var(H :- B1; : : : ; Bn) at the program point at whi
h the assert o

urs. Thisis a
hieved by inserting the
all p(X1; : : : ; Xm) into the renamed programimmediately prior to the assert goal where p=m is a new predi
ate symbol.The p=m goal re
ords the state of the X1; : : : ; Xm variables. To ensure thatthe
all su

eeds (without binding X1; : : : ; Xm) the nop fa
t p(X1; : : : ; Xm) isadded to the renamed program. Observe that the
all and answer patternsof p=m
oin
ide. To model the e�e
t of the bindings on X1; : : : ; Xm, the
lauses H 0 :- q(X1; : : : ; Xm); B01; : : : ; B0n and q(X1; : : : ; Xm) :- p(X1; : : : ; Xm)are added to the renamed program where q=m is another new predi
ate sym-bol. The �xpoint engine is (very slightly) modi�ed to re
ognise the q=m
lauseas assert related and spe
i�
ally bar the p(X1; : : : ; Xm) body atom from
on-tributing to the
all pattern of p=m. Otherwise
all and answer patterns arisingwithin the q=m are tra
ed normally. Hen
e the
all pattern on p=m
orre-sponds to the answer pattern on q=m whi
h, in turn, propagates the bindingson X1; : : : ; Xm into the asserted
lause.5

4 The retra
t problemAs previously explained, the problem with a goal su
h as retra
t((H :- B))is essentially one of pre
ision: retra
t goals
an be ignored but this loses thegrounding e�e
ts of mat
hing H :- B against the dynami
 database. An anal-ogous problem o

urs with
lause((H :- B)) whi
h
an be interpreted as anon-mutating read of the dynami
 database. If the prin
ipal fun
tor of H isknown at
ompile-time to be p=n and the (stati
 and dynami
)
lauses for p=nare known to be fa
ts, then the goals retra
t(H :- B) and
lause(H :- B)
anbe handled as the
onjun
tion
all(H), B = true. A simpler ta
ti
 is appli
ablefor goals su
h as retra
t(H) and
lause(H) where H is bound at
ompile-timeto a fa
t with a prin
ipal fun
tor p=n. Both retra
t and
lause goals
an thenbe repla
ed with the
all H 0. This is safe be
ause if the dynami
 database
on-tains a mat
hing fa
t, then the answer pattern for p0=n will safely approximatethe e�e
t of unifying H with the database.5 Dis
ussionMost goals
an be handled relatively straightforwardly in program analysis:
ompound goals su
h as G1; G2, G1 �> G2, et

an dealt with by simple pro-gram transformations; table lookup
an be used for most builtins; and even
at
h and throw
an be supported [4℄. Constraints
an be handled straight-forwardly by re-writing to three-variable form [1℄. For example, w = x+ y � z,is written to w = x + t; t = y � z, where t is a fresh, temporary variable.Table lookup is then used to map three-variable forms to Boolean formulae,for example w = x + t and t = y � z map to f1 = (w (x ^ t)) ^ (x (w ^ t)) ^ (t (w ^ x)) and f2 = (t (y ^ z)). The grounding behaviour ofthe
onstraint w = x+ t; t = y�z is des
ribed by f1^f2. (Temporary variablessu
h as t
an be removed by proje
tion, for example, t
an be eliminated by9t:(f1 ^ f2) = (w (x ^ y ^ z)) ^ (x (w ^ y ^ z)). However, we
hoose notto do this, preferring to keep the abstra
ter as simple as possible. This onlyreally a�e
ts EPosN .)The real problem in handling builtins is that the large number of
ases meansthat it is easy to a

idently introdu
e some impre
ision. An appendix thusdetails how our analyser handles various builtins. It is intended to help otherdevelopers in the analysis
ommunity. Other issues that have not be dis
ussedin this note, however, are more problemati
. For example, supporting programsthat are broken a
ross several �les [4,5,9℄ is a study within its own right. Atpresent, our analyser has no support for modules. It also
annot handle termmutating setarg/3 goals. 6

Referen
es[1℄ N. Baker and H. S�ndergaard. De�niteness Analysis for CLP(R). AustralianComputer S
ien
e Communi
ations, 15(1):321{332, 1993.[2℄ F. Bueno, D. Cabeza, M. Gar
��a de al Banda, M. Hermenegildo, and G. Puebla.Abstra
t Fun
tions for the Analysis of Builtins in the PLAI System. Te
hni
alReport CLIP1/95.0, Te
hni
al University of Madrid (UPM), Spain, 1995.[3℄ F. Bueno, D. Cabeza, M. Hermenegildo, and G. Puebla. Data-Flow Analysis ofProlog Programs with Extra-Logi
al Features. Te
hni
al Report CLIP5/95.0,Te
hni
al University of Madrid (UPM), Spain, 1995.[4℄ F. Bueno, D. Cabeza, M. Hermenegildo, and G. Puebla. Global Analysis ofStandard Prolog Programs. In European Symposium on Programming, pages108{124. Springer-Verlag, 1996. LNCS 1058.[5℄ M. Codish, S. Debray, and R. Gia
obazzi. Compositional Analysis of ModularLogi
 Programs. In Prin
iples of Programming Languages, pages 451{464. ACMPress, 1993.[6℄ A. Cortesi and G. File. Abstra
t interpretation of Prolog: the treatment ofbuilt-ins. In Pro
eedings of the GULP Conferen
e on Logi
 Programming, pages87{104, 1992.[7℄ S. Debray. Flow Analysis of Dynami
 Logi
 Programs. Journal of Logi
Programming, 7(2):149{176, 1989.[8℄ P. Deransart, A. Ed-Dbali, and L. Cervoni. Prolog: The Standard. Springer-Verlag, 1996.[9℄ M. Hermenegildo, K. Marriott, G. Puebla, and P. Stu
key. In
remental Analysisof Logi
 Programs. In International Conferen
e on Logi
 Programming, pages797{812. MIT Press, 1995.A Groundness abstra
tions for builtinsIn order to make the appendix
ontainable, we give representative ground-ness abstra
tions for a range of builtins. In the sequel fi denotes the formula^var(ti) where var(ti) is the set of variables o

urring in the term ti. Notethat ^; = true.The following builtins ground all their arguments: </2, >/2, =</2, >=/2, =:=/2,=\=/2, abolish/1, abolish/2, absolute �le name/2, atom/1, atom
hars/2,atomi
/1,
ompile/1,
onsult/1,
hara
ter
ount/2,
lose/1,
urrent atom/1,
urrent input/1,
urrent module/1,
urrent module/2,
urrent op/3,
urrent output/1,
urrent stream/3, ensure loaded/1, erase/1,
oat/1,7

ush output/1, get/1, get/2, get0/1, get0/2, ground/1, integer/1, is/2, leash/1,line
ount/2, line position/2, load/1, name/2, nl/1, number/1,number
hars/2, numbervars/3, op/3, open/3, open/4, open null stream/1,peek
har/1, peek
har/2, prolog
ag/2, prolog
ag/3, prompt/2, put/1,put/2, re
onsult/1, see/1, seeing/1, set input/1, set output/1, skip/1, skip/2,skip line/1, sour
e �le/1, statisti
s/2, stream
ode/2, tab/1, tab/2, tell/1,telling/1, ttyget/1, ttyget0/1, ttyput/1, ttyskip/1, ttytab/1, use module/2,use module/3, version/1.The following builtins are abstra
ted as true: �</2, �>/2, �=</2, �>=/2, \==/2,break/0,
allable/1,
ompound/1, debug/0, debugging/0, dif/2, display/1,expand term/2, �leerrors/0, garbage
olle
t/0, g
/0, help/0, listing/0,listing/1, nl/0, nodebug/0, no�leerrors/0, nog
/0, nonvar/1, nospyall/0,notra
e/0, otherwise/0, phrase/2, phrase/3, print/1, read/1, repeat/0,retra
tall/1, subsumes
hk/2, seen/0, simple/1, skip line/0, statisti
s/0,told/0, true/0, tty
ush/0, ttynl/0, var/1, version/0, write/1, writeq/1,write
anoni
al/1.The following builtins are des
ribed by the bottom element of the groundnessdomain (usually false): abort/0, fail/0, false/0, halt/0, halt/1.The �nal table details some (non-trivial) grounding dependen
ies.t1 = t2 f1 $ f2 t1 =.. t2 f1 $ f2t1 == t2 f1 $ f2 C(t1, t2, t3) t1 = [t2jt3℄arg(t1, t2, t3) f1 ^ (f3 f2)
ompare(t1, t2, t3) f1
urrent predi
ate(t1, t2) f1 format(t1, t2) f1format(t1, t2, t3) f1 ^ f2 fun
tor(t1, t2, t3) f2 ^ f3hash term(t1, t2) f2 hash term(t1, t2, t3, t4) f2 ^ f3 ^ f4instan
e(t1, t2) f1 keysort(t1, t2) f1 $ f2length(t1, t2) f2 portray
lause(t1, t2) f1predi
ate property(t1, t2) f2 print(t1, t2) f1read(t1, t2) f1 sort(t1, t2) f1 $ f2sour
e �le(t1, t2) f2 write(t1, t2) f1write
anoni
al(t1, t2) f1 writeq(t1, t2) f1For many goals, partial evaluation
an be used to improve pre
ision when thearguments of the goal are partially instantiated. For example, the uni�
ationf(X; Y) = f(U; V)
an be redu
ed to the
onjun
tion X = U , Y = V whi
h,in turn, is des
ribed as (X $ U)^ (Y $ V) rather than (X ^ Y)$ (U ^ V).C/3 is handled by transforming the goal into an expli
it uni�
ation.
8

