University of

"1l Kent Academic Repository

Heaton, Andrew and King, Andy (2000) Abstracting Builtins for Groundness
Analysis. University of Kent, School of Computing, Computing Laboratory,

8 pp.

Downloaded from
https://kar.kent.ac.uk/22058/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/22058/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Abstracting Builtins for Groundness Analysis

Andy Heaton and Andy King

School of Computer Studies, University of Leeds, LS2 9JT, UK.
Computing Laboratory, University of Kent, CT2 TNF, UK.

Abstract

This note clarifies how to handle solution gathering meta-calls, asserts and retracts
in the groundness analysis of Prolog.

1 Introduction

Most work on static program analysis for Prolog has concentrated on the
design of abstract domains and their operations, rather than issues of how
builtins such as meta-calls and dynamic predicates should be handled. Many
realistic programs contain such builtins, however, and so this is an important
issue to address when constructing an analyser [2—4,6,7]. This note details how
builtins are handled in a groundness analyser developed at the University of
Kent in collaboration with the Universities of Ben-Gurion and Leeds. This
analyser is composed to two core modules: an abstracter module which takes,
as input, a program and produces, as output, an abstract version of the pro-
gram that only expresses grounding dependency information; a fixpoint engine
which traces the dependencies in the abstract program to infer which argu-
ments of the input program are ground. Builtins pose (at least) four problems
for static analysis and, in particular, program abstraction:

meta-call problem The problem with a goal such as call(G) is that the prin-
cipal functor of the goal G might not be known until run-time and thus we
cannot in general trace the call to G and deduce its answer (and those its
possibly generates through sub-goals). Analogous safety problems can occur
with bagof, findall, once, not and setof.

solution gathering problem A particular problem that occurs in solution gath-
ering meta-calls such as findall(T", p(S, T), B) is that they cannot simply
be abstracted as p(S, T') or even p(S, B). This is because the goal findall(T’,
p(S, T'), B) neither instantiates S nor 7' (though it might ground B). Anal-
ogous problems occur with bagof and setof.

Preprint submitted to Elsevier Preprint 20 December 1999

assert problem The problem with assert goals is that they can extend the
program at run-time and thereby introduce new calls and answers. Specif-
ically, suppose that a program consists of the facts p(c) and q(-) and the
clause r(X) :- assert((p(Y) :- q(Y))), p(X). The query r(X) will call the as-
sert goal. This asserts the clause p(Y') :- q(Y) which, in turn, introduces a
new computation path through q(Y’) (which has true as its call and answer
patterns) and leads to answer pattern of true for the top-level goal r(X). If
the assert was merely ignored, then call and answer patterns for q would be
missed, and an incorrect answer pattern for r would be inferred.

retract problem The problem with a retract goal is basically one of preci-
sion. Consider a program that shares data between two program points
using dynamic predicates to implement a blackboard mechanism. The call
assert(data(/)) will write (and extend) the blackboard and elsewhere in
the program the call retract(data(O)) will read (and prune) the black-
board. The goal retract(data(O)) can be safely abstracted by true. Precision
could be improved, however, if we can infer that [is ground when the goal
assert(data(/)) is called because then retract(data(O)) must ground O.

To resolve the meta-call problem (and much of the assert problem) we follow
the elegant analysis model set out in [3,4] in which there are assumed to be
two versions of the program: one (virgin) program that is unanalysed; and
another (renamed) version that is completely analysed. The idea is for the
renamed version to only express information about the calls that the analysis
is able to trace. The renamed program is constructed by substituting each
atom (that is not a builtin) in the virgin program, G = p(ty,...,t,), with
new atom, G' = p'(ty,...,t,). Henceforth, G' will denote the rename of G.
Top-level calls, as such those specified in the export declarations of a module
interface, are directed at the renamed predicates. Renaming ensures that calls
in one version of the program cannot normally invoke predicates in the other.
One exception is with meta-calls which occur in the renamed program. These
build unrenamed goals and thus call the virgin program. The other exception
is with asserts that occur in the renamed program. The bodies of asserted
clauses are composed of unrenamed goals and therefore can call into the virgin
program. The important point is that these calls (and those they generate) do
not need to be tracked to safely reason about the call and answer patterns of
the renamed program. This means that, if desired, a meta-call such as call(G)
can safely be ignored during analysis. Note, however, that precision may be
improved by replacing call(G) with the goal G" if its principal functor is known.
To summarise, the two program model of [3,4] essentially buys safety at the
expense of doubling the size of the program.

With this model in mind, section 2 details how meta-calls and solution gath-
ering goals are handled, and sections 3 and 4 explains how assert and retract
goals are dealt with. As far as we aware, previous work has not considered
the solution gathering problem and also the literature on handling assert and

retract contains a number of holes. The appendix lists the groundness abstrac-
tions for a set of (less problematic) builtins. Section 5 concludes.

2 Meta-call and bagof problem

The two program model of [2,4] enables meta-calls to G' to be (essentially)
ignored during analysis. If the principal functor of G is known, however, it is
usually better to replace the meta-call with a call to G' as is described below.

2.1 The call, once and not goals

Goals such as call(G) and once(G) can be handled as if they were G'. Goals
such as not(G) and \+(G), however, are replaced with the goal p(X7, ..., X,)
where p is a new predicate symbol and var(G) = {Xi,...,X,}. The new
predicate is defined as the clause p(Xi,...,X,) - G', |, fail and the fact
p(X1,...,X,). This essentially unfolds the definition of not(G").

2.2 The bagof, setof and findall goals

These goals are not entirely straightforward to abstract since they cannot be
treated as normal meta-calls. The meta-call bagof(T', G, B) binds B to a list
of instances of the template 7" generated through all the proofs of the goal G.
(To simplify the presentation, we assume that 7" and B are variables.) The
meta-call fails if G fails. More generally, meta-calls can take the form bagof(T,
Y1"...7Y,"G, B) where ~ denotes existential quantification. Variables that are
not quantified (and do not correspond to 7') can be bound by a proof of
G. The goal bagof(T, Y1~...7Y,,"G, B) can be handled by replacing it with
p(X1,...,X,, B) where var(G) \ {T,Y1,..., Y} = {Xy,...,X,,} and p is a
new predicate defined by the clause p(X;, ..., X,, B) - G', copy_term(7T', B).
G' cannot propagate bindings through Y7, ..., Y;, since these variables are not
arguments of p. The setof meta-call can be treated similarly.

The meta-call findall(T', G, B) differs from bagof and setof in that it always
succeeds and never binds any variables of G. Furthermore, the solution list
is made up of variants of the instances of 7" that are generated through solv-
ing G. The meta-call is thus handled by replacing findall(T', G, B) with the
goal p(X1y,...,X,, B) where var(G) \ {T'} = {X4,...,X,} and p is a new
predicate defined by the clauses p(Xy, ..., Xy, B) - G', copy_term (T, B) and
p(Xy,...,X,, B) :- ground(B).

Observe that copy_term(T, B) is not described by the grounding dependency
B <« T. If it were, the groundness of 7" and B after the execution of the
compound goal copy-term(7, B), T' = a would be described by (B <« T)AT =
T A B, which is incorrect. To handle copy_term accurately it is necessary
to extend the fixpoint engine to ground B if 1" is ground when the goal is
encountered.

3 The assert problem

The database mutation predicates are assert, retract and abolish. The retract
and abolish builtins remove clauses from the database, cannot affect safety,
and thus are not as problematic as assert. With the two program model,
however, asserts can be handled safely.

3.1 Exploiting dynamic declarations

One simple tactic is based on inspecting the dynamic declarations of the pro-
gram since it is normally only permissible to assert clauses whose head predi-
cate symbols are dynamic [8]. If p/n is declared dynamic, then a (nop) clause
p'(Xy,...,X,) can be added to the renamed program so as to ensure that
the answer pattern calculated for p’ is safe. The nop clause is a device that
is introduced temporarily for analysis: it should not appear in the code gen-
erated for the renamed program. In this scheme, the assert goals in both the
virgin and renamed program must be retained and the behaviour of assert
(slightly) revised. Specifically, a call assert((H :- By,..., B,)) must both add
H :- By,...,B, to the virgin program and add H' :- By,..., B, to the re-
named program. This ensures consistency between the two versions of the
program. The semantics of retract also needs to be amended to keep both ver-
sions of the program consistent. Note that the body atoms of both asserted
clauses are not renamed and thus only generate calls into the virgin program.
The asserted clauses do not therefore compromise the safety of the call and
answer patterns calculated for the renamed predicates.

3.2 Exploiting principal functor information

The dynamic declarations provide a useful safety net for handling asserts.
Often, however, the principal functors of all the head and body atoms of all the
asserted clauses are known at compile-time. This enables asserts to be analysed
without resorting to safe (albeit imprecise) nop clauses. Specifically, consider

the goal assert((H :- By, ..., B,)) and suppose that the principal functors of
H, By, ..., By, are all known (rather than, say, uninstantiated variables). Then
the H' :- BY,..., B}, clause can be added to the renamed program for the
purposes of analysis. As with nop clauses, the renamed clause is merely an
analysis device and should not appear in the code generated for the renamed
program. Also like before, the assert goals must be retained. With the modified
assert semantics, this again adds H :- By, ..., B, to the virgin program and
H' - By,..., B, to the renamed program. The chief advantage of this tactic
over just exploiting dynamic declarations is that it may improve the precision
of the answer pattern of an asserted clause.

In cases where we do not have full knowledge at compile-time of all the asserted
clauses, we still need to resort to the nop tactic. Specifically, if a program
contains an assert with a clause that contains a body atom whose principle
functor is not known at compile-time, then the nop tactic has to be applied.
Similarly, if the program contains a meta-call to a goal whose principle functor
is not known, then the nop tactic has to be applied. This is because, in general,
unknown meta-calls and body atoms may take the form assert(p(Xy, ..., X,))
where p/n is dynamic.

3.8 Exploiting groundness information

If the program does not need to contain nop clauses (for the reasons explained
above), then precision can be further improved by inferring the groundness
information that describes the program state at the time at which the as-
sert goal is encountered. Specifically, for the goal assert((H :- By, ..., By,)),
the tactic is to deduce the grounding dependencies between {X,..., X,,} =
var(H :- By,...,B,) at the program point at which the assert occurs. This
is achieved by inserting the call p(X3,...,X,,) into the renamed program
immediately prior to the assert goal where p/m is a new predicate symbol.
The p/m goal records the state of the X,..., X, variables. To ensure that
the call succeeds (without binding X1,..., X,,) the nop fact p(Xi,..., X,,) is
added to the renamed program. Observe that the call and answer patterns
of p/m coincide. To model the effect of the bindings on Xi,..., X,,, the
clauses H' - ¢(X1,..., X)), By, ..., Bl and ¢(Xy,...,Xp) - p(X1,..., Xp)
are added to the renamed program where ¢/m is another new predicate sym-
bol. The fixpoint engine is (very slightly) modified to recognise the ¢/m clause
as assert related and specifically bar the p(Xj, ..., X,,) body atom from con-
tributing to the call pattern of p/m. Otherwise call and answer patterns arising
within the ¢/m are traced normally. Hence the call pattern on p/m corre-
sponds to the answer pattern on ¢/m which, in turn, propagates the bindings
on Xi,...,X,, into the asserted clause.

4 The retract problem

As previously explained, the problem with a goal such as retract((H :- B))
is essentially one of precision: retract goals can be ignored but this loses the
grounding effects of matching H :- B against the dynamic database. An anal-
ogous problem occurs with clause((H :- B)) which can be interpreted as a
non-mutating read of the dynamic database. If the principal functor of H is
known at compile-time to be p/n and the (static and dynamic) clauses for p/n
are known to be facts, then the goals retract(H :- B) and clause(H :- B) can
be handled as the conjunction call(H), B = true. A simpler tactic is applicable
for goals such as retract(H) and clause(H) where H is bound at compile-time
to a fact with a principal functor p/n. Both retract and clause goals can then
be replaced with the call H'. This is safe because if the dynamic database con-
tains a matching fact, then the answer pattern for p'/n will safely approximate
the effect of unifying H with the database.

5 Discussion

Most goals can be handled relatively straightforwardly in program analysis:
compound goals such as G; Gy, G; —> G4, etc can dealt with by simple pro-
gram transformations; table lookup can be used for most builtins; and even
catch and throw can be supported [4]. Constraints can be handled straight-
forwardly by re-writing to three-variable form [1]. For example, w = x + y * z,
is written to w = x + t,t = y * z, where t is a fresh, temporary variable.
Table lookup is then used to map three-variable forms to Boolean formulae,
for example w = x +t and t = y* z map to fi = (w < (x A t)) A (z +
(wAt))A(t <+ (wAz)) and fo = (t < (y A 2)). The grounding behaviour of
the constraint w = x+t,t = yx*z is described by fi A fo. (Temporary variables
such as ¢ can be removed by projection, for example, ¢ can be eliminated by
F(fiNfo) =(w+ (xAyA2))A(x <+ (wAyA2)). However, we choose not
to do this, preferring to keep the abstracter as simple as possible. This only
really affects EPosy.)

The real problem in handling builtins is that the large number of cases means
that it is easy to accidently introduce some imprecision. An appendix thus
details how our analyser handles various builtins. It is intended to help other
developers in the analysis community. Other issues that have not be discussed
in this note, however, are more problematic. For example, supporting programs
that are broken across several files [4,5,9] is a study within its own right. At
present, our analyser has no support for modules. It also cannot handle term
mutating setarg/3 goals.

References

[1] N. Baker and H. Sgndergaard. Definiteness Analysis for CLP(R). Australian
Computer Science Communications, 15(1):321-332, 1993.

[2] F. Bueno, D. Cabeza, M. Garcia de al Banda, M. Hermenegildo, and G. Puebla.
Abstract Functions for the Analysis of Builtins in the PLAI System. Technical
Report CLIP1/95.0, Technical University of Madrid (UPM), Spain, 1995.

[3] F. Bueno, D. Cabeza, M. Hermenegildo, and G. Puebla. Data-Flow Analysis of
Prolog Programs with Extra-Logical Features. Technical Report CLIP5/95.0,
Technical University of Madrid (UPM), Spain, 1995.

[4] F. Bueno, D. Cabeza, M. Hermenegildo, and G. Puebla. Global Analysis of
Standard Prolog Programs. In Furopean Symposium on Programming, pages
108-124. Springer-Verlag, 1996. LNCS 1058.

[5] M. Codish, S. Debray, and R. Giacobazzi. Compositional Analysis of Modular
Logic Programs. In Principles of Programming Languages, pages 451-464. ACM
Press, 1993.

[6] A. Cortesi and G. File. Abstract interpretation of Prolog: the treatment of
built-ins. In Proceedings of the GULP Conference on Logic Programming, pages
87-104, 1992.

[7] S. Debray. Flow Analysis of Dynamic Logic Programs. Journal of Logic
Programming, 7(2):149-176, 1989.

[8] P. Deransart, A. Ed-Dbali, and L. Cervoni. Prolog: The Standard. Springer-
Verlag, 1996.

[9] M. Hermenegildo, K. Marriott, G. Puebla, and P. Stuckey. Incremental Analysis
of Logic Programs. In International Conference on Logic Programming, pages
797-812. MIT Press, 1995.

A Groundness abstractions for builtins

In order to make the appendix containable, we give representative ground-
ness abstractions for a range of builtins. In the sequel f; denotes the formula
Avar(t;) where var(t;) is the set of variables occurring in the term ¢;. Note
that AD = true.

The following builtins ground all their arguments: </2, >/2,=</2, >=/2, =:=/2,
=\=/2, abolish/1, abolish/2, absolute file_.name/2, atom/1, atom_chars/2,
atomic/1, compile/1, consult/1, character_count/2, close/1, current_atom/1,
current_input/1, current_module/1, current_module/2, current_op/3,
current_output/1, current_stream/3, ensure_loaded/1, erase/1, float/1,

flush_output/1, get/1, get/2, get0/1, get0/2, ground /1, integer/1, is/2, leash /1,
line_count/2, line position/2, load/1, name/2, nl/1, number/1,
number_chars/2, numbervars/3, op/3, open/3, open/4, open_null_stream/1,
peek_char/1, peek_char/2, prologflag/2, prologflag/3, prompt/2, put/1,
put/2, reconsult/1, see/1, seeing/1, set_input/1, set_output/1, skip/1, skip/2,
skip_line/1, source file/1, statistics/2, stream_code/2, tab/1, tab/2, tell/1,
telling/1, ttyget/1, ttyget0/1, ttyput/1, ttyskip/1, ttytab/1, use_module/2,
use_module/3, version/1.

The following builtins are abstracted as true: </2, @>/2, 0=</2, @>=/2, \==/2,
break/0, callable/1, compound/1, debug/0, debugging/0, dif/2, display/1,
expand_term/2, fileerrors/0, garbage_collect/0, gc/0, help/0, listing/0,
listing/1, nl/0, nodebug/0, nofileerrors/0, nogc/0, nonvar/1, nospyall/0,
notrace/0, otherwise/0, phrase/2, phrase/3, print/1, read/l, repeat/0,
retractall/1, subsumes_chk/2, seen/0, simple/1, skip_line/0, statistics/0,
told/0, true/0, ttyflush/0, ttynl/0, var/1, version/0, write/1, writeq/1,
write_canonical/1.

The following builtins are described by the bottom element of the groundness
domain (usually false): abort/0, fail/0, false/0, halt/0, halt/1.

The final table details some (non-trivial) grounding dependencies.

=1ty fL < fo th=..t s fo
th ==ty fL & fo C(ty, ta, t3) t1 = [ta|ts]
arg(ty, ta, t3) f1 A (fs < fo) compare(ty, ta, t3) fi
current_predicate(ty, t2) fi format(ty, t2) fi
format(ty, t2, t3) f1 A fo functor(ty, ta, t3) fa A f3
hash_term(ty, t2) fo hash_term(ty, to, t3, ts) fo A fs A fa
instance(t1, t2) fi keysort(ty, t2) f1 <> f2
length(ty, t2) fo portray_clause(ti, t2) fi
predicate_property(t, t2) fo print(ty, t2) fi
read(tq, t2) f1 sort(ty, ta) f1 <> f
source_file(ty, t2) fo write(ty, t2) fi
(t1, t2) (t1, t2)

write_canonical (¢, t2) fi writeq

For many goals, partial evaluation can be used to improve precision when the
arguments of the goal are partially instantiated. For example, the unification
f(X,Y) = f(U,V) can be reduced to the conjunction X = U, Y = V which,
in turn, is described as (X <> U) A (Y <> V) rather than (X AY) <> (UAV).
C/3 is handled by transforming the goal into an explicit unification.

