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Abstract
Comparing the performance of programming languages is
difficult because they differ in many aspects including pre-
ferred programming abstractions, available frameworks, and
their runtime systems. Nonetheless, the question about rela-
tive performance comes up repeatedly in the research com-
munity, industry, and wider audience of enthusiasts.

This paper presents 14 benchmarks and a novel method-
ology to assess the compiler effectiveness across language
implementations. Using a set of common language abstrac-
tions, the benchmarks are implemented in Java, JavaScript,
Ruby, Crystal, Newspeak, and Smalltalk. We show that the
benchmarks exhibit a wide range of characteristics using
language-agnostic metrics. Using four different languages
on top of the same compiler, we show that the benchmarks
perform similarly and therefore allow for a comparison of
compiler effectiveness across languages. Based on anec-
dotes, we argue that these benchmarks help language im-
plementers to identify performance bugs and optimization
potential by comparing to other language implementations.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—Compilers

Keywords Benchmarking, Languages, Virtual Machines

1. Introduction
Programming languages vary widely in design and program-
ming models. Frameworks and community-specific philoso-
phies cause further variations in how they are used. Despite
these differences, when implementing languages, one wants
to compare the performance to existing systems. Or to put it
less formally: we’d like to know whether we’re fast yet!
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With the wide variety of languages, there is no trivial
answer. It is also unclear whether any single answer is useful
outside of a specific context. Nonetheless, the question is
asked again and again, which leads us to search for a way
to answer one specific question: is one implementation of a
widely used set of core language abstractions as fast as other
implementations of the same set of abstractions?

We conjecture that a commonly supported set of core lan-
guage abstractions (incl. objects, polymorphic methods, clo-
sures, and arrays) is relevant for general application perfor-
mance. Hence, it is necessary to optimize these abstractions
to reach optimal performance. However, the set of abstrac-
tions is not universal. For example, programs in Haskell use
language abstractions that are different from those in imper-
ative languages. Another aspect is that optimizing only a set
of core abstractions is not sufficient for optimal performance
of all uses of a language. Programs typically use very ex-
pressive but language-specific abstractions, which need to
be optimized as well. Nonetheless, a common set of abstrac-
tions likely minimizes the performance impact of different
language semantics and enables a comparison.

This paper assesses whether we can use benchmarks
written using only these core language abstractions for
cross-language comparisons. We compare the performance
of four object-oriented languages built on the same plat-
form, namely the HotSpot JVM with the Graal just-in-time
(JIT) compiler [16] and the Truffle language implementation
framework [18]. We find that these implementations exhibit
very similar performance for our set of 14 benchmarks. In
addition, we compare 6 other language implementations to
confirm that the results reflect the expected performance dif-
ferences. Together with anecdotes about found performance
bugs, the results indicate that our approach is adequate to de-
termine the compiler effectiveness, i.e., the degree by which
the core language abstractions are optimized by the compiler
and the runtime system. The contributions of this work are:
• a novel methodology to compare the performance of dif-

ferent language implementations for a common set of
core language abstractions

• a freely available set of benchmarks
• a characterization of the benchmarks and the aspects they

measure based on language-independent metrics
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• a performance evaluation of 10 implementations of 6
languages showing a wide range of optimization levels

2. Background
When evaluating programming language implementations,
benchmarks can be used to compare a wide range of charac-
teristics including computational performance and resource
footprint. This paper focuses on computational performance
in order to guide implementation and optimization.

Benchmark suites are typically built around specific lan-
guages or platforms. For the Java virtual machine (JVM),
there exist commercial suites such as SPECjvm20081 and
academic projects such as DaCapo [1] and DaCapo con
Scala [13]. JavaScript has a set of competing projects with
different goals including JetStream,2 Octane,3 and Kraken.4

However, when it comes to comparing the performance of
different programming languages, only the Computer Lan-
guage Benchmarks Game5 gained wider attention.

The remainder of this section discusses these suites, ex-
amines the current state of cross-language benchmarking,
and identifies common metrics to characterize benchmarks.

2.1 Benchmark Suite Design
SPECjvm2008 SPECjvm2008 is designed to measure the
performance of the JVM and its libraries, focusing on pro-
cessor and memory usage. The benchmarks include text, nu-
merical, and media processing. Shiv et al. [14] characterized
the benchmarks based on system-level metrics. While these
metrics are conceptually language-independent, they do not
provide a higher-level insight into the benchmarks to get an
intuition of language-level behavior.

DaCapo DaCapo [1] provides Java benchmarks and an ex-
perimental methodology to account for the JVM’s dynamic
compilation and garbage collection. Its goal is to enable re-
search based on an open and easy-to-use suite that represents
complex applications from a wide range of domains.

The benchmarks are characterized based on static code
size and complexity metrics. Additionally, they determine
the number of bytecodes in methods executed at least once,
as well as instruction cache misses on the processor level
during execution. To capture characteristics relevant for
garbage collectors (GC), they also report metrics on object
lifetime and demographics as well as heap composition. Fur-
thermore, principal component analysis (PCA) [5] is used
to assess the difference between benchmarks and argue that
they cover a wide variety of dynamic behaviors.

1 SPECjvm2008, https://www.spec.org/jvm2008/
2 Introducing the JetStream Benchmark Suite, Apple Inc., access date:
2016-02-14, https://webkit.org/blog/3418/introducing-the-j
etstream-benchmark-suite/
3 Octane, Google, https://developers.google.com/octane/
4 Kraken, Mozilla Foundation, https://wiki.mozilla.org/Kraken
5 The Computer Language Benchmarks Game, Isaac Gouy, http://benc
hmarksgame.alioth.debian.org/

DaCapo con Scala The work of Sewe et al. [13] uses a
similar approach for a suite of application benchmarks for
Scala, which also runs on the JVM. DaCapo con Scala aims
at helping JVM engineers and researchers to optimize JVMs
for languages besides Java.

Compared to DaCapo, here the focus is more on the code
than on the memory behavior. Furthermore, they focus on ar-
chitecture and VM-independent metrics by comparing met-
rics on the bytecode level, which is the common interme-
diate language for Java and Scala. The considered metrics
include code size metrics, instruction mix statistics based on
bytecodes, call site polymorphism, stack usage, method and
basic block hotness, argument passing, use of reflection, and
primitive boxing. PCA is used to argue that the benchmarks
are different from each other and thereby provide relevant
insights to assess a JVM’s performance.

JetStream, Kraken, Octane In contrast to the JVM vendor-
independent benchmark suites, vendors developed their own
suites for JavaScript. Specifically, Apple has JetStream,
Mozilla has Kraken, and Google has its Octane suite. The
main difference between them seems to be the specific goal
and weighting of workloads within the suites. The bench-
marks themselves seem to be selected based on the applica-
tion scenarios they represent. Furthermore, the suites seem
to select benchmarks based on historic precedence, i.e., they
include benchmarks that seem to have proven to be useful
indicators in the past. While the suites provide a brief char-
acterization of each benchmark, there does not seem to be a
formal characterization based on metrics.

2.2 Cross-Language Benchmarks
While discussing the pros and cons of programming lan-
guages has a long tradition and performance is often a part of
it, there does not seem to be any scientific effort in providing
a comprehensive set of cross-language benchmarks.

The Computer Language Benchmarks Game. The Com-
puter Language Benchmarks Game is the only widely recog-
nized resource for benchmarks in different languages. Cur-
rently, it provides a collection of 14 benchmarks for 29 lan-
guage implementations. The rules for benchmark implemen-
tations state that the same algorithm should be used and
that an implementation should produce the same output. Be-
yond these two requirements, benchmarks can be imple-
mented freely for each language. As a result, the Benchmark
Game has a wide variety of implementations for the same
benchmark in a single language. Variations include different
choices for how to express the algorithm as well as funda-
mentally different approaches for instance by using parallel
techniques instead of sequential code.

From a scientific perspective this means that the Bench-
mark Game’s rules are too permissive and allow for a too
great variation, which precludes many relevant conclusions
from such benchmarks. For this paper, the goal is to deter-
mine whether a language implementation successfully opti-
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mizes the execution of a given program with a focus on the
compiler. Thus, the benchmarks need to behave identical to
allow us to draw conclusions about the used compiler.

Other Projects. To our knowledge, there are only few other
projects that approach cross-language performance com-
parison systematically. This includes a comparison [6] of
C++, Java, Go, and Scala based on a loop recognition al-
gorithm [4]. This experiment gained a lot of attention from
users of these languages and was strongly criticized for the
way the benchmark was implemented for the different lan-
guages. This includes for instance criticism on the Java ver-
sion’s6 inefficient use of the collection library and that the
Go version7 should better use arrays instead of maps and
missed some caching that was introduced in the Java ver-
sion. Thus, the benchmarks between the languages were
not actually similar enough to allow for strong conclusions.
From these examples we conclude that a cross-language
benchmarking methodology requires a precise set of goals
and rules, which the benchmarks need to follow carefully.

Another project is the TechEmpower Web Framework
Benchmarks.8 This project uses small web services to com-
pare web frameworks and languages. These services serial-
ize JSON, query a database, or answer fortune-cookie mes-
sages. The goal is to assess the performance of a complete
web stack, including a language’s runtime as well as a spe-
cific framework. While this in itself is of high practical
value, it would not allow us to draw conclusions about the
effectiveness of a specific compiler.

2.3 Metrics for Benchmark Characterization
Dufour et al. [3] established guidelines for dynamic metrics
that can be used to characterize benchmarks, which are also
used by DaCapo and DaCapo con Scala. The guidelines
are meant to design metrics to summarize a benchmark in
a concise informative manner, allow for a comparison of
benchmarks, and guide compiler optimizations.

Dufour et al. identify five requirements. First of all, met-
rics need to be unambiguous so that it is clearly defined what
is measured. Furthermore, to characterize benchmark behav-
ior, the metrics need to be dynamic, i.e., relate to run-time as-
pects. They also need to be robust, i.e., not overly dependent
on program input, and discriminating such that behavioral
changes in a program are reflected in the metrics. Finally,
they should be machine independent. For the purpose of this
paper, the requirements need to be extended also to be rea-
sonably language-independent (cf. section 4).

6 Scala/Java Shootout, Jeremy Manson, access date: 2016-02-11,
http://jeremymanson.blogspot.co.at/2011/06/scala-java-sho
otout.html
7 Profiling Go Programs, Russ Cox, access date: 2016-02-11, http://bl
og.golang.org/profiling-go-programs
8 TechEmpower Web Framework Benchmarks, TechEmpower Inc., https:
//www.techempower.com/benchmarks/

The metrics identified by Dufour et al. include size mea-
surements such as the number of classes of an applica-
tion, the loaded classes, and the amount of loaded, exe-
cuted, and compiled bytecodes. The behavioral metrics in-
clude characteristics of the branching behavior and con-
trol flow changes, the density of array, floating point, and
pointer operations, as well as metrics on the polymorphism
of object-oriented behavior with respect to call site density,
receiver, and target polymorphism. Additionally they also
collect a number of metrics on allocation behavior and ob-
ject sizes. We use these metrics as a template for defining
language-independent metrics for this paper.

3. A Methodology for Cross-Language
Benchmarks

This section defines our goals for the performance compar-
ison of different languages. It further defines the core lan-
guage abstractions to be used by the benchmarks and how it
can be mapped on common object-oriented languages. Fi-
nally, it specifies requirements for the implementation of
benchmarks to ensure the performance comparison gives in-
sights into the effectiveness of the compiler and relevant
parts of the runtime system.

3.1 Goals
The goal of this work is to create a foundation for compar-
ing the performance of a set of core language abstractions
between languages. We believe this is useful for early-stage
language implementations to assess the performance. Fur-
thermore, we believe it can enable researchers to compare
their research platform of choice with established industrial-
strength systems and draw reliable conclusions about the
compiler’s effectiveness. Specifically, we aim for a bench-
mark suite with the following characteristics:

Relevant Abstractions Benchmarks focus on abstractions
that are likely to be relevant for the peak performance of
a wide range of applications in different languages, namely
basic abstractions such as objects, arrays, and closures.

Portable The benchmarks rely only on language abstrac-
tions that are part of the core language and can be mapped
straightforwardly to target languages. Furthermore, they rely
on a minimal set of primitive operations to ensure portabil-
ity. Finally, the size of the benchmarks is practical. The size
needs to balance porting effort and workload representative-
ness compared to application-level benchmarks.

However, it is a non-goal to provide application-level
benchmarks. We believe that this would be neither practi-
cal nor result in realistic results for cross-language compar-
isons. Languages come not only with a syntax and a set of
libraries, but also with a philosophy that influences program
design and thus determines the performance sweet spot for
a language implementation. We assume this to be different
between languages and thus, a cross-language application-
level benchmark would either test too many different aspects
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to be meaningful, or use the language in a way that is too re-
stricted to represent the behavior of applications in that lan-
guage (cf. section 3.2).

Focus on Compiler Effectiveness The benchmark suite fo-
cuses on assessing compiler effectiveness. This means, the
degree by which the core language abstractions are opti-
mized by the compiler and the runtime system. Hence, com-
paring the performance of standard libraries or efficiency of
GCs are non-goals. Individual benchmarks can be sensitive
for instance to the performance of the GC, but a detailed as-
sessment is outside the scope of this project.

To exercise the compilers abilities to optimize complex
code, the benchmark suite includes smaller and larger bench-
marks. However, it excludes purely synthetic microbench-
marks, e.g., for simple field accesses, since it requires larger
benchmarks to assess effectiveness of for instance inlining.

Ease of Use To facilitate adoption, a simple and reliable
methodology for executing benchmarks needs to be defined.
Furthermore, the setup requirements need to be minimal.

3.2 The Core Language
For portability of benchmarks across different languages, we
select a set of common abstractions that forms a core lan-
guage to be used by the benchmarks. While we compare
object-oriented (OO) languages, the benchmarks can be im-
plemented in other languages as well as long as the polymor-
phic nature of the benchmark code can be expressed.

Required Abstractions The set of required abstractions is:

• objects with fields, could also be records or structs
• polymorphic methods on user-defined classes or types
• closures, i.e., anonymous functions with read and write

access to variables in their lexical scope
• an array-like abstraction, ideally with a fixed size
• strings, integers, and doubles
• automatic memory management, i.e., garbage collection

For some languages, a mapping to these abstractions is
trivial. For other languages, we have guidelines.9 For exam-
ple, Java does not support writing to variables in the outer
scope of a closure. Therefore, we follow the common prac-
tice to use an array as a workaround.

The legend of fig. 3 lists all basic operations used by the
benchmarks, which are thus part of the required abstractions.

Excluded Abstractions Not permitted is the use of:

• built-in data structures such as hash tables, dictionaries,
stacks, or queues

• object-identity-based hash
• non-local returns, except in an ‘if’ or to implement iter-

ation functions on collections
9 https://github.com/smarr/are-we-fast-yet#guidelines

• flow control in loops with continue, break, etc, except
to implement iteration functions on collections

These abstractions are excluded, because they are not
portable and cannot be mapped easily to other constructs.
For instance, JavaScript does not provide the notion of an
object-identity-based hash, and the differences between col-
lections in different languages can be a source of perfor-
mance variation, which is outside the scope of this work.
As replacement for built-in data structures, we provide a
portable collection library.

Relevance of the Core Language Since the chosen ab-
stractions are widely supported by different languages, we
conjecture them to be widely used in programs as well.
While these abstractions excludes languages-specific ones
that are relevant for general program performance, these ab-
stractions are integral for the overall performance of lan-
guages that support them. As such, we see an optimal im-
plementation of this core language as a necessary condition
to achieve optimal application performance. However, de-
pending on a specific language and its features, optimizing
this core language is not a sufficient condition.

3.3 Requirements for Benchmark Implementations
To ensure that these benchmarks assess compiler effective-
ness, it is necessary to define how benchmarks are ported
between languages (cf. section 2.2).

As Identical as Possible. The first and foremost require-
ment is that benchmarks must be as identical as possible
between languages. This is achieved by relying only on a
widely available and commonly used subset of language fea-
tures and data types. These language features also need to be
used consistently between languages. For example, to iterate
over arrays, a benchmark should use a forEach() method
that takes a closure, or should fall back to a for-each loop
construct if available in the language. We prefer the use of a
forEach() method, because it is commonly supported, is a
high-level abstraction, and exercises the compiler’s abilities.
Another example is the semantics of arrays. Languages such
as Java and Smalltalk offer only fixed-sized arrays, while
JavaScript and Ruby have dynamically-sized arrays. To en-
sure that the executed operations are as identical as possible,
we use arrays as fixed-sized entities in all languages. This
ensures that we benchmark the same operations, and expose
all compilers to the same challenges.

Idiomatic Use of Language. To stay within the perfor-
mance sweet spot of language implementations, the second
most important requirement is to use a language as idiomat-
ically as possible, i.e., following best practices. As a guide-
line for idiomatic language usage, we rely on widely used
lint and code style checking tools for the languages. In some
cases this might be a tradeoff with the requirement to be as
identical as possible. We prefer here the more idiomatic so-
lution if the result is close enough in terms of use of control
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structures, closures, and other performance-related aspects,
and stays within the core language. Simple idiomatic dif-
ferences include that a comparison in Java ‘if (node !=

null)’ is written simply as ‘if node’ in Ruby.
This also includes structural information not present in all

languages, e.g., types and information about immutability.
Thus, in languages such as Java, we use the private and
final keywords on fields and methods to provide hints
to the compiler. We consider this idiomatic and desirable
language-use to enable optimizations.

Well-typed Behavior. The benchmarks are designed to be
well-typed in statically-typed languages, and behave well-
typed in dynamic languages to ensure portability and iden-
tical behavior. For dynamic languages this means that ini-
tialization of fields and variables avoids suppressing possi-
ble optimizations. For example, fields that contains primitive
values such as integers or doubles are not initialized with
pointer values such as null but with the appropriate 0-value
to ensure that the implementation can optimize these fields.

Fully Deterministic and Identical Behavior. The bench-
marks are designed to be fully deterministic and show iden-
tical behavior in the benchmark’s code on all languages. This
means, repeated executions of the benchmark take the same
path through the benchmark code. On the one hand, this is
necessary to ensure reproducible results, and on the other
hand, this is required to ensure that each language performs
the same amount of work in a benchmark. However, differ-
ences of language semantics and standard libraries can lead
to differences in the absolute amount of work that is per-
formed by a benchmark.

4. Benchmark Characterization
The benchmark suite presented in this paper consists of
5 larger commonly used benchmarks and 9 smaller ones.
The benchmarks were selected based on their code size and
anecdotal relevance, i.e., whether other suites include them
as well. Table 1 lists all benchmarks with a brief description.
We characterize them based on metrics that are designed to
be language agnostic, and show that especially the larger
benchmarks show a wide range of different characteristics.

4.1 Metrics
To characterize the benchmarks, we use size, structural, and
behavioral metrics. However, we disregard purely static met-
rics because they can be misleading in the context of dy-
namic compilation. Static metrics would include code that
is not executed, only influencing minor aspects such as load
and parse time, which are not relevant to assess compiler
effectiveness. Furthermore, we select metrics that are de-
signed to be language agnostic, i.e., that lead to similar re-
sults across languages. This is similar to the approach of Du-
four et al. [3] and Sewe et al. [13] that select metrics that are
independent for instance of the underlying execution envi-

ronment. The following sections detail the selected metrics
and discuss their cross-language properties.

All metrics are measured for SOMns,10 a Newspeak im-
plementation based on Truffle [18]. The values correspond
to what would be measured for languages such as Java.

4.1.1 Code Size
To give an intuition about the size of benchmarks, table 1
lists for each benchmark the following metrics.

Executed Lines of Code Compared to the classic notion of
lines of code (LOC), we count only lines of code that have
been executed at least once to measure the dynamic size of
the program instead of its static size. This metric is sensitive
to language differences for defining classes and methods.
In languages such as Ruby or JavaScript, class or method
definitions would be counted as imperative statements. For
Java or Newspeak, these are declarative definitions that are
not included in the number of executed LOC metric. Thus,
we exclude them from this metric.

Classes The number of classes includes only classes of
which at least one method was executed. It is stable across
languages with the exception of JavaScript which does not
use classes in the version of the language used for this work.

Executed Methods Similar to counting executed LOC, we
count methods that have been executed at least once. This
metric is stable across languages, with the exception of built-
in classes, e.g., for integers or strings. Since the benchmark
structure is fixed, the set of defined methods is fixed, too.

Per Iteration Methods In addition to executed methods,
we further distinguish methods that are executed for each
benchmark iteration. Thus, we separate out code that was
only executed once during startup or shutdown. The number
of per iteration methods indicates the methods that get likely
compiled during benchmarking.

4.1.2 Dynamic Metrics
The measured dynamic metrics characterize in more detail
the behavior of the benchmarks. For each metric, we deter-
mine and count the number of lexical sites and the number
of times the corresponding behavior has been executed.

Method Calls We measure the observed variability at call
sites and count the number of observed receiver types. To
make the metric language-independent, classic operators
such as ‘+’ or ‘*’ are excluded from the method call count.
This is necessary to ensure that results for languages such
as Smalltalk and Ruby are comparable to Java or JavaScript.
Since benchmarks have identical code structure in all lan-
guages, the type hierarchies and the methods on objects
are identical, too. With these properties, the metric is sta-
ble across languages for method calls on user-defined types.

10 https://github.com/smarr/SOMns#readme
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Macro Benchmarks Exec. LOC Classes Exec. Methods Per Iter. Methods
CD Airplane collision detector simulation [7] 356 16 43 41
DeltaBlue Classic object-oriented constraint solver [15] 387 20 99 75
Havlak Loop recognition algorithm [6] 421 18 110 87
Json JSON string parsing 232 14 56 56
Richards Classic operating system kernel simulation [11] 279 12 47 47

Micro Benchmarks
Bounce Simulation of a box with bouncing balls 42 5 11 11
List List creation and traversal 30 2 9 9
Mandelbrot Classic Mandelbrot computation 39 0 2 2
NBody Classic n-body simulation of solar system 105 3 14 14
Permute Generate permutations of an array 33 3 13 13
Queens Solver for eight queens problem 36 3 13 13
Sieve Sieve of Eratosthenes 22 3 9 9
Storage Tree of arrays to stress GC 23 4 10 10
Towers Towers of Hanoi 42 2 12 12

Table 1. Benchmark suite and code size metrics. The numbers exclude elements shared by all benchmark.

Closure Applications Similar to method calls, we measure
the number of lexical closures observed at a closure appli-
cation site. A closure application site is the lexical point
where a closure is executed. This metric is stable with re-
spect to closures defined in benchmarks and executed at ap-
plication sites in the benchmark code. However, it is sen-
sitive to the availability and implementation details of, for
instance, forEach() within the different standard libraries.

Maximum Stack Height As an indication for the recursive
behavior, we measure the maximal observed stack height,
i.e., the number of method activations on the runtime stack.
This metric is sensitive to differences in the standard li-
braries, e.g., the use of forEach() instead of a lexical loop.

Loops We count loops that have been activated at least
once. Furthermore, we count the number of times a loop
body has been executed. This metric is sensitive to the avail-
ability of forEach() methods. We report the numbers for
a language with such methods. For languages such as Java,
which has a separate for-each loop construct, the number of
loops is higher. The number of loop activations is however
the same, because forEach() is implemented with some
looping construct and is counted as such.

Branches We count the number of control flow branches
that have been taken at least once. This includes if-branches,
but also operations that have control flow semantics such as
short-cutting or and and operators where the right-hand ex-
pression is executed conditionally. Furthermore, we count
how often each branch is taken. This metric is stable be-
tween languages with the same caveats as method calls.

Allocations For array allocations, we track the number of
arrays created as well as their overall size. For objects, we
track the number of objects created and the number of de-
clared fields. The array metrics are stable between languages

as long as languages support array creation with a prede-
fined size. The object metrics are sensitive to the way ob-
jects and/or classes are defined, which might not be done
statically. For example in JavaScript and Ruby objects are
constructed dynamically instead of declaratively.

Object Field Accesses We count object field reads and
writes that were executed at least once. Furthermore, we re-
port the number of accesses per iteration. This metric is ex-
pected to be stable between languages with only minor vari-
ations. For instance, Newspeak, Smalltalk, and JavaScript do
not have the notion of constants, which thus need to be mod-
eled for instance as object fields. In Newspeak, one way to
model them is as final fields of an object in an outer lexical
scope, which means they are counted as field accesses.

Variable Accesses We report the number of sites of vari-
able reads and writes that were executed at least once. This
includes variables in methods and closures. Furthermore, we
report the number of accesses per iteration. This metric is
stable between languages with only minor variations. One
source of variation is the availability of forEach() meth-
ods on arrays. If forEach() or a method to iterate with an
index is not available, additional local variables are used to
read an array element and store it for use in the loop body.

Array Accesses We count the sites of array reads and
writes that were executed at least once. Furthermore, we
count the number of array reads and writes per iteration.
This metric is stable between languages, assuming that ar-
ray operations such as copying are tracked in detail so that
each read and write access is reported.

Basic Operations Basic operations are also known as
primitives or built-in functions. We include comparisons,
arithmetic and bit operations, reading the size of strings or
arrays, and string operations. Since the complexity of these
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operations range from simple integer additions, which can
be mapped directly to a processor instruction, up to trigono-
metric functions, or string comparisons, which require com-
plex algorithms, we categorize them in groups with similar
properties as shown in the legend of fig. 3.

We count operations that were executed at least once, as
well as the number of executions per iteration. These metrics
are stable across languages for the used operations in the
benchmark code, i.e., differences in the standard library of
languages can lead to minor variations.

4.2 Results
To characterize the benchmarks briefly, this section presents
and discusses them based on the chosen metrics.

Polymorphism and Stack Usage Table 2 shows that the
smaller benchmarks do not have polymorphic method calls.
For the larger benchmarks, the polymorphism varies widely.
For closure applications, we see a higher degree of polymor-
phism. Overall however, the degree of method and closure
polymorphism remains small compared to application-level
benchmarks, e.g., of DaCapo.

Stack usage, indicated by the maximum observed stack
height is overall low as well. The only exception is the
Havlak benchmark, which traverses a graph recursively.

Control Flow Instructions The relative frequency of con-
trol flow operations is depicted in fig. 1. This groups method
calls, closure applications, branches, and loop iterations.
Method calls and closure applications are further categorized
into monomorphic and polymorphic to detail the elements
that might require additional optimization.

Allocations and Accesses The relative frequencies of array
and object allocations as well as read and write accesses to
them are shown in fig. 2. For most benchmarks, field reads
are the most common operations of this group. However,
smaller benchmarks can show different behavior.

Basic Operations The relative frequency of basic opera-
tions is depicted in fig. 3. From this plot one can see high-
level characteristics of the benchmarks. For instance, the be-
havior of Mandelbrot and NBody is dominated by floating
point operations. The JSON parsing benchmark has a high
number of string operations, and the collision detector (CD)
benchmark has many floating point comparisons.

Benchmark Variation To validate that the benchmarks in
the suite differ from each other, we apply a principal compo-
nent analysis (PCA) on all metrics as it is done by Blackburn
et al. [1] and Sewe et al. [13]. The analysis takes 69 dif-
ferent measurements per benchmark as input. This includes
code size as well as structural and dynamic characteristics. A
large fraction of the measurements are the different groups
of basic operations and their structural and dynamic char-
acteristics. The PCA determines from these 69 metrics 14
correlated variables, of which the first four account for a cu-
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Figure 1. Control flow instructions including method calls,
closure applications, branches, and loop iterations.
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Figure 2. Allocation and accesses for objects and arrays.
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str: substring (10)
str: +, =, 6= (9)
int: ×, /, %, rem (8)
str, arr: length (7)
float: sin, cos, sqrt (6)

float: +, −, ×, /, round (5)
float: <, >, =, ≤, 6=, ≥ (4)
bool, int: +, −, &, ,̂ !, <<, >>> (3)
ptr: =, 6= (2)
bool, int: <, >, =, ≤, 6=, ≥ (1)

Figure 3. Mix of basic operations grouped by similar com-
plexity.
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Method Calls Closure Application
Monomorphic Polymorphic Monomorphic Polymorphic

Benchmark sites calls sites calls sites applies sites applies max. stack
CD 166 75, 892, 212 3 23, 151, 272 2 1, 345, 202 3 4, 188, 512 35
DeltaBlue 171 6, 219, 974 23 4, 896, 692 13 336, 022 4 8, 432, 152 37
Havlak 256 79, 581, 122 3 2, 720, 556 1 531, 748 5 17, 938, 956 1, 717
Json 163 32, 115, 418 2 678, 200 0 0 3 2, 070, 004 43
Richards 108 95, 521, 018 2 10, 000 1 7, 600 3 15, 027, 604 31
Bounce 31 17, 736, 018 0 0 2 15, 300, 000 3 30, 756, 004 30
List 28 17, 271, 018 0 0 1 3, 002 1 3, 002 37
Mandelbrot 10 16 0 0 2 4 0 0 15
NBody 38 8, 500, 102 0 0 2 2, 500, 012 2 13, 000, 052 24
Permute 25 51, 982, 018 0 0 2 10, 090, 000 2 16, 004 44
Queens 28 29, 088, 018 0 0 1 960, 000 2 18, 504, 004 56
Sieve 19 60, 018 0 0 1 30, 000, 000 2 60, 006, 004 26
Storage 23 32, 774, 018 0 0 2 21, 840, 000 2 10, 924, 004 75
Towers 27 39, 390, 018 0 0 2 18, 002 1 1, 202 34

Table 2. Statistics on method calls, closure application, and stack usage.
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Figure 4. PCA Scatter plot. Components 1 to 4 (PC1 to
PC4) of the principal component analysis over all obtained
metrics, which account for 72% of the overall variance.
Closer benchmarks are more similar to each other.

mulative variance of 72%. This means, these four compo-
nents characterize the main differences of the benchmarks
with respect to the measured metrics.

We use these four components to visualize the relation
between the benchmarks in fig. 4. As shown in the plots,

the larger benchmarks differ from each other significantly on
the four main axes. The smaller benchmarks however show
more similar characteristics, which is indicated by them be-
ing grouped closer together. While there is less variation be-
tween them in this analysis, we include them all in the per-
formance evaluation of the next section because in our expe-
rience, each of them uses language features in ways that are
different enough to identify performance issues.

5. Performance Measurements
This section analyses the performance results to assess
whether our benchmarks allow us to compare compiler effi-
ciency across different languages.

Experimental Setup. We use 10 language implementa-
tions of which four are implemented on the Graal and
Truffle platform. These languages are JavaScript with Ora-
cle’s Graal.js11 implementation, Ruby with JRuby+Truffle,12

Newspeak with SOMns, as well as Smalltalk with Truffle-
SOM.13 To complement these languages, we include Java 8
based on Oracle’s HotSpot JVM as a baseline. Furthermore,
we use Node.js, which uses Google’s V8 JavaScript VM14 as
another comparison point for a common language. For Ruby,
we also include MRI, i.e., the reference implementation,
JRuby,15 and Rubinius16 to see how the benchmarks behave
on implementations with a wide range of different optimiza-

11 Graal.js, http://www.oracle.com/technetwork/oracle-labs/pr
ogram-languages/index.html
12 JRuby+Truffle – a High-Performance Truffle Backend for JRuby, https:
//github.com/jruby/jruby/wiki/Truffle
13 TruffleSOM, https://github.com/SOM-st/TruffleSOM
14 Chrome V8, Google, https://developers.google.com/v8/
15 JRuby, http://jruby.org/
16 Rubinius, http://rubini.us/
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tion levels. Finally, we include Crystal,17 a statically-typed
derivate of Ruby as a statically compiled language without
JIT compilation but with garbage collection, which is cur-
rently required for the benchmarks.

Benchmarking Methodology. JIT compilation, GC, and
the general non-determinism of the underlying system are
accounted for by repeating benchmarks within the same pro-
cess for a number of times. For the slowest VMs (Ruby and
Rubinius), we measure 100 iterations for each benchmark.
For JRuby, which is faster, we measure 250 iterations. For
the other languages, we measure 3000 iterations. We chose
3000 iterations, because the Graal compilation threshold is
at 1000 method invocations, which means that the main
method of the benchmark harness is compiled after 1000 it-
erations, and this may trigger follow-up compilations. For
the slower implementations, this was impractical, but they
do not require the same degree of precision.

The results are the averages over all data points for each
benchmark, ignoring the first n iterations that show signs of
compilation based on manual inspection. Thus, the reported
performance corresponds to the peak performance, which is
dominated by the effectiveness of the compiler and aspects
such as object and closure representation.

To facilitate a simple and reliable execution of bench-
marks, we use ReBench18 to document benchmarking pa-
rameters and execute the experiments.

The benchmark machine has two 4-core Intel Xeons
E5520, 2.26 GHz with 8 GB RAM and runs Ubuntu Linux
with kernel 3.13. Truffle languages use GraalVM 0.12. The
other languages use Oracle Java HotSpot 1.8.0 81, Node.js
6.2, Crystal 0.17.4, Ruby MRI 2.3.1, Rubinius 3.14, JRuby
and JRuby+Truffle 9.1.2.0.

5.1 Cross-Language Benchmarking Evaluation
To assess whether our approach allows us to answer the
question whether a set of core language abstractions in one
implementation is as fast as in another one, we compare
the results for Graal.js, JRuby+Truffle, SOMns, and Truffle-
SOM. These are four languages that all use the Graal com-
piler as part of the GraalVM. Thus, the compiler is the same,
and the variable parts of the experiment are the language
semantics and implementation choices. This means, if the
benchmarks allow for a comparison between languages, we
should see identical or close to identical performance for
these implementations.

Figure 5 shows an aggregated overview of the results for
all benchmarks as a boxplot. It shows that the four Truf-
fle languages are grouped closely together. Taking SOMns
as the base line, using the geometric mean over all bench-
marks, Graal.js is about 9%, TruffleSOM about 10%, and
JRuby+Truffle about 10% slower. Considering the major dif-
ferences in language semantics between these languages, we

17 The Crystal Programming Language, http://crystal-lang.org/
18 ReBench, https://github.com/smarr/ReBench

Node.js
JRuby+Truffle

Graal.js
TruffleSOM

SOMns
Crystal

Java

1 2 3 4 6 8 10 12

Runtime Factor, normalized to Java
(lower is better)

Figure 5. Boxplot over 14 benchmark results per language
implementation. Normalized to Java. Boxplot indicates me-
dian with a vertical line, and geometric mean with an ×.

consider this difference small and a strong indication for the
suitability of our approach. As a comparison, Node.js with
its highly optimizing V8 JavaScript VM is about 42% slower
than SOMns, which reveals different design choices in the
compiler, as we detail in section 5.2.

Figure 6 shows all benchmarks. We briefly discuss some
of the outliers to support the claim that our approach is
suitable to determine the effectiveness of the used compiler.

The first outlier is for TruffleSOM on the CD benchmark.
The slow part of the benchmark accesses the value of an
element in the red-black tree. Truffle’s object model [17]
optimizes the element for the different types it is used with,
which currently leads to a megamorphic access that is not
yet correctly optimized in TruffleSOM.

The second significant outlier is visible for the Havlak
benchmark on Graal.js and Node.js. In this case, the hash ta-
ble implementation of the benchmark shows an access pat-
tern that causes both JavaScript implementations to repre-
sent an array internally sparsely with a hash table. Arguably,
JavaScript programmers are unlikely to implement similar
data structures manually so that this heuristic is useful for
the common use cases in JavaScript.

Other minor performance outliers are visible for SOMns
on the List and NBody benchmarks. They show optimization
potential in SOMns’ custom object model, which is not
based on the Truffle framework.

Based on our analysis of the outliers, we find indications
that the performance differences are based on different run-
time representation choices. However, we do not find signifi-
cant performance differences that are attributable to the com-
piler itself, which would be unexpected. From these results,
we conclude that the benchmarks allow for cross-language
comparison and can reach the same performance indepen-
dent of the language.

Conclusion With this experiment for four languages on
top of the same compiler, we find an average performance
variation of 10% between the languages. Considering the
significant differences between these languages, we see the
results as indication that our approach can be used to assess
the compiler effectiveness across languages.
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Figure 6. Benchmark results for the fast implementations.

5.2 Overall Performance
To complete the discussion, we briefly analyze the perfor-
mance of the remaining language implementations. Figure 7
is similar to fig. 5 but includes the slower implementations.

Overall, for the 14 benchmarks we can conclude that
Java on the HotSpot VM reaches the highest peak perfor-
mance. The second fastest language implementation is Crys-
tal, which uses LLVM as a compiler backend. Performance-
wise it is close to Java, but shows for instance on Storage (a
GC-bound benchmark) a 8.7x overhead, because it uses the
conservative Boehm collector [2].

The Truffle-based implementations reach the range of
about 2x slower than Java on these benchmarks. Node.js

MRI
Rubinius

JRuby
Node.js

JRuby+Truffle
Graal.js

TruffleSOM
SOMns
Crystal

Java

1 5 10 20 30 40 50 60 70 80 90

Runtime Factor, normalized to Java
(lower is better)

Figure 7. Boxplot over 14 benchmark results per language
implementation including slower implementations.

however shows slightly worse performance and has two
outliers. The first outlier is the Bounce benchmark, which
exemplifies the main reason for V8 not reaching better
overall performance. Specifically, its inlining heuristic is
not as aggressive as Graal’s. Since V8 is designed for the
browser, where startup and warmup behavior is crucial, the
implementation chooses different tradeoffs than Hotspot and
the Graal compiler, which are more geared towards long-
running server applications. The second outlier for Node.js
is the Havlak benchmark, for which V8’s array heuristic,
similar to Graal.js’ is not optimized for using an array as
backing storage for a hash table, causing the VM to choose
a sparse hash-table-based representation for the array itself,
which leads to a significant slowdown.

Using the geometric mean over all benchmarks, JRuby,
which compiles to JVM bytecodes, is on average 14x slower
than Java. Rubinius, with its LLVM-based custom baseline
JIT compiler is about 26x slower, and MRI, which is a clas-
sic bytecode interpreter is about 46x slower than Java. Here
we see the pattern observed for many language implementa-
tions: the interpreter is about one to two orders of magnitude
slower than a highly optimizing VM. Code produced by a
JIT compilers, depending on the available optimizations, is
typically only up to one order of magnitude slower than the
best observed performance.

6. Performance Engineering Anecdotes
When developing and optimizing language implementa-
tions, every new benchmark can expose new and unexpected
behavior. From that perspective, this benchmark suite is not
different. However, as an indication for the spectrum that the
benchmarks cover and as an indication that they can support
implementers, we report on concrete anecdotes.

As shown in the previous section, well-optimized imple-
mentations of different languages can reach close to iden-
tical performance on these benchmarks. Assuming that the
same holds for a new language, the benchmarks can be
used to identify concrete optimization potential. As an ex-
ample, when starting with the experiments, we noted that
JRuby+Truffle was consistently slower on all benchmarks.
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The Graal compiler failed to optimize JRuby+Truffle’s argu-
ment arrays because some type information was not propa-
gated correctly. After identifying the issue, it was possible to
fix this performance bug in Graal itself, and JRuby+Truffle
reached the expected performance.

Other performance outliers indicated similar issues that
can be considered performance bugs in the language imple-
mentations. In the case of JRuby+Truffle, the benchmarks
helped to identify issues with unnecessary array initializa-
tions as well as a virtual call in performance-critical string
handling code that could be avoided.

For some languages however, it is not as clear-cut. As
discussed earlier, Graal.js and Node.js show a performance
anomaly for the Havlak benchmark, because the array that is
used as backing storage for a hash table is ‘optimized’ to use
a hash-table-based implementation itself. Here the heuristic
determines that the array is used as a sparse storage and in
these languages the most common use case is similar to a
hash table, which the implementations optimize for.

More clear examples are Node.js’ outlier on Bounce and
Richards. Bounce is the extreme example of V8’s tradeoff
choices for less aggressive inlining. V8 does currently not in-
line the use of forEach() in the benchmark,19 which causes
the high overhead. For Richards, V8 missed an optimization
opportunity for comparisons with null, which is fixed in
V8, but not yet in the used Node.js.20

7. Discussion
Influence of Language Differences on Peak Performance
One of the major issues of cross-language benchmarking is
the difference in language semantics and standard libraries.
Thus, the question is how one can compare implementations
despite these differences. For example, Ruby and JavaScript
have variable-length arrays in the language, while Java and
Smalltalk have fixed-sized arrays. From our results and the
comparably minor differences in peak performance between
the Truffle languages, we conclude that such differences
have only minor impact on peak performance in the presence
of a highly optimizing compiler and runtime.

Furthermore, with our methodology we focus on the ef-
fectiveness of the compiler by minimizing differences, e.g.,
by using a custom collection library. As a result, the main
difference that remains, which we have not assessed in de-
tail in this work, is how the dynamic features between lan-
guages influence peak performance. With dynamic features
we refer for instance to possible changes in object structure
or class hierarchy, which might need to be checked at run
time. However, we assume that the majority of performance-
relevant checks are moved out of performance-sensitive
loops. Again, this is supported by the narrow performance
range reached by four sufficiently different languages in our
experiments.

19 https://bugs.chromium.org/p/v8/issues/detail?id=5041
20 https://bugs.chromium.org/p/v8/issues/detail?id=5042

Language Independence of Metrics As discussed in sec-
tion 4.1, the various metrics have different degrees of lan-
guage independence and thus, the measured numbers may
vary between different languages. However, with our method-
ology, we require the benchmark code to be as identical as
possible across languages. Furthermore, as our evaluation
shows, a highly optimizing compiler can achieve very sim-
ilar performance for different languages. This means, for
the main purpose of this paper, the variability of metrics
between languages does not have a major impact on the re-
sulting performance.

Generalizability of Results As argued in section 3.1, the
used benchmarks are not application benchmarks. Appli-
cations tend to have less hot code and exhibit more va-
riety in their code patterns and dynamic behavior [9, 10].
Nonetheless, the used benchmarks allow for a comparison
between language implementations and languages. We con-
jecture that they are a useful tool to optimize the core el-
ements of many languages as indicated by our results and
engineering anecdotes (cf. section 6). We consider that op-
timizing for these benchmarks can be a necessary condition
for good application performance. However, it is not a suf-
ficient condition. The benchmarks only cover core language
abstractions and are not comprehensive with respect to any
particular investigated language.

8. Related Work
As detailed in section 2.2, existing approaches to cross-
language benchmarking have all different focuses and do
not allow for a comparison of the compiler effectiveness be-
tween languages. Examples include the Computer Language
Benchmarks Game (CLBG), the work of Hundt [6], and the
TechEmpower Web Framework benchmarks. To our knowl-
edge, this project is the first to provide a systematic approach
and precise rules to enable such an assessment.

Other work focuses on characterizing differences of lan-
guages. Sarimbekov et al. [12] examine the CLBG bench-
marks to determine their behavior for Clojure, Java, JRuby,
and Jython based on dynamic metrics. Li et al. [8] do a sim-
ilar study adding Scala and additional applications for each
language. Such studies guide language implementations and
optimizations at a high level. Our work however makes com-
piler efficiency comparable across languages.

9. Conclusion
Comparing implementations of different languages has been
a recurring issue in academia and industry. This paper
presents a novel methodology and freely available bench-
mark suite21 to compare the effectiveness of compilers
across languages by ensuring that the workload exposed to
each language is as identical as possible. This is achieved
by using a common core language in these benchmarks. We

21 Are We Fast Yet?, https://github.com/smarr/are-we-fast-yet
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conjecture that optimizing this core language is a neces-
sary condition to reach peak performance for applications
because it consists of basic and common abstractions. How-
ever, optimizing this core language is not a sufficient con-
dition to reach peak performance, because applications will
use language-specific abstractions, too.

This paper characterizes 14 benchmarks based on met-
rics and shows that the benchmark suite contains a wide
variety of dynamic behaviors. Furthermore, it uses these
benchmarks to compare 10 language implementations. We
find that implementations for JavaScript, Newspeak, Ruby,
and Smalltalk based on the Graal and Truffle platform reach
on average very similar peak performance, close to being
only 2x slower than Java. This indicates that these bench-
marks can be used to compare performance across different
languages. Based on performance engineering anecdotes,
we argue that these benchmarks provide insights for lan-
guage implementers since they allow the comparison of lan-
guages and thereby provide a concrete performance goal to
be reached. In conclusion, this paper presents an approach to
assess whether a set of core language abstractions is as fast
as other implementations of the same abstractions.

Currently, the benchmarks are designed to compare the
compiler effectiveness across languages. They could be ex-
tended to also assess, e.g., garbage collection and standard
library design. Our work could further be used to assess fun-
damental performance differences between languages in the
presence of highly optimizing compilers, e.g., considering
tradeoffs for language design and compilation technology
for statically or dynamically-typed languages as well as stat-
ically and dynamically-compiled implementations.
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