
Generic Messages: Capability-based Shared
Memory Parallelism for Event-loop Systems

Luca Salucci
Università della Svizzera

italiana (USI), Switzerland
luca.salucci@usi.ch

Daniele Bonetta
Oracle Labs, Austria

daniele.bonetta@oracle.com

Stefan Marr
Johannes Kepler University

Linz, Austria
stefan.marr@jku.at

Walter Binder
Università della Svizzera

italiana (USI), Switzerland
walter.binder@usi.ch

Abstract
Systems based on event-loops have been popularized by Node.JS,
and are becoming a key technology in the domain of cloud com-
puting. Despite their popularity, such systems support only share-
nothing parallelism via message passing between parallel entities
usually called workers. In this paper, we introduce a novel parallel
programming abstraction called Generic Messages (GEMS), which
enables shared-memory parallelism for share-nothing event-based
systems. A key characteristic of GEMS is that they enable workers
to share state by specifying how the state can be accessed once it
is shared. We call this aspect of the GEMS model capability-based
parallelism.

Categories and Subject Descriptors D.1.3 [Software]: Program-
ming Techniques—Concurrent Programming

Keywords Shared memory, event-loop systems, Node.JS, generic
messages.

1. Introduction
Programming languages and frameworks based on event-loop pro-
gramming models have become very popular in domains such as
cloud computing and micro-services. Node.JS is the most popu-
lar of such frameworks, but several others exist [6], including lan-
guages that compile to JavaScript [1, 3].

Many of such languages and frameworks only support a lim-
ited model of parallelism, in the form of message passing between
share-nothing parallel entities. This model is known as the com-
municating event-loops model [7]. In this parallel programming
model, each event loop runtime (or simply each worker) is repli-
cated as an independent and isolated parallel entity. Workers do
not share any memory space, and interact only by means of explicit
asynchronous message passing. The model is inspired by actors [4],
and is very convenient for programmers, because they do not need
to deal with issues such as data races and deadlocks.

Despite its many benefits, share-nothing message-based paral-
lelism is not a one-size-fits-all solution, and approaches based on
shared-memory parallelism could give considerable performance
benefits, or can be more convenient for expressing certain com-
putations. Nevertheless, shared-memory parallel programming is

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org or Publications
Dept., ACM, Inc., fax +1 (212) 869-0481.

PPoPP ’16 March 12-16, 2016, Barcelona, Spain
Copyright © 2016 ACM 978-1-4503-4092-2/16/03. . . $15.00
DOI: http://dx.doi.org/10.1145/2851141.2851184

complex, as it requires developers to deal with synchronization
and race conditions. This is particularly true for systems featuring
an event-loop, where concurrency is already present in the form
of asynchronous I/O. Ideally, any form of shared-memory parallel
programming abstraction for such systems should be safe.

In this paper we introduce the notion of Generic messages
(GEMS), a programming abstraction that can be used to expose
safe shared-memory parallel programming models to systems rely-
ing on communicating event-loops. At the very high level, a GEM
is some form of state (e.g., an object instance) that initially belongs
to a single worker (called the GEM owner), and that can be shared
via message passing with other workers. Unlike other forms of data
sharing, when a GEM is sent to other workers, the state it encap-
sulates becomes accessible by them in a controlled way. Specifi-
cally, the owner of the GEM specifies how the GEM can be used
by the receiving workers. Therefore, the owner of the shared state
specifies upfront the operations that workers are allowed to per-
form on the state they share. We call this model capability-based
parallelism1, meaning that at the moment a GEM is shared, its
owner not only exposes its state, but also limits the provided ca-
pabilities to interact with it. An intuitive example for a capability
is read-only access. Beyond that, GEMS enable many advanced
and fine-grained policies, e.g., partitioned access or temporal im-
mutability. Rather than enabling a specific parallel programming
model, generic messages are fully customizable, and can expose
shared-memory to workers in several ways.

2. GEMS and Capability-based Parallelism
A GEM is a type of object that can be exchanged between workers
via message-based interactions to enable shared-memory parallel
programming. It can be seen as a capability granting controlled
access to shared-memory, and can be considered a combination of
the following elements:
(1) A shared object, that is, an object graph to be shared with

multiple workers through the GEM.
(2) Dynamic sharing semantics that controls how the shared object

can be accessed in parallel by multiple workers.
Shared objects can be associated only with one GEM at a time,

i.e., it is not possible to reference the same object instance from two
different GEMS, neither directly nor indirectly. Different GEMS
can encapsulate different sharing semantics, and therefore enable
multiple parallel programming models.

At its core, a GEM is an object with the following components:
• GEM public API: a GEM-specific API that is accessible to all

the workers receiving the GEM in the form of a message.

1 The model is inspired by the capability system present in the Unix OS.
Unlike Unix capabilities, GEMS can be used to develop safe parallel appli-
cations.

———————————————— Master ————————————————
1 // Multicast the GEMs to the workers
2 workers.multicast(inputFile, keywords)
3 .gather(f u n c t i o n(result) {
4 console.log(’Total matching lines are:’ + result);
5 });

———————————————— Workers ————————————————
1 // GEMs received: ’lines’ is partitioned, ’keywords’ is read-only
2 worker.on(’message’, f u n c t i o n(lines, keywords) {
3 var result = {};
4 // Access both read-only and partitioned gems
5 // The partitioned GEM has the ’getRange’ API
6 // used to retrieve partitions dynamically
7 lines.getRange(f u n c t i o n(from,to) {
8 f o r (var l = from; l < to; l++)
9 f o r (var key in keywords)

10 i f (lines[l].split().contains(key))
11 count(key,result);
12 // Both GEMs enforce strict access control
13 keywords[42] = 42; // read-only GEM: throws an exception!
14 lines[to+1] = 42; // out-of-bound: throws an exception!
15 });
16 // A message with the result can be sent back to the master
17 worker.reply(result);
18 });

Figure 1: A Node.JS text scraping application using two GEMS.

• GEM meta API: a custom meta-object protocol API [5] that is
used by all the workers using the GEM.

• GEM state: global state accessible to all GEMS in all workers,
and local state private to the worker that receives a GEM. State
is private, and can be accessed only by the GEM public and
meta API.

By combining these three components, GEMS can specify any cus-
tom sharing semantics. Examples of GEMS with different sharing
capabilities are:
(1) ReadOnly GEM: Every worker has read-only access to all

elements of the shared object. Attempts to write to any of the
elements cause an exception.

(2) Owned GEM: Only one worker at a time has exclusive access
to all elements of the shared object. Attempts to perform con-
current reads or writes cause an exception on the worker that
does not have the exclusive read/write access.

(3) Partitioned GEM: Workers have read and write access to dis-
joint subsets of elements of the shared object. Attempts to read
or write outside of the partition cause an exception. Depend-
ing on the GEM implementation, the partition can be assigned
statically or dynamically.
Other, more advanced GEMS exist that can support more com-

plex forms of access to shared-memory, for example enabling safe
concurrent access to the shared object.

Figure 1 shows a simple Node.JS application using two of the
GEMS described above. It does text scraping on an input file
owned by a master worker; the file is scanned line-by-line by
multiple workers that compare the text content against a dictionary
of keywords. The two GEMS used in the example are a read-only
GEM and a partitioned GEM. The former is used to grant read-
only access to the dictionary of keywords to all the workers. In a
share-nothing scenario, the dictionary would have to be replicated
among all the workers, while the GEM ensures concurrent read-
only access and prevents concurrent writes. The latter GEM is used
to partition the input file to be scraped among workers, to achieve
data parallelism. Partitioning is handled dynamically by the GEM,
which exposes a simple API (i.e., getRange) that can be used by
workers to retrieve a slice of the shared object. Without shared-
memory parallelism, each partition of the input file would have to
be copied into the memory space of the receiving worker. Using
the GEM, no copies are required: once it is received, each worker
becomes the exclusive owner of a partition, and gains exclusive
read and write access over it. The GEM guarantees safety by
ensuring that workers do not access an index of the array that they
do not own (see line 14 in Figure 1). Message passing can still be

0

1

2

Sp
ee

du
p

fa
ct

or

1 8 16 24 32

0

2

4

Threads/Processes (#)

Sc
or

e
(1

/s
)

Grep

0

2

4

6

8

Sp
ee

du
p

fa
ct

or

1 8 16 24 32

0

2

4

6

8

Threads/Processes (#)

Sc
or

e
(1

/s
)

Mandelbrot

Figure 2: GEMS performance of two Node.JS applications. For
each benchmark the reported score is the inverse of the execution
time (1/t). The GEM-based implementation of the benchmarks
() outperforms the message-based implementations in Node.JS
(), and Graal.JS (). The speedup factor of GEMS over
Node.JS is also reported ().

used with GEMS. As shown in the example (line 17), messages can
be used to communicate final or intermediate results once they are
available.

3. Evaluation
The GEMS model is a generic extension to communicating event-
loop frameworks or languages. We developed an initial version of
the GEMS model in the context of Node.JS, building upon the
GraalJS [2] JavaScript engine, a fully-compliant ECMA6 imple-
mentation of Node.JS for the JVM. As an initial evaluation, we
ported message-based benchmarks for Node.JS to the GEM model.
The results are depicted in Figure 2. The experiments ran on a
server-class machine using Ubuntu 12.04, equipped with 128 GB of
RAM and two 8-core Intel(R) Xeon(R) CPU E5-2680 (2.70 GHz).
As the figure shows, the GEM-based implementations offer better
performance over both the Graal.JS and Node.JS implementations
that use message passing. The reason for the speedup is the efficient
usage of shared memory, and the reduced communication overhead
between workers.

Acknowledgments
The research presented here has been supported by Oracle Labs
(ERO project 1332) and by the Swiss National Science Foundation
(project 200021 153560). Stefan Marr has been supported by Ora-
cle Labs. We thank all members of the Virtual Machines Research
Group at Oracle Labs for their help and support.

References
[1] Dart: Scalable, productive app development. https://www.

dartlang.org/.
[2] Oracle Graal.JS, High-Performance JavaScript on the JVM. http:

//www.oracle.com/technetwork/oracle-labs.
[3] Scala.js: A safer way to build robust front-end Web applications!

http://www.scala-js.org/.
[4] G. Agha. Actors: a model of concurrent computation in distributed

systems. MIT Press, Cambridge, MA, USA, 1986.
[5] G. Kiczales, J. des Rivires, and D. G. Bobrow. The Art of the Metaobject

Protocol. The MIT Press, Cambridge, 1991.
[6] S. Marr and H. Mössenböck. Optimizing Communicating Event-Loop

Languages with Truffle, October 2015. Presentation at 5th AGERE
Workshop, colocated with SPLASH’15.

[7] M. S. Miller, E. D. Tribble, and J. Shapiro. Concurrency Among
Strangers: Programming in E as Plan Coordination. In Symposium
on Trustworthy Global Computing, volume 3705 of Lecture Notes in
Computer Science, pages 195–229. Springer, April 2005.

