A Model Checking Algorithm for Stochastic
Systems

Jeremy Bryans, Howard Bowman and John Derrick

1 Introduction

In this report we present an algorithm for model-checking stochastic au-
tomata with respect to a probabilistic temporal logic. We consider the
stochastic automata presented in [D’A99]. In particular, the algorithm is
novel in that it allows any (continuous) probability density functions to be
used in the automaton (not just exponential ones).

This report is structured as follows. In Section 2 we introduce stochastic
automata, which forms the system description language for the model check-
ing algorithm. In Section 3 we introduce and explain the simple probabilistic
temporal logic which forms the query language in the model checking algo-
rithm. In Section 4 we present an overview of the algorithm, together with
the data structures and variables used. In Section 5 we consider the twin
questions of correctness and convergence: does the result pass (fail) imply
that the automaton models (does not model) the formula? and secondly for
any automaton and bounded until formula, is it possible to run the algorithm
with a small enough timestep so that the result undecided is given only in
arbitrarily few cases?

2 Stochastic Automata

As defined in [D’A99], a stochastic automaton is a structure SA = (S,C, A, ¥, k)
where

e S is a set of locations.

e C is a set of random clocks. Each z € C is a random variable with
distribution function F,.

e A is a set of actions.

e » CSx(AxPg(C)) x S is the set of edges.

o v:8 — P, (C) is the clock setting function.

We will denote (s, a, C,s") € — by s L(Yb s’

For a full explanation of Stochastic Automata, see [D’A99).

In this report, we will use a slightly simplified form of the stochastic
automata, simplified in the following ways.

e cach clock has a lower bound on the range to which it may be set!.
The minimum of these is the maximum permissible value of time step.

e cach clock has an upper bound on the value to which it may be set; for
a clock ¢ this is given by ub(c).

e clocks are used only on transitions emanating from the states in which
they have been set.

e all clocks set in a state must be consumed by at least one transition
from that state?.

e there is one clock on each transition.

3 A Probabilistic Real-Time Logic

In this section, we introduce a simple probabilistic temporal logic. The pur-
pose of the logic is to express properties that we wish to check the stochastic
automaton against. The logic we define allows us to check a range of such
properties.

We will use adversaries to resolve the nondeterministic (as opposed to
probabilistic) choices in the automaton.(see for example [BK98]). An ad-
versary of a stochastic automaton can be thought of as a scheduler, which
resolves any nondeterministic choices which the stochastic automaton must
make. An adversary may vary it’s behaviour according to the previous be-
haviour of the automaton.

We assume that when we wish to model check a property against an
automaton, we are also given an adversary to resolve the nondeterminism

'A beneficial consequence of this assumption is that it (in a rather strong way) ensures
time guardedness of the automaton, and thus prevents zeno behaviour.

2In the case where the same clock is consumed by more than one transition, then we
resolve the non-deterministic choice that arises using adversaries.

within the automaton. We can now, for example, answer such questions
as “Given a stochastic automaton and an adversary, is the probability of a
success event greater than (0.877.

The syntax of our logic is

Yu=ttlap| Y |1 A | (1 Ue o] = p

qﬁ:::tt\ap\—'¢|¢1/\¢2

where [p1 U ¢2] >~ p is a path formula. The path formulae can only be
used at the outermost level they cannot be nested. This is because the
model checking algorithm we give can only evaluate path formulae from the
initial state.

Further: ¢ € N (natural numbers), a is an atomic proposition, p € [0, 1]
is a probability value, ~€ {<,>, <, >} and ~€ {<,<}.

With this syntax, an example of a valid formula that we can check would
be [tt U, 1q success| > 0.8 which says that the probability of reaching a success
event within 10 time units is greater than 0.8.

4 Overview of algorithm

In this section we present an overview of the algorithm, together with dis-
criptions of the data structures which will be used. The model checking
algorithm takes a stochastic automaton SA, together with a bounded un-
til temporal logic formula TL, a time step parameter § and an adversary
pick. For convenience we will present only the case where TL is of the form
[ao U <4imear] > p. Minor modifications to the algorithm would allow any of
> p, < por < p. We use the atomic propositions ay and a; as part of the
formula because anything more complex can be reduced to these by standard
model-checking techniques. Using < time guarantees that the algorithm will
terminate.

A single iteration of the algorithm will return one of three results: true,
false or undecided. If it returns true, then the automaton models the formula.
If it returns false, then the automaton does not model the formula. If it
returns undecided, then the algorithm was unable to determine whether the
automaton models the formula. In this case, the algorithm can be re-applied
with a smaller value for the time step §. The question of convergence to the

correct answer as o tends to zero is discussed in section 5. For the remainder
of this section we assume ¢ to be fixed.

A stochastic automaton has a finite number of clocks each with a prob-
ability distribution function (pdf). For each state, the set of clocks has an
(arbitrary) order, and the algorithm makes use of this ordering®. As discussed
above, we assume that each clock has non-zero lower and upper bounds on
the values to which it can be set. This has been done so that § can be initially
chosen to be less than the minimum of all these lower bounds.

The algorithm works by creating a snapshot of the automaton at each
time point nd (n € N)* and extracting some global informaton about the
probability of the formula [ag U <iimear] being satisfied at this point.® To
build the next snapshot, the algorithm picks out at each time point nd the
transitions that the automaton is capable of during the next interval of length
0. Because § is less than the minimum of all the clock lower bounds, a
maximum of one transition per path® can occur in each interval. Recording
all possible states of the automaton at each time point is therefore enough
to record all the possible transitions.

The algorithm stops when either enough information has been gathered
to determine the truth or falsity of the formula, or enough time has passed so
that nd > time, and allowing time to pass further will make no difference to
the information we already have. In this case the result undecided is returned.

4.1 Data structures

The principal data structures used by the algorithm are matrices. For each
state s in the stochastic automaton we derive a matrix for a given time ¢
(which is by definition nd), denoted matriz(s,t), which is a record of the
probabilities of the various combinations of clock values in state s at time ¢.

Each matrix matriz(s,t) will have #k(s) dimensions. Each dimension
is associated with a particular clock, and the ordering of the dimensions

3However, the choice of ordering is arbitrary and does not carry any meaning. Any
ordering will be sufficient.

4We will speak of the time instants generated by nd (n € N) as time points.

5We also require that 3n e nd = time, which ensures that one of the snapshots will be
at exactly time time.

6A path is a route through the Probabilistic Transition System which forms the seman-
tic model of the Stochastic Automaton. For further details on Probabilistic Transition
Systems see [DKB9S].

corresponds to the ordering of the clocks. The dimension associated with a

clock ¢ will have [%1 entries, where ub(c) is the largest value to which the

clock ¢ can be set, and [%(0)1 is the smallest integer greater than or equal

to "béc). For a clock ¢;, we will abbreviate [%W by N;.

The valuation function v gives the value of a particular clock: v(¢;) is the
value of clock ¢;.

Each entry in the matrix matriz(s, t) is the probability that at time ¢,
the automaton is in state s, and each clock is within a particular time range.
Thus, the value matriz (s, t)[k; . ..k,] is the probability that at time ¢, the
automaton is in state s, and v(¢;) € (6(k; — 1), 0k;] for each clock ¢;.

A further data structure we shall need is live(t), which is the set of states
“live” at time ¢ (i.e. their matrices at time ¢ contain at least one non-zero
entry, and the formula is still undecided). In order to get an accurate picture
of the automaton at time ¢ + §, we must take into account all states live at
time ¢.

A snapshot of the automaton at time ¢ is the set of all matrices matriz (s, t)
where s is in live(t).

Let pr(c; € (6(k; — 1), 0k;]) be the probability that clock ¢; is initially set
to a value in the range (0(k; —1), dk;]. Before the algorithm proper begins, we
calculate all these values from the clock probability distribution functions,
which are entered into the algorithm as part of the stochastic automaton.

4.2 Variables

The algorithm also uses a number of auxillary variables.

prob(s,t) is the probability of entering state s during the time range
(t — 0, t], and is defined for states s live at time ¢t — §, and s’ live at time ¢.

new_states(s, t) is the set of states which can be reached from a state s
during a time range (¢ — §, t].

total_pass is a probability value. It is incremented at each iteration. The
iterations of the algorithm correspond to the time points, and total_pass
records the probability of the automaton having passed the formula at that
time. total_fail is also a probability value; it records the probability of the
automaton having failed the formula as the algorithm progresses.

error is an upper bound on the possible errors of total_pass and total_fail.
after an iteration, we know that the actual probability of the automaton
having passed the formula is in the range [total_pass, total_pass + error],

and similarly for total_fail.

4.3 The algorithm

The matrix algorithm is given in detail in the appendix. We begin here with
a pseudocode description.

initialise variables
build matriz sy, 0)
check formula against sy and ¢ =0 —> pass
— fail
J undecided
repeat
increment ¢
forall locations in live(t — §)
call procedure new_time_matriz: (record possible new locations)
(increment probability of entering new locations)
(increment error)
update live(t)
forall locations in live(t)
check formula against location:
if pass then add probability to pass
if fail then add probability to fail
if undecided then call procedure new_state_matrix
until (formula has passed, or
formula has failed, or
t has reached the limit set by the formula)
set all locations undecided at last iteration to false
if pass > formulaprobability then output pass
elseif fail > 1 — formulaprobability then output fail
else output undecided

We now describe the algorithm in overview, outlining the procedures
involved. It begins by calculating matriz (sy,0), where sy is the initial state of
the stochastic automaton. If there are n clocks in state sy, then matriz(sy, 0)
is calculated using the probability distribution functions of the clocks in state
sy as follows:

Vi<k <N

V1 <k, < N, @ matriz(so, 0)[k1 ... ky] := [[pr(v(e) € (6(k — 1), 6k))
=1

live(0) will either be {s3} or the empty set, according to whether the
formula TL is made true or false by state sy, or whether we cannot yet
decide. This is determined as follows. If state sy models proposition a;, then
the formula TL is immediately true and live(0) is the empty set. Otherwise,
if sp models ag we cannot yet decide, and so live(0) contains sy. If the state
models neither proposition then the formula TL is immediately false, and
live(0) is the empty set.

If the initial step does not determine whether the formula is true or false,
we perform a number of iterations. Each iteration builds the snapshot at
time ¢ + J, based upon the snapshot at time ¢. The sequence of snapshots
build progressively more information as to whether the stochastic automaton
has passed or failed the formula.

In the case of a bounded until formula with a < ¢ subscript?, the num-
ber of iterations is finite (i.e. the algorithm always terminates) because the
iterations terminate either when sufficient information has been extracted to
determine whether the formula passes or fails, or after the %th iteration,
since the formula cannot become true after time time.

If the information at time ¢ is not enough to determine the truth or falsity
of the formula, we build the snapshot for time ¢t + §. We now describe an
individual iteration.

An iteration consists of two sections. In the first, we consider all of the
states which are currently undecided. These are all the states in live(t). For
each state we create the matrices at time ¢+d, update live(t+¢) and calculate
prob(s', t + &) for states s’ which can be reached in the interval (¢, ¢+ 4]. In
the second, we look at all states which can be reached in the interval (¢, ¢t 4],
and consider them with respect to the temporal logic formula. We then either
update the global probabilities, if the states cause the formula to pass or fail,
otherwise we update the respective matrices.

“i.e. lao U <timea1] > p, which is the only one we consider in this paper.

Note that in this algorithm a matrix is updated at most twice. Once
within procedure new_time_matriz, if the state was live at the previous time,
and once within the procedure new_state_matriz, if the state is reachable
via a transition in the previous interval.

4.3.1 Creating and updating matrices

We begin with some necessary notation. Let us assume ¢ is a fixed rational
number greater than zero.

Definition 1 If ¢, ..., ¢, are the clocks on state s, a valuation® is the vector
of results of the valuation function v(¢;) from clocks to R which gives the
values of each of the n clocks.

Two valuations v and v’ are (0—) equivalent if

Y. Hkl.U(Ci) € ((S(kl — 1), kl] N UI(C,') € ((S(kl — 1), kl]

A wvaluation equivalence class (or clock configuration) is a maximal set of
equivalent valuations. O

If § is understood, we can abbreviate this configuration as (ki, ..., k,).
For a state s and a time ¢, the probability [T}, pr(v(¢) € (6(ki—1), 0k]) is an
(s, t)-clock configuration probability (or just a clock configuration probability
when s and ¢ are understood).

There are two different procedures for updating a matrix. The first (en-
capsulated in the procedure new_time_matriz) corresponds to the situation
within the stochastic automaton where time passes, but the state remains
unchanged. In this case we must shift the clock configuration probabilities
in the previous matrix down by one index step (which corresponds to ¢ time
passing) and add the result to the matrix we are updating.

We also at this stage determine the new states which can be reached from
the current state during the ¢ time passing, and the probability of entering
these states. We do this by looking at all the clock configurations where at
least one of the indices has the value one. If the clocks are set within such
a configuration then we know that at least one clock will expire during the
ensuing 0 time step.

8We overload the definition of valuation here.

If only one index in the configuration has the value one then only one clock
can expire, and only one state can be entered from this clock configuration,
and so that state is added to the set of states which can be entered from the
current state at the current time.

If more than one index in the configuration has the value one, then we
simply do not go any further into the automaton and the configuration prob-
ability is added to error.

The second way to update a matrix corresponds to a transition from
one state to another within the automaton. It is described in the procedure
new_state_matriz. For each matrix entry we calculate the clock configura-
tion probability, multiply it by the probability of moving into this state at
this time, and add it to the matrix entry we are updating.

4.3.2 Terminaton of an iteration

When the iteration terminates, it will output one of three results: true, false
or undecided. true means that the automaton models the temporal formula,
i.e. SA = [ag U <iimear] > p. false means that SA = [ag U <iimear] > p, and
undecided means that the algorithm could not accumulate enough informa-
tion to decide whether or not the automaton modeled the formula.

The algorithm makes the output decision based on the three global vari-
ables total_pass, total_fail and error.

total_pass is a lower bound on the probability that the stochastic automa-
ton models the formula, and total_fail is a lower bound on the probability
that the stochastic automaton does not model the formula. error is the
largest amount by which total_fail or total_pass may be wrong. In a sense,
it records the size of the uncertainty introduced by the choice of §.

If neither of these situations holds then the errors introduced by the
algorithm are too large to determine an answer with this value of 4. In this
case, we can rerun the algorithm with a smaller §, and in section 5 we show
that the sum of the errors tends to zero as § tends to zero. Note, however,
that in the case where the probability that SA models [ag U -1 1] is exactly
p, we cannot guarantee that there will be a ¢ small enough to allow the
algorithm to generate a true or a false.

5 Correctness and convergence

For a single run with fixed ¢, we wish to prove two things: that the algorithm
terminating with pass implies that the automaton models the formula, and
that the algorithm terminating with fail imples that the automaton does not
model the formula.

If the algorithm outputs pass then the variable total_pass must be greater
than p (where p is taken from the temporal formula [ay U <,a;] > p). The
only place where total_pass gets incremented is line 14 of section C. If the
current state ¢ models a; (and all previous states in the path model ag) we
add the probability of entering the state ¢ at time ct. If the sum of these
probabilities is greater than p then the algorithm outputs pass.

We will consider the case when the algorithm outputs pass. Consider
the initial state. Note that for any clock configuration, the probability of
all paths which commence with the clocks being set somewhere within this
configuration is equal to the clock configuration probability. Furthermore,
for an arbitrary state s and time ¢ and configuration, the probability of all
paths which go through this configuration at this time is the probability of
the configuration multiplied by the probability of reaching that state at that
time.

The probability of reaching state s at time ¢ is the second parameter
passed to the procedure new_state_matriz®.

If every valuation in a configuration corresponds to the same automaton
transition, and this transition is the final one in a path which models the
formula, then we add the clock configuration probability (multiplied by the
probability of reaching that state at that time) to total_pass.

This is the only way in which the algorithm adds to the variable to-
tal_pass. Since the algorithm only outputs pass if total_pass is greater than
the formula probability p, it is clear that the algorithm will only output pass
if the automaton models the formula.

If more than one clock in the configuration is in the range (0,d] then
more than one of the clocks will have reached time 0 in the interval we are
considering, and so the clock configuration probability is added to error (line
12 of procedure new_time_matriz).

A similar argument applies in the case where the algorithm outputs fail.

In fact, it is greater than or equal to this sum, because some routes through the
transition system may have passed or failed the formula already, and therefore would be
considered no further by the algorithm.

10

y=x+d
y=x-d

Figure 1: Upper bound on error with clocks z and y.

Therefore the algorithm is sound in the sense that if we are given a defini-
tive answer, this answer is correct. There remains, of course, the question
of convergence to the correct answer, and the following theorem summarises
the situation.

Theorem 1 For every automaton SA and propositions ag and a; it is the
case that if SA models [ay U ¢,a;] with probability p, then for any error
e greater than zero, there is a timestep ¢ greater than zero such that for
the formula [ag U <,a1] > ¢, the algorithm will only return undecided if ¢ €

[p—e,p—i—E].

First note that n independent single variable continuous probability dis-
tribution functions f; ... f, can always be combined to give a single n vari-
able probability distribution function which is continuous in all dimensions:
floo) = filz) X - X fulzn).

For convenience, consider a location with two outgoing transitions and
two clocks z and y with distribution functions f, and f,. Because f, and f,
are both continuous, if we set f(z,y) = f;(z) x f,(y) we can (by the note
above) say that

Ve>0.30 >0.f(z,24+0) — f(z,z =) <e

We will show that for any desired size of error we can choose a suitably
small timestep.

11

Now, [f(z,z + &) — f(z,z — §)dz '° (the probability of the clock valu-
ation falling between the two 45 degree lines in Figure 1) is greater than the
sum of all contributions to the error variables (represented by the squares
in the figure). Since the number of locations in the stochastic automaton is
finite (say N,) and (for bounded until formulas with less than subscripts) the
maximum number of visits to any location is finite (say N,) for any desired
error e we must ensure that, for every location, for the multivariate func-
tion associated with that location, we choose € such that ¢ < 7. It the
timestep is set to the smallest § necessary to ensure that every location pro-
vides errors less than stNu then total error provided by one location (over
all time) will be less than - and the total error provided by all locations
will be less than e.

6 Example

In this section we consider a simple automaton and a bounded until formula,
and use these to work through the algorithm and illustrate the key points.

In the example automaton in Fig 2, functions F' and G are probability
distribution functions, i.e. lim, o I(z) = 1 for z € {v,w}, I € {F,G}.
Functions f and ¢ are the corresponding probability density functions, i.e.
f=Fand g =G

The function H, that maps states to propositions, is H(sy) = ag, H(s1) =
a1, and the formula we are trying to verify is [ag U <2a1] > 5. Or, in words,
is the probability of reaching state s; within 2 time units greater than 0.57

We now illustrate this algorithm by applying it to the example specified
in Section 6.

We begin with § equal to onell.

Om = min{ub(x), ub(y)}, where ub is the function which returns the largest value to

which a clock can be set.

1The type of situation where the algorithm would do very badly is if one clock has a
very small lower bound and all the rest have a very high lower bound. This is accenuated
if the first clock is hardly used. It might even be that the state where the first clock is
used is unreachable or has a very low probability of being reached. Thus a criterion for
the algorithm to work efficiently is that all pdf lower bounds are similar.

12

™= F(v) = (

gw) = G(w) =

Figure 2: Example automaton and probability functions.

13

The algorithm

We illustrate the working of the algorithm by working through key sections
of the algorithm. Sections A, B and C below correspond to the sections A,B
and C in the algorithm description in Section A. Within Section C, line
numbers correspond to the line numbers of the algorithm.

Section A

This section initialises all the variables to zero, and calculates all the prob-
abilities of clocks falling in the ranges (0, d], (d,2d] etc. from the probability
distribution functions entered as part of the stochastic automaton.

In our example, the probabilities that the clocks v and w are in the ranges
(0, 9], (9, 2d] or (20, 39] are given by

~
=

w

(0,6 0 0
(6,26) 2 1L
(26,36] 1 1

These are easy to obtain from the clock probability distribution functions.

Section B

The initial state sy does not model a;, but it does model the proposition ag,
and so the procedure init_matriz is called. This returns matriz(sy, 0) which
is as follows

w

3
2
1

—o O O
DN | © oolwoe|w
| © oo|—oo|—

v

and is easily derivable from the probabilities above. The procedure also sets
live(0) to {so}.

If N(v) is the upper bound of v, and N(w) is the upper bound of w, there
will be [N(v) x 3] entries on the v axis, and [N(w) x 3] entries on the w
axis, so in this case we get a 3 X 3 matrix.

14

This matrix tells us e.g. that when the clocks in the initial state are first
set, the probability of clock v being set within the range (1,2] and clock w
3

being set within the range (2,3] is £. That is, for the clock configuration

((1,2],(2,3]), the clock configuration probability is 2.

Section C

We now enter the iterative part of the algorithm, where each iteration corre-
sponds to increasing the time by one time unit, and the snapshot produced at
the end of iteration n corresponds to a view of the automaton at time nd. The
three global probability values'? are all still zero (lines 1-1a), so ¢t (current
time) becomes §. Only the state s, is live at time zero, so new_time_matriz
is called (line 6) for matriz(sy,16). This returns a number of parameters:
matriz(sg, 10), new_states(s1,d), prob and error.

The procedure new_time_matrix.

This procedure will return the matriz(sp, 19) as

w

310 0 0
3 1

2§§0
1 2 3 v

where each clock has advanced one time unit from matriz(sy, 0). So, at time
1, the probability of clock v being within the range (0, 1] and clock w being
within the range (1, 2] is 2.

The probability of staying in state s, for at least one time unit is 1; this
follows from the fact that no clock can be set to less than § (1 time unit).
Thus prob(sy, s, 19) = 1.

None of the edge values (those with at least one clock in the range (0, 1]) of
the previous time matrix (matriz(sy, 0)) is non-zero (so there is no possibility
of any clock reaching zero and causing a transition to fire). The second half
of the procedure (lines 10-23, which would determine the new states reached
from state sg) is therefore not executed and the global probability values

12These are the probability values that are updated throughout the algorithm:
total_pass, total_fail and error.

15

(total_pass, total_fail and error) are all still zero. new_states(sg,d) will be
returned as {}, since no new states can be reached at time §.

The next step (lines 7-11 of section C) is to calculate the live states at
time d, and since prob(sy, o, 10) = 1 we include s,.

Since there are no states which can be reached from state sy in the time
interval (0, d], lines 12-22 of section C are not executed.

All of the global probability values are still zero, (i.e. we don’t have enough
information to decide the truth or falsity of the formula at this stage, lines
1-1a of Section C), and 20 < 2 (we have more time in which to gain more
information, lines 2-3 of Section C), so we begin a second iteration.

On the second iteration of the while loop, ct is set to 2. Only sy was live
at the last iteration (live(d) = {so}), so at line 6 we call new_time_matriz
for matriz(sy, 20).

The procedure new_time_matrix.

This again returns a number of parameters, e.g. matriz(sy, 20) becomes

— o w

—= O O
N OO
W o O O

v

where the entry matriz(sy, 20)(1,1) is taken from the clock configuration
(0,20], (0,20] in the previous time matrix matriz(sy,d) and thus the proba-
bility of staying in state sy in the interval (,20] is . This is not the final
version of matriz(sy, 20), because some of the clock configurations lead to
transitions which lead back to state s;.

All the other clock configurations ((1,1), (1,2) and (2, 1)) in matriz(sg,)
lead to transitions. Lines 10-22 of procedure new_time_matriz are executed
for each of these three configurations.

For clock configuration (1, 1), clock v is (arbitrarily) chosen to fire, leading
to state s;. Line 13a adds state s; to new_states(sy, 29), and prob(sg, s1,29)
becomes % Clock configuration (1,1) is one where some error may be in-
troduced into the algorithm result. Choosing clock v meant that we go to a
state where the formula 7L becomes true, but choosing the other clock may

not lead to such a state. We therefore allow for the possible error introduced

16

here by adding the clock configuration probability to error, which becomes
3

For clock configuration (1,2) in matriz(sy, d) clock v will fire during the
time interval (, 20|, again leading to state s;. The probability of moving from
8y to s; in this interval is now g In this configuration only one of the clocks
(clock v) could fire, and so no changes are made to error.(lines 11a-22).

For clock configuration (2, 1) in matriz(sg,d) clock w will fire during the
time interval (d, 26], this time leading back to state sy, so state s is included
in new_states(sy,20) and prob(sy, 9, 20) is set to %. Again, no changes are
made to error.

Now, the new_time_matriz procedure is finished, and lines 7-11 of Section
C determine the value of live(26) which is {sy, s1}, because at time 2§ the
automaton may be in either state.

Lines 12-22 of section C consider each new state that can be reached in
time interval (J,26]. State s, still allows the temporal logic formula to be
true, and so procedure new_state_matriz is called (line 17), and this updates
matriz(sg, 20) to

w

3
2
1

== O O
| O Rlwses
w| o[-~

v

Since there is only a % probability of returning to state sy at this time each
of the added clock configuration probabilities is divided by 8.

State s makes the temporal logic formula true (line 13) and so total_pass
is increased to g

In the next iteration, ¢t becomes 30, which is greater than 2 (line 3). This

means that we have no more time left, and so all states undecided after this
time are simply false. total_fail becomes %

With the iterative part of the algorithm over, we have that total_pass = g,
total_fail = % and error = g

The iterations stopped because the value of time became too large —

not because the global probabilities contained enough information to make a

decision. This means that total_pass (g) is a maximum possible probability

value of the formula [ay U <2a1] (with any clock ordering) and total_pass —
3

error (3) is a minimum possible probability value.

17

Thus, since we wish to determine whether the actual probability value is
greater than %, the algorithm will output undecided.

Decreased timestep: § = %

We now run through the same example, but take snapshots of the automaton
every % time unit, i.e. § = %

First, the clock configuration probabilities for the clocks must be recal-
culated:

v w
(0,6] 0 0
(5,26] 0 0
(26,30 & <
(36746] % %
(46,50] % 3
(56766] % %

and the initial matrix (multiplied by 128 for convenience) is

w

610 0|7 5|31
500 0)21 15|19 3
410 0f21 15|19 3
3007 5031
200 00 00 0
10 0[0o 000

1 2[3 4[5 6 v

The single lines show how the representation of the probabilistic infoma-
tion changes with a smaller time step. The top right square, for example,
was summarised by the single value % when § was 1.

Section C

After one iteration of the while loop, matriz(sg,d) is

18

w

610 0|0 000
50 7 3110
410 21]15 913 0
300 21|15 9|3 0
200 715 3|10
10 0]0 0[]0 0

1 2]3 4[5 6 v

and after the second iteration, matriz(sg, 20) is

w

610 0]0 000
500 010 0/0 0
A17 51[3 1100
3021 1509 3|0 0
221 1519 3|0 0
17 5|3 1]00
1 2[3 4[5 6 v

On the third iteration, with ¢t = 36 = %, procedure new_time_matrix
returns matriz(sy, 30) as

w

610 0[0 0[0 0
500 00 0[0 0
4o ofo ofo 0
35 3[10[00
215 93 0[0 0
115 9]3 0]0 0

1 2]3 4]5 6 v

This is not the final version of matriz(sy, 30) , because some of the transi-
tions from the state sy at this time lead back to state sy. In particular, clock
configurations (2,1), (3,1) and (4, 1) of matriz(sg, 29) will lead back to state
so, and prob(sy, sy, 3) will be T=. new_state(sy, 30) := {sp}.

The clock configuration (1,1) of matriz(sg,20) leads to state s;, because

the clock v is preferred, so new_state(sy, 30) := {sg, s1}, but because we have

19

to choose between clocks we must also add the clock configuration probability

(155) to the variable error, which becomes 5.

live(30) := {so, s1} (line 10 of section C).

The clock configurations (1,2), (1,3) and (1,4) also lead to state s;, so
prob(sy, s1,39) = %.

lines 12-23 of section C determine the rest of matriz(sg, 30). so models ag
but not a;, so procedure new_state_matriz is called with probability param-

eter -, and matriz (s, 30) becomes (multiplied this time by 128% = 16384)

128"
w
6 0 0 [189 45 |27 9
5 0 0 | 189 135|81 27
4 0 0 | 189 135|81 27
3| 640 384 | 191 45 |27 9
211920 1152|384 0 |0 O
111920 1152384 0 [0 O

1 2 [3 4[5 6 v

56

State s; models ay, so total_pass becomes z.

The forth iteration will initially produce the matrix matriz(sg, 40)

0 0 010
189 | 45 27| 9
189 [135 81|27
189 [135 81|27
384 191 | 45 27| 9
1152 384 0 0| O

| 1 2]3 4|5 6 v

o oo O

— Nw |ty 8
o ol olo o

prob(sy, s1,49) will be equal to the sum of the clock configuration prob-
abilities (1,1), (1,2) and (1,3) of matriz(sy,36), which is ;20 & 0.2734.
total_pass = 0.4375 + 0.2734 = 0.7109. The addition to error is %, SO
error ~ 0.1719.

Therefore, the probability of entering state s; at or before time 44 is at
least total_pass — error = 0.5390 > 0.5.

The forth iteration will continue by building matriz(s;,40) and alter-
ing matriz(sy,49), but they won’t be used, because (line 1 of section C),
total_pass — error = 0.5390 > 0.5, so lines 28-34 of section C will output

pass.

20

7 Conclusions

In this report we have presented a model checking algorithm for stochastic
systems. The principal novel feature in this algorithm is that the system
description language (stochastic automata) can handle more than just expo-
nential probability functions. Although we require the probability functions
to be continuous, we believe this to be a worthwhile advance. Further work
on this subject will include relaxing the restrictions imposed on the stochas-
tic automata, particularly the ability to set and use clocks anywhere in the
automaton. Being able to do this would allow parallel composition, and
compositional model checking would be a very worthwhile goal indeed.

It would also be good to increase the expressiveness of the logic, allowing
nested untils or “greater than” queries, and to extend the model checking
algorithm itself to allow queries such as “what is the probability of [ag U ;]
and receive a probability for an answer.

A The algorithm

In this section we present a detailed description of the algorithm. It is divided
into Section A (which initialises variables), Section B (the initial part of the
algorithm) and Section C (the iterative part). Procedures used are described
at the end.

The lines of code are prefaced with numbers, and the comments are de-
limited with double stars.

** Section A**

Model_check(SA, Formula, §, pick)
** note that the function pick is the adversary, used in procedure new_time_matriz. **
** We are assuming a TL formula of the form [ag U <;a1] > p. **

** The > p could easily be changed; the < ¢ is hardwired into the algorithm.
kok kk

%%k

** We begin by initialising variables.**

ct: (integer) current_time**

ct =0

** total_pass and total_fail are reals in [0,1]. **

At any point in the algorithm, total_pass is the accumulated **
probability of all the passed paths and total_fail is the accumlated **
probability of all the failed paths. We initialise them both to zero.**

* %k

%k
*ok
*k

21

total_pass := 0
total_fail == 0
** error is a real in [0, 1]. It is the accumulated probability of all paths **
** which, because of the discretisation of the algorithm, we cannot determine exactly.**
** This is where the revised version of the algorithm differs from the initial one.**
** It is initialised to zero. **
sk koK
error 1= ()
** prob(s, t) is the probability of moving (from anywhere) to location s
* at time ¢. (i.e. in interval (¢ — d, ¢].)**
** For all combinations of locations and times, we initialise prob **
** to zero. **
Vse S.Vi<n,
prob(s,di) :=0
remain(s,t) is a boolean which is true if the probability of remaining **
in location s during time interval (¢ — 0, t] is non-zero, false otherwise.**
** They are all initialised to false. **
Vse S.Vi<n.

remain(s,01) := false
** live(t) is the set of locations “active” at the end of **
**interval (¢ — ¢, t], which **
** we need for calculating the information for the next time interval. **
** For all time values, we initialise live to the emptyset. **
Vi<n.

live(01) := 0
** We initialise all values in all matrices to zero.**
** The are ng clocks in location s.**
Vses.

VO<j<n

Vi< <M

%%k

%k
*k

V1 < ip, < Ny, .matriz(s,8j)[i1...in,] =0

** call procedure for calculating probabilities of clocks falling in the ranges **
%0, 6], (8, 26] etc. This comes directly from the clock PDFs, **
** and is only calculated once. It is needed for determining the cloc
**probabilities. **

k**

22

** (' is the set of all clocks and F' is the set of clock probability functions™**
** This procedure returns pr, which is needed in new_state_matriz **

** and init_matriz. **

clock_config_probs(C, F .4, pr)
Kok ok

** Section B**
** Consider initial location of SA: s_0 **
*#1f s_0 = a_1 then formula is trivially true.
if s_0 = ay then
total_pass :=1
**1f s_0 = a_0 then formula is undecided and we must **
** unfold SA further. **
elseif s_0 = ay then
** Build the initial matrix, i.e. matriz(s_0,0). **
**This will then contain the probabilities **
**of all the different clock settings for location s_0 at time zero. **
init_matriz(matriz(s-0,0))
** The only location “live” at time zero will be s_0. **
live(0) := {s_0}
** 1f s_0 does not model a_0 or a_1 then formula is trivially false. **
else
total_fail -= 1
end if

%%k

** Section C**
** Each iteration of the following loop unfolds the automaton by **
** one time step of §. States which cause the formula to **
** pass/fail are pruned from the tree, and their probabilities added to **
** total_pass/total_fail, while the undecided states are recorded **
** for the next iteration. **
** We continue while the values of total_pass, total_fail and error
** are not enough to determine whether the formula is true or false **
repeat
** Increment current_time **
ct:=ct+6
** for all states s that were live at the last clock tick **
Vs € live(ct —0)

Hk

23

10:
11:

** set current_state to s. **
cs 1= 8
** The procedure new_time_matriz returns **
matriz(cs, ct): the matrix for the current state at the current time.
It also **
** updates the function prob with the probability of remaining **
in the current state at the current time and the probabilities of **
moving to different states at the current time. **
** 1t also updates the value of error. **
new_time_matriz(matriz(cs, ct), new_states(cs, ct), remain(cs, ct), prob, error)
** |f the probability of remaining in current state at current time is zero **
if remain(cs, ct) = false then
** current state is not live at current time and **
** only the states which can be reached from current state at current time **
** are added to those live at current time **
live(ct) := live(ct) U new_states(cs, ct)
else ** remain(cs, ct) = true **
** The current state, plus all states which may be reached from it at **
** the current time, must be added to the live states. **
live(ct) := live(ct) U {cs} U new_states(cs, ct)
end if

XX %%k

XX
XX

1la: end forall ** Vs € live(ct — §) **
** Now, we have live(ct) and prob(cs, ct) for all ¢s in live(ct) **

%%k

i.e. all the states we could be in at time ct, and the probability of **

** actually entering them in the previous time interval. **

Xk kX

12:

14:

** For every state which can be reached at the current **
** time, we must see if it causes the formula to pass or fail, in *
** which cases we adjust the values for total_pass or **
** total_fail and remove the state from the live set. If we cannot yet **
** tell whether the formula is true or false, we must build the state/time matrix.
V q € live(ct)
**if ¢ = a1, then formula is true **
if ¢ = a; then
** total_pass is incremented by the probability of entering ¢ **
** from the current state at the current time **
total_pass := total_pass + prob(q, ct)
** State ¢ is removed from the live set **

*

%%k

24

15:

16:

17:
18:

19:

20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:

31:

32:
sokskok

34:
35:

live(ct) := live(ct) \ {q}
** Otherwise, if ¢ = ap (and ¢ is not a terminating state) **
** then the formula may still be true, **
** so we must build matriz(q, ct) and keep state ¢ in the live(ct) set. **
elseif ¢ = ag A ¢ & terminating_states then
** The procedure new_state_matriz returns **
** matriz(q, ct): the matrix for state ¢ at current time, and requires **
** prob(q, ct): the probability of entering state ¢ from the current **
** state at the current time. **
new_state_matriz(matriz(q, ct), prob(q, ct))
else ** If ¢ does not model a_0 or it is a terminating state and also **
** it does not model a_1 then the formula is false **
** total_fail is incremented by the probability of entering ¢ **
** from the current state at the current time **
total_fail := total_fail + prob(q, ct)
** State ¢ is removed from the live set **
live(ct) := live(ct) \ {q}
end if
end forall ** for all states in live(ct) **
until total_pass > p ** formula has passed **
or
total_fail > 1 — p ** formula has failed **
or
(error = 1 —p A error > p) ** no possibility of a pass or a fail **
or
ct = t ** time's up. **
if (¢t = t) then
** All states undecided at the last iteration are now false, so **
** total_fail is set to 1 — total_pass — error **
total_fail == 1 — total_pass — error
end if

** Qutput result, based on the values of **

** total_pass, total_fail and error **
33:

if total_pass > p then

** SA models formula **
output pass

elseif ** total_fail > 1 — p **

25

** SA does not model formula **
36: output fail
37: else ** errors are too large; cannot decide **
38: output undecided
39: end if

** This procedure builds the initial matrix. **

** We assume there are n clocks associated with this state,
** and ¢]° is the [th clock. **
** We abbreviate [upper_bound(c°)].5 by N;. **

XX

procedure init_matriz(matriz (s, 0))
begin procedure
Vi< <M

n
V1 < iy < Nyomatriz(so, 0)[i . .. i,] := [[pr(e® € [i — 6,4))
I=1

end procedure

procedure new_time_matriz(matriz(cs, ct), new_states(cs, ct), remain(cs, ct), prob, error)
** This procedure updates a matrix by incrementing time, not by **
** changing state. We can do this by considering the values in the previous time **
** matrix. It also updates the function prob, **
** and the variable error.**
** There are n clocks in state ¢s.**
begin procedure
1:V1<i <N,

2: Y1 < i, <N,.
** If one of the matrix indices is at its maximum value, then the **
** probability value in this position must be zero. This is **

** because this procedure is always the first to update a state/time matrix. **
X3k skok
Kk kK

3: if 31 < nei = N; then

26

4: matriz(es, ct)|i, ..., 0] =0
** otherwise the values in the matrix can be updated simply from the **

** values in the previous time matrix. **
5: else ** all clocks ¢; are > 1 and < N; **
6: matriz(cs, ct)[iy, ..., i) :=
7. matriz(cs, ct)|i, ..., | + matriz(cs, ct — 0)[ir+1,. .., ip+1]

** we record the fact that it is possible to remain in this state **
** at this time. **
8: remain(cs, ct) := true
9: end if
9a:end forall
** We now pick out the positions in the previous time matrix which, **
** when moved forward one unit in time, result in a new state. **
10:V1 < i < N

11:¥1 < i, < N,
**If more than one of the previous time matrix indices is one, we know that **
** more than one of the clocks will have reached zero by ct, and so we **

** add the probability to error. **
1la: it #{c; | ¢, =1} > 1 then
12: error := error + matriz(cs, ¢t — 0)[iy, - . ., in)
12a: else if #{¢; | e, =1} =1
** Given the stochastic Automaton SA, the state cs and the clock cc **
Kk

** ' is the resulting state. If the clock is associated with more than
** one transition the function pick (the adversary) chooses the **
** resulting state. Otherwise the state is the one determined by the **
** transition relation of the SA. **

13: s’ = pick(SA, cs, ¢;)

13a: new_states(cs, ct) .= new_states(cs, ct) U {s'}
** the probability of entering s’ at time ¢t **

** is incremented by the matrix probability **
14: prob(s', ct) 1= prob(s', ct) + matriz(cs, ct — 0)[ir, - . -, in)
22: end if **line 11**
23: end forall

24:end procedure

** This procedure builds a new matrix, where the state is new rather than the time **

27

** \We assume there are n clocks associated with this state, **
**and ¢} is the [th clock. **

** We abbreviate [upper_bound(cj)].5 by N **

** The values in the matrix are calculated by multiplying the clock **
** probabilities by a factor of p, where p is the probability of **
** entering the state, and adding this value to the value already in
** the position. **

*k

procedure new_state_matriz(matriz(cs, ct), p)
begin procedure
Vi<y <M

V1 < i < Nyomatriz(cs, ct)in, ..., 0] :=

matriz(cs, ct)[it, i) + (p x [[pr(c; € [—6,4)))
I=1
end procedure

B Complexity measues

One obvious measure of the complexity of the algorithm is how ¢ relates to
t,i.e. the value of n in nd = ¢ is an upper bound on the number of iterations
that can occur when considering a TL formula of the form [a U <,b] > p.
For formulae with a > ¢ subscript this isn’t true.

Space complexity is exponential wrt the number of clocks consumed at
states. The largest matrix is given by the formula maz][{ [%md(c) | ¢ € k(s)}
where s is a state in the automaton.

References

[BK98] Christel Baier and Marta Kwiatkowska. Model checking for a prob-
abilistic branching time logic with fairness. Distributed Computing,
May 1998.

[D’A99] Pedro D’Argenio. Algebras and automata for timed and stochastic
systems. PhD thesis, University of Twente, November 1999.

28

[DKB98] Pedro R. D’Argenio, Joost-Pieter Katoen, and Ed Brinksma. An
algebraic approach to the specification of stochastic systems (ex-
tended abstract). In D. Gries and W.-P. de Roever, editors, Pro-
ceedings of the IFIP Working Conference on Programming Con-

cepts and Methods, PROCOMET’98, pages 126 147. Chapman &
Hall, 1998.

29

