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k1 Introdu
tionIn this report we present an algorithm for model-
he
king sto
hasti
 au-tomata with respe
t to a probabilisti
 temporal logi
. We 
onsider thesto
hasti
 automata presented in [D'A99℄. In parti
ular, the algorithm isnovel in that it allows any (
ontinuous) probability density fun
tions to beused in the automaton (not just exponential ones).This report is stru
tured as follows. In Se
tion 2 we introdu
e sto
hasti
automata, whi
h forms the system des
ription language for the model 
he
k-ing algorithm. In Se
tion 3 we introdu
e and explain the simple probabilisti
temporal logi
 whi
h forms the query language in the model 
he
king algo-rithm. In Se
tion 4 we present an overview of the algorithm, together withthe data stru
tures and variables used. In Se
tion 5 we 
onsider the twinquestions of 
orre
tness and 
onvergen
e: does the result pass (fail) implythat the automaton models (does not model) the formula? and se
ondly forany automaton and bounded until formula, is it possible to run the algorithmwith a small enough timestep so that the result unde
ided is given only inarbitrarily few 
ases?2 Sto
hasti
 AutomataAs de�ned in [D'A99℄, a sto
hasti
 automaton is a stru
ture SA = (S; C;A;�I; �)where� S is a set of lo
ations.� C is a set of random 
lo
ks. Ea
h x 2 C is a random variable withdistribution fun
tion Fx .� A is a set of a
tions.� �I � S � (A� P�n (C))� S is the set of edges.1



� � : S ! P�n (C) is the 
lo
k setting fun
tion.We will denote (s; a;C ; s 0) 2 �I by s a;C���I s 0.For a full explanation of Sto
hasti
 Automata, see [D'A99℄.In this report, we will use a slightly simpli�ed form of the sto
hasti
automata, simpli�ed in the following ways.� ea
h 
lo
k has a lower bound on the range to whi
h it may be set1.The minimum of these is the maximum permissible value of time step.� ea
h 
lo
k has an upper bound on the value to whi
h it may be set; fora 
lo
k 
 this is given by ub(
).� 
lo
ks are used only on transitions emanating from the states in whi
hthey have been set.� all 
lo
ks set in a state must be 
onsumed by at least one transitionfrom that state2.� there is one 
lo
k on ea
h transition.3 A Probabilisti
 Real-Time Logi
In this se
tion, we introdu
e a simple probabilisti
 temporal logi
. The pur-pose of the logi
 is to express properties that we wish to 
he
k the sto
hasti
automaton against. The logi
 we de�ne allows us to 
he
k a range of su
hproperties.We will use adversaries to resolve the nondeterministi
 (as opposed toprobabilisti
) 
hoi
es in the automaton.(see for example [BK98℄). An ad-versary of a sto
hasti
 automaton 
an be thought of as a s
heduler, whi
hresolves any nondeterministi
 
hoi
es whi
h the sto
hasti
 automaton mustmake. An adversary may vary it's behaviour a

ording to the previous be-haviour of the automaton.We assume that when we wish to model 
he
k a property against anautomaton, we are also given an adversary to resolve the nondeterminism1A bene�
ial 
onsequen
e of this assumption is that it (in a rather strong way) ensurestime guardedness of the automaton, and thus prevents zeno behaviour.2In the 
ase where the same 
lo
k is 
onsumed by more than one transition, then weresolve the non-deterministi
 
hoi
e that arises using adversaries.2



within the automaton. We 
an now, for example, answer su
h questionsas \Given a sto
hasti
 automaton and an adversary, is the probability of asu

ess event greater than 0.8?".The syntax of our logi
 is ::= tt j ap j :  j  1 ^  2 j [�1 U�
 �2℄ ' p� ::= tt j ap j : � j �1 ^ �2where [�1 U�
 �2℄ ' p is a path formula. The path formulae 
an only beused at the outermost level | they 
annot be nested. This is be
ause themodel 
he
king algorithm we give 
an only evaluate path formulae from theinitial state.Further: 
 2 N (natural numbers), a is an atomi
 proposition, p 2 [0; 1℄is a probability value, '2 f<;>;�;�g and �2 f<;�g.With this syntax, an example of a valid formula that we 
an 
he
k wouldbe [tt U<10 su

ess℄ > 0:8 whi
h says that the probability of rea
hing a su

essevent within 10 time units is greater than 0.8.4 Overview of algorithmIn this se
tion we present an overview of the algorithm, together with dis-
riptions of the data stru
tures whi
h will be used. The model 
he
kingalgorithm takes a sto
hasti
 automaton SA, together with a bounded un-til temporal logi
 formula TL, a time step parameter Æ and an adversarypi
k. For 
onvenien
e we will present only the 
ase where TL is of the form[a0 U 6timea1℄ > p. Minor modi�
ations to the algorithm would allow any of> p, 6 p or < p. We use the atomi
 propositions a0 and a1 as part of theformula be
ause anything more 
omplex 
an be redu
ed to these by standardmodel-
he
king te
hniques. Using � time guarantees that the algorithm willterminate.A single iteration of the algorithm will return one of three results: true,false or unde
ided. If it returns true, then the automaton models the formula.If it returns false, then the automaton does not model the formula. If itreturns unde
ided, then the algorithm was unable to determine whether theautomaton models the formula. In this 
ase, the algorithm 
an be re-appliedwith a smaller value for the time step Æ. The question of 
onvergen
e to the3




orre
t answer as Æ tends to zero is dis
ussed in se
tion 5. For the remainderof this se
tion we assume Æ to be �xed.A sto
hasti
 automaton has a �nite number of 
lo
ks ea
h with a prob-ability distribution fun
tion (pdf). For ea
h state, the set of 
lo
ks has an(arbitrary) order, and the algorithmmakes use of this ordering3. As dis
ussedabove, we assume that ea
h 
lo
k has non-zero lower and upper bounds onthe values to whi
h it 
an be set. This has been done so that Æ 
an be initially
hosen to be less than the minimum of all these lower bounds.The algorithm works by 
reating a snapshot of the automaton at ea
htime point nÆ (n 2 N)4 and extra
ting some global informaton about theprobability of the formula [a0 U 6timea1℄ being satis�ed at this point.5 Tobuild the next snapshot, the algorithm pi
ks out at ea
h time point nÆ thetransitions that the automaton is 
apable of during the next interval of lengthÆ. Be
ause Æ is less than the minimum of all the 
lo
k lower bounds, amaximum of one transition per path6 
an o

ur in ea
h interval. Re
ordingall possible states of the automaton at ea
h time point is therefore enoughto re
ord all the possible transitions.The algorithm stops when either enough information has been gatheredto determine the truth or falsity of the formula, or enough time has passed sothat nÆ > time, and allowing time to pass further will make no di�eren
e tothe information we already have. In this 
ase the result unde
ided is returned.4.1 Data stru
turesThe prin
ipal data stru
tures used by the algorithm are matri
es. For ea
hstate s in the sto
hasti
 automaton we derive a matrix for a given time t(whi
h is by de�nition nÆ), denoted matrix (s; t), whi
h is a re
ord of theprobabilities of the various 
ombinations of 
lo
k values in state s at time t .Ea
h matrix matrix (s; t) will have #�(s) dimensions. Ea
h dimensionis asso
iated with a parti
ular 
lo
k, and the ordering of the dimensions3However, the 
hoi
e of ordering is arbitrary and does not 
arry any meaning. Anyordering will be suÆ
ient.4We will speak of the time instants generated by nÆ (n 2 N) as time points.5We also require that 9n � nÆ = time, whi
h ensures that one of the snapshots will beat exa
tly time time.6A path is a route through the Probabilisti
 Transition System whi
h forms the seman-ti
 model of the Sto
hasti
 Automaton. For further details on Probabilisti
 TransitionSystems see [DKB98℄. 4




orresponds to the ordering of the 
lo
ks. The dimension asso
iated with a
lo
k 
 will have dub(
)Æ e entries, where ub(
) is the largest value to whi
h the
lo
k 
 
an be set, and dub(
)Æ e is the smallest integer greater than or equalto ub(
)Æ . For a 
lo
k 
i , we will abbreviate dub(
i )Æ e by Ni .The valuation fun
tion v gives the value of a parti
ular 
lo
k: v(
i) is thevalue of 
lo
k 
i .Ea
h entry in the matrix matrix (s; t) is the probability that at time t ,the automaton is in state s, and ea
h 
lo
k is within a parti
ular time range.Thus, the value matrix (s; t)[k1 : : : kn ℄ is the probability that at time t , theautomaton is in state s, and v(
i) 2 (Æ(ki � 1); Æki ℄ for ea
h 
lo
k 
i .A further data stru
ture we shall need is live(t), whi
h is the set of states\live" at time t (i.e. their matri
es at time t 
ontain at least one non-zeroentry, and the formula is still unde
ided). In order to get an a

urate pi
tureof the automaton at time t + Æ, we must take into a

ount all states live attime t .A snapshot of the automaton at time t is the set of all matri
esmatrix (s; t)where s is in live(t).Let pr(
i 2 (Æ(ki � 1); Æki ℄) be the probability that 
lo
k 
i is initially setto a value in the range (Æ(ki�1); Æki ℄. Before the algorithm proper begins, we
al
ulate all these values from the 
lo
k probability distribution fun
tions,whi
h are entered into the algorithm as part of the sto
hasti
 automaton.4.2 VariablesThe algorithm also uses a number of auxillary variables.prob(s; t) is the probability of entering state s during the time range(t � Æ; t ℄, and is de�ned for states s live at time t � Æ, and s 0 live at time t .new states(s; t) is the set of states whi
h 
an be rea
hed from a state sduring a time range (t � Æ; t ℄.total pass is a probability value. It is in
remented at ea
h iteration. Theiterations of the algorithm 
orrespond to the time points, and total passre
ords the probability of the automaton having passed the formula at thattime. total fail is also a probability value; it re
ords the probability of theautomaton having failed the formula as the algorithm progresses.error is an upper bound on the possible errors of total pass and total fail .after an iteration, we know that the a
tual probability of the automatonhaving passed the formula is in the range [total pass; total pass + error ℄,5



and similarly for total fail .4.3 The algorithmThe matrix algorithm is given in detail in the appendix. We begin here witha pseudo
ode des
ription.initialise variablesbuild matrix (s0; 0)
he
k formula against s0 and t = 0 ! pass! fail# unde
idedrepeatin
rement tforall lo
ations in live(t � Æ)
all pro
edure new time matrix: (re
ord possible new lo
ations)(in
rement probability of entering new lo
ations)(in
rement error)update live(t)forall lo
ations in live(t)
he
k formula against lo
ation:if pass then add probability to passif fail then add probability to failif unde
ided then 
all pro
edure new state matrixuntil (formula has passed, orformula has failed, ort has rea
hed the limit set by the formula)set all lo
ations unde
ided at last iteration to falseif pass > formulaprobability then output passelseif fail > 1� formulaprobability then output failelse output unde
idedWe now des
ribe the algorithm in overview, outlining the pro
eduresinvolved. It begins by 
al
ulatingmatrix (s0; 0), where s0 is the initial state ofthe sto
hasti
 automaton. If there are n 
lo
ks in state s0, then matrix (s0; 0)is 
al
ulated using the probability distribution fun
tions of the 
lo
ks in states0 as follows: 6



8 1 6 k1 6 N1...8 1 6 kn 6 Nn �matrix (s0; 0)[k1 : : : kn ℄ := nYl=1pr(v(
l) 2 (Æ(kl � 1); Ækl ℄)live(0) will either be fs0g or the empty set, a

ording to whether theformula TL is made true or false by state s0, or whether we 
annot yetde
ide. This is determined as follows. If state s0 models proposition a1, thenthe formula TL is immediately true and live(0) is the empty set. Otherwise,if s0 models a0 we 
annot yet de
ide, and so live(0) 
ontains s0. If the statemodels neither proposition then the formula TL is immediately false, andlive(0) is the empty set.If the initial step does not determine whether the formula is true or false,we perform a number of iterations. Ea
h iteration builds the snapshot attime t + Æ, based upon the snapshot at time t . The sequen
e of snapshotsbuild progressively more information as to whether the sto
hasti
 automatonhas passed or failed the formula.In the 
ase of a bounded until formula with a 6 t subs
ript7, the num-ber of iterations is �nite (i.e. the algorithm always terminates) be
ause theiterations terminate either when suÆ
ient information has been extra
ted todetermine whether the formula passes or fails, or after the timeÆ th iteration,sin
e the formula 
annot be
ome true after time time.If the information at time t is not enough to determine the truth or falsityof the formula, we build the snapshot for time t + Æ. We now des
ribe anindividual iteration.An iteration 
onsists of two se
tions. In the �rst, we 
onsider all of thestates whi
h are 
urrently unde
ided. These are all the states in live(t). Forea
h state we 
reate the matri
es at time t+Æ, update live(t+Æ) and 
al
ulateprob(s 0; t + Æ) for states s 0 whi
h 
an be rea
hed in the interval (t ; t + Æ℄. Inthe se
ond, we look at all states whi
h 
an be rea
hed in the interval (t ; t+Æ℄,and 
onsider them with respe
t to the temporal logi
 formula. We then eitherupdate the global probabilities, if the states 
ause the formula to pass or fail,otherwise we update the respe
tive matri
es.7i.e. [a0 U 6timea1℄ > p, whi
h is the only one we 
onsider in this paper.7



Note that in this algorithm a matrix is updated at most twi
e. On
ewithin pro
edure new time matrix , if the state was live at the previous time,and on
e within the pro
edure new state matrix , if the state is rea
hablevia a transition in the previous interval.4.3.1 Creating and updating matri
esWe begin with some ne
essary notation. Let us assume Æ is a �xed rationalnumber greater than zero.De�nition 1 If 
1; : : : ; 
n are the 
lo
ks on state s, a valuation8 is the ve
torof results of the valuation fun
tion v(
i) from 
lo
ks to R whi
h gives thevalues of ea
h of the n 
lo
ks.Two valuations v and v 0 are (Æ�) equivalent if8 
i : 9 kl :v(
i) 2 (Æ(kl � 1); kl ℄ ^ v 0(
i) 2 (Æ(kl � 1); kl ℄A valuation equivalen
e 
lass (or 
lo
k 
on�guration) is a maximal set ofequivalent valuations. 2If Æ is understood, we 
an abbreviate this 
on�guration as (k1; : : : ; kn).For a state s and a time t , the probabilityQnl=1 pr(v(
l) 2 (Æ(kl�1); Ækl ℄) is an(s; t)-
lo
k 
on�guration probability (or just a 
lo
k 
on�guration probabilitywhen s and t are understood).There are two di�erent pro
edures for updating a matrix. The �rst (en-
apsulated in the pro
edure new time matrix ) 
orresponds to the situationwithin the sto
hasti
 automaton where time passes, but the state remainsun
hanged. In this 
ase we must shift the 
lo
k 
on�guration probabilitiesin the previous matrix down by one index step (whi
h 
orresponds to Æ timepassing) and add the result to the matrix we are updating.We also at this stage determine the new states whi
h 
an be rea
hed fromthe 
urrent state during the Æ time passing, and the probability of enteringthese states. We do this by looking at all the 
lo
k 
on�gurations where atleast one of the indi
es has the value one. If the 
lo
ks are set within su
ha 
on�guration then we know that at least one 
lo
k will expire during theensuing Æ time step.8We overload the de�nition of valuation here.8



If only one index in the 
on�guration has the value one then only one 
lo
k
an expire, and only one state 
an be entered from this 
lo
k 
on�guration,and so that state is added to the set of states whi
h 
an be entered from the
urrent state at the 
urrent time.If more than one index in the 
on�guration has the value one, then wesimply do not go any further into the automaton and the 
on�guration prob-ability is added to error.The se
ond way to update a matrix 
orresponds to a transition fromone state to another within the automaton. It is des
ribed in the pro
edurenew state matrix . For ea
h matrix entry we 
al
ulate the 
lo
k 
on�gura-tion probability, multiply it by the probability of moving into this state atthis time, and add it to the matrix entry we are updating.4.3.2 Terminaton of an iterationWhen the iteration terminates, it will output one of three results: true, falseor unde
ided. true means that the automaton models the temporal formula,i.e. SA j= [a0 U 6timea1℄ > p. false means that SA 6j= [a0 U 6timea1℄ > p, andunde
ided means that the algorithm 
ould not a

umulate enough informa-tion to de
ide whether or not the automaton modeled the formula.The algorithm makes the output de
ision based on the three global vari-ables total pass, total fail and error .total pass is a lower bound on the probability that the sto
hasti
 automa-ton models the formula, and total fail is a lower bound on the probabilitythat the sto
hasti
 automaton does not model the formula. error is thelargest amount by whi
h total fail or total pass may be wrong. In a sense,it re
ords the size of the un
ertainty introdu
ed by the 
hoi
e of Æ.If neither of these situations holds then the errors introdu
ed by thealgorithm are too large to determine an answer with this value of Æ. In this
ase, we 
an rerun the algorithm with a smaller Æ, and in se
tion 5 we showthat the sum of the errors tends to zero as Æ tends to zero. Note, however,that in the 
ase where the probability that SA models [a0 U <ta1℄ is exa
tlyp, we 
annot guarantee that there will be a Æ small enough to allow thealgorithm to generate a true or a false.
9



5 Corre
tness and 
onvergen
eFor a single run with �xed Æ, we wish to prove two things: that the algorithmterminating with pass implies that the automaton models the formula, andthat the algorithm terminating with fail imples that the automaton does notmodel the formula.If the algorithm outputs pass then the variable total pass must be greaterthan p (where p is taken from the temporal formula [a0 U 6ta1℄ > p). Theonly pla
e where total pass gets in
remented is line 14 of se
tion C. If the
urrent state q models a1 (and all previous states in the path model a0) weadd the probability of entering the state q at time 
t . If the sum of theseprobabilities is greater than p then the algorithm outputs pass.We will 
onsider the 
ase when the algorithm outputs pass. Considerthe initial state. Note that for any 
lo
k 
on�guration, the probability ofall paths whi
h 
ommen
e with the 
lo
ks being set somewhere within this
on�guration is equal to the 
lo
k 
on�guration probability. Furthermore,for an arbitrary state s and time t and 
on�guration, the probability of allpaths whi
h go through this 
on�guration at this time is the probability ofthe 
on�guration multiplied by the probability of rea
hing that state at thattime.The probability of rea
hing state s at time t is the se
ond parameterpassed to the pro
edure new state matrix9.If every valuation in a 
on�guration 
orresponds to the same automatontransition, and this transition is the �nal one in a path whi
h models theformula, then we add the 
lo
k 
on�guration probability (multiplied by theprobability of rea
hing that state at that time) to total pass.This is the only way in whi
h the algorithm adds to the variable to-tal pass. Sin
e the algorithm only outputs pass if total pass is greater thanthe formula probability p, it is 
lear that the algorithm will only output passif the automaton models the formula.If more than one 
lo
k in the 
on�guration is in the range (0; Æ℄ thenmore than one of the 
lo
ks will have rea
hed time 0 in the interval we are
onsidering, and so the 
lo
k 
on�guration probability is added to error (line12 of pro
edure new time matrix).A similar argument applies in the 
ase where the algorithm outputs fail.9In fa
t, it is greater than or equal to this sum, be
ause some routes through thetransition system may have passed or failed the formula already, and therefore would be
onsidered no further by the algorithm. 10



y
y=x−d

y=x+d

xFigure 1: Upper bound on error with 
lo
ks x and y .Therefore the algorithm is sound in the sense that if we are given a de�ni-tive answer, this answer is 
orre
t. There remains, of 
ourse, the questionof 
onvergen
e to the 
orre
t answer, and the following theorem summarisesthe situation.Theorem 1 For every automaton SA and propositions a0 and a1 it is the
ase that if SA models [a0 U 6ta1℄ with probability p, then for any errore greater than zero, there is a timestep Æ greater than zero su
h that forthe formula [a0 U 6ta1℄> q , the algorithm will only return unde
ided if q 2[p�e; p+e℄.First note that n independent single variable 
ontinuous probability dis-tribution fun
tions f1 : : : fn 
an always be 
ombined to give a single n vari-able probability distribution fun
tion whi
h is 
ontinuous in all dimensions:f (x1 : : : xn) = f1(x1)� � � � � fn(xn).For 
onvenien
e, 
onsider a lo
ation with two outgoing transitions andtwo 
lo
ks x and y with distribution fun
tions fx and fy . Be
ause fx and fyare both 
ontinuous, if we set f (x ; y) = fx (x ) � fy(y) we 
an (by the noteabove) say that8 � > 0: 9 Æ > 0:f (x ; x + Æ)� f (x ; x � Æ) < �We will show that for any desired size of error we 
an 
hoose a suitablysmall timestep. 11



Now, Rm0 f (x ; x + Æ)� f (x ; x � Æ)dx 10 (the probability of the 
lo
k valu-ation falling between the two 45 degree lines in Figure 1) is greater than thesum of all 
ontributions to the error variables (represented by the squaresin the �gure). Sin
e the number of lo
ations in the sto
hasti
 automaton is�nite (say Ns) and (for bounded until formulas with less than subs
ripts) themaximum number of visits to any lo
ation is �nite (say Nv ) for any desirederror e we must ensure that, for every lo
ation, for the multivariate fun
-tion asso
iated with that lo
ation, we 
hoose � su
h that � < eNs�Nv . If thetimestep is set to the smallest Æ ne
essary to ensure that every lo
ation pro-vides errors less than eNs�Nv , then total error provided by one lo
ation (overall time) will be less than eNs and the total error provided by all lo
ationswill be less than e.6 ExampleIn this se
tion we 
onsider a simple automaton and a bounded until formula,and use these to work through the algorithm and illustrate the key points.In the example automaton in Fig 2, fun
tions F and G are probabilitydistribution fun
tions, i.e. limx!1 I (x ) = 1 for x 2 fv ;wg; I 2 fF ;Gg.Fun
tions f and g are the 
orresponding probability density fun
tions, i.e.f = F 0 and g = G 0.The fun
tion H , that maps states to propositions, is H (s0) = a0, H (s1) =a1, and the formula we are trying to verify is [a0 U 62a1℄ > 12 . Or, in words,is the probability of rea
hing state s1 within 2 time units greater than 0:5?We now illustrate this algorithm by applying it to the example spe
i�edin Se
tion 6.We begin with Æ equal to one11.10m = minfub(x ); ub(y)g, where ub is the fun
tion whi
h returns the largest value towhi
h a 
lo
k 
an be set.11The type of situation where the algorithm would do very badly is if one 
lo
k has avery small lower bound and all the rest have a very high lower bound. This is a

enuatedif the �rst 
lo
k is hardly used. It might even be that the state where the �rst 
lo
k isused is unrea
hable or has a very low probability of being rea
hed. Thus a 
riterion forthe algorithm to work eÆ
iently is that all pdf lower bounds are similar.
12
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Figure 2: Example automaton and probability fun
tions.
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The algorithmWe illustrate the working of the algorithm by working through key se
tionsof the algorithm. Se
tions A, B and C below 
orrespond to the se
tions A,Band C in the algorithm des
ription in Se
tion A. Within Se
tion C, linenumbers 
orrespond to the line numbers of the algorithm.Se
tion AThis se
tion initialises all the variables to zero, and 
al
ulates all the prob-abilities of 
lo
ks falling in the ranges (0; Æ℄; (Æ; 2Æ℄ et
. from the probabilitydistribution fun
tions entered as part of the sto
hasti
 automaton.In our example, the probabilities that the 
lo
ks v and w are in the ranges(0; Æ℄; (Æ; 2Æ℄ or (2Æ; 3Æ℄ are given byv w(0; Æ℄ 0 0(Æ; 2Æ℄ 34 12(2Æ; 3Æ℄ 14 12These are easy to obtain from the 
lo
k probability distribution fun
tions.Se
tion BThe initial state s0 does not model a1, but it does model the proposition a0,and so the pro
edure init matrix is 
alled. This returns matrix (s0; 0) whi
his as followsw3 0 38 182 0 38 181 0 0 01 2 3 vand is easily derivable from the probabilities above. The pro
edure also setslive(0) to fs0g.If N (v) is the upper bound of v , and N (w) is the upper bound of w , therewill be dN (v) � 1Æe entries on the v axis, and dN (w) � 1Æe entries on the waxis, so in this 
ase we get a 3� 3 matrix.14



This matrix tells us e.g. that when the 
lo
ks in the initial state are �rstset, the probability of 
lo
k v being set within the range (1; 2℄ and 
lo
k wbeing set within the range (2; 3℄ is 38 . That is, for the 
lo
k 
on�gurationh(1; 2℄; (2; 3℄i, the 
lo
k 
on�guration probability is 38 .Se
tion CWe now enter the iterative part of the algorithm, where ea
h iteration 
orre-sponds to in
reasing the time by one time unit, and the snapshot produ
ed atthe end of iteration n 
orresponds to a view of the automaton at time nÆ. Thethree global probability values12 are all still zero (lines 1-1a), so 
t (
urrenttime) be
omes Æ. Only the state s0 is live at time zero, so new time matrixis 
alled (line 6) for matrix (s0; 1Æ). This returns a number of parameters:matrix (s0; 1Æ), new states(s1; Æ); prob and error .The pro
edure new time matrix .This pro
edure will return the matrix (s0; 1Æ) asw3 0 0 02 38 18 01 38 18 01 2 3 vwhere ea
h 
lo
k has advan
ed one time unit from matrix (s0; 0). So, at time1, the probability of 
lo
k v being within the range (0; 1℄ and 
lo
k w beingwithin the range (1; 2℄ is 38 .The probability of staying in state s0 for at least one time unit is 1; thisfollows from the fa
t that no 
lo
k 
an be set to less than Æ (1 time unit).Thus prob(s0; s0; 1Æ) = 1.None of the edge values (those with at least one 
lo
k in the range (0; 1℄) ofthe previous time matrix (matrix (s0; 0)) is non-zero (so there is no possibilityof any 
lo
k rea
hing zero and 
ausing a transition to �re). The se
ond halfof the pro
edure (lines 10-23, whi
h would determine the new states rea
hedfrom state s0) is therefore not exe
uted and the global probability values12These are the probability values that are updated throughout the algorithm:total pass ; total fail and error . 15



(total pass; total fail and error) are all still zero. new states(s0; Æ) will bereturned as fg, sin
e no new states 
an be rea
hed at time Æ.The next step (lines 7-11 of se
tion C) is to 
al
ulate the live states attime Æ, and sin
e prob(s0; s0; 1Æ) = 1 we in
lude s0.Sin
e there are no states whi
h 
an be rea
hed from state s0 in the timeinterval (0; Æ℄, lines 12-22 of se
tion C are not exe
uted.All of the global probability values are still zero, (i.e. we don't have enoughinformation to de
ide the truth or falsity of the formula at this stage, lines1-1a of Se
tion C), and 2Æ 6 2 (we have more time in whi
h to gain moreinformation, lines 2-3 of Se
tion C), so we begin a se
ond iteration.On the se
ond iteration of the while loop, 
t is set to 2Æ. Only s0 was liveat the last iteration (live(Æ) = fs0g), so at line 6 we 
all new time matrixfor matrix (s0; 2Æ).The pro
edure new time matrix .This again returns a number of parameters, e.g. matrix (s0; 2Æ) be
omesw3 0 0 02 0 0 01 18 0 01 2 3 vwhere the entry matrix (s0; 2Æ)(1; 1) is taken from the 
lo
k 
on�guration(Æ; 2Æ℄; (Æ; 2Æ℄ in the previous time matrix matrix (s0; Æ) and thus the proba-bility of staying in state s0 in the interval (Æ; 2Æ℄ is 18 . This is not the �nalversion of matrix (s0; 2Æ), be
ause some of the 
lo
k 
on�gurations lead totransitions whi
h lead ba
k to state s0.All the other 
lo
k 
on�gurations ((1; 1), (1; 2) and (2; 1)) in matrix (s0; Æ)lead to transitions. Lines 10-22 of pro
edure new time matrix are exe
utedfor ea
h of these three 
on�gurations.For 
lo
k 
on�guration (1; 1), 
lo
k v is (arbitrarily) 
hosen to �re, leadingto state s1. Line 13a adds state s1 to new states(s0; 2Æ), and prob(s0; s1; 2Æ)be
omes 38 . Clo
k 
on�guration (1; 1) is one where some error may be in-trodu
ed into the algorithm result. Choosing 
lo
k v meant that we go to astate where the formula TL be
omes true, but 
hoosing the other 
lo
k maynot lead to su
h a state. We therefore allow for the possible error introdu
ed16



here by adding the 
lo
k 
on�guration probability to error , whi
h be
omes38 . For 
lo
k 
on�guration (1; 2) in matrix (s0; Æ) 
lo
k v will �re during thetime interval (Æ; 2Æ℄, again leading to state s1. The probability of moving froms0 to s1 in this interval is now 68 . In this 
on�guration only one of the 
lo
ks(
lo
k v) 
ould �re, and so no 
hanges are made to error .(lines 11a-22).For 
lo
k 
on�guration (2; 1) in matrix (s0; Æ) 
lo
k w will �re during thetime interval (Æ; 2Æ℄, this time leading ba
k to state s0, so state s0 is in
ludedin new states(s0; 2Æ) and prob(s0; s0; 2Æ) is set to 18 . Again, no 
hanges aremade to error .Now, the new time matrix pro
edure is �nished, and lines 7-11 of Se
tionC determine the value of live(2Æ) whi
h is fs0; s1g, be
ause at time 2Æ theautomaton may be in either state.Lines 12-22 of se
tion C 
onsider ea
h new state that 
an be rea
hed intime interval (Æ; 2Æ℄. State s0 still allows the temporal logi
 formula to betrue, and so pro
edure new state matrix is 
alled (line 17), and this updatesmatrix (s0; 2Æ) tow3 0 364 1642 0 364 1641 18 0 01 2 3 vSin
e there is only a 18 probability of returning to state s0 at this time ea
hof the added 
lo
k 
on�guration probabilities is divided by 8.State s1 makes the temporal logi
 formula true (line 13) and so total passis in
reased to 68 .In the next iteration, 
t be
omes 3Æ, whi
h is greater than 2 (line 3). Thismeans that we have no more time left, and so all states unde
ided after thistime are simply false. total fail be
omes 28 .With the iterative part of the algorithm over, we have that total pass = 68 ,total fail = 28 and error = 38 .The iterations stopped be
ause the value of time be
ame too large |not be
ause the global probabilities 
ontained enough information to make ade
ision. This means that total pass (68) is a maximum possible probabilityvalue of the formula [a0 U 62a1℄ (with any 
lo
k ordering) and total pass �error (38) is a minimum possible probability value.17



Thus, sin
e we wish to determine whether the a
tual probability value isgreater than 12 , the algorithm will output unde
ided.De
reased timestep: Æ = 12We now run through the same example, but take snapshots of the automatonevery 12 time unit, i.e. Æ = 12 .First, the 
lo
k 
on�guration probabilities for the 
lo
ks must be re
al-
ulated: v w(0; Æ℄ 0 0(Æ; 2Æ℄ 0 0(2Æ; 3Æ℄ 716 18(3Æ; 4Æ℄ 516 38(4Æ; 5Æ℄ 316 38(5Æ; 6Æ℄ 116 18and the initial matrix (multiplied by 128 for 
onvenien
e) isw6 0 0 7 5 3 15 0 0 21 15 9 34 0 0 21 15 9 33 0 0 7 5 3 12 0 0 0 0 0 01 0 0 0 0 0 01 2 3 4 5 6 vThe single lines show how the representation of the probabilisti
 infoma-tion 
hanges with a smaller time step. The top right square, for example,was summarised by the single value 18 when Æ was 1.Se
tion CAfter one iteration of the while loop, matrix (s0; Æ) is18



w6 0 0 0 0 0 05 0 7 5 3 1 04 0 21 15 9 3 03 0 21 15 9 3 02 0 7 5 3 1 01 0 0 0 0 0 01 2 3 4 5 6 vand after the se
ond iteration, matrix (s0; 2Æ) isw6 0 0 0 0 0 05 0 0 0 0 0 04 7 5 3 1 0 03 21 15 9 3 0 02 21 15 9 3 0 01 7 5 3 1 0 01 2 3 4 5 6 vOn the third iteration, with 
t = 3Æ = 32 , pro
edure new time matrixreturns matrix (s0; 3Æ) asw6 0 0 0 0 0 05 0 0 0 0 0 04 0 0 0 0 0 03 5 3 1 0 0 02 15 9 3 0 0 01 15 9 3 0 0 01 2 3 4 5 6 vThis is not the �nal version of matrix (s0; 3Æ) , be
ause some of the transi-tions from the state s0 at this time lead ba
k to state s0. In parti
ular, 
lo
k
on�gurations (2; 1); (3; 1) and (4; 1) of matrix (s0; 2Æ) will lead ba
k to states0, and prob(s0; s0; 3) will be 9128 . new state(s0; 3Æ) := fs0g.The 
lo
k 
on�guration (1; 1) of matrix (s0; 2Æ) leads to state s1, be
ausethe 
lo
k v is preferred, so new state(s0; 3Æ) := fs0; s1g, but be
ause we have19



to 
hoose between 
lo
ks we must also add the 
lo
k 
on�guration probability( 7128) to the variable error , whi
h be
omes 7128 .live(3Æ) := fs0; s1g (line 10 of se
tion C).The 
lo
k 
on�gurations (1; 2), (1; 3) and (1; 4) also lead to state s1, soprob(s0; s1; 3Æ) = 56128 .lines 12-23 of se
tion C determine the rest of matrix (s0; 3Æ). s0 models a0but not a1, so pro
edure new state matrix is 
alled with probability param-eter 9128 , and matrix (s0; 3Æ) be
omes (multiplied this time by 1282 = 16384)w6 0 0 189 45 27 95 0 0 189 135 81 274 0 0 189 135 81 273 640 384 191 45 27 92 1920 1152 384 0 0 01 1920 1152 384 0 0 01 2 3 4 5 6 vState s1 models a1, so total pass be
omes 56128 .The forth iteration will initially produ
e the matrix matrix (s0; 4Æ)w6 0 0 0 0 0 05 0 189 45 27 9 04 0 189 135 81 27 03 0 189 135 81 27 02 384 191 45 27 9 01 1152 384 0 0 0 01 2 3 4 5 6 vprob(s0; s1; 4Æ) will be equal to the sum of the 
lo
k 
on�guration prob-abilities (1; 1), (1; 2) and (1; 3) of matrix (s0; 3Æ), whi
h is 448016384 � 0:2734.total pass := 0:4375 + 0:2734 = 0:7109. The addition to error is 192016384 , soerror � 0:1719.Therefore, the probability of entering state s1 at or before time 4Æ is atleast total pass � error = 0:5390 > 0:5.The forth iteration will 
ontinue by building matrix (s1; 4Æ) and alter-ing matrix (s0; 4Æ), but they won't be used, be
ause (line 1 of se
tion C),total pass � error = 0:5390 > 0:5, so lines 28-34 of se
tion C will outputpass. 20



7 Con
lusionsIn this report we have presented a model 
he
king algorithm for sto
hasti
systems. The prin
ipal novel feature in this algorithm is that the systemdes
ription language (sto
hasti
 automata) 
an handle more than just expo-nential probability fun
tions. Although we require the probability fun
tionsto be 
ontinuous, we believe this to be a worthwhile advan
e. Further workon this subje
t will in
lude relaxing the restri
tions imposed on the sto
has-ti
 automata, parti
ularly the ability to set and use 
lo
ks anywhere in theautomaton. Being able to do this would allow parallel 
omposition, and
ompositional model 
he
king would be a very worthwhile goal indeed.It would also be good to in
rease the expressiveness of the logi
, allowingnested untils or \greater than" queries, and to extend the model 
he
kingalgorithm itself to allow queries su
h as \what is the probability of [a0 U<t ℄and re
eive a probability for an answer.A The algorithmIn this se
tion we present a detailed des
ription of the algorithm. It is dividedinto Se
tion A (whi
h initialises variables), Se
tion B (the initial part of thealgorithm) and Se
tion C (the iterative part). Pro
edures used are des
ribedat the end.The lines of 
ode are prefa
ed with numbers, and the 
omments are de-limited with double stars.** Se
tion A**Model 
he
k(SA;Formula; Æ; pi
k)** note that the fun
tion pi
k is the adversary, used in pro
edure new time matrix .**** We are assuming a TL formula of the form [a0 U 6ta1℄ > p. **** The > p 
ould easily be 
hanged; the 6 t is hardwired into the algorithm. **** **** We begin by initialising variables.**** 
t : (integer) 
urrent time**
t := 0** total pass and total fail are reals in [0; 1℄. **** At any point in the algorithm, total pass is the a

umulated **** probability of all the passed paths and total fail is the a

umlated **** probability of all the failed paths. We initialise them both to zero.**21



total pass := 0total fail := 0** error is a real in [0; 1℄. It is the a

umulated probability of all paths **** whi
h, be
ause of the dis
retisation of the algorithm, we 
annot determine exa
tly.**** This is where the revised version of the algorithm di�ers from the initial one.**** It is initialised to zero. **** **error := 0** prob(s; t) is the probability of moving (from anywhere) to lo
ation s **** at time t . (i.e. in interval (t � Æ; t ℄.)**** For all 
ombinations of lo
ations and times, we initialise prob **** to zero. **8 s 2 S : 8 i 6 n.prob(s; Æi) := 0** remain(s; t) is a boolean whi
h is true if the probability of remaining **** in lo
ation s during time interval (t � Æ; t ℄ is non-zero, false otherwise.**** They are all initialised to false.**8 s 2 S : 8 i 6 n.remain(s; Æi) := false** live(t) is the set of lo
ations \a
tive" at the end of **** interval (t � Æ; t ℄, whi
h **** we need for 
al
ulating the information for the next time interval. **** For all time values, we initialise live to the emptyset. **8 i 6 n.live(Æi) := ;** We initialise all values in all matri
es to zero.**** The are ns 
lo
ks in lo
ation s.**8 s 2 S :8 0 6 j 6 n:8 1 6 i1 6 N1...8 1 6 ins 6 Nns :matrix (s; Æj )[i1 : : : ins ℄ := 0** 
all pro
edure for 
al
ulating probabilities of 
lo
ks falling in the ranges **** (0; Æ℄; (Æ; 2Æ℄ et
. This 
omes dire
tly from the 
lo
k PDFs, **** and is only 
al
ulated on
e. It is needed for determining the 
lo
k****probabilities. ** 22



**C is the set of all 
lo
ks and F is the set of 
lo
k probability fun
tions**** This pro
edure returns pr , whi
h is needed in new state matrix **** and init matrix . **
lo
k 
on�g probs(C ;F ; Æ; pr)** **** Se
tion B**** Consider initial lo
ation of SA: s 0 **** If s 0 j= a 1 then formula is trivially true. **if s 0 j= a1 thentotal pass := 1** If s 0 j= a 0 then formula is unde
ided and we must **** unfold SA further. **elseif s 0 j= a0 then** Build the initial matrix, i.e. matrix (s 0; 0). ****This will then 
ontain the probabilities ****of all the di�erent 
lo
k settings for lo
ation s 0 at time zero. **init matrix (matrix (s 0; 0))** The only lo
ation \live" at time zero will be s 0. **live(0) := fs 0g** If s 0 does not model a 0 or a 1 then formula is trivially false. **elsetotal fail := 1end if** Se
tion C**** Ea
h iteration of the following loop unfolds the automaton by **** one time step of Æ. States whi
h 
ause the formula to **** pass/fail are pruned from the tree, and their probabilities added to **** total pass=total fail , while the unde
ided states are re
orded **** for the next iteration. **** We 
ontinue while the values of total pass, total fail and error **** are not enough to determine whether the formula is true or false **1: repeat** In
rement 
urrent time **2: 
t := 
t + Æ** for all states s that were live at the last 
lo
k ti
k **4: 8 s 2 live(
t � Æ) 23



** set 
urrent state to s. **5: 
s := s** The pro
edure new time matrix returns **** matrix (
s; 
t): the matrix for the 
urrent state at the 
urrent time. **** It also **** updates the fun
tion prob with the probability of remaining **** in the 
urrent state at the 
urrent time and the probabilities of **** moving to di�erent states at the 
urrent time. **** It also updates the value of error . **6: new time matrix (matrix (
s; 
t); new states(
s; 
t); remain(
s; 
t); prob; error)** If the probability of remaining in 
urrent state at 
urrent time is zero **7: if remain(
s; 
t) = false then** 
urrent state is not live at 
urrent time and **** only the states whi
h 
an be rea
hed from 
urrent state at 
urrent time **** are added to those live at 
urrent time **8: live(
t) := live(
t) [ new states(
s; 
t)9: else ** remain(
s; 
t) = true **** The 
urrent state, plus all states whi
h may be rea
hed from it at **** the 
urrent time, must be added to the live states. **10: live(
t) := live(
t) [ f
sg [ new states(
s; 
t)11: end if11a: end forall ** 8 s 2 live(
t � Æ) **** Now, we have live(
t) and prob(
s; 
t) for all 
s in live(
t) **** i.e. all the states we 
ould be in at time 
t , and the probability of **** a
tually entering them in the previous time interval. **** ** ** For every state whi
h 
an be rea
hed at the 
urrent **** time, we must see if it 
auses the formula to pass or fail, in **** whi
h 
ases we adjust the values for total pass or **** total fail and remove the state from the live set. If we 
annot yet **** tell whether the formula is true or false, we must build the state/time matrix. **12: 8 q 2 live(
t)** if q j= a1, then formula is true **13: if q j= a1 then** total pass is in
remented by the probability of entering q **** from the 
urrent state at the 
urrent time **14: total pass := total pass + prob(q ; 
t)** State q is removed from the live set **24



15: live(
t) := live(
t) n fqg** Otherwise, if q j= a0 (and q is not a terminating state) **** then the formula may still be true, **** so we must build matrix (q ; 
t) and keep state q in the live(
t) set. **16: elseif q j= a0 ^ q 62 terminating states then** The pro
edure new state matrix returns **** matrix (q ; 
t): the matrix for state q at 
urrent time, and requires **** prob(q ; 
t): the probability of entering state q from the 
urrent **** state at the 
urrent time. **17: new state matrix (matrix (q ; 
t); prob(q ; 
t))18: else ** If q does not model a 0 or it is a terminating state and also **** it does not model a 1 then the formula is false **** total fail is in
remented by the probability of entering q **** from the 
urrent state at the 
urrent time **19: total fail := total fail + prob(q ; 
t)** State q is removed from the live set **20: live(
t) := live(
t) n fqg21: end if22: end forall ** for all states in live(
t) **23: until total pass > p ** formula has passed **24: or25: total fail > 1� p ** formula has failed **26: or27: (error > 1� p ^ error > p) ** no possibility of a pass or a fail **28: or29: 
t = t ** time's up.**30: if (
t = t) then** All states unde
ided at the last iteration are now false, so **** total fail is set to 1� total pass � error **31: total fail := 1� total pass � error32: end if****** Output result, based on the values of**** total pass, total fail and error **33: if total pass > p then** SA models formula **34: output pass35: elseif ** total fail > 1� p ** 25



** SA does not model formula **36: output fail37: else ** errors are too large; 
annot de
ide **38: output unde
ided39: end if** This pro
edure builds the initial matrix. **** We assume there are n 
lo
ks asso
iated with this state, **** and 
s0l is the lth 
lo
k. **** We abbreviate dupper bound(
s0l )e:1Æ by Nl . **pro
edure init matrix (matrix (s0; 0))begin pro
edure8 1 6 i1 6 N1...8 1 6 in 6 Nn :matrix (s0; 0)[i1 : : : in ℄ := nYl=1pr(
s0l 2 [il � Æ; il))end pro
edurepro
edure new time matrix (matrix (
s; 
t); new states(
s; 
t); remain(
s; 
t); prob; error)** This pro
edure updates a matrix by in
rementing time, not by **** 
hanging state. We 
an do this by 
onsidering the values in the previous time **** matrix. It also updates the fun
tion prob,**** and the variable error .**** There are n 
lo
ks in state 
s.**begin pro
edure1: 8 1 6 i1 6 N1...2: 8 1 6 in 6 Nn : ** If one of the matrix indi
es is at its maximum value, then the **** probability value in this position must be zero. This is **** be
ause this pro
edure is always the �rst to update a state/time matrix. **** **** **3: if 9 l 6 n � il = Nl then26



4: matrix (
s; 
t)[i1; : : : ; in ℄ := 0** otherwise the values in the matrix 
an be updated simply from the **** values in the previous time matrix. **5: else ** all 
lo
ks 
i are > 1 and < Ni **6: matrix (
s; 
t)[i1; : : : ; in ℄ :=7: matrix (
s; 
t)[i1; : : : ; in ℄ +matrix (
s; 
t � Æ)[i1+1; : : : ; in+1℄** we re
ord the fa
t that it is possible to remain in this state **** at this time. **8: remain(
s; 
t) := true9: end if9a:end forall** We now pi
k out the positions in the previous time matrix whi
h, **** when moved forward one unit in time, result in a new state. **10:8 1 6 i1 6 N1...11:8 1 6 in 6 Nn** If more than one of the previous time matrix indi
es is one, we know that **** more than one of the 
lo
ks will have rea
hed zero by 
t , and so we **** add the probability to error. **11a: if #f
l j 
l = 1g > 1 then12: error := error +matrix (
s; 
t � Æ)[i1; : : : ; in ℄12a: else if #f
l j 
l = 1g = 1** Given the sto
hasti
 Automaton SA, the state 
s and the 
lo
k 

 **** s 0 is the resulting state. If the 
lo
k is asso
iated with more than **** one transition the fun
tion pi
k (the adversary) 
hooses the **** resulting state. Otherwise the state is the one determined by the **** transition relation of the SA. **13: s 0 := pi
k(SA; 
s; 
l)13a: new states(
s; 
t) := new states(
s; 
t) [ fs 0g** the probability of entering s 0 at time 
t **** is in
remented by the matrix probability **14: prob(s 0; 
t) := prob(s 0; 
t) +matrix (
s; 
t � Æ)[i1; : : : ; in ℄22: end if **line 11**23: end forall24:end pro
edure** This pro
edure builds a new matrix, where the state is new rather than the time **27



** We assume there are n 
lo
ks asso
iated with this state, **** and 
sl is the lth 
lo
k. **** We abbreviate dupper bound(
sl )e:1Æ by Nl . **** The values in the matrix are 
al
ulated by multiplying the 
lo
k **** probabilities by a fa
tor of p, where p is the probability of **** entering the state, and adding this value to the value already in **** the position. **pro
edure new state matrix (matrix (
s; 
t); p)begin pro
edure8 1 6 i1 6 N1...8 1 6 in 6 Nn :matrix (
s; 
t)[i1; : : : ; in ℄ :=matrix (
s; 
t)[i1; : : : ; in ℄ + (p � nYl=1pr(
sl 2 [il � Æ; il)) )end pro
edureB Complexity measuesOne obvious measure of the 
omplexity of the algorithm is how Æ relates tot , i.e. the value of n in nÆ = t is an upper bound on the number of iterationsthat 
an o

ur when 
onsidering a TL formula of the form [a U 6tb℄ > p.For formulae with a > t subs
ript this isn't true.Spa
e 
omplexity is exponential wrt the number of 
lo
ks 
onsumed atstates. The largest matrix is given by the formulamaxQfdupper bound(
)Æ j 
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