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Abstract  

There are issues when researchers want to consider homogeneous, with regard to some 

functional relationship, groups. For example, in representative farm modelling analysts 

are interested in specifying groups of farms that have the same input/output 

relationship. This paper proposes to use the underlying functional relationship to derive 

such groupings. The paper employs finite regression mixture models to specify and 

estimate farm groups with regard to pre-specified functional relationship. The proposed 

approach is illustrated with regard to the aggregate production function of Romanian 

agriculture. The results point out to two farm clusters. The first one is more productive 

with a better use of capital and intermediate consumption. The second one makes a 

better use of land and labour. The calculated Shannon index shows that the second 

cluster is characterised by a higher level of land use diversity. The implications of the 

derived structure are discussed in light of two sets of policy – a production oriented and 

environment oriented one. 
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One size does not fit all: an empirical investigation of the Romanian 

agriculture production function 

 

Introduction 

Economists and policy makers have always been interested in producers’ responses to 

policies in order to achieve some national or sectoral objectives, e.g. growth, employment, 

food security. The way producers respond to policy depends on their production function. 

The assumption that all observed units have homogenous production function, thus a 

homogenous response is a very heroic one. If this assumption does not hold, production units’ 

policy responses will be heterogeneous. This heterogeneity in responses is the focus of the 

present paper. 

Modelling heterogeneous responses has a long tradition in economics, and in 

particular in agricultural economics in the area of the so called ‘representative farm 

modelling’. The traditional approach splits the units of interest into relatively homogenous 

groups and models these separately. Often the purpose of such modelling is to use the results 

for mathematical programing models of these different homogeneous groups. The way these 

groups are derived can, however, be problematic. Often some form of factor analysis or 

principal components analysis is applied with regard to selected observable characteristics in 

order to identify the groups. The problem with this approach is that it yields groups which are 

similar with regard to the observable variables used in the analysis, but not necessarily with 

regard to the functional relationship which is of primary interest in such an approach. 

This paper proposes to specify homogeneous groups with regard to the pre-specified 

functional relationship, in this case a production function. The groups are estimated using 

finite regression mixture models. We propose this method as the most adequate when the 



issue in hand is either to investigate policy responses of groups of firms with similar 

production function, or to model their production function in the follow-up simulation model. 

We illustrate the proposed approach with regard to the aggregate production function 

of Romanian agriculture. The implications of the derived structure are discussed in light of 

two sets of policy measures, namely a production oriented and an environmental one. The 

empirical analysis is focused on the aggregate agriculture production relationship. We 

provide a farm classification based on the production function which, in contrast to the farm 

characteristics generally used in the clustering approach, is not directly observable.  

The empirical application is to farm structures in Romania. Examining such a 

classification for a specific country has distinct policy implications. Different groups of 

farms, identified using the proposed methodology, are expected to react differently to 

production incentives, since by definition they have different production functions. The 

aggregate reaction of the agricultural sector will be a weighted average of the responses of 

the different groups. 

The results from the analysis point out to two farm clusters. What is striking in the 

obtained classification is that the relative shares of capital and labour are very similar across 

the clusters. And yet, the two groups make very different use of their capital and labour 

endowments in terms of the amount of output they manage to extract from each of these two 

production factors. The first group is more productive, but this productivity comes from 

capital and intermediate consumption, while the second group makes a better use of land and 

labour. Policies may have structural change effects changing the balance between the two 

clusters and induce different production responses. The first cluster has a productivity focus. 

Production oriented policies that aim at e.g. increasing food security or boosting exports 

through coupled output support, or conversely aim at increased competitiveness by removing 

price intervention, are easier to link to the first group of farms. Since land use is the ultimate 



basis for agriculture, the paper adopts farmland use diversity as a crude measure to ascertain 

any structural effects of environmental policies. The second cluster is characterised by a 

higher level of land use diversity, which suggests that these farms are better suited to deliver 

environmental public goods and might be more affected by environmental policies and their 

reforms.  

The remaining of the paper is structured as follows. The next section provides the 

motivation for the proposed approach in comparison to alternatives. The third section 

presents a short overview of Romanian agricultural sector. Sections 4 and 5 include 

methodology and data respectively. Section 6 discusses the results and section 7 concludes. 

Motivation 

Economic theory has a longstanding tradition of emphasising uniformity. The principle of the 

‘representative economic agent’ is probably the best known theoretical abstraction in 

economics. Assuming such uniformity is very useful in deriving theoretical properties 

helping microeconomic models to be easily expressed into common sense logic. This 

approach has been very fruitful in producing logical outcomes based on sound principles of 

rationality. Furthermore, it has also provided a basis for statistical investigation.  Since this 

concept is an abstraction and it is obtained by averaging the reactions of the actual economic 

agents, the representative agent responses can be obtained by averaging the observed 

responses of the actual agents. Hence, although directly unobservable, estimating a mean 

regression type of statistical model implicitly yields the response of the representative 

economic agent.  

This uniformity principle, however useful, has its limitations and has been questioned. 

From a theoretical point of view, models of bounded rationality which combine two types of 

representative agents have been shown to be able to produce qualitatively different outcomes. 



For example, De Long et al. (1990) present a model with rational agents and noise traders 

who behave randomly and interact with the rational agents. One of the surprising outcomes of 

this model is that the noise traders, who non-intentionally (i.e. randomly) make very risky 

investments, may under certain conditions end-up dominating the market. Kogan et al. (2006) 

further investigate this issue, which is now accepted in financial literature (see e.g. Cogley 

and Sargent, 2009; Le Baron, 2012; Luo, 2012). 

This paper, however, is not concerned with the theoretical challenges to the 

uniformity principle, but rather with some empirical considerations.  A major problem in 

empirical research is that the theory rarely prescribes the form of the functional relationship 

between the variables in question. It is essentially not possible to know beforehand the 

functional form of this relationship. Hence, the problem of ‘representativeness’, i.e. 

homogeneity in response, becomes interwined with the issue of the functional specification. 

There is a clear trade-off in this area. Using more flexible functional representation reduces 

this problem, but also makes the interpretation and inference more difficult, and in some 

cases impossible (as in the case of the curse of dimensionality problem). Using more 

restrictive functional representations results in more tractable models, but in this case the 

representativeness assumption is more likely to be violated simply because the used 

functional representation is inadequate. Therefore, the representativeness condition in 

empirical modelling is dependent on a given functional specification. In other words, the 

question of whether the units of analysis exhibit the same relationship is only meaningful 

with regard to the given functional form of this relationship. 

To simplify the issue, the following discussion focuses on the production function, but 

our argument is equally applicable to other functional relationships. Grouping units of 

analysis with regard to their production function (or any other functional relationship of 

interest), as it is proposed in this paper, not only asks the relevant question (i.e. what different 



functional relationships describe the data) directly, but also makes the classification issue 

explicitly dependent on the choice of the functional form. It provides a clear definition of the 

kind of representativeness the researcher is looking at. If the aim is to group farms with 

similar production function either because this is the characteristic of interest or because the 

intention is to model their production function in a follow–on simulation model, this is 

clearly the question that has to be asked. A clustering type of approach in contrast asks a very 

different question. It asks how similar the units appear to be with regard to some predefined 

observable characteristics. Such a question leaves the issue of ‘representativeness’ very 

vague. It also implicitly claims a kind of logically inconsistent universality. For example, one 

may use some set of ‘relevant variables’ to cluster units and then assume that the functional 

relationship is homogeneous within each cluster. However, the same approach could be 

applied to a wide range of relationships, such as e.g. cost, profit and production functions. 

Therefore, the units in the same cluster are assumed to have the same type of functional 

relationship for all of the above. This is a very unrealistic assumption. 

Finally, there is another more practical consideration.  Economic analysis is often 

based, as in this paper, on aggregate relationships, which undoubtedly contain unobserved 

heterogeneity. For example, when we look at the issue of production function, since 

technologies are very different for different farm typologies, it is reasonable to consider 

different production functions for different types of farming typologies, e.g. livestock, crop, 

vegetables etc. farms. Yet, doing so, results in a large number of underlying models without 

actually solving the problem of unobserved heterogeneity since even within a certain 

typology, different technologies could co-exists, based on characteristics that are not directly 

observable. Therefore, from a purely practical point of view, there is a trade-off: on the one 

hand, we would want a small number of functional relationships, but on the other, would 

want these relationships to encompass both the similarities and differences amongst the units 



of interest. In other words, subject to the constraints defined by the choice of functional 

relationship, we want the best combination of such functional relationships that describe the 

data.  Hence, in our application of the proposed method of classification the question 

becomes: how many distinct production functions can describe the output response of 

Romanian agriculture and what are their characteristics? In this way we not only provide a 

characterisation of an an economic sector (agriculture), but also simultaneously determine the 

behaviour of its production units. 

Whenever the policies do not affect the structure of agriculture, i.e. they do not affect 

the balance (i.e. the weights) of the different groups, the proposed methodology will just 

provide an approximation to that response (i.e. production function). However useful such an 

approximation might be, there are alternatives that can achieve the same result (e.g. using a 

more flexible functional form). The real advantage is apparent when policies have structural 

effects and they affect the balance of the classified groups. In this case the structural change 

effects can be inferred by examining the differential production responses by different 

groups. To illustrate this, we consider two broad types of agricultural policies – production 

related and environmental.  

Agricultural sector in Romania 

Romania has long traditions in farming and currently is home of the largest number of farm 

holdings in the EU, 3.6 million, accounting for 33.5 per cent of all EU agricultural holdings 

(FSS, 2013). A major characteristic of Romanian farms is that they are biased towards small 

scale - about three quarters are small - measured in physical size they cultivate less than 2 

hectares. At the same time, there are large farms playing a key role in agricultural production 

and productivity. According to agricultural census, farms larger than 50 ha cultivate 53 per 

cent of agricultural area. Popescu and al. (2016) calculated Gini coefficient for the size 



distribution of farms in Romania. The value of Gini coefficient of 0.582 places Romania on 

the sixth place amongst the EU Member States (MS) according to the most unequal land size 

distribution.  

Agriculture is also important for rural labour. Agricultural census points out that 

Romania engages the second largest number of farm workers in the EU (second only to 

Poland), equivalent to 1.5 million full-time equivalents measured in Annual Work Units 

(AWU) (Eurostat, Agricultural Census in Romania). Data also indicates a sharp decrease in 

labour between 2003 and 2010. However, Tocco et al. (2014) found little mobility of labour 

out of farming to other sectors of the economy. The major move out of farming was either to 

retirement or non-employment. To a great extent the decrease recorded by Eurostat might 

have been due to retirement, since during this period 46.4 per cent of farmers running farms 

with an area of less than 20 ha (the overwhelming majority of farms in Romania) were older 

than 65 years of age (Page and Popa, 2013).  

Concerning capital, Romania has the lowest total asset value per farm in the EU 

(below Euro 40,000) due to low land prices, small farm sizes and less capital-intensive types 

of farming (EC, 2016). Fixed assets (land, farm and other buildings, forest capital, machinery 

and equipment, and breeding livestock) account on average to around 75 per cent of total 

assets. Buildings have the largest contribution to the fixed assets. 

Although lagging behind farms in the other EU MS, Romanian small-farm landscape 

maintains rich agro-biodiversity. Page and Popa (2013) emphasise the provision of public 

goods by these types of farms, including sustainable land use and biodiversity conservation. 

The inheritance of transition is likely to have influenced this quite heterogeneous farm 

structure and the unsatisfactory performance reflected in the gap with the other EU MS. 

Before the reforms of late 1980s - beginning of 1990s three types of farm structures were 

typical for Romanian agriculture – state farms, agricultural production cooperatives and 



small-scale individual farming, particularly developed in mountainous regions. In 1989, 

individual farms accounted for 12 per cent of the total agricultural area, production 

cooperatives (with an average size of 2,400 ha) – to 59 per cent and the remainder was 

accounted for by the state farms (Rizov et al., 2001). Ten years later, individual farms 

managed 58.6 per cent of land and the remaining was cultivated by commercial companies, 

agricultural societies, farmers associations and other institutions. Rusu at al. (2002) classify 

the agricultural economy into two distinct structures, one which they call ‘traditional’, 

incorporating the majority of small-scale farms, and second, a sector tending to 

modernisation and productivity, i.e. agricultural commercial companies and agricultural 

associations. Strictly speaking, adapting pre-existing farming structures and the millions 

smallholders to a market economy carries forward a set of constraints that can restrict the 

possible production responses. Starting anew, on the other hand, does not imply such 

restrictions and could potentially result in different technological relationships and different 

production responses that are not alike those of the pre-existing farms. Furthermore, under 

the conditions of a rather turbulent transition period  characterised by a series of shocks and a 

typical ‘stop and go’ approach, establishing a new farm could have been a quite different 

endeavour depending on when exactly the business was created, potentially resulting in even 

more diversity in underlying technologies.  

Methodology 

We employ finite regression mixture model to specify and estimate farm groups with regard 

to the pre-specified production function. It is assumed that, conditional on a set of covariates 

X, y arises from a probability distribution with the following density: 
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probability distribution, parameterised by k . This means that y can be viewed as drawn from 

K different underlying (conditional) probability distributions. The parameters k  specify a 

regression model, i.e. they include regression coefficients, as well as the distribution 

parameters. In this study, we use a linear regression specification (see De Sarbo and Cron, 

1988; Wedel and Kamakura, 2001), but in principle any other parametric specification, could 

be used instead. The nature of the estimation algorithm is very general and allows for a wide 

range of specifications. Equation (1) states that the data-generating process for y, conditional 

on X, is a mixture of regressions. Thus if y is the output and X are the inputs, this expression 

states that the data comes from several distinct production functions. 

One can obtain the maximum likelihood estimate for the parameters   by using the 

Expectation Maximisation (EM) algorithm of Dempster et al. (1977) and then apply the 

‘maximum a-posteriori’ (MAP) principle to assign observations to each of the underlying 

distributions.  The EM algorithm used in the analysis consists of the following two steps, 

namely, the E(xpectation) step and the M(aximisation) step. In the E step the conditional 

probability of observation i belonging to  .kg during the m-th iteration for all i and k, is given 

by: 
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where the bracketed superscripts denote estimates for the parameters during the 

corresponding iteration. 



In the M step the ML estimate, 
( )m  of  , is updated using the conditional 

probabilities, ( )m

ikt , as conditional mixing weights. This leads to maximizing: 
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The updated expressions for the mixing proportions are given by: 
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The updating of k  depends on the parametric specification and, therefore, no general 

formula can be given. The maximisation step is essentially the standard maximisation routine 

used to estimate the conditional model given some fixed, determined in the expectation step, 

mixing proportions. The generic equation (3) expresses calculating the log-likelihoods for 

each separate component and maximising the weighed likelihood with weights given by the 

posterior probabilities ( )m

kp . Thus, by adapting the maximisation step, a wide range of models 

could be fitted.  

The above description assumes that we know the exact number of clusters.  However, 

this is typically not the case. Choosing the appropriate number of mixing distributions 

(clusters) is essentially a model selection problem. One can estimate the regression mixture 

models for different number of clusters and then selects amongst these. A popular criterion in 

model selection problems is the Bayesian Information Criterion (BIC) (Schwarz, 1978).   

BICmK  = -2 Lmk +vmKln(n) (5) 

where m is any model (thus m denotes the choice of the parametric (conditional) 

distributions g(.) or any combination thereof), K is the number of components, L is the 

(maximised) complete log-likelihood and v is the number of free parameters in the model. If 



the choice of g(.) is taken for granted, then (5) suggests a strategy of consecutive estimation 

of (m, K) models for K=1,2,.. until BIC increases. The consecutive estimation strategy also 

ensures against the danger of over-fitting the statistical model (1).   

We use the BIC as a main model choice criterion, although details on some 

alternatives are also provided. The BIC is based on an asymptotic approximation of the 

integrated log-likelihood valid under some regularity conditions. It has been proven that the 

BIC is consistent and efficient on practical grounds (e.g. Fraley and Raftery, 1998). 

Moreover, the whole class of penalised likelihood estimators, of which the BIC is a special 

class, are consistent (Keribin, 2000). The BIC is furthermore approximately equivalent to the 

popular in information theory Minimum Description Length (MDL) criterion.  

If one needs to select of model where in addition to the model fit the ability to define 

well separated clusters is taken into account, the integrated complete likelihood (ICL) 

criterion can be used. The ICL can be expressed (Biernacki et al., 2002) as BIC with an 

additional entropy penalty term as follows: 

ICLmK  = -2 BICmk -2
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where ikz  are the cluster membership indicators. In the present application, we are not 

explicitly interested in the degree of separation of clusters. Nevertheless, applying the ICL 

can be used as an additional clustering criterion. 

The mixture models with increasing number of components can be analysed in a 

nested models framework. Therefore, the Likelihood Ratio (LR) test can be readily applied to 

consecutively test for the number of components. In order to provide a valid small sample 

inference, the distribution of the LR tests statistic can be simulated via bootstrap. Such a 

bootstrap approach is however very expensive in computational terms. For this reason, we 

will only implement it to test the model selected by the information criteria. 



The finite regression mixture approach describes the functional relationship as an 

hierarchical mixture model, where the data generation process generates each observation 

from a finite set of underlying sub-models, which define separate clusters. As explained in 

the motivation section, these clusters represent different functional relationships (i.e. different 

production functions). Hence, we define the representativeness condition directly with regard 

to the production function conditional on its functional form. An advantage of the finite 

mixture approach is the ease by which data observations can be attached to the different 

underlying production functions. 

 

Data and choice of functional form 

As explained, the approach to specify homogenous groups of observations based on 

underlying functional relationship is applied empirically to farms in Romania. Empirical 

estimations are based on data from the Farm Accountancy Data Network (FADN) for 2008. 

The implementation of the EU Common Agricultural Policy (CAP) creates methodological 

issues about how to treat the CAP the single area payments and other CAP subsidies, and by 

choosing the year immediately after the Romanian accession to the EU accession we 

hopefully avoid some of these issues.  

In the empirical specification the farm output is specified as a function of four inputs, 

namely capital, labour, land and intermediate consumption (IC). Summary statistics for the 

data are presented in Table 1. Labour is measured in Annual Work Units (AWU) and Land in 

hectares, while all other variables are in monetary terms. Due to rounding, small numbers for 

the minimum values smaller than 0.5 appear as zeros in Table 1. Such relatively small farms 

mange to pass the FADN inclusion threshold, which in Romania is low in comparison to 

other EU MS in order to reflect the nature of Romanian farms structure. There seems to be 



considerable heterogeneity in terms of all variable amongst the 870 farms included in the 

dataset. Since the mean values for all variables are closer to the minimum than the maximum 

values, there are more relatively smaller farming units and a very long right tail representing 

the smaller number of larger farms in the distribution for all considered variables. This 

distributional feature is not particularly surprising, but any such heterogeneity suggests that 

the functional relationships amongst these variables may also be heterogeneous. In particular, 

the considerable differences in terms of size that are evident in the data set could lend 

themselves to differences in the production relationship, since it is not unreasonable to expect 

that as farms grow larger, the organisation of their activities changes and therefor the 

input/output relationship might change too. 

 The key question in the paper is whether the Romanian farms can be described by the 

same production function. As already discussed, this question requires specifying the inputs 

and the functional form for the specific production function. There is extensive literature on 

the issue of the productions functions, and their theoretical and empirical properties 

(Griliches and Ringstad, 1971; Berndt and Christensen, 1973; Christensen and Lau, 1973). 

With regard to the problem in hand, it is advisable to employ a production function 

specification that is sufficiently flexible, since in a finite regression modelling framework 

there is a clear trade-off between flexibility and the potential number of homogenous groups, 

i.e. more flexible functional forms will reduce the number of groups. Here the translog 

functional specification is employed. 

In the production function literature the term ‘flexible’ has a specific meaning. 

According to Diewert (1974), a functional form can be denoted as ‘flexible’ if its shape is 

only restricted by theoretical consistency. The translog functional specification can be 

restricted to satisfy the homotheticity, homogeneity or separability, but in this application no 

such restrictions have been applied. The main reason for this is that by avoiding restrictions 



we can maintain its generality. Furthermore, as our previous argument demonstrates, there is 

a clear trade-off between flexibility and the potential number of clusters since flexible 

specifications would result in a smaller number of clusters. Therefore, since the question is 

whether a single production function specification is sufficient to describe the data, it makes 

sense to avoid imposing restrictions that could inflate the potential number of clusters. 

Although in more recent studies the translog appears to have somewhat fallen out of 

favour with empirical researchers, it is still the most extensively investigated second order 

flexible functional form and surely the one with the most empirical applications as its 

empirical applicability in terms of statistical significance is outstanding (Feger, 2000).  

Furthermore, the fact that the translog function can be considered as a second order (Taylor 

series) approximation of a more general production function provides a sound justification in 

applying it here, since the uncertainty about the production function is a major justification 

for the present study. 

An important reason for the choice of the translog specification is also that it is linear 

with regard to the parameters, which means that standard linear regression techniques can be 

used for estimation and testing purposes. In principle, estimating a finite regression model 

simply requires plugging in the M step an estimation routine for the underlying model, which 

creates tremendous flexibility since this means that the underlying model can be fully 

nonparametric. Linear specifications offer considerable savings in terms of computational 

costs.  

One of the key issues in modern development is its sustainability (see e.g. Piorr, 2003; 

Waldhardt et al., 2003). In order to give insights into the sustainability of production and the 

possible implications of environmental policies biodiversity measures based on the land use 

are applied in addition to the production function. The underlying logic is that greater 

diversity in the land use will be associated with greater biodiversity. Two specific measures 



are applied, namely richness and the equitability index based on the Shanon diversity index. 

The richness is simply the number of separate land uses found on a farm. The equitability 

index is a standardised Shannon index (divided by its maximum value, so that it fits the [0,1] 

interval). 

More specifically, the Shannon index is  𝑆 = −∑ 𝛼𝑖
𝑁
𝑖=1 𝑙𝑛 𝛼𝑖, where αi is the land area 

share allocated to the i
th

 land use, while the equitability is defined as E=S/ Max(S). 

 

Results 

The model fitting BIC criterion indicates that a single common translog production function 

is not sufficient to describe the Romanian farms and points out to two clusters (Table 1). 

Furthermore, since ICL accounts for both model fit and cluster separation, the fact that the 

ICL also points out to a two-cluster model demonstrates that these two clusters are well 

separated. In practical terms, this means that at least some of the corresponding coefficients 

are significantly different, resulting in two quite different production functions, subject to the 

functional restriction of a translog functional form. 

In order to confirm the above conclusion, LR bootstrap tests for 2 mixtures (clusters) 

were implemented. Since such tests are based on model fitting and do not take into account 

the cluster separation, they are only comparable to the BIC results. The probability levels for 

the bootstrap tests are shown in Table 2. The LR bootstrap tests agree with the information 

criteria that the Romanian farms can be split into two distinct clusters with regard to their 

underlying production function. 

Table 3 presents the estimation results, while Table 4 shows the summary statistics for 

the used variables, both for the overall sample and by cluster. In order to facilitate the 

discussion, the summary statistics in Table 4 are for the raw variables rather than their 



logarithmic transformation which is used in specification and estimation.  The membership of 

Cluster 1 is smaller with 296 farms, while Cluster 2 consists of 574 observations. Cluster 1 

contains bigger farms with regard to labour, capital and intermediate consumption. 

Comparing the means for the two clusters, the only input for which Cluster 2 has larger 

values is land. Hence, in general we can say the first cluster is characterised by larger farms. 

The larger average value of land in the input mix of the farms in the second cluster suggests 

that these might use a production technology that is much more land intensive, something 

that the estimation results might throw a more light on. 

It is difficult to ascertain the differences between the cluster-wise production 

functions given in Table 3, due to their non-linear form. A reliable way to compare two non-

linear functions is by comparing their partial correlation plots. This amounts to using the 

estimated models to predict the dependent variable and then plot the predicted values against 

the values for a given factor by keeping the other factors fixed at ‘typical’ values. In this way, 

one can visualise the effect of a given production factor when the rest of the inputs are kept 

fixed. The first issue is what would be the reasonable values for the fixed inputs. This would 

depend on the purpose of the above plot. If the interest is in average effects, using the average 

over the estimation sample values would be an easy way to achieve ‘reasonable values’. 

Sometimes averaging would not be a reasonable strategy, in particular in the case of discrete 

values (see e.g. Kostov et al., 2008). In the present study all the inputs are continuous 

variables, therefore averaging over the estimation sample is a viable option.  

The second issue concerns the need to create a prediction sample containing a range 

of values for input variable of interest, create the relevant (transformed) variables needed in 

the translog specification and predict from the estimated linear model. The only choice 

necessary is the range of values for the analysed input. We use a regular grid of 100 points 

defined over the range over which the input in question is observed. Since the two clusters 



are quite different in their input mixes (see table 4), it is reasonable to produce separate 

ranges for each cluster. In this way the values for the variable of interest are actually 

observable within the estimation sample. The resulting plots show the range of values for 

each input by cluster and this facilitates the interpretation of the results. It also avoids the 

danger of predicting outside the range over which each of the two clusters is defined. As for 

the variables over which any such plot is conditioned upon (i.e. the other inputs), averaging 

over the whole sample is applied in order to ensure that the effects plotted for the two clusters 

are comparable (since all the rest is being equal). Since the summary statistics for both 

clusters exhibit considerable dispersion, it is easy to verify that such common ‘typical’ values 

lie comfortable within the range of observable values for each of the two clusters and 

therefore the synthetic observations created in order to produce the effects of interest are 

feasible. 

Plotting the effects for each input can provide a useful overview of the differences 

between the corresponding production functions. However, the usefulness of such a 

comparison would be limited without information on how different statistically these are, 

which requires confidence intervals for such effects that can be obtained by bootstrapping the 

corresponding models. Here the nonparametric case bootstrap is used following Kostov et al. 

(2008).  

The partial correlation plots for the inputs are presented in Figures 1-4. Both output 

and the input have been transformed back into the original units in order to facilitate a 

meaningful interpretation. Due to the non-linear nature of the model, the confidence intervals 

are asymmetric. The first noteworthy feature of these figures is that cluster 2 is considerably 

more homogenous in terms of the underlying production function, i.e. the confidence 

intervals for the effect of all four inputs are narrower than those for cluster 1. Although this 

on its own is not that surprising given the larger dispersion in the underlying inputs in cluster 



1 (apart from land) as revealed by standard deviations in Table 4, the latter by no means 

guarantees a higher dispersion of the estimated effects. This difference in the homogeneity 

means that the farms in cluster 2 are much better characterised by their underlying production 

function than those in cluster 1. Taking into account that there are actually considerably more 

farms in cluster 2 and that cluster 1 farms are larger, it looks like that the growth in farm size 

could be responsible for farms moving away from a common production function. The other 

important results is that these differences in terms of different width of the corresponding 

confidence intervals, as well as in terms of underlying mean effects, are unevenly distributed 

amongst the different inputs.  

In order to better explain such differences the own elasticities derivable form the 

estimated translog specifications for both clusters have been calculated for each farm and the 

mean values and their standard deviations are summarised in table 5. For comparative 

purposes Table 5 also includes elasticities calculated from a common (single cluster) translog 

applied to the full sample. Since the elasticities are in fact properties of the underlying 

production functions, they can be used to complement the partial correlation plots effects. 

As mentioned previously, the effects are unevenly distributed amongst the inputs.  

Considering the capital input, cluster 1 employs more capital than cluster 2 and uses a wider 

range of capital inputs (Table 4 and Figure 1). Furthermore, cluster 1 is also more capital 

intensive in a sense that it manages to extract considerably more output from the capital it 

employs. This can be ascertained from the fact that the average contribution of capital to 

output is higher for cluster 1 over the whole range of capital values. Taking into account the 

associated confidence intervals, which do not overlap, the difference in these effects is 

statistically significant. It is also revealed that the confidence intervals for the effect of capital 

in cluster 2 are quite narrow indicating that cluster 2 consists of farms which are 

homogeneous with regard to the contribution of capital to their output. In contrast to this, the 



corresponding confidence intervals for cluster 1 are considerably wider. The (own) elasticity 

of capital   is higher in cluster 1 (Table 5), which is also visible from the figure 1 showing 

that the slope of its production curve is steeper for cluster 1. Yet, interestingly, both the mean 

values and standard deviation for the capital elasticity in cluster 1 coincide (subject to a 

rounding error) with those derived from a single cluster full sample estimation.  Taking into 

account that there are a smaller number, although much larger farms in cluster 1, this shows 

that this cluster defines the role of capital in Romanian agriculture. 

With regard to labour, again cluster 1 is characterised by larger farms employing both 

more labour and having a wider range of labour inputs (Table 4). However, on average the 

labour/capital mix is not that different between the two clusters which can be inferred by 

dividing the average values for labour and capital in Table 4 and comparing the ratios.  

However, contrary to the case for capital, the farms in cluster 2 make much better use of 

labour and they manage (except for the very small farms) to extract considerably more output 

per unit of labour employed (Figure 2). Hence, we can view the cluster 2 farms as more 

labour intensive. The average labour output elasticities for the two sectors are rather similar 

(Table 5). Once again the dispersion of the labour effects looks larger in cluster 1, but if we 

look at the width of the confidence interval at similar values for the labour input, and in 

particular for values observed over the larger farms in cluster 2, these are actually of similar 

magnitude. So, unlike any of the other inputs contributions, it cannot be claimed that labour 

effects are more homogenous in cluster 2. 

Although cluster 1 in general uses less land (Table 4), the output from the two clusters 

with regard to land is not statistically different (Figure 3). While cluster 2 appears to be more 

land intensive in terms of both the slope of its partial effect, as well as its own elasticity 

(Table 5), this effect does not appear to be statistically significant, mainly due to the large 

dispersion of the land effect in cluster 1. 



Finally, consider the effects of intermediate consumption (IC). These mirror the case 

of capital. Cluster 1 comprises of larger farms, which are relatively more productive, both in 

terms of the average output they can extract from IC, but also that this output effect is 

statistically larger than the one attributable to farms in cluster 2. Similarly to the case of 

capital, cluster 2 shows considerable homogeneity with regard to this effect. Furthermore, the 

examination of the cluster-wise and overall own elasticities shows that they mirror the case of 

the capital input – i.e. cluster 1 dominates in defining the total contribution of IC in 

Romanian agriculture. 

To evaluate the biodiversity, expressed by diversity of land use within the two 

clusters, the histograms of the richness and equitability measures are plotted and presented in 

Figure 5 and 6 respectively. On both these figures the two histograms measure the relative 

frequencies and are overlaid over each other with semi-transparency. By choosing a light 

shade for cluster one and dark shade for cluster two, the intersection of the two histograms 

results in an intermediate shade. For each box the point of interest is which of the two clusters 

has greater probability, which can be easily established by looking at the shades for the top 

segnments - a lighter shade indicates that sector 1 has the higher probability and the darker 

shade corresponds to sector 2. 

For both of these measures larger values signify more diversity. More specifically, for 

the richness measure larger values show more different land uses, which in general would be 

more amenable to environmental preservation and moving away from the monoculture type 

of agricultural system. The equitability measure, on the other hand, captures the extent to 

which these different forms of land use are evenly distributed – the value of zero correspond 

to the case where all land use is concentrated into a single use, while 1 reflects the most 

equitable distribution indicating that no type of land use dominates the others. It is to be 



expected that more equitable land use distribution is more beneficial to the environment as it 

shows a higher farmed biodiversity. 

Both measures demonstrate that cluster 2 is characterised by greater land use 

diversity. For both measures cluster two has more probability mass in the right part of the 

distribution (i.e. the larger values), while conversely cluster 1 has more probability mass in 

the left part (i.e. the smaller values). In particular, for richness, cluster 1 has higher relative 

probability only for the first histogram bin meaning that cluster 1 has disproportionally larger 

number of single land use farms. Therefore, from the point of view of the richness, cluster 2 

has higher farmed biodiversity which is better for land fertility. The evidence for equitability 

is more mixed. Cluster 1 has greater relative probability in the first and the forth (values of 

0.3 to 0.4) histogram bins. This still corroborates the result of higher land diversity use in 

cluster 2but the difference is not as dramatic as in the case of the richness measure. Due to 

these results we can define cluster 2 as more environmentally sustainable.  

This leads to an interesting dichotomy in the derived classification. While cluster 1 

appears to be more productive, it is a lot more concentrated in terms of land use and in 

conjunction with the more intensive capital use it might be characterised as less 

environmentally friendly than cluster 2. Hence, the balance between the two clusters might be 

affected by the objectives and measures of agricultural policies. Food production and trade 

oriented policies (such as increase of food security, boost of exports or imports substitution) 

may expand cluster 1, while a stronger focus on environment will benefit cluster 2. 

 

Conclusions 

This paper proposes to use finite regression mixture models, based on an underlying 

relationship of interest for classification of heterogeneous units of analysis. The proposed 



approach is applied to Romanian farms production function because due to the perceived 

heterogeneity resulting from a great extent from the legacy of transition.  

The results suggest that there are at least two clusters with distinct production 

functions. The larger cluster 2 contains relatively smaller farms with respect to all factors of 

production except land. In addition to this, farms in this cluster are more labour intensive in a 

sense that they extract more output from their labour input. Cluster 2 is also characterised by 

a greater diversity in terms of land use, in other words with a higher farmed biodiversity 

which is beneficial to the environment. The empirical results support some more qualitative 

assertions that small farms are an important provider of environmental benefits (see e.g. 

Davidova et al., 2013; Page and Poppa, 2013).  

Cluster1 consists of smaller number of relatively larger farms whose production 

function is more capital intensive and they manage to make a better use of their capital and 

intermediate consumption. This split alongside the capital-labour trade-off, and in particular 

the much greater heterogeneity that is observed with regard to the smaller capital-intensive 

cluster 1 suggests a possible explanation of traditional versus new farming technologies. In 

particular, this means that more traditional farming structures, most likely inheriting the 

technologies of the pre-transition era, are identifiable with the labour intensive sector. There 

is however also a new emerging capital-based agriculture. The latter is considerably more 

heterogeneous in terms of its production technology as farms may have been created at 

different stages of transition. It is, therefore, suggested that the differences between these two 

clusters might still bear the legacy of central planning and the emergence of new commercial 

farms during transition.  

There are two important implications of the above farming structure. First, if the 

global food prices are high this would intensify the process of structural transformation 

exemplified by the emergence of capital-intensive farms. Since the aggregate production 



function of Romanian agriculture can be viewed as a weighted average of the two underlying 

‘technologies’, this essentially means a transition from the more labour intensive into the 

more capital intensive cluster. Such a transformation could perhaps surprisingly avoid the 

detrimental on overall employment due to the fact  that it does not entail the classical 

‘substitution of capital for labour’. In terms of their input mix  (i.e. the ratio of capital to 

labour) the two farm clusters are very similar which means that transformation of cluster 2 

into cluster 1may not replace labour with capital, but essentially ‘upgrade’ the capital with a 

more productive one.  

 Second, it should not be forgotten that the values of European citizens have changed 

and they favour more environmentally friendly practices to more capital-intensive and 

productivist ones. Notwithstanding the design of CAP post-2020, it cannot be expected that 

the future policy will go back towards its origin and give strong incentives for farm 

intensification at the expense of environment. If strong environmentally focused policies are 

followed, these will benefit Cluster 2 which delivers more environmental goods. Such 

policies could constrain the future transformation of cluster 2 into cluster 1 (capital-intensive 

one) and hence avoid future degradation of the environmental sustainability of Romanian 

agriculture.  

Under strongly environmentally oriented agricultural policies, farms in Cluster 1 may 

adjust their farming practice. A review of studies conducted by the Organisation of Economic 

Cooperation and Development (OECD) concluded that although there is an identified link 

between intensive production practices, implemented by larger farms, and a loss in farmed 

biodiversity, larger farms are more often signing contracts to enter agri-environmental 

schemes which entail a longer-term commitment (OECD, 2005). In the case of our results 

this may mean that some improvements in diversity of land use in Cluster 1 could be 

expected. However, in reality the decisions about farm practices are more nuanced. They 



depend on the way producers view the relationship between output and environment 

protection - as a trade-off or as environment protection acting as a basis for future output 

sustainability. This calls for a more disaggregated study, where farm management data is 

augmented by detailed locational and attitudinal variables. 
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Table 1. Data summary  

 
Minimum Maximum Mean 

Output 439 506,142,700 714,715 

Capital 0 37,216,478 299,879 

Labour (AWU) 0 680 9 

Land (ha) 0 21,565 273 

IC 353 51,406,670 300,707 

 

Table 2   Information Criteria Results for number of clusters 

Number of 

clusters BIC ICL 

1 2931.021 NA 

2 2831.105 2931.105 

3 2849.514 3783.277 

4 2864.836 3931.209 

5 2908.899 3906.923 

6 2956.215 4279.229 

 

Table 3.  Bootstrapped LR test  (5000 replications) 

Test P value 

2 (NULL) vs 1 clusters 0.72 

2 (NULL) vs 3 clusters 0.17 

 

  



Table 4. Estimated translog for overall sample and clusters 

 

All data 

 

Cluster 1 

 

Cluster 2 

 

Coefficient 

P-

value 

 

Coefficient 

P-

value 

 

Coefficient P-value 

(Intercept) 9.68 0.00 

 

10.64 0.00 

 

6.77 0.00 

capital -0.21 0.01 

 

-0.33 0.06 

 

0.08 0.20 

labour 1.01 0.00 

 

1.07 0.06 

 

0.49 0.00 

land 0.57 0.00 

 

0.72 0.00 

 

0.25 0.00 

ic -0.37 0.00 

 

-0.45 0.10 

 

0.08 0.18 

I(0.5 * capital
2
) 0.03 0.00 

 

0.03 0.00 

 

0.01 0.00 

I(0.5 * labour
2
) 0.05 0.16 

 

0.00 0.26 

 

0.31 0.00 

I(0.5 * land
2
) 0.13 0.00 

 

0.14 0.00 

 

0.16 0.00 

I(0.5 * ic
2
) 0.06 0.00 

 

0.06 0.14 

 

0.02 0.00 

capital*labour -0.03 0.05 

 

-0.06 0.10 

 

0.04 0.00 

capital*land -0.02 0.00 

 

-0.03 0.01 

 

-0.01 0.00 

capital*ic 0.01 0.07 

 

0.02 0.16 

 

-0.01 0.12 

labour*land -0.04 0.00 

 

0.02 0.03 

 

-0.20 0.00 

labour*ic -0.02 0.20 

 

-0.01 0.42 

 

-0.02 0.01 

land*ic -0.05 0.00 

 

-0.07 0.00 

 

-0.01 0.06 

Note: variable labels refer to variables in natural logarithms (i.e. capital is the natural 

logarithm of the capital variable) 

  



Table 5  Summary statistics for the clusters 

 

 

Cluster 1 

 

mean sd min max 

Output, 000s 1,530 22,563 0 506,143 

capital, 000s 472 2,219 0 37,216 

labour 14 54 0 680 

land 219 757 0 11,196 

ic, 000s 763 9,502 0 212,143 

     

 

Cluster 2 

 

mean sd min max 

Output  000s 225 660 1 9,978 

capital, 000s 197 732 0 15,334 

labour 6 14 0 142 

land 306 1,211 0 21,565 

ic, 000s 182 980 0 23,479 

 

 

Table 6  Elasticities (own) 

 

capital labour land ic 

All data     

Average 0.13 0.44 0.26 0.18 

SD 0.06 0.12 0.26 0.13 

Cluster1 

    Average 0.13 0.44 0.23 0.19 

SD 0.06 0.12 0.25 0.13 

Cluster2 

    Average 0.10 0.44 0.40 0.10 

SD 0.05 0.39 0.30 0.03 

 

  



Figure 1. Effect of capital 

 

 

Figure 2. Effect of labour 

 



 

Figure 3 Effect of land 

 

Figure 4. Effect of IC 

 



 

Figure 5. Richness distribution across the two clusters 

 

  



 

Figure 6. Equitability distribution across the two clusters 

 


