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Abstract 28 

1. Habitat loss, fragmentation and degradation are key threats to the long-term persistence of 29 

carnivores, which are also susceptible to direct persecution by people. Integrating natural and 30 

social science methods to examine how habitat configuration/quality and human-predator 31 

relations may interact in space and time to effect carnivore populations within human-32 

dominated landscapes will help prioritise conservation investment and action effectively.  33 

2. We propose a socio-ecological modelling framework to evaluate drivers of carnivore decline 34 

in landscapes where predators and people coexist. By collecting social and ecological data at 35 

the same spatial scale, candidate models can be used to quantify and tease apart the relative 36 

importance of different threats. 37 

3. We apply our methodological framework to an empirical case study, the threatened guiña 38 

(Leopardus guigna) in the temperate forest ecoregion of southern Chile, to illustrate its use. 39 

Existing literature suggests that the species is declining due to habitat loss, fragmentation and 40 

persecution in response to livestock predation. Data used in modelling were derived from four 41 

seasons of camera-trap surveys, remote-sensed images and household questionnaires.  42 

4. Occupancy dynamics were explained by habitat configuration/quality covariates rather than by 43 

human-predator relations. Guiñas can tolerate a high degree of habitat loss (>80% within a 44 

home range). They are primarily impacted by fragmentation and land subdivision (larger farms 45 

being divided into smaller ones). Ten percent of surveyed farmers (N=233) reported illegally 46 

killing the species over the past decade. 47 

5. Synthesis and applications. By integrating ecological and social data into a single modelling 48 

framework, our study demonstrates the value of an interdisciplinary approach to assessing the 49 

potential threats to a carnivore. It has allowed us to tease apart effectively the relative 50 

importance of different potential extinction pressures, make informed conservation 51 

recommendations and prioritise where future interventions should be targeted. Specifically for 52 

the guiña, we have identified that human-dominated landscapes with large intensive farms can 53 

be of conservation value, as long as an appropriate network of habitat patches are maintained 54 
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within the matrix. Conservation efforts to secure the long-term persistence of the species should 55 

focus on reducing habitat fragmentation, rather than human persecution in our study system. 56 

Keywords: camera trapping, conservation, randomised response technique, habitat fragmentation, 57 

habitat loss, human-wildlife co-existence, illegal killing, güiña, kodkod, multi-season occupancy 58 

modelling 59 

 60 

Introduction 61 

Land-use change is one of the greatest threats facing terrestrial biodiversity globally (Sala et al. 2000), 62 

as species persistence is negatively influenced by habitat loss, fragmentation, degradation and isolation 63 

(Henle et al. 2004a). In general, species characterised by a low reproductive rate, low population 64 

density, large individual area requirements or a narrow niche are more sensitive to habitat loss and 65 

fragmentation (Fahrig 2002; Henle et al. 2004b) and, therefore, have a higher risk of extinction (Purvis 66 

et al. 2000). Consequently, many territorial carnivores are particularly vulnerable to land-use change. 67 

Furthermore, the disappearance of such apex predators from ecosystems can have substantial cascading 68 

impacts on other species (Estes et al. 2011; Ripple et al. 2014). 69 

 70 

Additionally, in human-dominated landscapes, mammal populations are threatened directly by the 71 

behaviour of people (Ceballos et al. 2005). For instance, larger species (body mass >1 kg) are often 72 

persecuted because they are considered a pest, food source or marketable commodity (Woodroffe, 73 

Thirgood & Rabinowitz 2005). Carnivores are especially vulnerable to persecution after livestock 74 

predation, attacks on humans, or as a result of deep rooted social norms or cultural practices (Treves & 75 

Karanth 2003; Inskip & Zimmermann 2009; Marchini & Macdonald 2012). Indirectly, many mammals 76 

are also threatened by factors such as the introduction of invasive plant species, which reduce habitat 77 

complexity (Rojas et al. 2011), and domestic pets, which can transmit diseases or compete for resources 78 

(Hughes & Macdonald 2013).  79 

 80 
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To ensure the long-term future of carnivore populations within human-dominated landscapes outside 81 

protected areas, it is imperative that we identify potential ecological and social drivers of species decline 82 

and assess their relative importance (Redpath et al. 2013). For example, it is essential to disentangle the 83 

impacts of habitat loss and fragmentation on a species, as the interventions required to alleviate the 84 

pressures associated with the two processes are likely to be different (Fahrig 2003; Fischer & 85 

Lindenmayer 2007). If habitat loss is the dominant issue causing population reduction, then large 86 

patches may need to be protected to ensure long-term survival, whereas a certain configuration of 87 

remnant vegetation may be required if fragmentation is the main threat. At the same time, it is important 88 

to understand if, how and why people persecute species, if conservationists are to facilitate human-89 

wildlife coexistence (St John, Keane & Milner-Gulland 2013). However, there is a paucity of 90 

interdisciplinary research that evaluates explicitly both ecological and social drivers of species decline 91 

in a single coherent framework, across geographic scales pertinent to informing conservation decision-92 

making (Dickman 2010). 93 

 94 

 From an ecological perspective, data derived from camera-traps and analysed via occupancy models 95 

are widely used to study carnivores over large geographic areas (Burton et al. 2015; Steenweg et al. 96 

2016). Occupancy modelling offers a flexible framework that can account for imperfect detection and 97 

missing observations, making it highly applicable to elusive mammals of conservation concern 98 

(MacKenzie et al. 2003; MacKenzie & Reardon 2013). Monitoring population dynamics temporally, 99 

and identifying the factors linked to any decline, is critical for management (Di Fonzo et al. 2016).  For 100 

this reason, dynamic (i.e. multi-season) occupancy models are particularly useful because they examine 101 

trends through time and can be used to ascertain the drivers underlying observed changes in occupancy 102 

(MacKenzie et al. 2003, 2006). Similarly, there are a range of specialised social science methods for 103 

asking sensitive questions that can be used to yield valuable information on human behaviour, including 104 

the illegal killing of species (Nuno & St. John 2015). One such example is the unmatched count 105 

technique, which has recently been used to examine the spatial distribution of hunting and its proximity 106 

to Serengeti National Park, Tanzania (Nuno et al. 2013), and bird hunting in Portugal (Fairbrass et al. 107 

2016). Another method is the randomised response technique (RRT), previously used to estimate the 108 
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prevalence of predator persecution in South Africa (St John et al. 2012) and vulture poisoning in 109 

Namibia (Santangeli et al. 2016).  110 

 111 

In this paper, we propose an integrated socio-ecological modelling framework that draws together these 112 

natural and social science methods to examine how habitat configuration/quality and “human-predator 113 

relations” (Pooley et al. 2016) may interact in space and time to effect carnivore populations across a 114 

human-dominated landscape. An important aspect of the approach is that the social and ecological data 115 

are collected at a matched spatial scale, allowing different potential drivers of decline to be contrasted 116 

and evaluated. We showcase the approach using the guiña (Leopardus guigna), a felid listed as 117 

Vulnerable on the International Union for Conservation of Nature (IUCN) Red List, as a case study 118 

species. Specifically, we use data derived from multi-season camera-trap surveys, remote-sensed 119 

images and a household questionnaire which uses RRT to estimate prevalence and predictors of illegal 120 

killing. The outputs from our framework provide a robust evidence-base to direct future conservation 121 

investment and efforts. 122 

 123 

Materials and methods 124 

Integrated socio-ecological framework 125 

Our proposed framework comprises four stages (Fig. 1). The first step is to gather information on the 126 

ecology of the species and likely drivers of decline, including habitat configuration/quality issues (e.g. 127 

habitat loss, habitat fragmentation, presence/absence of habitat requirements) and human-predator 128 

relations (e.g. species encounter frequency, livestock predation experiences), that require evaluation. 129 

The best available information can be acquired from sources such as peer-reviewed and grey literature, 130 

experts and IUCN Red List assessments. The next task, step two, is to define a suite of candidate models 131 

a priori to assess and quantify the potential social and ecological predictors on species occupancy 132 

dynamics. Dynamic occupancy models estimate parameters of change across a landscape, including the 133 

probability of a sample unit (SU) becoming occupied (local colonisation) or unoccupied (local 134 

extinction) over time (MacKenzie et al. 2006).  135 

 136 
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The third step involves the collection of ecological and social data in SUs distributed across the 137 

landscape, to parametise the models. Camera-trap survey effort allocation (i.e. the number of SUs that 138 

need to be surveyed) for occupancy estimation can be determined a priori using freely-available tools 139 

(Gálvez et al. 2016). The final stage is the evaluation of evidence, using standard model selection 140 

methods (Burnham & Anderson 2002) to establish which of the social and ecological variables within 141 

the candidate models are indeed important predictors of occupancy, and to contrast their relative 142 

importance. Results from the models can be contextualised with additional supporting evidence not 143 

embedded in the models to inform where conservation action should be directed. For instance, during 144 

questionnaire delivery, valuable qualitative data may be recorded that provides in-depth insights related 145 

to the human-predator system (e.g. Inskip et al. 2014). 146 

 147 

Study species and system  148 

The guiña is the smallest neotropical felid (<2 kg) (Napolitano et al. 2015). It is thought to require forest 149 

habitat with dense understory and the presence of bamboo (Chusquea spp.) (Nowell & Jackson 1996; 150 

Dunstone et al. 2002), but is also known to occupy remnant forest patches within agricultural areas 151 

(Sanderson, Sunquist & Iriarte 2002; Acosta-Jamett & Simonetti 2004; Gálvez et al. 2013; Fleschutz et 152 

al. 2016; Schüttler et al. 2017). Guiñas are considered pests by some people as they can predate chickens 153 

and, while the extent of persecution has not been formally assessed, killings have been reported 154 

(Sanderson, Sunquist & Iriarte 2002; Gálvez et al. 2013). Killing predominately occurs when the felid 155 

enters a chicken coop (Gálvez & Bonacic 2008). Due to these attributes, the species makes an ideal case 156 

study to explore how habitat configuration/quality and human-predator relations may interact in space 157 

and time to influence the population dynamics of a threatened carnivore existing in a human-dominated 158 

landscape. 159 

 160 

The study was conducted in the Araucanía region in southern Chile (Fig. 2), at the northern limit of the 161 

South American temperate forest eco-region (39º15´S, 71º48´W) (Armesto et al. 1998). The system 162 

comprises two distinct geographical sections common throughout Southern Chile: the Andes mountain 163 

range and central valley. Land-use in the latter is primarily intensive agriculture (e.g. cereals, livestock, 164 
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fruit trees) and urban settlements, whereas farmland in the Andes (occurring <600 m.a.s.l) is less 165 

intensively used and surrounded by tracks of continuous forest on steep slopes and protected areas 166 

(>800 m.a.s.l). The natural vegetation across the study landscape consists of deciduous and evergreen 167 

Nothofagus forest (Luebert & Pliscoff 2006), which remains as a patchy mosaic in agricultural valleys 168 

and as continuous tracts at higher elevations within the mountains (Miranda et al. 2015). 169 

 170 

Data collection 171 

Predator detection/non-detection data 172 

We obtained predator detection/non-detection data via a camera-trap survey. Potential SUs were 173 

defined by laying a grid of 4 km2 across the study region, representing a gradient of forest habitat 174 

fragmentation due to agricultural use and human settlement below 600 m.a.s.l. The size of the SUs was 175 

informed by mean observed guiña home range size estimates of collared individuals in the study area 176 

(MCP 95% mean=270 ±137 ha; Schüttler et al. 2017). 177 

 178 

In this study system, detectability was modelled based on the assumption that a two-day survey block 179 

is a separate independent sampling occasion. This time threshold was chosen because initial 180 

observations of collared individuals indicated that they did not stay longer than this time in any single 181 

location (Schüttler et al. unpublished data). Minimum survey effort requirements (i.e. number of SUs 182 

and sampling occasions) were determined following Guillera-Arroita, Ridout & Morgan (2010), using 183 

species specific parameter values from Gálvez et al. (2013) and a target statistical precision in 184 

occupancy estimation of SE<0.075. A total of 145 SUs were selected at random from the grid of 230 185 

cells, with 73 and 72 located in the central valley and Andes mountain valley respectively (Fig. 2). The 186 

Andean valleys were surveyed for four seasons (summer 2012, summer 2013, spring 2013, summer 187 

2014), while the central valley was surveyed for the latter three seasons. A total of four rotations (i.e. 188 

blocks of camera-traps) were used to survey all SUs within a 100-day period each season. 189 

Detection/non-detection data were thus collected for 20-24 days per SU, resulting in 10-12 sampling 190 

occasions per SU. Two camera-traps (Bushnell ™trophy cam β01β) were used per SU, positioned 100-191 

700 m apart, with a minimum distance of >2 km between camera-traps in adjacent SUs. The detection 192 
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histories of both camera-traps in a SU were pooled, and camera-trap malfunctions or thefts (five in total) 193 

were treated as missing observations. 194 

 195 

Habitat configuration/quality data 196 

The extent of habitat loss and fragmentation were evaluated using ecologically meaningful metrics 197 

which have been reported in the literature as being relevant to guiñas, using either field or remote-198 

sensed landcover data (Table 1, Appendix S1 & Table S1). The metrics were measured within a 300 ha 199 

circular buffer, centred on the midpoint between both cameras in each SU using FRAGSTATS 4.1 200 

(McGarigal et al. 2002). Habitat quality surrounding a camera-trap might influence species activity 201 

(Acosta-Jamett, Simonetti, 2004). We collected data on a number of variables within a 25-m radius 202 

around each camera-trap (Table S1), as this is deemed to be the area over which localised conditions 203 

may influence species detectability. The habitat quality data from both camera-traps in each SU were 204 

pooled and the median was used if values differed. 205 

 206 

Human-predator relations data 207 

Between May and September 2013 the questionnaire (Appendix S2) was administered face-to-face by 208 

NG who is Chilean and had no previous interaction with respondents. All SUs contained residential 209 

properties and one or two households closest to the camera-trap locations were surveyed (mean number 210 

of households per km2 across the study landscape: 3.4; range: 1.4 to 5.1 from INE 2002). For each 211 

household, the family member deemed to be most knowledgeable with respect to farm management 212 

and decision-making was surveyed. The questionnaire gathered data on socio-demographic/economic 213 

background, guiña encounters, livestock ownership, frequency of livestock predation by guiñas and 214 

ownership of dogs on the land parcel. To measure tolerance to livestock predation, participants were 215 

asked how they would respond to different scenarios of livestock loss (mortality of 2, 10, 25, 50, >50 216 

animals), with one possible option explicitly stating that they would kill guiña. These data were also 217 

used as predictors of killing behaviour in the RRT analysis (see below). The questionnaire was piloted 218 

with 10 local householders living outside the SUs; their feedback was used to improve the wording, 219 

order and time scale of predation and encounter questions. 220 
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 221 

The potential occupancy model predictors (Tables 1 & S1, Appendix S2) were calculated per SU. Where 222 

questionnaire responses differed within a SU (e.g. one household report predation and the other did 223 

not), presence of the event (e.g. predation) was used as a covariate for that particular SU. For all 224 

quantitative measures, and when both respondents report the event (e.g. frequency of predation) median 225 

values were used. 226 

 227 

Illegal killing prevalence across the landscape (other evidence) 228 

As it is illegal to kill guiñas in Chile (Law 19.473 Ministry of Agriculture), RRT (Nuno & St. John 229 

2015) was used to ask this sensitive question as part of the questionnaire (Appendix S2). Since RRT, 230 

like other methods for asking sensitive questions, require a large sample size for precise estimation of 231 

behaviour prevalence (Nuno & St. John 2015), we pooled RRT data from all participants to estimate 232 

the prevalence of illegal guiña killing across the landscape over the past decade. We explored predictors 233 

that might explain this human behaviour (St John et al. 2012).  234 

 235 

RRT data were bootstrapped 1000 times to obtain a 95% confidence interval. We tested seven non-236 

correlated predictors of illegal guiña killing: age, income, frequency of guiña encounters, number of 237 

chickens owned (all continuous variables standardized to z-scores), economic dependency on their land 238 

parcel (1=no dependency; 2=partially dependency; 3=complete dependency), knowledge of the guiña’s 239 

legal protection status (0=hunting prohibited; 1=do not know; 2=hunting permitted), and intention to 240 

kill a guiña under a hypothetical predation scenario (0=do nothing; 1=manage guiña; 2=kill guiña) 241 

(Appendix S2). We used R (version 3.2.3; R Core Team, 2014) to run the RRlog function of the package 242 

RRreg (version 0.5.0; Heck & Moshagen 2016) to conduct a multivariate logistic regression using the 243 

model for ‘forced response’ RRT data. We fitted a logistic regression model with the potential 244 

predictors of killing behaviour and evaluated their significance with likelihood ratio tests (LRT ѐG2). 245 

Odds ratios and their confidence values are presented for model covariates. 246 

 247 

Integrated socio-ecological modelling 248 
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First, we evaluated the existence of spatial autocorrelation with detection/non-detection data for each 249 

SU, using Moran’s I index based on similarity between points (Dormann et al. 2007). We used a fixed 250 

band distance of 3 km from the midpoint of camera-traps, equating to an area three times larger than a 251 

guiña home range. 252 

 253 

We fitted models of occupancy dynamics (MacKenzie et al. 2003) using PRESENCE, which obtains 254 

maximum-likelihood estimates via numerical optimisation (Hines 2006). The probabilities of initial 255 

occupancy (ȥ), colonisation (Ȗ), local extinction (İ) and detection sites (p) were used as model 256 

parameters. We conducted a preliminary investigation to assess whether a base model structure with 257 

Markovian dependence was more appropriate for describing seasonal dynamics, rather than assuming 258 

no occupancy changes occur or that changes happen at random (MacKenzie et al. 2006). Once the best 259 

model structure had been determined, we then fitted models with habitat configuration/quality and 260 

human-predator predictors.  261 

 262 

A total of 15 potential model predictors were tested for collinearity and, in instances where variables 263 

were correlated (Pearson’s/Spearman’sŇrŇ>0.7), we retained the covariate that conferred greater 264 

ecological/social meaning and ease of interpretation (Tables 1 & S1). All continuous variables, except 265 

percentages, were standardized to z-scores. We approached model selection by increasing model 266 

complexity gradually, fitting predictors for each model parameter separately and assessing model 267 

performance using Akaike’s Information Criterion (AIC). Models that were within <β ∆AIC were 268 

considered to have substantial support (Burnham & Anderson 2002), and thus these predictors were 269 

selected and used in the next step in a forward manner (e.g. Kéry, GuilleraǦArroita & LahozǦMonfort 270 

2013). To prevent over fitting (Burnham & Anderson 2002), we kept models with only one predictor 271 

per parameter, with the exception of one model which evaluated the additive effect of shrub and forest 272 

cover (shrub is a marginal habitat for the study species; Dunstone et al. 2002). 273 

 274 

A set of detection models were fitted using the best base structure. Subsequently, we evaluated models 275 

that included habitat configuration/quality and human-predator relations data to test its effect on initial 276 
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occupancy (ȥ1), while keeping colonisation and extinction specific. The best initial occupancy and 277 

detection models were then used to add further complexity to the colonisation and extinction 278 

components. We fitted all predictors for extinction. However, we assume that colonisation between 279 

seasons is primarily influenced by habitat configuration/quality variables, rather than human-predator 280 

relations. To explore the candidate model space, we worked on the structure for extinction probability 281 

followed by colonisation, and then repeated the process vice versa (Kéry, GuilleraǦ Arroita & LahozǦ282 

Monfort 2013). A constant or null model was included in all candidate model sets. Models with 283 

convergence problems or implausible parameter estimates (i.e. very large estimates and standard errors) 284 

were eliminated from each set.  285 

 286 

Goodness of fit was evaluated by bootstrapping 5000 iterations (MacKenzie and Bailey 2004) in the R 287 

package AICcmodavg. This test provides a model fit statistic based on consideration of the data from 288 

all seasons at once (P-Global), as well as separate statistics for each season. We used the predict function 289 

in R package unmarked (Fiske & Chandler 2011) to produce plots of estimated relationships with the 290 

predictors and derive estimates of occupancy for each of the seasons.  291 

 292 

All aspects of this project were approved by the School of Anthropology and Conservation Research 293 

and Research Ethics Committee, University of Kent, as well as the Villarrica Campus Committee of the 294 

Pontificia Universidad Católica de Chile. 295 

 296 

Results 297 

Habitat configuration/quality data 298 

Across the landscape, variation in the degree of habitat loss and fragmentation was substantial. Forest 299 

cover in SU’s ranged from 1.8-76% (mean=27.5%; SD=18.9), and shrub cover followed a similar 300 

pattern (range: 9.1-53.1%; mean=26%; SD=8.3). The number of habitat patches per SU varied between 301 

14 and 163 (mean=52.9; SD=25.7), and patch shape was diverse (index range: 1.3 (highly irregular 302 

forms) to 7.8 (regular forms); mean=3.13; SD=1.3). Some SUs included a relatively high length of edge 303 

(~48,000 m), whereas others had as little as 4,755 m.  304 
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 305 

Human-predator relations data and illegal killing prevalence across the landscape 306 

A total of 233 respondents completed the questionnaire, of which 20% were women and 80% men. The 307 

median age of respondents was 55 years (interquartile range: 46-67). Participants had lived in their 308 

properties for 25-50 years (median=35), which varied from 1-1,200 ha in size (median=29). Land 309 

subdivision within SUs also varied widely (range: 1-314 properties; mean=41.3; SD=37.2). 310 

Respondents, on average, received a monthly income equivalent to US$558 (SD=2.81) and had 311 

completed 10 years of formal schooling. 312 

 313 

Encounters with guiñas were rare. Nearly half of the respondents (49%, n=116) reported seeing a guiña 314 

during their lifetime. However, on average, the sighting occurred 17 years ago (SD=15). This 315 

percentage dropped to 10% and 21% during the last four (within the timeframe of the camera-trap 316 

survey) and 10 years (time period for the RRT question) respectively. Predation events were also 317 

uncommon. Only 16% of respondents (n=37) attributed a livestock predation event in their lifetime to 318 

a guiña, with just 7% (n=16) stating that this had occurred in the past decade. Of the guiña predation 319 

events over the past decade (n=16), 81% were recorded in Andean SUs.  320 

 321 

When presented with scenario-style questions concerning hypothetical livestock predation by a guiña, 322 

38% (n=89) of respondents stated that they would kill the felid if two chickens were lost, rising to 60% 323 

(n=140) if 25 chickens were attacked. Using RRT, we found that 10% of respondents admitted to having 324 

kill ed a guiña in the last 10 years (SE=0.09; 95% CI=0.02-0.18). The likelihood of a respondent 325 

admitting to killing guiña increased significantly with encounter frequency (ȕ=0.85, SE=0.50; LRT ѐG2 
326 

=4.18, p=0.04); those reporting the highest level of encounter rate were 2.3 times more likely to have 327 

killed the species compared to those not encountering guiña (Table 2). Data from the scenario-based 328 

question on predation were excluded from the model due to a high ȕ and associated standard error.  329 

 330 

Detection/non-detection data 331 
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A total of 23,373 camera-trap days returned 713 sampling occasions with a guiña detection (season 332 

1=96; season 2=185; season 3=240; season 4=192). The naïve occupancy (i.e. proportion of sites with 333 

detection) was similar across all four seasons (0.54; 0.52; 0.58; 0.59) and between the central valley 334 

and Andean SUs (both areas >0.5). There was no evidence of spatial autocorrelation among SUs during 335 

any survey season (season 1 Moran’s I=-0.03 (Į=0.74); season 2 I=0.05 (Į=0.31); season 3 I=0.05 336 

(Į=0.36); season 4 I=0.07 (Į=0.17)). 337 

 338 

Integrated socio-ecological multi-season occupancy modelling 339 

Our preliminary evaluation indicated that a Markovian dependence model structure was an appropriate 340 

description of the data. This dependence implies that guiña presence at a given site in a particular season 341 

is dependent on whether that site was occupied in the previous season (Table 3). Model 1.1 was chosen 342 

as the base structure for the modelling procedure because: (i) it is supported by AIC; and, (ii) its 343 

parameterisation using extinction and colonisation (i.e. not derived parameters) allowed the role of 344 

different potential predictors to be tested on these population processes. Also, letting extinction and 345 

colonisation be season-specific accommodated for unequal time intervals between sampling seasons. 346 

 347 

Model selection for detection (models 2.1-2.7; Table 4) revealed a positive relationship with understory 348 

vegetation cover (ȕ1=0.343; SE=0.055; Fig. 3b). There was no evidence of an effect associated with the 349 

rotational camera-trap survey design, and none of the other predictors were substantiated. Forest cover 350 

best explained initial occupancy (models 3.0-3.6; Table 4), with initial occupancy being higher in sites 351 

with less forest cover, although the estimated relationship was weak (ȕ1 =-0.0363; SE=0.0138; Fig. 3a). 352 

Adding shrub cover only improved model fit marginally. Fragmentation metrics and land subdivision 353 

were not supported as good predictors. 354 

 355 

Model selection for extinction and colonisation (models 4.0-4.18 and 5.0-5.12; Table 4) reflected the 356 

same trends, irrespective of the order in which parameters were considered. Extinction, rather than 357 

colonisation, yielded predictors that improved model fit compared to the null model. Where predictors 358 

were fitted first on colonisation (models 5.0-5.5), none of the models tested improved fit substantially 359 
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compared to the null model. This indicated that, of the available predictors, colonisation was only 360 

explained by seasonal differences. The human-predator predictors were not supported as drivers of 361 

either initial occupancy or extinction probability (Table 4).   362 

 363 

We fitted a final model (model 5.6; Table 4) with number of patches and land subdivision, which were 364 

identified as important predictors in the two top competing extinction models (models 5.7 and 5.8). This 365 

model was well supported. A goodness-of-fit test suggested lack of fit based on the global metric (P-366 

global<0.05), but inspection of survey-specific results show no such evidence (p>0.05) apart from 367 

season 2 (p=0.032). Inspecting the season 2 data, we found that the relatively large statistic value 368 

appeared to be driven by just a few sites with unlikely capture histories (i.e. <12 detections). Given this, 369 

and the fact that data from the other seasons do not show lack of fit, we deem that the final model 370 

explains the data appropriately. The model predicts that SU extinction probability becomes high (>0.6) 371 

when there are less than 27 habitat patches, and more than 116 land subdivisions (ȕ1=-0.900; SE=0.451 372 

and ȕ1=0.944; SE=0.373 respectively; Figs. 3cd). Occupancy estimates were high across seasons with 373 

derived seasonal estimates of 0.78 (SE=0.09), 0.64 (SE=0.06), 0.80 (SE=0.06) and 0.83 (SE=0.06). 374 

 375 

Discussion 376 

The integrated socio-ecological modelling framework we present here provides important insights into 377 

how habitat configuration/quality and human-predator relations may interact in space and time to effect 378 

carnivore populations existing across a human-dominated landscape. We were able to disentangle the 379 

relative impact of a range of threats that have been highlighted previously in the literature as potential 380 

drivers of decline for our case study species the guiña.  381 

 382 

The guiña is an elusive forest specialist. As such, one might predict that the species would be highly 383 

susceptible to both habitat loss and fragmentation (Henle et al. 2004b; Ewers & Didham 2006). While 384 

the relationship between occupancy and higher levels of forest cover (Fig. 3a) does suggest guiñas are 385 

likely to occupy areas with a large spatial extent of available habitat, our results also indicate that the 386 

species can tolerate extensive habitat loss. The effects of habitat loss could be confounded by time, and 387 
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it is possible that we are not yet observing the impacts of this ecological process (Ewers & Didham 388 

2006). However, this is unlikely to be the case in this landscape as over 67% of the original forest cover 389 

was lost by 1970 and, since then, deforestation rates have been low (Miranda et al. 2015). Indeed, the 390 

findings highlight that intensive agricultural landscapes are very relevant for guiña conservation and 391 

should not be dismissed as unsuitable.  392 

 393 

Spatially, the occupancy dynamics of this carnivore appear to be affected by fragmentation and human 394 

pressure through land subdivision. Ensuring that remnant habitat patches are retained in the landscape, 395 

and land subdivision is reduced so that existing bigger farms are preserved, could ultimately safeguard 396 

the long-term survival of this threatened species. This should be the focus of conservation efforts, rather 397 

than just increasing the extent of habitat. Our findings further suggest that these remnant patches may 398 

play a key role in supporting the guiña in areas where there has been substantial habitat loss and, 399 

perhaps, might even offset local extinctions associated with habitat cover (Fahrig 2002). A land sharing 400 

scheme within agricultural areas of the landscape could prove to be a highly effective conservation 401 

strategy (Phalan et al. 2011) considering that these farms are currently not setting aside land, but are of 402 

high value to the species. The results also highlight that farmers with large properties are key 403 

stakeholders in the conservation of this species and must be at the centre of any conservation 404 

interventions that aim to protect existing native forest vegetation within farmland. 405 

 406 

Following farming trends globally, larger properties in the agricultural areas of southern Chile are 407 

generally associated with high intensity production, whereas smaller farms are mainly subsistence-408 

based systems (Carmona et al. 2010). It is therefore interesting, but perhaps counterintuitive, that we 409 

found occupancy to be higher (lower local extinction) where there is less land subdivision. However, a 410 

greater number of small farms is associated with higher human density which may result in increased 411 

persecution by humans (Woodroffe 2000). Also, higher subdivision imposes pressure on natural 412 

resources, due to more households being present in the landscape (e.g. Liu et al. 2003), which has been 413 

shown to reduce the quality of remaining habitat patches as a result of frequent timber extraction, 414 

livestock grazing (Carmona et al. 2010) and competition/interference by domestic animals and pets 415 
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(Sepúlveda et al. 2014). Native vegetation in non-productive areas, including ravines or undrainable 416 

soils with a high water table, is normally spared within agricultural areas (Miranda et al. 2015), and 417 

these patches of remnant forest could provide adequate refuge, food resources and suitable conditions 418 

for carnivore reproduction (e.g. Schadt et al. 2002). However, it is possible that areas with high land 419 

subdivision and a large number of patches could be acting as ecological traps if source-sink dynamics 420 

are operating in the landscape (Robertson & Hutto 2006). Additionally, another factor driving the 421 

subdivision of land and degradation of remnant forest patches across agricultural areas is the growing 422 

demand for residential properties (Petitpas et al. 2017). This is facilitated by Chilean law, which permits 423 

agricultural land to be subdivided to a minimum plot size of 0.5 ha. Furthermore, it is common practice 424 

for sellers and buyers to completely eliminate all understory vegetation from such plots (C. Rios, 425 

personal communication) which, as demonstrated by detection being higher in dense understory, is a 426 

key component of habitat quality. The fact that farmers subdivide their land for economic profit, driven 427 

by demand for residential properties, is a very complex and difficult issue for future landscape-level 428 

conservation.  429 

 430 

Although previous studies have suggested that human persecution may be a factor contributing to the 431 

decline of the guiña (Nowell & Jackson 1996; Sanderson, Sunquist & W. Iriarte 2002), illegal killing 432 

in the study region appears low and much less of a threat to the species than the habitat configuration 433 

in the landscape. Despite the fact that the species occupies a large proportion of the landscape across 434 

seasons, people report that they rarely encounter the carnivore or suffer poultry predation. The guiña’s 435 

elusive behaviour is reinforced by our low camera-trap detection probability (p<0.2 over 2 nights). One 436 

in ten respondents (10%) admitted to killing a guiña over the last decade. One potential drawback of 437 

RRT is that it is impossible to know if people are following the instructions (Lensvelt-Mulders & Boeije 438 

2007). However, we deployed a symmetrical RRT design (both ‘yes’ and ‘no’ were assigned as 439 

prescribed answers), which increases the extent to which people follow the instructions (Ostapczuk & 440 

Musch 2011). Moreover, the proportion of ‘yes’ answers in the data exceeded the probability of being 441 

forced to say ‘yes’ (which in this study was 0.167), indicating that respondents were reporting illegal 442 

behaviour. From our data, it would be difficult to determine whether this prevalence of illegal killing is 443 
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having a detrimental impact on the population size of the species. However, with our framework we 444 

could, in the future, evaluate spatial layers of information such as the probability of illegal killing based 445 

on the distribution of encounters with the guiña and landscape attributes that increase extinction 446 

probability (e.g. land subdivision and reduced habitat patches) in order to be spatially explicit about 447 

where to focus conservation and research efforts (e.g. Santangeli et al. 2016). 448 

 449 

Our results demonstrate the benefits of integrating socio-ecological data into a single modelling 450 

framework to gain a more systematic understanding of the drivers of carnivore decline. The framework 451 

teased apart the relative importance of different threats, providing a valuable evidence-base for making 452 

informed conservation recommendations and prioritising where future interventions should be targeted 453 

for the case study species. Prior to applying our framework, conservationists believed that human 454 

persecution was instrumental in determining guiña occupancy patterns in human-dominated landscapes. 455 

However, our combined socio-ecological approach highlighted that habitat configuration/quality 456 

characteristics are the primary determinants, mainly due to the widespread presence of the species 457 

across the landscape and lack of interaction with rural homes. The relative importance of, and balance 458 

between, social and ecological factors may differ according to the species of conservation concern. 459 

While our framework might not be to resolve conflict, it can help to guide potential stakeholder 460 

controversies (Redpath et al. 2013; Redpath et al., 2017) by improving our understanding of how 461 

carnivores interact with humans in space and time (Pooley et al. 2016). A number of small to medium 462 

carnivores in need of research and conservation guidance (Brooke et al. 2014) could benefit from our 463 

framework. 464 
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Figure Legends 653 

 654 

Figure 1: Integrated socio-ecological modelling framework to assess drivers of carnivore decline in a 655 

human-dominated landscape. 656 

 657 

Figure 2: Distribution of landcover classes and protected areas across the study landscape in southern 658 

Chile, including the forest habitat of our case study species, the guiña (Leopardus guigna). The two 659 

zones within which the 145 sample units (SU: 4 km2) were located are indicated, with 73 SUs in the 660 

central valley (left polygon) and 72 within the Andes (right polygon). Illustrative examples of the 661 

variation in habitat configuration within SUs across the human-domination gradient are provided 662 

(bottom of image). 663 

 664 

Figure 3: Predicted effects of forest cover, understory density, number of habitat patches and land 665 

subdivision on multi-season occupancy model parameters for the guiña (Leopardus guigna). These 666 

results correspond to the final selected model [ȥ1(Forest), p(season+Understory), 667 

İ(season+PatchNo+Subdivision), Ȗ(season)]. Grey lines delimit 95% confidence intervals. 668 

  669 
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Table 1: Habitat configuration/quality and human relation predictors evaluated when modelling initial 670 

occupancy (ȥ1), colonisation (Ȗ), extinction (İ) and detection (p) probability parameters of multi-season 671 

camera-trap guiña (Leopardus guigna) surveys. Further details can be found in Appendix S1, S2 & 672 

Table S1. 673 

 674 

Parameter Predictor Abbreviation in models 

 Habitat configuration  

ȥ1, İ, Ȗ Percent of forest cover/habitatΏ Forest 

ȥ1, İ, Ȗ Percent shrub cover/marginal habitat Shrub 

ȥ1, İ, Ȗ Number of forest patches PatchNo 

ȥ1, İ, Ȗ Shape index forest patches  PatchShape 

ȥ1, İ, Ȗ Forest patch size area‡ PatchAreaW 

ȥ1, İ, Ȗ Forest patch continuity‡ Gyration 

ȥ1, İ, Ȗ Edge length of forest land cover class Edge 

ȥ1, İ, Ȗ Landscape shape index of forest§ LSI 

ȥ1, İ, Ȗ Patch cohesion‡ COH 

 Human predator relations   

ȥ1, İ Land subdivision Subdivision 

ȥ1, İ Intent to kill (hypothetical scenario questions) Intent 

ȥ1, İ Predation  Predation 

ȥ1, İ Frequency of predation FQPredation 

ȥ1, İ, p Frequency of encounterΏΏ FQEncounter 

ȥ1, İ Number of dogs  Dogs 

 Habitat quality  

p Bamboo density (Chusquea spp.) Bamboo 

p Density of understory  Understory 

p Sample Unit rotation block Rotation 

p Intensity of livestock activity  Livestock 

p Intensity of logging activity  Logging 

p Water availability Water 
†Pools together all forest types: old-growth, secondary growth, and wetland forest 675 

‡ Predictor excluded due to collinearity with percent of forest cover (Pearson’s ŇrŇ>0.7) 676 

§ Predictor excluded due to collinearity with number of forest patches (Pearson’s ŇrŇ>0.7) 677 

†† Predictor also fitted with detection probability 678 

 679 

 680 

  681 
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Table 2: The relationship between illegal killing of guiña (Leopardus guigna) and potential predictors 682 

of the behaviour. Reported coefficients, standard errors, odds ratios and their 95% confidence intervals 683 

were derived from a multivariate logistic regression which incorporates the known probabilities of the 684 

forced RRT responses. Significance was accepted at the 0.05 level. 685 

 686 

                   Odds ratio 

 
Coefficient SE P Odds 

ratio Lower CI Upper CI 

(Intercept) -2.43 1.99 0.25 0.09 0.00 4.36 

Age -0.41 0.43 0.38 0.66 0.29 1.54 

Income 0.00 0.55 0.99 0.99 0.34 2.96 

Land parcel dependency 0.02 0.83 0.98 12.02 0.20 5.19 

Number of chicken holdings -0.18 0.71 0.78 0.83 0.21 3.38 

Knowledge of legal protection 0.48 0.77 0.57 1.62 0.36 7.37 

Frequency of encounter 0.85 0.50 0.04 2.34 0.87 6.28 

 687 

  688 
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Table 3: Seasonal occupancy dynamics models following MacKenzie et. al. (2006), applied to the guiña 689 

(Leopardus guigna), to define the base model structure for the subsequent model selection procedure 690 

to evaluate potential habitat configuration/quality and human-predator predictors. Fitted probability 691 

parameters are occupancy (ȥ), colonisation (Ȗ), extinction (İ) and detection (p). Models assess whether 692 

changes in occupancy do not occur (model 1.6), occur at random (models 1.5, 1.4) or follow a Markov 693 

Chain process (i.e. site occupancy status in a season is dependent on the previous season) (models 1.0, 694 

1.1, 1.2, 1.3). Initial occupancy (ȥ1) refers to occupancy in the first of four seasons over which the guiña 695 

was surveyed. Model selection procedure is based on Akaike’s Information Criterion (AIC). ∆AIC is 696 

the difference in AIC benchmarked against the best model, wi is the model weight, K the number of 697 

parameters, and -2*loglike is the value of the log likelihood at its maximum. The selected model is 698 

highlighted in bold. 699 

 700 

Model Seasonal dynamic models ∆AIC wi K -2*loglike 

1.0 ȥ(.), Ȗ(.), {İ= Ȗ (1- ȥ)/ȥ}, p(season) 0.00 0.443 6 3982.93 

1.1 ȥ1(.), İ(season), Ȗ(season), p(season) 0.36 0.370 11 3973.29 

1.2 ȥ1(.), İ(.), Ȗ(.), p(season)  1.88 0.173 7 3982.81 

1.3 ȥ1(.), İ(.), Ȗ(.), p(.)  6.83 0.015 4 3993.76 

1.4 ȥ1(.), Ȗ(.),{İ= 1- Ȗ}, p(season)  41.78 0.000 6 4024.71 

1.5 ȥ1(.), Ȗ(season),{İ= 1- Ȗ}, p(season)  42.78 0.000 8 4021.71 

1.6 ȥ(.), {Ȗ= İ= 0}, p(season) 104.11 0.000 6 4087.04 

 701 

  702 
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Table 4: Multi-season models of initial occupancy (ȥ1), extinction (İ), colonisation (Ȗ) and detection 703 

(p) probability with potential habitat configuration/quality and human-predator predictors for the guiña 704 

(Leopardus guigna). Predictors were evaluated with a base model of seasonal dynamics [ȥ1(.), 705 

İ(season), Ȗ(season), p(season)] using a step-forward model selection procedure and Akaike’s 706 

Information Criterion (AIC). Initial occupancy (ȥ1) refers to occupancy in the first of four seasons over 707 

which the guiña was surveyed, with occupancy dynamics following a Markov Chain process. ∆AIC is 708 

the difference in AIC benchmarked against the best model, wi is the model weight, K the number of 709 

parameters, and -2*loglike is the value of the log likelihood at its maximum. The selected models for 710 

each parameter are highlighted in bold and used in the next step. İ was fitted first followed by Ȗ, then 711 

vice versa. 712 

Model Fitted parameter ѐAIC wi K -2*loglike 

 Detection/fitted with ȥ1(.), İ(season), Ȗ(season)     

2.0 p(season+Understory) 0.00 0.9999 12 3934.47 

2.1 p(season+Bamboo)  18.48 0.0001 12 3952.95 

 Initial occupancy/fitted with İ(season), Ȗ(season), p(season+Understory)   

3.0 ȥ1(Forest) 0.00 0.5425 13 3927.46 

3.1 ȥ1(Forest+Shrub)  1.24 0.2918 14 3926.7 

3.4 ȥ1(PatchNo) 4.00 0.0734 13 3931.46 

3.5 ȥ1(.) 5.01 0.0443 12 3934.47 

3.6 ȥ1(Subdivision) 5.69 0.0315 13 3933.15 

3.7 ȥ1(Dogs) 7.00 0.0164 13 3934.46 

Extinction first/fitted with ȥ1(Forest), p(season+Understory)     

4.0 İ(season+PatchNo), Ȗ(season)  0.00 0.4692 14 3920.10 

4.1 İ(season+Subdivision), Ȗ(season) 0.36 0.3919 14 3920.46 

4.2 İ(season+PatchShape), Ȗ(season) 5.15 0.0357 14 3925.25 

4.3 İ(season+Predation), Ȗ(season)  5.24 0.0342 14 3925.34 

4.4 İ(season), Ȗ(season) 5.36 0.0322 13 3927.46 

4.5 İ(season+FQencounter), Ȗ(season) 5.92 0.0243 14 3926.02 

4.6 İ(season+FQPredation), Ȗ(season) 7.24 0.0126 14 3927.34 
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Colonisation second/fitted with ȥ1(Forest), p(season+Understory) and 4.0/4.1 for İ 

4.7 İ(season+PatchNo), Ȗ(season)  0.00 0.1877 14 3920.10 

4.8 İ(season+Subdivision), Ȗ(season) 0.36 0.1568 14 3920.46 

4.9 İ(season+Subdivision), Ȗ(season+PatchShape) 0.79 0.1265 15 3918.89 

4.10 İ(season+PatchNo), Ȗ(season+PatchShape) 1.29 0.0985 15 3919.39 

4.11 İ(season+Subdivision), Ȗ(season+PatchNo) 1.63 0.0831 15 3919.73 

4.12 İ(season+PatchNo), Ȗ(season+Edge) 1.84 0.0748 15 3919.94 

4.13 İ(season+PatchNo), Ȗ(season+Forest)  1.98 0.0698 15 3920.08 

4.14 İ(season+Subdivision), Ȗ(season+Edge) 2.16 0.0638 15 3920.26 

4.15 İ(season+ Subdivision), Ȗ(season+Forest) 2.20 0.0625 15 3920.30 

4.16 İ(season+Subdivision), Ȗ(season+Forest+Shrub) 3.50 0.0326 16 3919.60 

4.17 İ(season+PatchNo), Ȗ(season+Forest+Shrub) 3.60 0.0310 16 3919.70 

4.18 İ(season), Ȗ(season) 5.36 0.0129 13 3927.46 

Colonisation first/fitted with ȥ1(Forest), p(season+Understory)    

5.0 İ(season), Ȗ(season) 0.00 0.3303 13 3927.46 

5.1 İ(season), Ȗ(season+PatchShape)  0.96 0.2044 14 3926.42 

5.2 İ(season), Ȗ(season+PatchNo) 1.55 0.1522 14 3927.01 

5.3 İ(season), Ȗ(season+Edge) 1.89 0.1284 14 3927.35 

5.4 İ(season), Ȗ(season+Forest) 1.95 0.1246 14 3927.41 

5.5 İ(season), Ȗ(season+Forest+Shrub) 3.41 0.06 15 3926.87 

Extinction second/fitted with ȥ1(Forest), p(season+Understory) Ȗ(season)   

5.6 İ(season+PatchNo+Subdivision), Ȗ(season) 0.00 0.8275 15 3913.45 

5.7 İ(season+PatchNo), Ȗ(season) 4.65 0.0809 14 3920.10 

5.8 İ(season+Subdivision), Ȗ(season) 5.01 0.0676 14 3920.46 

5.9 İ(season+PatchShape), Ȗ(season) 9.80 0.0062 14 3925.25 

5.10 İ(season+Predation), Ȗ(season) 9.89 0.0059 14 3925.34 

5.11 İ(season), Ȗ(season) 10.01 0.0055 13 3927.46 

5.12 İ(season+FQEncounters), Ȗ(season) 10.57 0.0042 14 3926.02 

5.13 İ(season+FQPredation), Ȗ(season) 11.89 0.0022 14 3927.34 

 713 


