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Abstract

We consider a hybrid of functional and varying-coefficient regression models for the analysis
of mixed functional data. We propose a quantile estimation of this hybrid model as an alternative
to the least square approach. Under regularity conditions, we establish the asymptotic normality
of the proposed estimator. We show that the estimated slope function can attain the minimax
convergence rate as in functional linear regression. A Monte Carlo simulation study and a real

data application suggest that the proposed estimation is promising.
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1 Introduction

Over the past two decades, technological innovations in biology, chemistry, medicine, engineering,
economics and finance have produced large scale data with functions or images as the units of ob-
servation. The analysis of these functional datasets has stimulated extensive research on functional
regressions where the response variable or covariates are functions. See Ramsay and Silverman
(2005), Morris (2015) and Wang et al. (2015) for systematic reviews on this subject. As the
simplest form of functional data analysis, functional linear regression analysis has been intensively
studied and applied to solve a wide range of scientific problems. See |Cardot et al.| (1999, 2003)),
Yao et al. (2005)), Hall and Horowitz (2007), Cai and Hall (2006), [Kato (2012) and among others.
The functional linear regression aims to model the relationship between a scalar response variable
and a functional covariate. But in practice, we often see that a scalar response is related not only
to functional covariate, but also to scalar covariates. For example, as we discuss in section 5, the
percentage of fat content of finely chopped pure meat depends not only on the spectrometric curve
but also on the corresponding percentages of protein content and water content. Functional regres-
sion models have been used to handle this problem, where a scalar response variable is regressed
to both functional covariates and scalar covariates. The partial functional linear model, a most
frequently used mixed data model, has attracted a lot of interests in the literature. For instance,
Shin| (2009) considered a partial functional linear model, in which both the scalar covariates and the
functional covariate are linear. Zhang et al. (2007) introduced a measurement error partial func-
tional linear model. Various extensions of partial functional linear model have been proposed to
broaden the applicability of functional regression models with mixed data in the literature. For ex-
ample, Aneiros-Pérez and Vieu (2006) considered a semi-functional partial linear regression model
in which the scalar covariates are the linear component and the functional covariate is nonparamet-
ric component. [Dabo-Niang and Guillas (2010) proposed a functional semiparametric model. This
model is similar to semi-functional partial linear model but with autocorrelated random errors. A
hybrid model of functional and varying coefficient regressions, as an important extension of partial
functional linear model is becoming popular in the literature. The model is defined in the following

form:
Y—ao(U)—I-XTa(U)—i-/B(t)Z(t)dt—i—e, (1)
I

where Y is a scalar variable, X = (X7, Xo,... ,Xp)T are p-dimensional random vector of scalar
covariates, U is a univariate scalar variable, a(U) is a baseline function and a(U) = (a1 (U), ae(U),
.., op(U))T are unknown varying coefficient functions, Z(t) is a zero mean random functional
predictor defined on a compact interval I, 5(t) is a square-integrable regression slope function, €
is an error term with mean zero and variance o2, and (X,U, Z(t)) and ¢ are independent. By the
hybrid model, we describe a functional linear relationship plus a varying interaction term between

the scalar covariates . It seems to be more sensible to characterize the dynamic feature in the



varying interaction term which may exist in the data set. For example, as we discuss in section 5,
the fat content in a piece of finely chopped pure meat will depend on the water content, and the
dynamical pattern of this relationship is of importance. It would make much more sense to treat
the parameters of the protein content as functions of the water content than constants. So, we will
employe the above hybrid model to predict the percentage of fat content. The model is concerned
about a varying interaction term between the protein and water content. On the other hand, the
model is flexible as it takes the classical functional linear regression model and partial functional
linear model as special cases if let a(U) = 0, ap(U) = ap and a(U) = o, ap(U) = a respectively.
Due to its flexibility to explore the dynamic features which may exist in the data, the hybrid model
of functional and varying coefficient regressions has been investigated intensively. Peng et al.| (2015)
proposed a least squares-based spline approach to estimating the above hybrid model and provided
the asymptotic behavior of their estimation. |[Feng et al. (2016) proposed a profile least squares
estimation of the same model by use of functional principal component analysis and local linear

smoothing technique.

The least square estimation procedures in the aforementioned two papers are based on the
conditional mean of the response variable for the given set of covariates. As a result, there is lack
of information on the response variable at the various quantile values (for example, the lower or
upper quantiles). Furthermore, assumptions related to random errors in the least square estimators
are not always valid in reality. Even a few outlying data points may introduce undesirable artificial
features in the estimated functions. Here, to address these issues, we develop a novel and robust
estimation procedure called quantile estimation for the hybrid model, which can be interpreted
as the effect of covariates on the response variable at each quantile level. There are few studies
on quantile-regression-based estimation procedures for non-hybrid functional regression models. In
literature, |Cardot et al.| (2005) proposed a spline-based estimation for functional linear quantile
regression models. (Chen and Miller| (2012)) proposed a method for conditional quantile analysis for
the generalized functional regression models. Kato (2012) studied estimation in functional linear
quantile regression model and showed that the rate of convergence for slope function estimator was
optimal in a minimax sense. Lu et al.|(2014); Tang and Cheng| (2014) also investigated the quantile
estimation of partially functional linear models and the asymptotic performance of the proposed

estimator.

In this paper, we focus on quantile estimation of the hybrid model between partially functional
linear regression and varying coefficient models. Our contributions to this area are as follows.
We develop the quantile estimators for the slope function, the baseline function and the varying
coefficients in the above hybrid model with mixed data. Under some regularity conditions, we
establish the asymptotic normality of the proposed estimators. We show that the global convergence
rates of the proposed slope function estimator can attain the same optimal minimax rate as in

functional linear regression. A Monte Carlo simulation study and a real application to spectrometric



data show that the proposed estimation procedure has a few advantages over its competitors.

The article is organized as follows. The quantile estimation of the hybrid model between
partially functional regression and varying coefficients is developed in Section 2. The asymptotic
properties of the proposed quantile estimators are established in Section 3. The finite sample
performance of the proposed estimators is presented in Section 4. The proposed method is then

applied to the spectrometric data. Technical proofs are delayed to an Appendix.

2 Model and Estimation

2.1 Model

Given quantile level 7 € (0, 1), we consider the following hybrid quantile model of functional linear

regression and varying-coefficients for mixed functional data
Y = o (U) + XTa, (U) + /BT(t)Z(t)dt + &7, (2)
I

where ag,(U) is a unknown baseline function and o, (U) = (a1.(U), a2 (U),...,ap (U))T are
unknown varying coefficient functions to be estimated, U € [u;,u,], Z(t) is zero mean random
functional predictor defined on a compact interval I, (3,(t) is square-integrable regression slope

function, e; is a random error whose 7th quantile conditional on (X, U, Z(t)) being zero.

2.2 Estimation

Suppose that {(Y;, X;,U;, Zi(t)),i = 1,2,...,n} is a random sample generated from model (2). We
estimate slope function [(;(t), baseline function ag,(U) and varying coefficients o (U) in model

, by minimizing the following quantile loss function
> (- a0r(t) - XFar(v) - [ )zt ) 3)
i=1

where p-(s) = s{T —I(s < 0)}.

To begin with, we note that [} 5-(t)Z;(t)dt is simplified by expanding 8- (t) = Y22 bre¢w(t),
where ¢1(t), ¢2(t), ... are orthonormal basis of square-integrable function on interval I. The ba-
sis ¢1(t), ¢a(t),... can be chosen independently of data (e.g., Fourier basis, Spline basis, etc).
Here, we adopt a principal component basis, constructed from the covariance function Kz (u,v) =
Cov(Z(u), Z(v)) of the random process Z(t) as follows. The spectral decomposition of Kz(u,v) is
given by

Kz(u,v) = Aetr(u)pp(v), (4)
k=1



where the principal component basis ¢1(t), p2(t), ... is a complete orthonormal sequence of eigen-
functions of the transformations K, with respective eigenvalues A\ > Ay > --- > 0. By Karhunen-
Loeve expansion, we have

oo

Z(t) = &on(t),
k=1
where &, = [; Z(t)¢y(t)dt. Hence, [} B-(t)Z(t)dt = >3 | brp&y. Correspondingly, [; B-(t)Z;(t)dt =
> ey brikin, where &, = [; Zi(t)dp(t)dt. However, in practice, the value of & and &, depend on
the value of ¢k (t), but the scalars Ay and the functions ¢ (t) are unknown and must be replaced
by estimators in order to produce estimator of 3,(t). For this purpose, we consider the empirical

version of Kz (u,v) given by
1 n
— A
- g Z ki (u

where (S\k, qgk) are pairs of eigenvalues and eigenfunctions, ordered such that M > Ao > A, > 0.
We take (Ag, dx(t)) as the estimator of (A, ¢ (t)). The functions ¢y (t), da(t), ..., dm(t) are known,
where m is a tuning parameter for “frequency cut-off”. By using the approximate expansion [, (t) ~
Z}? 1 ka,¢k( ), we show that [, 3, (t)Z(t )dt can be properly approximated by ZZ‘ 1 b'Tkék, where
& = I;Z( t)dt. Consequently, [; B-(t)Z;(t)dt ~ Y /", b;kéik, where &, = I; Zi t)dt.

In order to approximate ag,(U) and o (U) for U € [uy, u,], we construct piecewise polynomial
estimators of ap,(U) and a-(U) of degree §. We divide [u;, u,| into NN, subintervals of equal length.
Then the length of every subinterval is 2hg = (u, — u;)/Nyp. Let I = [u; + 2(k — 1)ho, u; + 2kho)
for 1 <k < N, —1and Iy, = [u, — 2hg, u,]. Let uy denote the centre of the interval I}, and xx(u)

denote the indicator function of Iy, i.e.,
1, welg
Xk(u) = .
0, u ¢ Ik

To facilitate the presentation, we need some more notations as follows. Let

Bi(u) = (1,(u—ug)/ho,...,[(u—w)/hol?) k=1,...,N,,
B(u) = (Xl(u)Bl(u)T, ...y XN, (w)Bp, (u)T)T, M (u) = diag(B(u)T, e ,B(u)T);Xp.

(wira cee 7w—]\r/'n)T7 Fy‘]k = (7jk17 s 77jk(f)—r7 7‘7 = (7;17 s 77;an
v=(,... ,’y;)T. We use B(U)'w and M (U) "~ to approximate ag,(U) and a(U), respec-

Denote wi = (Wk1, - - . ,Wkg) |, w = )T,

tively. Thus, quantile loss function in can be approximated by the following target function

ZpT <Y B(U)"w—-XTM(U, Zb7k52k> (5)
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The solution to Equation can be obtained numerically by linear programming method (such
as Frisch-Newton Interior Point Method or Interior point method with preprocessing). For conve-

nience, let @, 4, B’Tk be the minimizer of Equation (5)). Then, the estimator of 3, (t) is denoted by
Br(t) = TiLa Wgd(h):

After estimating ,(t), for a given u € [u;, u,], when U tends to u, we employ the local linear
approximation oo (U) ~ aor + bor (U — u), - (U) = a; + b, (U — u). We can obtain estimators of

aor, bor, ar, by, B, by minimizing the following local weighted quantile loss function

ZpT <E — apr — bOT(Ui — u) - XlT {aT + b7—(Uz - u)} - Z I;;kézk) Kh(UZ — u) (6)
i=1 k=1

where Kj() = K(-/h)/h, K(-) is a kernel function and h is a bandwidth. The solution to Equa-
tion @ can also be obtained numerically by linear programming method. For convenience, let
aor, bor, @y, by be the minimizer of Equation @ Then, the estimator of ag,(u) and a,(u) are

denoted by ag; and a,, respectively.

The above estimation procedure is summarized as follows:

Step 1: Compute & and @y (t) by functional principal component analysis method (i = 1,...,n;k =

1,...,m);

Step 2: Obtain Q,’?,E’Tk by minimizing (5]), then B.(t) = Py Tk,gzﬁk( );

Step 3: Obtain ag;, bor, Gr, b, by minimizing @7 then dor(u) = aor(u), &r(u) = ar(u).

Remark 1 The proposed estimation is designed for use in situations where functional predictors
are measured at a dense grid of regular space time points. For situations where this is not the case
it may be feasible to use sparse functional principal components analysis method (see [Yao et al.l
2005) to produce the estimators (g, dr).

Remark 2 The proposed procedure estimates the functional slope function and varying coefficients
by minimizing quantile loss function. In the next section, we show that BT can result in a slope
function estimator which achieve the optimal rate of convergence as in functional linear regression

analysis.

2.3 Tuning parameter and bandwidth selection

To implement our estimation method, we need to choose the tuning parameter m, N, and band-

width h. Theorem 1 and Theorem 2 imply that the selection of the tuning parameter m, N,, and



bandwidth h are of crucial importance. An appropriate choice of m, N, and h can result in good
estimators of the slope function and varying coefficients. We use Bayesian information criterion
(BIC) to select m and N,,. The BIC is given by

- (m + Ny)logn
BIC(m,N,) =1 Y - BWW;)T - XI'M(U b i —_
The optimal m and N, are selected by minimizing BIC. The bandwidth h can be selected by

leave-one-out cross-validation of the prediction error. More precisely, C'V is defined as

Zp7< Y; - ay " (U) - XT d&‘“(Ui)—Zé’mém),
k=1

d((];i)(Ui) and & (U;) denote that the estimators of ag,(U;) and o (U;) computed without ob-

servation ¢. We find the minimizer of C'V (h), which is the selected value for h.

3 Asymptotic Properties

In this section we study asymptotic properties of the estimators proposed in Section 2. We first
introduce some notations for the brevity of presentation. Let f;(-|x,u,2(t)) and F;(:-|x,u, z(t))
denote the density function and cumulative distribution function of the error e, condition on
(X,U,Z(t)) = (x,u, z(t)), respectively. Denote the marginal density function of the covariate U by
fo(). Let G(u) = BLA (01X, U, Z(1)(1, XY (1, XT)|U = u}, H(u) = B{(1, XT)T(1, XT)|U =
u}. For kernel function K (-), define p; = [w/K(u)du and v; = [w/ K?*(u)du, j =0,1,2,.... We
use the symbol a,, < b, to denote that the ratio a, /b, is bounded away from zero and infinity. Let

the symbol (-,-) and || - || denote inner product and norm.

The following conditions are needed:

(C1) The covariate U has a bounded support © and its density function fi;(-) is positive and has

a continuous second derivative.

(C2) K(-) is a nonnegative and symmetric density function with bounded support and satisfies a

Lipschitz condition.

(C3) Fr(0|x,u,z(t)) = 7 for all (x,u,z(t)), f-(-|x,u,2(t)) is bounded away from zero and has a
continuous and uniformly bounded derivative. We also assume that there exist constants cg
and ¢; such that 0 < ¢p < f7 (0|, u, 2(t)) < ¢1 < 0.

(C4) Z(t) is square-integrable random function supported on the compact interval I, and has a
zero mean and finite fourth moment. We assume that for each j, E(ﬁ;-l) < Bl)\? for some

constant Bj.



(C5) The eigenvalues A; in the spectral decomposition satisfy
Byli M <N < By N =N 2 Byl >
where 81 > 1, By > 0.

(C6) For the Fourier coefficients b;; of (,(t), there exist constant Bz, S > 8 + % such that
[brjl < By 'i P2

(C7) The baseline function ap,(u) and varying function e, (u) have continuous ¢ derivatives such
that |a(()i)(u)—a(()z)(u’)\ < Bylu—v/|* and ||a.(rq)(u)—asﬁ)(u’)|| < Bylu—u'|¢ for u; < u, v’ < uy,
where 0 < ¢ < 1 and By is a positive constant. Think of ¢ = ¢ + ¢ as a measure of the
smoothness of the function ag,(U) and a,(U), ¢ > (361 + 652 — 2) /4.

(C8) The tuning parameter m satisfies that m = n'/(F1+282) and N,, also satisfies that N, =
nl/(B1+2B2)

(C9) EX;l<oo,j:1,...,p.

(C10) E(X|U) =0,E(Z(t)|U, X) = 0 and E(&£;]U, X) = 0 for i # j. For each i, E(¢2|U, X) < Bs);

for some constant Bs.

(C11) G(u) are non-singular for all u € ©.

Remark 1 Conditions C1-C11 are not the weakest possible conditions. They are imposed to
facilitate the proof of the following theorems. Conditions C1-C4, C7, C9 and C11 are required in
the context of nonfunctional varying coefficient partially linear model (see Kai et al., 2011), while
conditions C5, C6 and C8 are needed to cope with linear part corresponding to the functional
predictor Z(t) of varying coefficient partially functional linear regression model with mixed data.
And conditions C5, C6 and C8 are quite usual in functional linear regression model (see |Cai and
Hall, [2006; Hall and Horowitz, |2007)). Condition C10 is a technical condition for description of the

correlation between scalar covariate X and U and functional covariate Z(t).

Theorem 1. Suppose that the reqularity conditions C1-C11 hold, then

[ -0 - .07t =0, (n A5 ). 7)

Theorem 2. Suppose that the reqularity conditions C1-C11 hold. If h — 0, nh — oo and
nh/log(1/h) — oo as n — oo, then

m !(dAOT(U) - aOT(U)> — M2Th2 (?7{5;)] i N (07 WG_I(U)H(U)G_l(u)> ‘ (8)

ar(u) — ar(u)



Remark 2 Our results shows that we can obtain the same rate of convergence as for the estimator
in functional linear regressionwhich are optimal in the minimax sense (see Hall and Horowitz, 2007)).
Under the condition about kernel bandwidth A in Theorem 2, we can get the asymptotic normality

of estimators of baseline function and varying coefficient functions.

4 Simulation Studies

In this section, we implement simulation studies to investigate the performance of the proposed

estimation methods. The data sets are generated from the following model:
Y; = Oél(Ui)Xli =+ OCQ(UZ‘)XQZ‘ =+ /,B(t)Zi(t)dt + &4, 7= 1, 2, RN N
I

For the functional linear component, we take the same form as Hall and Horowitz (2007)), that
is, I = [0,1], B(t) = S50, bpor(t) and Zi(t) = Y00 9 Windw(t), where ¢1(t) = 1, ¢p(t) =
V2cos[(k — 1)7t] for k > 2, by = 0.3, b, = 4(—1)*1k72 for k > 2, and 9}, = (—1)* 1k~ Wy, are
independent and identically distributed uniform random variables on (—+/3,v/3). For the varying
coefficient component, we let a1 (U) = sin(27U), az(U) = sin(67U), the covariate U is uniformly
distributed on (0, 1), X7, X2 are independent and identically distributed normal random variables

with mean 0 and variance 1. Furthermore, U and X, X5 are independent.

In our simulation, we consider four cases for error terms e: N(0,0.5?), standard Cauchy, t(3)
and mixture of normals 0.9N(0,0.5?) 4+ 0.1N(0,52). We also consider three choices for the number
of samples n = 200, 400 and 600. Each Z;(t) is observed at 100 equally space points on [0, 1].
In order to evaluate the performance of estimators of different method, we compare the profile
least squares (PLS) method (see Feng et al., [2016]) and our quantile regression (QR) method. We
focus on 7 = 0.25, 0.5 and 0.75 in quantile regression. The Epanechnikov kernel is used in the
simulations. We use the BIC criterion and cross-validation procedure as described in section 2.3
to select the tuning parameters N,, m and bandwidth A. All simulations are replicated for 1000

times.

Performance of estimator of functional slope function [(t) is assessed using the square root of

the integrated squared errors (RISE) defined as

RISE{B(t)} = {/01 [B(t)—/ﬁ(t)rdt}é,

while performance of the estimate of varying coefficient functions a;(U) and as(U) are assessed



using the square root of mean average squared errors (RASE) defined as

100 2
RASE {&,(U)} = {1(1)0 Z} [G1 () — Oél(Ui)P} 3
and
1 oo 2
RASE {a(U)} = {100 ; (o () — ag(ui)F} .
where u;,i = 1,2,---,100 are 100 equally space points on interval [0, 1].

To save space we only show the BIC and CV scores for different tuning parameters and band-
width under #(3) distribution error with n = 400, 7 = 0.5. Table 1| presents BIC scores for different
N, and m. The minimum BIC score is emphasized with boldface font. Table [2| presents CV scores
for different bandwidths. The optimal bandwidth h is obtained by leave-one-out cross-validation

for given optimal m. The minimum CV score is also emphasized with boldface font.

Table 1: The BIC scores of different tuning parameters with ¢(3) distribution error for 7 = 0.5,

n = 400
m

N, 1 2 3 4 5 6 7 8 9 10

1 5974 5933 5926 5937 5944 5954 5.964 5.975 5.985 5.995
2 5960 5919 5907 5917 5920 5931 5941 5.952 5.961 5.972
3 5933 5.888 5.887 5.897 5.903 5914 5925 5935 5.946 5.954
4 5949 5895 5.894 5904 5911 5.921 5932 5942 5952 5.962
5 5928 5.880 5.882 5.890 5.900 5.910 5.921 5.931 5.940 5.949
6 5943 5.896 5.893 5.903 5.907 5918 5929 5939 5950 5.959
7 5932 5.885 5.885 5.894 5.903 5913 5924 5934 5.943 5.950
8 5933 5.881 5.887 5.895 5904 5914 5925 5935 5945 5.953
9 5939 5.891 5.886 5.896 5.905 5916 5926 5937 5947 5.956
10 5.941 5.895 5901 5911 5.921 5.931 5.941 5.952 5.962 5.968

Table list RISEs of 3(t) and RASEs of &1 (U) and a»(U) under different error terms. There
is a general tendency for RISE of §(t) and RASE of @&;(U) and ao(U) to decrease as sample
sizes increases. From Table we can see that both PLS estimators and QR estimators have
small RISEs and RASEs under normal error terms. QR estimators are slightly worse than PLS
estimators as expected. When the error term follows heavy-tailed distributions, Table illustrate

10



Table 2: The CV scores of bandwidths with ¢(3) distribution error for 7 = 0.5, n = 400.

h
0.032 0.048 0.064 0.080 0.096 0.111 0.127 0.143 0.159 0.175
CV 0596 0.584 0.581 0.578 0.578 0.577 0.579 0.580 0.580 0.582

that QR estimators is robust and more efficient than PLS estimators. Specifically, when the error
follows standard Cauchy distribution, PLS estimators have very large RISEs and RASEs while QR
estimators have reasonably small RISEs and RASEs. This is because PLS fails when the error

variance is infinite.

Table 3: RISEs and RASEs with standard deviations(in parentheses) with normal distribution
error N(0,0.5%)

n  Method B(t) a1 (U) o (U)
200 PLS  0.1467(0.0454) 0.0306(0.0232) 0.0387(0.0176)
QR(0.25) 0.1693(0.0801) 0.0497(0.0375) 0.0621(0.0307)
QR(0.50) 0.1700(0.0504) 0.0498(0.0169) 0.0696(0.0277)
QR(0.75) 0.1639(0.0544) 0.0527(0.0351)  0.0701(0.0409)
400  PLS  0.1351(0.0298) 0.0097(0.0044) 0.0181(0.0062)
QR(0.25) 0.1427(0.0327) 0.0176(0.0076)  0.0296(0.0120)
QR(0.50) 0.1435(0.0508) 0.0132(0.0065) 0.0250(0.0128)
QR(0.75) 0.1440(0.0324) 0.0099(0.0067)  0.0272(0.0097)
600  PLS  0.1303(0.0239) 0.0060(0.0025) 0.0148(0.0041)
QR(0.25) 0.1353(0.0255) 0.0112(0.0042)  0.0224(0.0065)
QR(0.50) 0.1232(0.0306) 0.0132(0.0045) 0.0155(0.0055)
QR(0.75) 0.1335(0.0242) 0.0125(0.0052)  0.0194(0.0066)

To evaluate reliability of the estimators, we construct pointwise confidence intervals based on
the asymptotic normalities. To save space we describe the construction of confidence intervals of
a1 (u) and as(u) for u = 0.2,0.4,0.6 and 0.8 under #(3) distribution only. It follows from (8)that
approximate 100(1 — a))% confidence intervals for a;(u) and as(u) can be expressed respectively as

follows:

2
ILLQh N T 1—7), -1 ~
-5 4 (u) £ 2102 # G

G1() fu(u)nh
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Table 4: RISEs and RASEs with standard deviations(in parentheses) with standard Cauchy distri-

bution error

n  Method B(t) a1 (U) Go(U)
200  PLS  3905.88(48553.82) 1721.01(9514.03) 8141.77(1050.17)
QR(0.25)  1.3376(0.0561) 0.5719(1.5715)  1.0221(1.5855)
QR(0.50)  1.3365(0.0515) 0.7491(1.0359)  1.2059(1.4219)
QR(0.75)  1.3386(0.0462) 0.4610(0.7657)  1.4677(1.4366)
400  PLS 3581.39(3188.14)  1424.86(4157.33)  3406.98(1408.77)
QR(0.25)  0.3271(0.0252) 0.1171(0.0780)  0.2120(0.0970)
QR(0.50)  0.3267(0.0243) 0.1128(0.0704)  0.1636(0.0917)
QR(0.75)  0.3270(0.0254) 0.1052(0.0764)  0.2469(0.1155)
600  PLS 3562.84(2362.09)  1232.55(2475.53)  2467.62(1017.32)
QR(0.25)  0.3229(0.0188) 0.0649(0.0376)  0.1572(0.0535)
QR(0.50)  0.3232(0.0191) 0.0658(0.0336)  0.1048(0.0433)
QR(0.75)  0.3212(0.0194) 0.0651(0.0360)  0.1816(0.0509)

Table 5: RISEs and RASEs with standard deviations(in parentheses) with t(3) distribution error

n  Method A(t) a1 (U) aa(U)
200 PLS  0.4117(0.1256) 0.2841(0.2858) 0.2874(0.2771)
QR(0.25) 0.3887(0.0970) 0.1988(0.1692) 0.2184(0.1236)
QR(0.50) 0.3864(0.0952) 0.1221(0.0725) 0.1778(0.0953)
QR(0.75)  0.3937(0.1027) 0.1728(0.1109) 0.2075(0.0851)
400  PLS  0.3830(0.0693) 0.1024(0.0831) 0.1149(0.0777)
QR(0.25) 0.3528(0.0673) 0.0678(0.0325) 0.1081(0.0517)
QR(0.50) 0.3511(0.0626) 0.0483(0.0287) 0.1034(0.0340)
QR(0.75)  0.3550(0.0687) 0.0833(0.0473) 0.1020(0.0476)
600  PLS  0.3690(0.0573) 0.0577(0.0943) 0.1005(0.0595)
QR(0.25) 0.2422(0.0517)  0.0324(0.0203)  0.0799(0.0304)
QR(0.50) 0.2414(0.0518)  0.0298(0.0140) 0.0868(0.0247)
QR(0.75)  0.2427(0.0534)  0.0294(0.0242)  0.0673(0.0284)
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Table 6: RISEs and RASEs with standard deviations(in parentheses) with mixture of normals

distribution error 0.9N(0,0.5%) + 0.1N(0, 52)

n  Method A(t) a1(U) aa(U)

200  PLS  0.3453(0.2300) 0.7864(0.5148) 0.4973(0.2728)
QR(0.25) 0.1762(0.0613) 0.2014(0.2410) 0.3733(0.2463)
QR(0.50) 0.1727(0.0547) 0.1397(0.1259)  0.2320(0.2606)
QR(0.75)  0.1738(0.0561)  0.3598(0.2676) 0.2495(0.3166)

400  PLS  0.2208(0.0927) 0.1746(0.1377) 0.1756(0.2161)
QR(0.25) 0.1411(0.0319)  0.0620(0.0955)  0.0640(0.0871)
QR(0.50) 0.1410(0.0312)  0.0200(0.0121)  0.0298(0.0150)
QR(0.75) 0.1422(0.0320) 0.0322(0.0210)  0.0396(0.0226)

600  PLS  0.1957(0.0897) 0.0989(0.0719) 0.0976(0.0574)
QR(0.25)  0.1354(0.0259) 0.0212(0.0132) 0.0236(0.0100)
QR(0.50) 0.1349(0.0261) 0.0110(0.0044) 0.0213(0.0071)
QR(0.75)  0.1356(0.0259)  0.0207(0.0102) 0.0238(0.0121)

and
o) — 26 ) & 1oy [T (@ ) B )6 )2

fU(u)nh

where 2_, /2 is the (1—a/2)th quantile of the standard Gaussian distribution, (é_l (u)ﬂ(u)é_l (u))}{2
and (G_l (u)ﬂ(u)é_l (u));éz are the (1, 1)th and (2, 2)th entries of the matrix (G_l (u)ﬁ(u)é_l(u))1/2,
&) (u) and éy(u) are local polynomial estimators of o) (u) and g (u), fy(u) is a kernel density

estimator of U, and G(u) and H(u) are estimators of G(u) and H(u).
probabilities of 90% confidence intervals are listed in Table [7} From Table [7, we can see that the

simulation results confirm the asymptotic properties: the coverage probabilities approach to the

The average coverage

nominal value as sample size increase. The performance with small sample size may be poor, and
the estimation of aj (u), ay(u), G(u) and H(u) has a large impact on the performance especially
when sample size is small. This is not surprising since some of these quantities are more difficult

to estimate than the functions of interest.

We also plot the estimators of a(U)and as(U) and 90% pointwise confidence intervals. To
save space we only show results of the estimators and 90% pointwise confidence intervals under
t(3) distribution error with n = 400, 7 = 0.5. Figure [l| shows the true functions of a;(U) and
as(U) together with some of their estimators and 90% pointwise confidence intervals under #(3)

distribution error with n = 400, 7 = 0.5. The true functions of §(¢) and its pointwise medians,
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Table 7: Average coverage probabilities of 90% confidence intervals with ¢(3) distribution error

o1 (u) oz (u)
T n =02 uvu=04 u=06 u=08|u=02 u=04 u=06 u=0.8
0.25 200 0.763 0.750 0.775 0.752 0.700 0.734 0.705 0.726
400  0.847 0.842 0.858 0.84 0.832 0.792 0.798 0.813
600  0.905 0.899 0.900 0.897 0.887 0.883 0.888 0.882
0.5 200 0.765 0.775 0.778 0.772 0.692 0.689 0.750 0.798
400  0.881 0.861 0.866 0.830 0.870 0.845 0.851 0.888
600 0.914 0.886 0.887 0.911 0.905 0.923 0.910 0.912
0.75 200 0.751 0.739 0.764 0.744 0.784 0.726 0.735 0.783
400  0.831 0.847 0.863 0.855 0.819 0.794 0.802 0.841
600  0.923 0.912 0.902 0.895 0.904 0.876 0.888 0.902

5% and 95% quantiles of the 1000 simulations are also plotted in Figure [Ifc). We can see that
the estimated curves (dotted line) is close to the true curve (solid line). Overall, Our proposed
estimation methods shows better performance even with infinite variance errors. The simulation
studies indicate that the proposed estimation procedure in Section 2 is effective in the varying

coefficient partially functional linear regression model with mixed data.

5 A real application

In this section, we apply the proposed method to analyze the spectrometric data which are available
from http://1lib.stat.cmu.edu/datasets/tecator. These data are obtained for 215 pieces of
pure meat. Each data sample contains fat, protein, water contents and spectrometric curve. The
three contents measured in percent, are determined by analytic chemistry. Spectrometric curve
consist of 100 wavelengths absorbance spectrum records. Our aim is to predict the fat content Y
from the spectrometric curve Z(t) and the corresponding percentages of protein content X and
water content U. To capture interaction effect between the corresponding percentages of protein
content X and water content U and find more accurately the underlying relationship between the
response variable and the covariates, we consider hybrid model between partially functional linear
regression with varying coefficients. Specifically, we consider the following model:

1050

Y =a0(U)+ X1 (U) + /850 B(t)Z(t)dt + «.

In order to evaluate the predictive ability of the model, we use only part of the data with data

selection performed in the same way as in |Aneiros-Pérez and Vieu (2006). We randomly select
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Figure 1: Plots of the true functions and their estimators when the error term follows ¢(3) distri-
bution, the sample size n = 400 and 7 = 0.5. Solid lines stand for the true functions. Dotted lines
in (a) and (b) correspond to the pointwise estimated of a;(U) and as(U), respectively. Dotted
lines in (c) correspond to the pointwise medians of 5(t). Dashed lines in (a) and (b) correspond
to the 90% pointwise confidence intervals of a1 (U) and as(U), respectively. Dashed lines in (c)

correspond to the pointwise 5% and 95% quantiles of 5(t).
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165 observations as training sample I and the remaining 50 observations as testing sample J. We
use three kinds of different models to predict the fat content of a meat sample. One is semi-
functional partial linear model (see |Aneiros-Pérez and Vieu, [2006)), another is partial functional
linear regression model (see [Shin) 2009) and the third is our model. For semi-functional partial
linear model and partial functional linear regression, we employ their methods to the data. For our
model, we apply profile least squares estimation method to the data. The criteria used on the test
sample J in order to compare the skill of the different models is mean quadratic error of prediction
= > e (Y — Y;)?/Var;(Y). The process is replicated for 500 times. The different models used

and the corresponding values of this criteria are shown in Table

Table 8: Means and standard errors (in parentheses) of test prediction error for different models

Models Test prediction error
()Y =Ub; + X0y + g (Z(t)) +¢ 0.0168(0.0063)
()Y = p+ Uy + X0+ [0 B()Z(t)dt + ¢ 0.0075(0.0045)
(iil)Y = ag(U) + Xar(U) + fosn” B Z(t)dt + ¢ 0.0061(0.0035)

We observe that the mean and standard error of the prediction mean quadratic error in model
(iii) is the smallest among the three models. The model (iii) improves more than 63.6% upon the
model (i) and more than 18.5% upon the model (ii) in terms of prediction mean quadratic error.

So, the model (iii) is a competitive one for such data.

Finally, profile least squares estimation method is used in our model to analyze the normality of
the residuals. The norm quantile-quantile of the residuals is shown in Figure [2| (a), from which we
can see apparently that the residuals cannot follow normal distribution. We also make a Shapiro-
Wilk hypothesis test to judge the normality of the residuals. By Shapiro-Wilk test, we find that
the p value is less than 5.497 x 1075, This reminds us further that the error cannot be normal, and
the mean regression based on least square is unsuitable here. So, our quantile regression method
with 7 = 0,25,0.5 and 0.75 is used here to analyze interaction effect between the corresponding
percentages of protein content X and water content U. The kernel used in the real analysis is
K(u) = 0.75(1 — u*)Ijg 3j(u). The bandwidths and tuning parameters are chosen as h = 5.8,
N, =7 m=13 for r = 0.25 and h = 6.7, N, =7, m = 17 for 7 = 0.5 and h = 7.2, N, = 3,
m = 11 for 7 = 0.75. To save space we present results with 7 = 0.5. The estimator and 90%
pointwise confidence intervals of nonparametric function «;(U) with 7 = 0.5 is presented in Figure
(b). Figure |2| (b) indicates that the interaction effect between protein content X and water
content U is negative and decreases as the water content U increases, which shows that interaction

effect between protein content X and water content U is nonlinear. We also construct pointwise
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estimated interaction effect function oy (U) at 7 = 0.25,0.5 and 0.75 and show it in Figure [2[c).
Both estimators show similar values and trends. It is apparent that the interaction effect between
water content and protein content is negative for small U and then tend to stable for large U when 7
increase. For example, the stable point is about 65 for 7 = 0.5 and is about 50 for 7 = 0.75. These
findings are helpful to uncover and understand the underlying interaction relationship between

water content and protein content.
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Figure 2: (a) QQ plot of the residual for profile least squares estimation method. (b) Pointwise
estimated interaction effect function «;(U) for 7 = 0.5 is shown as solid line. Pointwise 90%
confidence intervals are given as dashed lines. (c¢) Solid, dashed and dotted lines corresponding to

the pointwise estimated interaction effect function for 7 = 0.25, 0.5 and 0.75, respectively.

6 Conclusion

We have proposed a quantile estimation of a hybrid of functional regression and varying coefficient
models for the analysis of the spectrometric data. We have established an asymptotic theory for

the proposed estimation. We have conducted a Monte Carlo study to demonstrate the advantage

of the proposed procedure over the existing least squares-based approaches.
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Appendix

Proof. The proof of Theorem 1 will require some notations and Lemmas. We first introduce

some notations. Let A; = (&1,...,&m) ", A = (éﬂ,...,&m)T, A = diag(Ay, ..., \n), B, =
(brts oy brm) T, By = (Vog, o 0T P = S0 M(UDX X M(U;) T, Vi = nV2A7124;,
Vis = (No/n)YV2B(U;), Vis=Pn'> M(U;)X; and

For = (aor(m)..... Ko (w)/al..... a0 (uw,).... Kol (ux,)/al)

Fr = (o). o (/... rlux, ... il (ux,) /al)

Set 01 = nl/2AV(B], — B,), 02 = (n/N,)V2(w — Foy), 05 = Pi/*(y — F,), 0 = (6],6],6])",
Vi= (V) VL5 VE)T, Wi=a(Ui)=BU) For+ X (ar(Us) = M(U)) "F7) 4352, brjij+
S bei (&g — i)y T ={(Zi(1), Xi, U)}, r(s) = 7= I(s < 0), Sni(8) = pr(Wi+ e — V] 0) —
pr(Wi + €ri), Sn(0) = 32011 Sni(0), I'n(0) = E{Sni(0)|Z}, I'n(0) = 3 i_, I'ni(0), Rni(0) =
S,i(0) —T0,:(0) + V] 0. (cri), R(0) = >y Ry i(0). For convenience, we use the symbol A,, =

Op(an) (or op(ay)) to denote that the every element of matrix A, is Op(ay) (or op(ay)).

Lemma A.1. Suppose {£,(0) : 0 € O} is a sequence of convex function and can be written as
30T FO+U, 0+G,+1,(0), where F is symmetric and positive definite, U, is stochastically bounded
sequence of random vectors, G, is arbitrary sequence, and r,(0) tends to zero in probability for each
0. Let 0, be the argmin of £,(0), then 0, is only o,(1) away from v, = —F~1U,, the argmin of
L9TFO+ U, 0+ Gy If also U, =5 U, then 0, = —F~'U.

Proof. This lemma comes from the result by Hjort and Pollard| (2011]).

Lemma A.2. Let (X1,Y1), - ,(Xn,Yn) be independent and identically distributed random
vectors, where X; and Y; are scalar random wvariables. Assume that E(|Y|™) < oo and that
supg [ ly|™f(z,y)dy < oo, where f denote the joint density of (X,Y). Let K(-) be a bounded

positive function with a bounded support and satisfying a Lipschitz condition. Then
o (reea/m)
P vnh ’

Proof. This lemma comes from the result by Mack and Silverman| (1982).

sup ,71;1 Y IK(hH (X - @)Y - EK(h (X, - 2))V]
S i=1

provide that n**~'h — oo for some e <1 —r~1,

Lemma A.3. Let X1,...,X, be arbitrary scalar random variables such that max;<;<, E(|X;]") <
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oo for some r > 1. Then, we have

E( max |X;]) < Cnl/",

1<i<n
where Cy. is a constant depending only on r and maxi<;<n E(|X;|").

Proof. This lemma comes from lemma 2.2.2 [Van Der Vaart and Wellner| (1996).

Lemma A .4. There exist positive constants k1 and ko such that, except on an event whose

probability tends to zero, all the eigenvalues of Y i | V; 2V fall between k1 and kKo.

Proof. Observe that Y7, VsV, can be denoted by diag(¥y,..., ¥y, ), where ¥y, =
(UkijZ(q+1)><(q+1)u Vkij = (Nn/n) >0 1 [(Us — wi) /hol ™ Ly, —up|<ho> 053 = 1,-.sq5k = 1,..., Np.
Let Wy, = (Orij)(g+1)x(q+1)> Orij = ((ur —u1)/2) fIU\Sl ' k(uy + hou)du. For any e > 0, there

exist constant cs > 0, such that

oo Np
ZZP{\UW vm]|>6}<052 (Nt +n?N3)/(e'n?) < oo,
n=1k=1 n=1

By Borel-Cantelli lemma, we have
Ukij —Okij — 0 a.s. 4,5=1,...,¢; k=1,...,N,

Let W, = (D) (g+1)x (g+1) With 955 = f\u\<1 u'tIdu. Tt is easy to prove that Wy, is positive definite.
Thus, there exist positive constants x1 and kg such that all the eigenvalues of 31" |, VoV, fall
between k1 and k.

Lemma A.5. Under assumptions C4-C9, it holds that m*/?(logn) max; | V| = o0p(1).

Proof. Note that

IVall=n"2 > A1 <n™t/? QZA 1§%+2Z>\ (Zi, b5 — ¢,)° (9)
7j=1

Using Lemma A.3 and E(/\j_lfzzj) = 1, we deduce that max; /\j_lffj = Op(n'/?). By Lemma 5.1 of
Hall and Horowitz (2007)), we have

(Zi,j — 05) = > (N — )\k)_lgik/Aﬂgjﬁbk +&ij /(ng — $;)9;
k#j

where A = Kz — Kz and [ fg denotes [ f(t)g(t)dt. Thus,

: +2¢, </(<2>j - ¢j)¢j>2 (10)

@b o <2 [ S0 ) | [ 26
k#j
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Since sup;> |[Aj — Aj| < |[All] = Op(n™1/2), we deduce that [A; — A| < 2|A; — Ag|(1+0p(1)), where
0p(1) uniformly for 1 < j < m and k # j. Hence

ifﬁ (ZA — )" )/Aqm

k#j

<4IAf YAt (Z()‘j = )7 Z%c) (1+0p(1))

=1 ey

Since

IATEY A (20 = a2 (maxe,

j=1 k]

Cn'2IIAIP YA [ Do = M) 2

=1 k£j
— O(n 22813,

IN

we deduce that

— 231+3) (11)

Using (5.27) of |Cai and Hall| (2006)), we have f(ggj — ¢j)p; = Op(n~14%) uniformly for 1 < j < m.
By Lemma A.3 and assumptions C5 and C6, we have

m 2 m
Z)\j_l mlaxflzj (/((bj - gbj)gbj) =0, | n'/?n72 Zj4 = 0,(n~3*mb). (12)
j=1 j=1

Combining —, we can get

maxz AU Zs b5 — 0)2 = O™V 2m201H3 4 n=3/25),

Combining @D and , we obtain that

max Vil = Op (nil/z(nl/‘lml/2 +nV/AmPres/2 n*3/4m5/2)) . (13)

Since || B(U;)|| and | M (U;)|| are bounded, we have max; ||V 2| = O, (N1/2 *1/2). By assumption

C9 and Lemma A.3, we have max; | X;|| = Op(n'/*). Thus, max; | M (U;) X;|| = Op(n 1/4) Since

P,/n—pE{M{U)XX "MU)"}, we have max; |V 3] = Py % max; | M (U)X ]| = Op (n —1/4).

Hence, by Assumption C8, we obtain

m!2(log ) max [V < m"/2(log n) <maX||Vi1|| T max [V +maX||Vi3||>

= 0O, <logn (n_1/4m + 0 A2 g5 3 4 N%/Qn_l/le/2 + n_1/4m1/2>) = o0p(1).
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Lemma A.6. Under assumptions C4-C9, it holds that max; |W;| = o,(1).

Proof. Using Lemma A.3 and E(/\j_lffj) =1 < 0o, we deduce that max; [§;;| = Op()\;/in/‘l).
By Assumptions C5, C6 and C8, we have

o0 o0 o0
m?X| Z brji&ijl < Z brj mf%X|fij| = Op( Z GO PRl = 0, (1).

j=m+1 j=m+1 j=m+1

Using Lemma A.3 and assumption C4, we have max; || Z;|| = O,(n'/*). Using (5.21) and (5.22) of
Cai and Hall (2006), we have ||¢; — ¢;]|*> = Op(n~'42) uniformly for 1 < j < m. By Assumptions
C6 and C8, we have

max | D b — &)l <D bey max(Z;, b= 05) <D by max 1Zilll 65 — &5l
j=1 j=1

Jj=1

= O n71/4zj17ﬁ2 = 0p(1).
j=1

By Assumptions C7, it holds that max; |ao-(U;) — B(U;) ' Fo-| = O(hl) = O(N?) = o0p(1),
max; ]XZT (aT(Ui) - M(U;) FT) | < max; | X;|| max; [|a, (U;)) —M(U;) ' F|| = O(hgnl/4) = 0p(1
Thus, we have max; |[W;| = max; |aor(U;) — B(U;) " For| + max; | X, (a,(U;) — M(U;)"F;) |
max; | 327 brj (S5 — &) + max | Y00 briil = op(1).

Lemma A.7. Under assumptions C4-C9, for any sufficient large L, it holds that

sup | R (m/26)| = 0,(1).
10)<L

Proof. Note that

Rni(0) = Spi(0) —Tyi(0)+ V] 0 (er) =

)

Wi—m1/2V;r0
/ (V7 (e7i + 1) — r(eri)] dt

i

W.

Wi—ml/QV:e
- E {/ [thr(eri + ) — Yr(eri)] dt|I}

Let M,, = Sup| g <r, |R,,(m'/28)|. Using Lemma A.5, we deduce that
(logn)M,, < 4Lm'?(logn) max | V]| = 0,(1).
K3

Using Lemma A.5 and Lemma A.6, we have max; SupH9||<L(|Wi’ +m'2|V ] 0|) = 0,(1). Then, we
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deduce that

2

n Wi m1/2V (7]
Z Var(R,:(0)[T) < Z E {/ [r(eri +t) — r(eri)] dt} Iz
=1

Wi

Wi+m!'/2|V] 9]

< 1/2 TO/ S — N AR
< Zm VIOl [ e E(rEnt ) = drel* )
P
< m/“|V,0 E(I(-t<en<t)|I)dt
; VIOl ] e B )|Z)
< 2m?max |V 0> f(01X, Ui, Zi()[W2 + m(V] )21+ 0,(1)].

=1
Since sup;>q |5\] — ;| < J||A]l] = Op(n~1/2), we deduce that

%Aj[(uopu)]gAjg N1+ 0,(1)], j=1,....m. (14)

N W

By Lemma A.4, we deduce that

D (VH0:)? < ko> 03,
j=1

i=1
where 0 = (611,...,01,m,021,...,0224nN,,03.1,- .. ,9372qun)T. By assumption C1, there exist con-
stant Cy such that

ZfT(O‘Xl,UZ,ZZ(t))(V;ra)Q < 3612 V 01 —|—3Clz 1202 —{—3612 1303

S 301 Z )\j_lj\je%j + 301,%2 Z 9% + 301 Z (95]
< o).

By Assumptions C5, C6 and C8, we have

2
n o
EY | D bu&y| = ZZbQ Aj = Onm!=720%)
i=1 \j=m+1 =1 j=1
and
2
n m n m n m
EZ Zbrj(fij —&ij) < m sz §ij — flj )? < Zmzsz m?X||Zi”2H¢j - ¢j‘|2
i=1 \j=1 i=1  j=1 i=1  j=1

= O(m).
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By Assumptions C7, it holds that "1 | (aor (U;) — B(U;) ' Fo,)? = O(nhgq) = O(nN; %) = Op(m),
S XT (er(Ui) = M(U)TF7)]? < max; | X[ max; [l (Ui) = M (U) TF-||* = O(N, *'n/?) =
Op(m). Thus, we have >_1 | W2 = O,(m). Let
D, =Y sup Var(Rn:(6)[T).
=1 10]<L

There exist a constant Cy such that
Dy, < Com®? max |V ] 0|[1 + 0,(1)] < CoLm®? max ||[V;||[1 4 0,(1)].
1 (A
Let |¢| = maxj<iy, |c;| for a vector ¢ = (c1,...,¢m) . Set G = {0,|0] < L}. Let G be divided into

Jy, disjoint parts G1, ..., G, such that for any g, € G, 1 < k < J,, and any sufficient small € > 0,

except on an event whose probability tends to zero,

deyt sup Y fr(01X3, Ui, Zi())m 2V (6 — gy.)|

sup |R,,(m'/20) — Ry (m'/?gy)| <
OGGk BGGk =1
< Gy sup Y m'PVI(0—g,) < Cs sup m!Pnl/?]0 — g,
0cG), i—1 Occy,
< Cs sup m*n'/?|0 — g, | < €/2.
0€Gk

where Cj is a constant. This can be done with .J,, = (4C3Ln'/?m/e)H@+DE+D)Nn - Using Bernstein

inequality, we have

Jn
P ( sup m~!|Ry(m/20)| > dz) < Yp (|Rn(m1/2gk)\ > me/zyz)
Oca,, k=1
< 2Jnexp (—e*m?/ (8D, + 4meN,)) = op(1).

Therefore,

P ( sup m 'R, (m!/%0)| > e) = o0p(1).
OEGk

We complete the proof of Lemma A.7.

Lemma A.8. Suppose that assumptions C1-C11 hold, we have ||0]| = O,(m'/?).
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Proof. Note that

I, (m'/?8)

n

i=1

Wi—m1/2V;0
>/ E
Wi

W (i + )|) dt

- iz 101X, Ui, ZiO)[(Ws = m 2V [6)° — WE|[1 + 0y (1)

Vv

com( |0H?+Z(V 0,V50,+ V03 0V5i05+ V] 02V393) 1ZW2> + 0,(1)].

Set Vi1 = n~/2A"Y2A;. By Assumptions 1 and 5 and the fact that ||B(U;)| is bounded, there
exist constant C4 > 0 such that

(2
(2
(2

S V101V ]0,
=1

N V61V
=1

> Vv 5Ee,vies
=1

>2
>2
>2

IN

Ei(V;Olvgeg)erQEz(E(VﬂIU,X) 0V, 02)
i=1 i)
ZE(vuelv 02)" < Nuloa|?6a]%E (I V| B )

1=1
Csn~'mN, = o(1),

EZ(V“a1 Z303) +22E< ValU,X) 6,V 03)

Zséj
S E(VAeVES) < S 10u1210E (IVal IV al?)
1=1 1=1

Csn™2m = o(1),

Ezn:( V50.V, 03) +23 B (V8B (Vis|U)T65)
=1

Z#J

STE(VE6VTos) < 3 16010l E (IV s PV ol
=1

= 1=1
Csn™ V2N, = o(1).
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Using the fact that ||¢; — ¢;]|> = Op(n~"52) uniformly for 1 < j < m, we deduce that

\Z(Vﬂ ~ Vi) 0,V 50,]
=1
1/2 n 1/2
< (ZH a—V H2> 161]] (Z (V502) )
=1
1/2
< O[S SN - €| 18IV max B 6]
i=1 j=1
N m 1/2
< Gy [ tm Y] YA max [ XilPlldy - o5l” | 841N/ max | Bl|6]
i=1 j=1
= 0, (VA INY2) = o,(1),
where Cy is a constant. Similarly,
|Z i1— Vi1) 01V 305 = ( 71/2m4+51n1/4) = o0p(1),

Thus, Zz 1V 91V 02 = Op( ) Zz 1V 91V 03 = Op(l). Observe that Zz 1V 02V1303 ==
n~V2NYEPL YRS B(U)T0,X] M(U;) 705 and E (37, B(U)T0:,X] M(U;)"65)° = O(n).
Thus, Y7, V502V 505 = Oy(n *l/zNﬁ/Q) = 0p(1). Hence, for sufficient large L, we have

1
inf T,(m'/%6) > ZcomL2[1 +0,(1)].

16]=L
Note that
n 2 n n n
B <m1/2 S v 0w<eﬂ->> Zp < 3m {Z(Vﬁelf + 3 (Vi82)* + Z<V593>2}
— i=1 i=1 i=1

IA

Csml|0]*[1 + 0p(1)].

where Cj is a constant. Thus, sup;g ., |m1/230 V:Ow(eﬂ)\ = 0,(m'/?). For sufficient large
L, we deduce that

in m'/?0) = in —m!/? T lcm o .
o, O = g (F ®) ;V 0 (cri) + R <0>> LeomEL2(1 + 0,(1)].(15)

Note that the minimizer of Equation is also the minimizer of the following function

zn:{Pr <€T7:+V7;TO+W7;) — pr (sﬂ-+W,~)}. (16)

=1
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By the convexity of p, and (15]), we deduce that

P{ inf <z”: {PT <€m‘+ViTe+Wz‘> — pr (Eri+Wz‘)D >0} — 1.

18I<z \ ;=

Thus, P(||@] < Lm!'/?) = 1, that is, ||8]| = O,(m'/?). We complete the proof of Lemma A.8.

Proof of Theorem 1. Let

m 2 m 2
T —/I{I;(b;k—bfk)m(t)} at, Ty —/I{; bri (qﬁk(t) —m(t))} dt
and
o 2
R:l&é&mmmvdt
We can get

E
Il

NE

m o0 2
/(@(ﬂ-&(ﬂfdt = /(Zégkék(t)_zbrkﬁbk(t)) de
I I 1 k=1
m o0 2
/ ( dr(t) = > bretr(t) — > bka(t)) dt
I 1 k=1 k=m-+1

< ATy + 4T, + 27T5. (17)

T

Furthermore, using the fact [ {¢w(t) — o1 (1) }2dt = Op(n~"k?) uniformly for k = 1,--- ,m, we have

T; < m/libzk (qgk(t) — ¢k(t)>2dt =0, (mibzkn—1k2> <0, <n—1m§:k2_252>
k=1 k=1

k=1
_ B1+2B82—-1
= Op <n B1+282 >, (18)
00 00 281
= 3 < S B —0, (w i), (19
k=m+1 k=m+1

By Lemma A.8, we obtain [0, = O,(m'/?). Thus,

m 2 m
= / {Z(élm - ka)qu(t)} dt = 3 (b —bea)® <0 A In2AY(B — B
I k=1 k=1
_ 2Bp—1
= O, (n’lmHBl) =0, (n 51+252) : (20)
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Conjoining —, we deduce that
o 2 _ 2Bp—1 _B1+2B3—1 _ 2Bg—1
/I (5T(t) — 57(15)) dt = O, (n 31”/32) + O, (n B1+282 > + O, <n 51“52)

_2[3271
= Op(n Atz ).

This completes the proof of Theorem 1.

o7 (Us) = aor (u) =y, (u) (Us —u) + X T {7 (Ui) —ar (u) = (u) (Ui —u)} and ¢; = Y332, 11 brsin+
Sk bek(&in — &ik) + oty (bek — By )ik Denote Ki(u) = K{(Ui — u)/h}, 6 = Vnh{ao, —
aor (), {ar — e (W)}T, h{bor — ap (w)}, h{br — o (u)}}7, and X (u) = {1, X7, T2, X7 Oy T
Seen from , we deduce that

Proof of Theorem 2. Let r; = I(¢;r < 0)—7 and r}(u) = I(gir < —si(u) — ;) — 7, where s;(u) =

Y; — aor — bor (Ui — u) — XzT {ar +b: (Ui —u)} — Zi)/rkézk
k=1

= O[QT(UZ') + XZTCXT(Ui) + (Y23 + Eri — Qor — bO‘r(Ui — ’LL) — X? {aT + bT(Ui — u)}
= @i+ eri+si(u) —ni(u).

where n;(u) = {XF(u)}70*/v/nh. Then, 6* is also the minimizer of function

n

Ln(0%) = " (pr {eri + i + 5i(u) — i (w)} — pr {eir + @i + si(u) }) Ki(u).

i=1

By the identity of Knight| (1998)

pr(u— ) = pr(u) = v{I(u < 0) — 7} + /0 <) - <o), (21)
we can get
n ni(u)
Lu(@) = Y {mlo) e < —silw) =9 =7+ [ (Tl < si(w) = i+
i=1 0

where
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and

n; ()
RO07) = oK) [ T < =) =i+ ) = I < =siu) = @)}l
=1

By assumptions C5-C8 and Theorem 1, there exist constant Cg such that

o0 o0 o0 o0 By 42652
S batal < S balBleal < S0 bl {BGY < SD Cok ) = Con 2T,
k=m+1 k=m+1 k=m+1 k=m+1
’Zbrk(fik — &) < Zbrk<Zi; S — dr) < ZbrkHZz‘HHGBk — &kl
k=1 k=1 k=1

_ ( ,1/22,61 6z> _0,(n})

and

| ek = V)&l <Y brk — Bl (Zis i) <m PO [brs — Uy [)Y?

k=1 k=1 k=1

__Pa—l
= 0O, <n ﬂ1+2f32>.
Thus,
_ _Bo—1

;= Op <n B1+2ﬁ2>

uniformly for i =1,... n.

Consider the conditional expectation of R} (6™), we have
E{R*(@*)|X U, Z}

i(u)
- ZK / M (siw) — i+ XU, 2(0)) — Fo(—si(u) — 91| X, U, ()}t

— Lo {nhofT(— () — i XU 20t ZK WHX (u )}T} 0"+ 0,(1).

Using similar calculations, we can get Var {R;;(@*);X, U, Z} = 0,(1). Therefore, we obtain
R:(6") = E {R;;(a*nx, U, Z} +0,(1)

5o {nh S i) fo (i) — il X, U.Z(1 >>{X:<u>}{xz<u>}T} 0" +0,(1)

50°7Q, 0" +0,(1),
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where Q,(u) = 2 S, Ki(u) fr(—si(u) — @il X, U, Z(){ X () HX}(w)}T. By Lemma A2, we
have

Qn(u) = E{Q,(u)}+ Op(log!?(1/h)/Vnh)
= E{E{/+(01X, U, ZONX] () HX] ()}"|U = u}} + Op(log"/?(1/h)/Vnh)

Bo—1
= fu(uw)G(u)+ O, (h2 4 n P 4 log!/2(1/h) /v nh> .
Thus, L, (0%) can be written as
~ 1 _ _Ba—1
L,(0*) = {S,(u)}1e* + 3 fr(w)@*TG(u)0* + O, <h2 Fn R 4 logl/2(1/h) /\/nh> ,

where S, (u) = FZZ L7 (w) X5 (u)Ky(u). Since L,(6%) is convex function, following from
Lemma A.1, the minimizer of L, (6*) can be written as

0" = — £ (W{G ()} 8n(u) + O, <h2 4B 1 logl/?(1/h) /M) , (22)

where 8 = \ﬁ{agT — apr(u), {ar — aT(u)}T}T.

Let Spi(u) = ﬁZizl K;(u)r; {1,X;TF}T. By simple calculations, It is easy to show that
E{S,1(u)} = 0 and Var{Spi1(u)} = 7(1 — 7)fu(u)voH(u). By the Cramér-Wald device, it is
quite easy to show that the central limit theorem for S,,;(u) holds. According to the central limit

theorem, we have
S (u) 55 N (0,7(1 = 7) fu (w)vo H ().
Furthermore, we have
Var{S,1(u) — S, (w)| X, U, Z(t)}

1 *
— Var {\/% ZKZ'(“)(TZ- (u) —73) {1’XiT}T}

Z (LXT)" (L XT) {Fr(lsilu) + @il X, UL Z(8) — Fr (01X, U, Z(t))}
=1

1
nh
op(1 )

Thus, Var{S,;(u) — S,(u)} = o(1). By Slutsky’s theorem, we can obtain

Sulu) = B (8u(w)) =5 N (0,7(1 = 1) fo(woH(w)). (23)
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Now consider the expectation of S, (u). Note that

E{\/jThS'n(uﬂX,U,Z(t)}

= # Z{FT(—si(u) —@i| X, U, Z(t)) — F-(0|X,U, Z(t))} K;(u) (LXZ'T)T
i=1
= LY L XU ZO) K )1+ (1) (1.XT)"
i=1
Therefore,
1 .
E{ o}

1 .
_ E{E{msn(u)fxyaz(t)}}
_ el fu(u)G(u) (0‘0(“))) +op(h?). 2

2 a’(u

Seen from , and , holds. This completes the proof of Theorem 2.
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