University of

"1l Kent Academic Repository

Hadjiantoni, Stella and Kontoghiorghes, Erricos John (2017) A recursive
three-stage least squares method for large-scale systems of simultaneous
equations. Linear Algebra and its Applications, 536 . pp. 210-227. ISSN
0024-3795.

Downloaded from
https://kar.kent.ac.uk/64226/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1016/j.1aa.2017.08.019

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
CC BY-NC-ND (Attribution-NonCommercial-NoDerivatives)

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).



https://kar.kent.ac.uk/64226/
https://doi.org/10.1016/j.laa.2017.08.019
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

A Recursive Three-Stage Least Squares Method for
Large-Scale Systems of Simultaneous Equations

Stella Hadjiantoni! and Erricos John Kontoghiorghes®?3

University of Kent, UK
2Cyprus University of Technology
3Birkbeck University of London, UK

Abstract

A new numerical method is proposed that uses the QR decomposition (and its variants) to
derive recursively the three-stage least squares (3SLS) estimator of large-scale simultaneous
equations models (SEM). The 3SLS estimator is obtained sequentially, once the underlying
model is modified, by adding or deleting rows of data. A new theoretical pseudo SEM is de-
veloped which has a non positive definite dispersion matrix and is proved to yield the 3SLS
estimator that would be derived if the modified SEM was estimated afresh. In addition, the
computation of the iterative 3SLS estimator of the updated observations SEM is considered.
The new recursive method utilizes efficiently previous computations, exploits sparsity in the
pseudo SEM and uses as main computational tool orthogonal and hyperbolic matrix factoriza-
tions. This allows the estimation of large-scale SEMs which previously could have been con-
sidered computationally infeasible to tackle. Numerical trials have confirmed the effectiveness
of the new estimation procedures. The new method is illustrated through a macroeconomic
application!.

Keywords: updating, QR decomposition, high dimensional data, matrix algebra

MSC: 15A23;15B10;62L12

1. Introduction

The simultaneous equations model (SEM) is a system of structural equations where some of the
response variables also reappear in the system as explanatory variables. Let the SEM in compact

form be

vec(Y) = (I @ W) S6 + vec (E), vec(E) ~ (0,2 ® I), (1.1)
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tThe computational aspects of the strategies are included as a supplementary material (Appendix).



where W = (X Y), X is the M x K (full column rank) matrix of all exogenous (or prede-
termined) variables that satisfy the orthogonality condition E(XTE) = 0 and Y is the M x G
matrix of all other explanatory variables that violate the orthogonality condition E(YTE) = 0,
herein referred to as endogenous variables. The value of an endogenous variable is determined
within the system whereas the value of an exogenous variable is defined outside the system.
Also § = diag(Si,Ss,...,8¢) is a selection matrix such that WS; = W, = (X; Y;) and
0 = vec(dy, 609, ...,0¢). The notation vec (E) ~ (0, ¥ ® I,,) implies that the error term vec(E) has
zero mean and variance-covariance matrix 3 ® I, where 3 € R%*% is a symmetric non negative
definite matrix and ® denotes the Kronecker product [32]. In the ith equation, that is y; = W;d;+€;,
where W; = (X; Y;), X; € RM*¥i g the full column rank matrix of exogenous variables, Y; € RM*9:
is the matrix of endogenous variables for that equation, and where §; = (87 ~I)T, B; € R* and
~; € RY% are the structural parameters to be estimated. It is assumed that k; + g; < K so that the
unknown parameters of the structural equations are uniquely identified [19].

The presence of the endogenous variables Y implies that the explanatory variables are not
orthogonal to the error term, that is, E(WTE) # 0 since E(YTE) # 0. The violation of the
orthogonality condition due to the error term entering into the determination of the endogenous
variable y; is called endogeneity, and needs to be eliminated before generalized least squares (GLS)
are applied to estimate (1.1). The effect of endogeneity is overcome by projecting y; onto the
Span(W) along Span®(Z), where Z is a matrix of predetermined variables such that E(Z”E) = 0.
For the 3SLS estimator, this is achieved by using the matrix of all exogenous variables X as
an instrument where the projection matrix is Px = X (X7 X) ! XT. Therefore, each structural
equation is premultiplied by X7 [34] or equivalently, (1.1) is premultiplied by I ® X7 which yields
the transformed SEM (TSEM):

vec (XTY) = (IG ® XTW) Sd + vec (XTE) , vec (XTE) ~ (O, X® XTX) . (1.2)

Applying GLS to (1.2) with ¥ replaced by its consistent estimator [34], say 3, gives the three-stage

least squares (3SLS) estimator

dsses = (WI(E e XTX)"'W)"'WH(E o XTX) vec(XTY), (1.3)



where W = (I ©@ X7W) S [34]. The 3SLS estimator (1.3) derives from the solution of the

generalized linear least squares problem (GLLSP)
argmin [|[V||% subject to vec (XTY)= (I X"W) Sé + (C’ ® IK> vee (XTV),
5V

where 3 = CCT is the Cholesky decomposition, V' ~ (0, I) is such that E = VCT and ||| »
denotes the Frobenius norm [21, 25].

Large-scale SEMs are intractable to employ due to their multivariate structure, whereas their
implementation becomes further burdensome when they have to be estimated recursively. This is
an essential procedure when dealing with big data sets, in window estimation and when there is
structural change in the SEM [12, 15, 27, 30, 33]. The recursive estimation of the SEM entails the
repeated updating of previous estimates, whereby they can absorb additional observations, while
avoiding the use of the entire high dimensional data set. That is, when new data are acquired, a

recursive procedure will obtain the 3SLS estimator of the augmented SEM

vec (Yu) = (IG ® (Wu>) S8Y + vec (Eu) , vec (Eu) ~ (0,2 ® Ining,), (1.4)

without processing the entire system afresh but by utilizing previous computations. To derive the
3SLS estimator of the augmented SEM, requires premultiplying (1.4) by I¢ ® (X7 XT) and then
solving the GLLSP

argmin ||V'[|5 4 | Vi ||% subject to

U V.V,

vec (XTY + XEYU) = (IG X (XTW + XuTWu)) SoU + <é’ X IK> vec (XTV + XUTV;) .
The problem of re-estimating linear models after adding (updating) or removing (downdating)
observations has already been addressed [6, 11, 13, 14, 16, 17, 26, 29, 33]. Methods had previously
been proposed for the effective estimation of the SEM [1, 6, 8, 18, 20|, however, the sequential
derivation of the 3SLS estimator for large-scale SEMs has not, previously, been considered.

Herein, the problem of recursively estimating the SEM to add the effect of new or delete the effect

of old (obsolete) data points is thoroughly investigated. A theoretical pseudo SEM is developed
which has the same 3SLS solution as the modified SEM when estimated afresh. Specifically the
proposed method entails a double updating of the original SEM. The first update incorporates

the new observations and the second update eliminates the endogeneity that stems from these new



observations. This is a challenging issue in the estimation of the SEM and is especially difficult when
the model is estimated recursively. The new method removes the endogeneity by adding imaginary
(complex) data. This creates a SEM that has a non positive definite dispersion matrix. Nonetheless,
the estimation of this theoretical model does not use complex arithmetic. The advantages of the new
method is numerical accuracy for the estimates and computational efficiency. They are achieved by
implementing orthogonal and hyperbolic transformations, by exploiting the sparsity of the pseudo
SEM and by utilizing the previous computations that have provided the estimates of the original
model. However, hyperbolic transformations are known to encounter difficulties in terms of stability
in the presence of ill conditioned problems. Prudent implementation of hyperbolic transformations
can improve the stability of the downdating procedure [3, 4, 23, 24]. Also, applying a sequence
of simultaneous updates and downdates has been shown to be relationally stable following careful
application of hyperbolic transformations as discussed in [2, 31].

The next section provides a summary of how to derive the 3SLS estimator using the QR decom-
position while avoiding the inversion of the large covariance matrix of the SEM. These preliminary
results are needed for setting up the background of the recursive method. In Section 3 the new
theoretical pseudo SEM for the recursive estimation of the SEM is proposed. The estimator of the
model and the corresponding iterative 3SLS estimator are derived. In Section 4 the downdating
problem of deleting observations from the SEM is solved. Section 5 employs the proposed recursive

method for the estimation of a large-scale macroeconomic model. Finally, Section 6 concludes.

2. Numerical estimation of the SEM

In order to derive efficiently the 3SLS estimator of the SEM, orthogonal transformations are

used [1]. Let the QR decomposition (QRD) of X be given by

@' (x v)- (T By () @- (@ @) 21

where @ € RM*M s orthogonal and R;; € RE*¥ is upper triangular and non singular. Using the

latter, the TSEM (1.2) is now written as



vec (Ry2) = (I @ Ry) S0 + vec (E), vec(E) ~ (0,2 ® Ig), (2.2)

where E = QL E [1, 20]. Observe that the dispersion matrix has been simplified to ¥ ® I'; and the
dimensions of the model have been reduced. The 3SLS estimator in (1.3) is obtained if the method
of GLS is applied to (2.2) and X is replaced by 3, or equivalently from the solution of the GLLSP

argmin HV”; subject to vec (Ri2) = (I ® R4) S6 + (é’ ® IK> vec (V) (2.3)

8,V
where V' ~ (0, I) is such that E = VC”. In the case of singular or ill conditioned 3, the method
of GLLSP allows the estimation of the SEM and provides accurate results.
For simplicity, herein, it will be assumed that 3 is non singular. For the solution of the GLLSP

(2.3) compute the generalized QR decomposition (GQRD) of (I ® R4) S and (C @ Ig), that is,

= @i R;

Q" (Ic @ Ra)S vec(Ryp)) = ( 0 zg) (2.4a)

and

0 Uy o

QT(C®IK)P:U:<0 Uy) GK — .

Here Q, P € ROEXGK gre orthogonal matrices, U € REEXGK and R; € Rkito)x(kita) for § =
1,...,G are upper triangular and non singular, k = ZZG:1 (ki + ¢;) and @®; denotes the direct sum

fori=1,...,G. Applying the GQRD in (2.4a)-(2.4b) to (2.3) will give the equivalent GLLSP

2
Vg : Yya\ _ (OiR; Ui U (va
(’UB> subject to <y3> —( 0 )5+(0 Uy ) \vg ) (2.5)
T T

where (v} v%) = vec(V)TP and |-|| denotes the Euclidean norm. Now observe that vz = Usy'yz

argmin
5,0,0

and thus, v, is set to zero to minimize the argument in (2.5). The 3SLS estimator is then given by

3505 = (BiR:) " §a, where g4 = ya — Uppvp.

3. Recursively estimating the SEM with new observations

The recursive estimation of a model is a procedure which is equivalent to the problem of updating



a model consecutively when new observations become available. Similarly, when the data set is too
large that cannot be accommodated within the computer’s memory, then an out-of-core algorithm
proceeds sequentially by updating at every step the current model with some extra observations.
Assume that M, new observations become available and their effect will be added to the model
to update the 3SLS estimator. Let the system of structural equations of the new observations be

denoted by

vec (Y,) = (Ig @ W,) Sé, + vec (E,), vec(E,) ~ (0,2 ® I,,), (3.1)
where Y, E, € RM«xC X € RM*EK and W, = (X, Y,). Also define

W:(f( ?):(Xé) and EZ(EE:) (3.2)
Then the updated SEM to be estimated is given by

vec (Y) = (IG ® W) S6Y + vec (E) , Vec (E) ~ (0,2 ® Ipyin,)- (3.3)

In order to eliminate endogeneity, similarly to (1.2), premultiply each structural equation with X7,

that is,
vec (XT?> = (IG ® XTVV> S6Y + vec (XTE> , vec (XTE‘> ~ <0, Y ® XTX> , (3.4)

where XTW = XTW + X7W,,. Analogously to (1.3) for (1.2), the 3SLS estimator of the updated
SEM (3.3) is obtained by applying GLS, that is,

O3srs = (ST (271 ® VVTX(XTX)AXTW> S>_1 STvec (WTX(XTX)”XTY2”> . (3.5)

The new theoretical pseudo SEM, which yields the 3SLS estimator in (3.5) of the updated observa-
tions SEM (3.3), is shown in Theorem 1. This pseudo SEM is used to recursively derive the 3SLS

estimator by exploiting the computations used in solving (2.3).

Theorem 1. The updated observations 3SLS estimator in (3.5) is equivalent to the 3SLS estimator

of the pseudo SEM



vec (Y) I, oW vec (E)

vec (Yy,) — | Io,oW, | §6V + | vec (Ef‘)
vec <ZR22> Io®1Rp vec <ZE>
(3.6)
vec (E) > ® Iy 0 0
vee (Eu) | ~ | o, 0 oIy, 0 ,
vec <2E> 0 0 -Sol

where the instruments to remove endogeneity of the first M and the M, new observations are
matrices X and zf?gg, respectively. Here 1 is the imaginary unit (* = —1) and Rgg, Ry are derived

from the updating QRD (UQRD)

(95) (R %) - (R R) ) (R> 2 (O O o
w) \Xu Y, 0 Ry Rgp)’ h ta e '
where Q,, is orthogonal of order (K + M,), Ri1, Ry are available from (2.1) and Ry is the upper

triangular factor from the QRD of X.

Proof. Consider the QRD of X in (2.1) which gives

X'X =Rl R), and X'Y = R! | R),. (3.8)
Given that Ry, is the upper triangular factor from the QRD of X, it follows that

XT'X =R R, + X'X,=RIRy, (3.9)
and also that

XTY = RL Ry, + X'Y, = R R, (3.10)

where X and Y are defined in (3.2). The latter imply the UQRD (3.7). Thus, from (3.9) and
(3.10) it follows that the updated TSEM (3.4) is written as
vec (R Ri2 + X1Y,) = (Ic ® (R]|Rs + XIW,)) S8V + vec (RLE + X'E,),

or equivalently as

vec (ng) = (IG ® RA) S6Y + vec (E) . vec (E) ~ (0,2 ® Ik), (3.11)

where E = QEAE‘. The GLS estimator of (3.11) gives the 3SLS estimator (3.5) of the updated

7



TSEM (3.4), that is,

Bews = (57 (87 @ RER,) s)‘l S (871 ® Iiu) vee (R5Ras ) (3.12)

where 3 is the consistent estimator of X obtained from the 25LS residuals of the SEM (3.3).

Observe now from the 3SLS estimator in (3.12) that

(3.13)

S -
RTR, - <R11R11 R11R12> |

Rf,Ri RjR:
where RT,Ryy and RT, Ry are known (see (3.9) and (3.10)), but RT, Ry, is unknown and it needs

to be determined. From the UQRD (3.7), it holds that

D T R12
R12 = uA ( Yu

and also that

R\ R12
(m) - (Qu,q QUB) (RQQ) )
which imply that RL,Ry, = YTX(XTX)'XTY and RL,R;; = RI,R;, + Y'Y, — RLR,,,
respectively. Now from the latter and (3.9) - (3.10) it follows that
G <5+ X7y
RiRi=|crc cralara\ !l ane
TP YIX (XTX) XTY
WX (RTX)XTW
B (RlTan + XI'X, RI R, + XY, )
R{,Ri1 +Y,/X, R,Ru+Y/Y,— Rj,Ry

— RYR,+W!W, — RLR;
H

(3.14)

Ry R,
= | W] @|w.).
ZRB ZRB

where ® = diag (Ic, Ing,, —In,) and ()7 denotes the conjugate transpose of a matriz. Similarly it

can be shown that



R = WIX(X
H

TX)—lXTf/

R4 R (3.15)
=(W,| ®| Y,
ZRB ZRQQ
Then substituting (3.14) and (3.15) into (3.12), the 3SLS estimator in (3.5) is given by
H e -1
Ic® R,y Yo Ik 0 0 Ic® Ry
Oss = | 8T | Ie @ W, 0 I®I, 0 IoeW, | S
I ®1Rp 0 0 —ﬁ]@IMu Io®1Rp
IcoR\" (S0l 0 0\ [ vec(Ru)
ST [ 10w, 0 Sl 0 vee (Vo) |
I; ® 1Ry 0 0 —3® Iy, vec (sz)
(3.16)
where 8%, ¢ is the GLS estimator of the TSEM
vec (Ry2) I, ® R, vec (E)
vec (}ju) = | IooW, | S6Y + | vec (E:u) 7
vec <1R22> In® ’LRB vec <2E>
_ (3.17)
vec (E) Yo Iy 0 0
vee(Bu) | v o[ 0 ol 0
vec <2E> 0 0 -S&ly,

The TSEM (3.17) is the SEM (3.6) after it has been premultiplied by diag(Ig @ X1, Iyy,) to

eliminate the endogeneity of the first M observations. This concludes the proof. B

The relationships in (3.14) and (3.15) prove that the 3SLS estimators in (3.5) and (3.16) are
identical and hence Theorem 1 guarantees the equivalence of the proposed pseudo SEM (3.6) with
the updated SEM in (3.3). Equivalently the latter shows that the GLS estimators of the TSEM (3.4)
and model (3.17), which are both free of endogeneity, are equivalent. Furthermore, note that the
effect of the third block of rows in (3.6) is to eliminate the endogeneity arising from the observations
added in the model. This means that once endogeneity has been eliminated in (3.6), that is, (3.17)
is derived, its GLS estimator can be computed efficiently. Namely, the numerically accurate method
of GLLSP (see (2.3)-(2.5)) is applied. Moreover, previous computations are utilized. Therefore, the

computational cost is reduced.



3.1 Deriving the 3SLS estimator of the pseudo SEM

For the efficient computation of the 3SLS estimator in (3.16), the proposed transformed model

in (3.17) is reformulated to the equivalent GLLSP, that is,

_ N 2
argmin (HveC(V)H2F + [[vec(V,) |7 — Hvec(Vu) ) subject to
AL F
vec(Rys) Is® Ry CwIx 0 0 vec(V)
vee(Y,) | = [Ie@W, | S6"+ | 0o Coly 0 vec(V2,)
vec(1Ry) I; ®Rp 0 0 ColI,,) \vec(iV,)

Assume that the solution of the GLLSP (2.3), for obtaining the 3SLS estimator of (1.1), is available.

Employing the GQRD (2.4), yields the equivalent GLLSP

A~

arguin.(Joall + ol + VAl %] ) subject 1o
va,08,Va,Vu,8U F
Ya oR; Un U 0 0 v (3.18)
YB B 0 5U n 0 Uy ) 0 0 VB
vee(Y,) | | e @ W,)S 0 0 C®Iy, 0 vec(V,) |’
vec(1Ras) (I ®1R5)S 0O O 0 ColI,, vec(1V,)

where v = Uy'yp and so the latter reduces to

A

2
argmin (H’UAH2 + HVLH% _ ‘ V, ) subject to
v4,Vi, Vi, 6V F
3.19
Ya @i R, Un O 0 vy (3.19)
vee(Y,) | = | Ic@W,)S [V + | 0 ColIy, 0 vee(Vy,) |,
vec(1Ra) (Ic ®1Rp)S 0 0 ColI,, vec(1Vy,)

where g4 = ya4 — Ujpvp. For the solution of (3.19) consider the hyperbolic QR decomposition

(HQRD)
3 ©iR; Ya DR, Ga
Q! ((Igew)s vee) | = 0 gn (3.200)
(I ®1Rp)S vec(1Ry2) 0 we

and the RQ decomposition (RQD)

_ U, R 0 0 _ _ ﬁn [:]12 ZQ13
Qi |l 0 CwlIy, 0 P=U=|(0 Uy Wy)|- (3.20Db)
0 0 C® Iy, 0 0 Us;



Here Qu is a @—unitary matrix with respect to the signature matrix o = diag(I.+onm,, —Ionr, ), that
is, Qu@QuH = & and is defined as the product of K hyperbolic Householder transformations [5, 22].
Also P is a unitary matrix of order (k +2GM,) and U e CwH2GMu)x(x+26Mu) - R R(kiten)x (kit+gi)

for i =1,...,G, are upper triangular and non singular. Then the GLLSP (3.19) becomes

V4 Ya o R; U, [_? 12 Zl?13 V4
argmin VB subject to | yp | = 0 U4+ 0 U,y WUsy vp |, (3.21)
D4,0B,0¢,0Y 1 N 1o 0 0 0 1333 e

where |z||, = " ¥z is the hyperbolic norm of a complex column vector & with respect to the

signature matrix W [5, 28]. Also let

B Vg ’EA
P | vec(V,) | = | 05
vec(1Vy,) 10¢

It follows that vp and v¢ can be obtained from the solution of the triangular system

YB Uy, ZU~23 Up
5 ) — ~ % 3.22
(Wc) ( 0 1]33) (wc)’ ( )

and D4 is set to zero in order to minimize the argument in (3.21). Hence the updated 3SLS (U3SLS)

estimator is given by

O5srs = (@11%1) B Ya, (3.23)

where ?jA =Y — U,yop + Usde.

The main computational steps of the proposed numerical method for the recursive estimation of
the SEM are illustrated in Algorithm 1. When the SEM (1.1) is updated with new observations for
the first time, previous computations from the QRD (2.1) and the solution of the GLLSP (2.3) are
utilized. If new observations become available and the SEM has already been updated by solving
the GLLSP (3.19), previous computations from the UQRD (3.7) and the solution of the GLLSP
(3.19) are utilized. When observations are sequentially added into the model, the input in the
current updating of the model is the output obtained from the previous updating. Therefore, after
the first update of the SEM, no data from the original SEM are required. Moreover, in practice,

the special sparse structure of the matrices is exploited by employing the computational strategies

11



presented in the Appendix.

Algorithm 1 Estimating the USEM (3.3) by obtaining the estimator of the pseudo SEM (3.17).

1. Given the SEM (1.1), estimate the USEM (3.3).
Input: The new data added to the model are Y,,, X, as defined in (3.1), Ry, Rj2 from the QRD
(2.1), and also g4, R;, i =1,...,G, Uy; from the solution of the GLLSP in (2.3).
Output: The 3SLS estimator SgSLS in (3.23), ﬂA, R, i=1,...,G, Uy.
2. Repeat updating
Input: The new data added to the model are Y,,, X, as defined in (3.1), 1%11, ng from the UQRD
(3.7), and also ?jm R, i=1,...,G and Uy; from the solution of the GLLSP in (3.19).
Output: The 3SLS estimator 6%, ¢ in (3.23), Ry, R, 94, Ri, i=1,...,G, Uy,
Compute the updating QRD in (3.7).
Compute the HQRD in (3.20a) and the RQD in (3.20b).
Solve the triangular system in (3.22).
Compute g, = Y4 — Up0p + Uizvc.

Solve the triangular system <@2Rz> 0V g = U4, for 8%, .
End Repeat Updating

® N o w

3.2 Iterative recursive 3SLS

Assume that the U3SLS estimator in (3.23) has been obtained and the solution of (3.19) is
available. Now the iterative estimator of the SEM (3.3) based on the solution of (3.19) needs to be
computed so that the estimates for 8V are improved. In order to derive the iterative 3SLS (I3SLS)
estimator, X is now estimated using the 3SLS residuals, that is,

vec(l%) = vec(Y) — (Ig @ W)Sd5s, .

2 2T » B 2T
Now ¥ = E E/(M+M,) is the updated variance-covariance matrix and 3 = C' C'is the Cholesky

decomposition. The GLLSP (3.19) is now updated with C taken into account and hence the GLLSP

to be solved is given by

A~

2
argmin (”UAH2 4 HVLHQF _ } V., ) subject to
va,Vu, Vi, 61U r
- = 3.24
'gA @1Rz U11 R 0 0 V4 ( )
vee(Yy) | = | (e @ W,)S W+ 0 C®ly, 0 vee(Va)
vec(1Rgo) (Ic ®1Rp)S 0 0 C I, vec(1V,,)

Given that the HQRD in (3.20a) is available, the RQD in (3.20b) will be re-computed, that is,

12



) 011 A 0 0 N . (711 (?12 l:]13
Q{j 0 C® IMu R 0 P=U= 0 l~]22 [723 ) (325)
0 0 C® Iy, 0 0 Us;

where P e R(w+2GMu)x(5+2GMu) jg g unitary matrix and U € CH26Mu)x(5+2GMu) ig ypher triangular
and non singular. The transformations in (3.25) are applied to (3.24). The resulting GLLSP is
solved in a way similar to (3.21). The iterative procedure is repeated until the estimate for ¥ of

the previous and the current iteration converge.

4. Estimating the SEM after deleting observations

The downdating of the SEM is the problem of removing the effect of some observations from an
existing estimator. Namely, this is the case where rows of data are excluded after the estimation
procedure has been completed and hence a reduced observations model has to be estimated. Ob-
servations may have to be deleted when they are considered to be old and misleading, when they
have been shown to be outliers or for the identification of influential data [1, 7, 11, 35].

Assume that the 3SLS estimator of the SEM (1.1) has been computed and then some observa-
tions, say My, will be deleted from each structural equation. This means that the 3SLS estimator
will have to be re-computed. Without loss of generality, consider that the last M, observations will

be deleted from each equation and let

e () 5o (2) e (5)

where Y € RWM-Ma)xG 'y, ¢ RMaxCG and X | E are partitioned conformably. Alsolet W = (X V).

The downdated observations SEM to be estimated is given by
vec (f’) = (IG ® W) SéP + vec (E) . vec (E) ~ (0, 2@ Iy-_n,), (4.1)
which has the downdated 3SLS estimator
N ~ - .- - - - -1 - . . - - e A
3D, = (ST <2—1 ® WTX(XTX)—leW> S) STvec (WTX(XTX)—leY2-1> . (4.2)

Theorem 2 presents the theoretical pseudo SEM which is proved to be equivalent to the downdated
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SEM (4.1). The downdated observations 3SLS estimator in (4.2) is then derived recursively.

Theorem 2. The downdated observations 3SLS estimator in (4.2) is equivalent to the 3SLS esti-

mator of the pseudo SEM

vec (X) I W vec (E)
vec (1Yy) | = | Ie @ Wy | S6P + | Ve (Zpd) ,
vec (Rgz) I.® Rp vec <Ed> 3
vec (E) > Iy 0 0 o
vec (1Eq) | | o, 0 —X®I, 0 :
vec (E'd> 0 0 b & I]V[d

where (4.3) R,y and Ry are defined from the HQRD

-u(Ri1 R R, R R
H 11 12\ S 2 ST N (9 4 77
(5 %) - (0 &) - () =
Here Q 18 @—unitary with respect to the signature matriz b = diag(Ix,—1In,), Ri1, Rio are avail-
able from (2.1) and Ry, € REXE s the upper triangular and non singular factor from the QRD of

X.

Proof. The 3SLS estimator in (4.2) is the GLS estimator of the TSEM
vec (XTY) = (Ie® XTW) 867 + vec (XTE) , vec (XTE) ~ (0, ® XTX) . (4.5)

after endogeneity has been eliminated in the downdated SEM (4.1). It holds that XT X = XTX +
XTX,; = RI Ry and also that XTY = XTY + XTY; = RT, Ry, where they, respectively, give
X"X =RLR,, — XI'X,=RI Ry, and X"Y = RI R\, — X}Y; = RI,Ry5. The above imply
the HQRD in (4.4). The downdated TSEM (4.5) is now written as

vec (ng) = (IG ® RA) S&P + vec (E) . vec (E) ~(0,X® Ik). (4.6)

Based on the updating of the SEM (see (3.14)-(5.15)) it follows that

o R.\" [Ru o Ri\"  [Ru
RiR = [ Wy | @ [:W,| and RiRi, = | Wy| ¥ Y|, (4.7)
RB RB RB R22

where ¥ = diag (I, —In,, Ing,). The latter implies the TSEM
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vec (Rlz) IG X RA vec (E)
vec (1Yg) | = | Ie @ W, | 67 + | Vec (Z~Ed)
vec (Rgg) I ® Ry vec (Ed>
_ 4.8
vec (E) S Ik 0 0 )
veeB) | (0. 0 —Sen, o
vece (Ed> 0 0 E & IMd

or equivalently the pseudo SEM in (4.3). B

Analogously to Theorem 1, the relationships in Theorem 2 and (4.7) show the equivalence of
models (4.8) and (4.6) when the method of GLS is applied. Hence, the equivalence of the 3SLS
estimators of the pseudo SEM (4.3) and the downdated SEM (4.1) is proved.

To compute efficiently the 3SLS estimator of the proposed pseudo SEM in (4.8), consider the
following GLLSP

argmin (HVH? — ||V;iH2F + H%Hi) subject to

V,Vy,Vy,860
A = (4.9)
vec (Ry2) I ® Ry C® Ik 0 0 vec (V)
vec (szd) = | Ie ® W,y SéP + 0 C ® Iy, 0 vec (ngl)
vec (R22) I ® Rp 0 0 C® I, vec (Vd)

As in the case of the updating of the SEM, previous computations can be efficiently used for the
solution of (4.9). That is, if the orthogonal transformations from the GQRD (2.4a) - (2.4b) are
applied to the first block of rows in (4.9) and the solution of (2.5) is used, then the GLLSP (4.9) is

equivalent to

argmin ([l ~ [Vall2 + [|Va3) subject to

’UA’Vd7Vd76D
vec (Ry») o R; Ui X 0 0 Vg
vec(1Yy) | = | Ie@ W, | S6P+ | 0 CxIy, 0 vec (1Vy)
vec (RQQ) Io® Rp 0 0 C® I, vec ( d)

The solution of the latter GLLSP is analogous to that of (3.19).

5. Numerical trials on a macroeconomic model

The effectiveness and practicability of the proposed method in estimating large-scale models

is illustrated. A series of experiments has been conducted for the recursive estimation of the US
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macroeconomic model developed by [9, 10]. Herein, the specification of the most recent version of
the US, the US+ and the Japan models is considered with 25, 116 and 10 equations, respectively?.
The method of 3SLS is employed for the recursive estimation of these macroeconometric models.
The variables used are quarterly. For the purposes of investigating the effectiveness of the new
methods, synthetic data is used. It is assumed that there are available data spanning the period
1952:QQ1 to 2015:Q4 for all three models, resulting in 256 observations.

Two methods have been considered, herein referred to as afresh (see Section 2) and recursive
(see Section 3.1). When new data arrive, the afresh method re-estimates the SEM using the full
data set whereas the proposed recursive method estimates the model using previous estimates and
the current data only. It is important to note that the afresh method is less computationally costly
than the standard 3SLS method which requires the inversion of the large covariance matrix of the
SEM [1, 20]. Figure 1 demonstrates the computational advantage of the recursive method when
compared with the afresh method. Firstly, it is assumed that the Japan, the US and the US4+ models
have been estimated for the period 1952:Q1 up to 1994:Q4, giving 172 observations. Then as new
data arrive, the estimates of the models are updated to incorporate the new available information.
The times required by the two methods to update the model with the new data once they become
available, starting from 1995:Q1 up to the last available observation in 2015:Q4, are compared in
order to give the efficiency ratio shown in Figure 1. Moreover, leave-one-out experiments within the
context of cross-validation analysis and for the identification of influential observations have been
conducted. The conclusions reached are the same with those drawn from Figure 1.

The experimental results confirm that the new method for the recursive estimation of the SEM
outperforms other methods that estimate the model afresh. The results shown vary in the number
of structural equations (G) and the number of exogenous variables (K). It is shown that the
efficiency of the proposed method is more significant when G and K increase. Further investigation
demonstrates that the efficiency of the recursive method becomes more important as the number
of observations in the model (M) increases. Therefore, the practicability of the new method arises

when estimating multivariate models in high dimensions and when analysing big data sets. The

IThe latest version, as of writing this manuscript, is found in http://fairmodel.econ.yale.edu/mmm2.htm. The
specification of the US4 model is the one in its original form [9].
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Efficiency of the recursive method

0
!

10 25 116

Number of structural equations
Figure 1: Effectiveness (execution times ratio) of the afresh and recursive methods for the sequential estimation
of large-scale macroeconometric models which consist of 10, 25 and 116 stochastic equations. Results are presented
when the number of exogenous variables included in the models is K = 70,100, 150. It is assumed that the models
are initially estimated using quarterly data for the period 1952:Q1 to 1994:Q4. Then the estimates are updated
recurrently once new observations arrive. The last available data point is assumed to be 2015:Q4 so that a total of
84 new observations are included in the model sequentially.

strategies employed for the efficient execution of the new method and further experimental results

are presented in the Appendix.

6. Conclusions

The aim has been to investigate thoroughly the recursive computation of the three-stage least
squares (3SLS) estimator of the simultaneous equations model (SEM) using matrix factorizations.
A novel method of updating the 3SLS estimator, when new observations are obtained, has been
developed. The numerical solution derived an alternative SEM where the original SEM is updated
with the extra observations and also with the factors that are required to purge the model of the
endogeneity effects of the additional observations. The result is a pseudo transformed SEM which
is free of endogeneity and can be estimated efficiently via the method of generalized least squares
(GLS). The GLS estimator, of the pseudo transformed SEM, yields the 3SLS estimator that would
be obtained if the original SEM was estimated afresh with all of the available data.

Within the context of developing numerically stable and computationally efficient algorithms,
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the new method derives the updated 3SLS estimator by considering the proposed pseudo model as
a generalized linear least squares problem. In updating the 3SLS estimates, orthogonal, hyperbolic
and unitary transformations are employed. This method not only solves the problem of recursively
estimating the SEM when new data become available, it also enables an algorithm to be developed
that can handle big data sets. The method has also been extended to allow observations to be
deleted. In addition, an iterative algorithm has been developed that uses the 3SLS residuals in
improving the initial estimates of the parameters. The proposed method can derive the 3SLS
estimator even when the dispersion matrix is singular.

The designed algorithms have been implemented based on computationally efficient strategies
that take advantage of the sparse structure of the SEM. Due to the structure of the SEM and
the proposed pseudo SEM, the computational experiments show that the proposed algorithms are
more efficient when the number of observations added to the model is smaller than the number of

exogenous variables.
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