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A Recursive Three-Stage Least Squares Method for
Large-Scale Systems of Simultaneous Equations
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Abstract

A new numerical method is proposed that uses the QR decomposition (and its variants) to
derive recursively the three-stage least squares (3SLS) estimator of large-scale simultaneous
equations models (SEM). The 3SLS estimator is obtained sequentially, once the underlying
model is modified, by adding or deleting rows of data. A new theoretical pseudo SEM is de-
veloped which has a non positive definite dispersion matrix and is proved to yield the 3SLS
estimator that would be derived if the modified SEM was estimated afresh. In addition, the
computation of the iterative 3SLS estimator of the updated observations SEM is considered.
The new recursive method utilizes efficiently previous computations, exploits sparsity in the
pseudo SEM and uses as main computational tool orthogonal and hyperbolic matrix factoriza-
tions. This allows the estimation of large-scale SEMs which previously could have been con-
sidered computationally infeasible to tackle. Numerical trials have confirmed the effectiveness
of the new estimation procedures. The new method is illustrated through a macroeconomic
application†.

Keywords: updating, QR decomposition, high dimensional data, matrix algebra

MSC: 15A23;15B10;62L12

1. Introduction

The simultaneous equations model (SEM) is a system of structural equations where some of the

response variables also reappear in the system as explanatory variables. Let the SEM in compact

form be

vec (Y ) = (IG ⊗W )Sδ + vec (E) , vec (E) ∼ (0,Σ⊗ IM) , (1.1)

Corresponding author: S. Hadjiantoni, School of Mathematics, Statistics & Actuarial Science, University of Kent,
Canterbury, Kent CT2 7NF, UK. Email address: s.hadjiantoni@kent.ac.uk

†The computational aspects of the strategies are included as a supplementary material (Appendix).

1



where W = (X Y ), X is the M × K (full column rank) matrix of all exogenous (or prede-

termined) variables that satisfy the orthogonality condition E(XTE) = 0 and Y is the M × G

matrix of all other explanatory variables that violate the orthogonality condition E(Y TE) = 0,

herein referred to as endogenous variables. The value of an endogenous variable is determined

within the system whereas the value of an exogenous variable is defined outside the system.

Also S = diag (S1,S2, . . . ,SG) is a selection matrix such that WSi = Wi = (Xi Yi) and

δ = vec(δ1, δ2, . . . , δG). The notation vec (E) ∼ (0,Σ⊗ IM) implies that the error term vec(E) has

zero mean and variance-covariance matrix Σ ⊗ IM , where Σ ∈ RG×G is a symmetric non negative

definite matrix and⊗ denotes the Kronecker product [32]. In the ith equation, that is yi = Wiδi+εi,

whereWi = (Xi Yi),Xi ∈ RM×ki is the full column rank matrix of exogenous variables, Yi ∈ RM×gi

is the matrix of endogenous variables for that equation, and where δi = (βTi γTi )T , βi ∈ Rki and

γi ∈ Rgi are the structural parameters to be estimated. It is assumed that ki + gi ≤ K so that the

unknown parameters of the structural equations are uniquely identified [19].

The presence of the endogenous variables Y implies that the explanatory variables are not

orthogonal to the error term, that is, E(W TE) 6= 0 since E(Y TE) 6= 0. The violation of the

orthogonality condition due to the error term entering into the determination of the endogenous

variable yi is called endogeneity, and needs to be eliminated before generalized least squares (GLS)

are applied to estimate (1.1). The effect of endogeneity is overcome by projecting yi onto the

Span(W ) along Span⊥(Z), where Z is a matrix of predetermined variables such that E(ZTE) = 0.

For the 3SLS estimator, this is achieved by using the matrix of all exogenous variables X as

an instrument where the projection matrix is PX = X(XTX)−1XT . Therefore, each structural

equation is premultiplied by XT [34] or equivalently, (1.1) is premultiplied by IG⊗XT which yields

the transformed SEM (TSEM):

vec
(
XTY

)
=
(
IG ⊗XTW

)
Sδ + vec

(
XTE

)
, vec

(
XTE

)
∼
(
0,Σ⊗XTX

)
. (1.2)

Applying GLS to (1.2) with Σ replaced by its consistent estimator [34], say Σ̂, gives the three-stage

least squares (3SLS) estimator

δ̂3SLS = (W̄ T (Σ̂⊗XTX)−1W̄ )−1W̄ T (Σ̂⊗XTX)−1vec(XTY ), (1.3)
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where W̄ =
(
IG ⊗XTW

)
S [34]. The 3SLS estimator (1.3) derives from the solution of the

generalized linear least squares problem (GLLSP)

argmin
δ,V

‖V ‖2F subject to vec
(
XTY

)
=
(
IG ⊗XTW

)
Sδ +

(
Ĉ ⊗ IK

)
vec
(
XTV

)
,

where Σ̂ = ĈĈT is the Cholesky decomposition, V ∼ (0, IK) is such that E = V ĈT and ‖·‖F

denotes the Frobenius norm [21, 25].

Large-scale SEMs are intractable to employ due to their multivariate structure, whereas their

implementation becomes further burdensome when they have to be estimated recursively. This is

an essential procedure when dealing with big data sets, in window estimation and when there is

structural change in the SEM [12, 15, 27, 30, 33]. The recursive estimation of the SEM entails the

repeated updating of previous estimates, whereby they can absorb additional observations, while

avoiding the use of the entire high dimensional data set. That is, when new data are acquired, a

recursive procedure will obtain the 3SLS estimator of the augmented SEM

vec

(
Y
Yu

)
=

(
IG ⊗

(
W
Wu

))
SδU + vec

(
E
Eu

)
, vec

(
E
Eu

)
∼ (0,Σ⊗ IM+Mu) , (1.4)

without processing the entire system afresh but by utilizing previous computations. To derive the

3SLS estimator of the augmented SEM, requires premultiplying (1.4) by IG ⊗ (XT XT
u ) and then

solving the GLLSP

argmin
δU ,V ,Vu

‖V ‖2F + ‖Vu‖2F subject to

vec
(
XTY +XT

u Yu
)

=
(
IG ⊗

(
XTW +XT

uWu

))
SδU +

(
Ĉ ⊗ IK

)
vec
(
XTV +XT

u Vu
)
.

The problem of re-estimating linear models after adding (updating) or removing (downdating)

observations has already been addressed [6, 11, 13, 14, 16, 17, 26, 29, 33]. Methods had previously

been proposed for the effective estimation of the SEM [1, 6, 8, 18, 20], however, the sequential

derivation of the 3SLS estimator for large-scale SEMs has not, previously, been considered.

Herein, the problem of recursively estimating the SEM to add the effect of new or delete the effect

of old (obsolete) data points is thoroughly investigated. A theoretical pseudo SEM is developed

which has the same 3SLS solution as the modified SEM when estimated afresh. Specifically the

proposed method entails a double updating of the original SEM. The first update incorporates

the new observations and the second update eliminates the endogeneity that stems from these new
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observations. This is a challenging issue in the estimation of the SEM and is especially difficult when

the model is estimated recursively. The new method removes the endogeneity by adding imaginary

(complex) data. This creates a SEM that has a non positive definite dispersion matrix. Nonetheless,

the estimation of this theoretical model does not use complex arithmetic. The advantages of the new

method is numerical accuracy for the estimates and computational efficiency. They are achieved by

implementing orthogonal and hyperbolic transformations, by exploiting the sparsity of the pseudo

SEM and by utilizing the previous computations that have provided the estimates of the original

model. However, hyperbolic transformations are known to encounter difficulties in terms of stability

in the presence of ill conditioned problems. Prudent implementation of hyperbolic transformations

can improve the stability of the downdating procedure [3, 4, 23, 24]. Also, applying a sequence

of simultaneous updates and downdates has been shown to be relationally stable following careful

application of hyperbolic transformations as discussed in [2, 31].

The next section provides a summary of how to derive the 3SLS estimator using the QR decom-

position while avoiding the inversion of the large covariance matrix of the SEM. These preliminary

results are needed for setting up the background of the recursive method. In Section 3 the new

theoretical pseudo SEM for the recursive estimation of the SEM is proposed. The estimator of the

model and the corresponding iterative 3SLS estimator are derived. In Section 4 the downdating

problem of deleting observations from the SEM is solved. Section 5 employs the proposed recursive

method for the estimation of a large-scale macroeconomic model. Finally, Section 6 concludes.

2. Numerical estimation of the SEM

In order to derive efficiently the 3SLS estimator of the SEM, orthogonal transformations are

used [1]. Let the QR decomposition (QRD) of X be given by

QT
(
X Y

)
=

(
R11 R12

0 R22

)
=

(
RA

RB

)
, Q =

(
QA QB

)
, (2.1)

where Q ∈ RM×M is orthogonal and R11 ∈ RK×K is upper triangular and non singular. Using the

latter, the TSEM (1.2) is now written as
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vec (R12) = (IG ⊗RA)Sδ + vec
(
Ē
)
, vec

(
Ē
)
∼ (0,Σ⊗ IK) , (2.2)

where Ē = QT
AE [1, 20]. Observe that the dispersion matrix has been simplified to Σ⊗IK and the

dimensions of the model have been reduced. The 3SLS estimator in (1.3) is obtained if the method

of GLS is applied to (2.2) and Σ is replaced by Σ̂, or equivalently from the solution of the GLLSP

argmin
δ,V̄

∥∥V̄ ∥∥2
F

subject to vec (R12) = (IG ⊗RA)Sδ +
(
Ĉ ⊗ IK

)
vec
(
V̄
)
, (2.3)

where V̄ ∼ (0, IK) is such that Ē = V̄ ĈT . In the case of singular or ill conditioned Σ̂, the method

of GLLSP allows the estimation of the SEM and provides accurate results.

For simplicity, herein, it will be assumed that Σ̂ is non singular. For the solution of the GLLSP

(2.3) compute the generalized QR decomposition (GQRD) of (IG ⊗RA)S and (Ĉ ⊗ IK), that is,

Q̃T
(
(IG ⊗RA)S vec (R12)

)
=

(
⊕iRi yA

0 yB

)
(2.4a)

and

Q̃T
(
Ĉ ⊗ IK

)
P = U =

(
U11 U12

0 U22

)
κ
GK − κ. (2.4b)

Here Q̃,P ∈ RGK×GK are orthogonal matrices, U ∈ RGK×GK and Ri ∈ R(ki+gi)×(ki+gi) for i =

1, . . . , G are upper triangular and non singular, κ =
∑G

i=1 (ki + gi) and ⊕i denotes the direct sum

for i = 1, . . . , G. Applying the GQRD in (2.4a)-(2.4b) to (2.3) will give the equivalent GLLSP

argmin
ṽ,v̂,δ

∥∥∥∥(vAvB
)∥∥∥∥2 subject to

(
yA
yB

)
=

(
⊕iRi

0

)
δ +

(
U11 U12

0 U22

)(
vA
vB

)
, (2.5)

where (vTA vTB) = vec(V̄ )TP and ‖·‖ denotes the Euclidean norm. Now observe that vB = U−122 yB

and thus, vA is set to zero to minimize the argument in (2.5). The 3SLS estimator is then given by

δ̂3SLS = (⊕iRi)
−1 ŷA, where ŷA = yA −U12vB.

3. Recursively estimating the SEM with new observations

The recursive estimation of a model is a procedure which is equivalent to the problem of updating
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a model consecutively when new observations become available. Similarly, when the data set is too

large that cannot be accommodated within the computer’s memory, then an out-of-core algorithm

proceeds sequentially by updating at every step the current model with some extra observations.

Assume that Mu new observations become available and their effect will be added to the model

to update the 3SLS estimator. Let the system of structural equations of the new observations be

denoted by

vec (Yu) = (IG ⊗Wu)Sδu + vec (Eu) , vec (Eu) ∼ (0,Σ⊗ IMu) , (3.1)

where Yu,Eu ∈ RMu×G, Xu ∈ RMu×K and Wu = (Xu Yu). Also define

W̃ =
(
X̃ Ỹ

)
=

(
W
Wu

)
and Ẽ =

(
E
Eu

)
. (3.2)

Then the updated SEM to be estimated is given by

vec
(
Ỹ
)

=
(
IG ⊗ W̃

)
SδU + vec

(
Ẽ
)
, vec

(
Ẽ
)
∼ (0,Σ⊗ IM+Mu) . (3.3)

In order to eliminate endogeneity, similarly to (1.2), premultiply each structural equation with X̃T ,

that is,

vec
(
X̃T Ỹ

)
=
(
IG ⊗ X̃TW̃

)
SδU + vec

(
X̃T Ẽ

)
, vec

(
X̃T Ẽ

)
∼
(
0,Σ⊗ X̃TX̃

)
, (3.4)

where X̃TW̃ = XTW +XT
uWu. Analogously to (1.3) for (1.2), the 3SLS estimator of the updated

SEM (3.3) is obtained by applying GLS, that is,

δ̂U3SLS =
(
ST
(
Σ̂−1 ⊗ W̃ TX̃(X̃TX̃)−1X̃TW̃

)
S
)−1

STvec
(
W̃ TX̃(X̃TX̃)−1X̃T Ỹ Σ̂−1

)
. (3.5)

The new theoretical pseudo SEM, which yields the 3SLS estimator in (3.5) of the updated observa-

tions SEM (3.3), is shown in Theorem 1. This pseudo SEM is used to recursively derive the 3SLS

estimator by exploiting the computations used in solving (2.3).

Theorem 1. The updated observations 3SLS estimator in (3.5) is equivalent to the 3SLS estimator

of the pseudo SEM
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 vec (Y )
vec (Yu)

vec
(
ıR̃22

)
 =

 IG ⊗WIG ⊗Wu

IG ⊗ ıR̃B

SδU +

 vec (E)
vec (Eu)

vec
(
ı ˇ̃E
)
 ,

 vec (E)
vec (Eu)

vec
(
ı ˇ̃E
)
 ∼

0,

Σ⊗ IM 0 0
0 Σ⊗ IMu 0
0 0 −Σ⊗ IMu

 ,

(3.6)

where the instruments to remove endogeneity of the first M and the Mu new observations are

matrices X and ıR̃22, respectively. Here ı is the imaginary unit (ı2 = −1) and R̃22, R̃B are derived

from the updating QRD (UQRD)

(
QT
uA

QT
uB

)(
R11 R12

Xu Yu

)
=

(
R̃11 R̃12

0 R̃22

)
=

(
R̃A

R̃B

)
, Qu =

( K Mu

QuA QuB

)
, (3.7)

where Qu is orthogonal of order (K +Mu), R11, R12 are available from (2.1) and R̃11 is the upper

triangular factor from the QRD of X̃.

Proof. Consider the QRD of X in (2.1) which gives

XTX = RT
11R11 and XTY = RT

11R12. (3.8)

Given that R̃11 is the upper triangular factor from the QRD of X̃, it follows that

X̃TX̃ = RT
11R11 +XT

uXu = R̃T
11R̃11 (3.9)

and also that

X̃T Ỹ = RT
11R12 +XT

u Yu = R̃T
11R̃12, (3.10)

where X̃ and Ỹ are defined in (3.2). The latter imply the UQRD (3.7). Thus, from (3.9) and

(3.10) it follows that the updated TSEM (3.4) is written as

vec
(
RT

11R12 +XT
u Yu

)
=
(
IG ⊗

(
RT

11RA +XT
uWu

))
SδU + vec

(
RT

11Ē +XT
uEu

)
,

or equivalently as

vec
(
R̃12

)
=
(
IG ⊗ R̃A

)
SδU + vec

(
˜̃E
)
, vec

(
˜̃E
)
∼ (0,Σ⊗ IK) , (3.11)

where ˜̃E = QT
uA
Ẽ. The GLS estimator of (3.11) gives the 3SLS estimator (3.5) of the updated
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TSEM (3.4), that is,

δ̂U3SLS =
(
ST
(
Σ̂−1 ⊗ R̃T

AR̃A

)
S
)−1

ST
(
Σ̂−1 ⊗ IK+G

)
vec
(
R̃T
AR̃12

)
, (3.12)

where Σ̂ is the consistent estimator of Σ obtained from the 2SLS residuals of the SEM (3.3).

Observe now from the 3SLS estimator in (3.12) that

R̃T
AR̃A =

(
R̃T

11R̃11 R̃T
11R̃12

R̃T
12R̃11 R̃T

12R̃12

)
, (3.13)

where R̃T
11R̃11 and R̃T

11R̃12 are known (see (3.9) and (3.10)), but R̃T
12R̃12 is unknown and it needs

to be determined. From the UQRD (3.7), it holds that

R̃12 = QT
uA

(
R12

Yu

)
and also that(

R12

Yu

)
=
(
QuA QuB

)(R̃12

R̃22

)
,

which imply that R̃T
12R̃12 = Ỹ TX̃(X̃TX̃)−1X̃T Ỹ and R̃T

12R̃12 = RT
12R12 + Y T

u Yu − R̃T
22R̃22,

respectively. Now from the latter and (3.9) - (3.10) it follows that

R̃T
AR̃A =

(
X̃TX̃ X̃T Ỹ

Ỹ TX̃ Ỹ TX̃
(
X̃TX̃

)−1
X̃T Ỹ

)
= W̃ TX̃(X̃TX̃)−1X̃TW̃

=

(
RT

11R11 +XT
uXu RT

11R12 +XT
u Yu

RT
12R11 + Y T

u Xu RT
12R12 + Y T

u Yu − R̃T
22R̃22

)
= RT

ARA +W T
uWu − R̃T

BR̃B

=

RA

Wu

ıR̃B

H

Φ

RA

Wu

ıR̃B

 ,

(3.14)

where Φ = diag (IK , IMu ,−IMu) and (·)H denotes the conjugate transpose of a matrix. Similarly it

can be shown that
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R̃T
AR̃12 = W̃ TX̃(X̃TX̃)−1X̃T Ỹ

=

RA

Wu

ıR̃B

H

Φ

R12

Yu
ıR̃22

 .
(3.15)

Then substituting (3.14) and (3.15) into (3.12), the 3SLS estimator in (3.5) is given by

δ̂U3SLS =

ST
 IG ⊗RA

IG ⊗Wu

IG ⊗ ıR̃B

HΣ̂⊗ IK 0 0

0 Σ̂⊗ IMu 0

0 0 −Σ̂⊗ IMu

−1 IG ⊗RA

IG ⊗Wu

IG ⊗ ıR̃B

S

−1

· ST
 IG ⊗RA

IG ⊗Wu

IG ⊗ ıR̃B

HΣ̂⊗ IK 0 0

0 Σ̂⊗ IMu 0

0 0 −Σ̂⊗ IMu

−1
 vec (R12)

vec (Yu)

vec
(
ıR̃22

)
 ,

(3.16)

where δ̂U3SLS is the GLS estimator of the TSEM

 vec (R12)
vec (Yu)

vec
(
ıR̃22

)
 =

 IG ⊗RA

IG ⊗Wu

IG ⊗ ıR̃B

SδU +

 vec
(
Ē
)

vec (Eu)

vec
(
ı ˇ̃E
)
 ,

 vec
(
Ē
)

vec (Eu)

vec
(
ı ˇ̃E
)
 ∼

0,

Σ⊗ IK 0 0
0 Σ⊗ IMu 0
0 0 −Σ⊗ IMu

 .

(3.17)

The TSEM (3.17) is the SEM (3.6) after it has been premultiplied by diag(IG ⊗ XT , I2Mu) to

eliminate the endogeneity of the first M observations. This concludes the proof. �

The relationships in (3.14) and (3.15) prove that the 3SLS estimators in (3.5) and (3.16) are

identical and hence Theorem 1 guarantees the equivalence of the proposed pseudo SEM (3.6) with

the updated SEM in (3.3). Equivalently the latter shows that the GLS estimators of the TSEM (3.4)

and model (3.17), which are both free of endogeneity, are equivalent. Furthermore, note that the

effect of the third block of rows in (3.6) is to eliminate the endogeneity arising from the observations

added in the model. This means that once endogeneity has been eliminated in (3.6), that is, (3.17)

is derived, its GLS estimator can be computed efficiently. Namely, the numerically accurate method

of GLLSP (see (2.3)-(2.5)) is applied. Moreover, previous computations are utilized. Therefore, the

computational cost is reduced.
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3.1 Deriving the 3SLS estimator of the pseudo SEM

For the efficient computation of the 3SLS estimator in (3.16), the proposed transformed model

in (3.17) is reformulated to the equivalent GLLSP, that is,

argmin
V̄ ,Vu,V̂u,δU

(∥∥vec(V̄ )
∥∥2
F

+ ‖vec(Vu)‖2F −
∥∥∥vec(V̂u)

∥∥∥2
F

)
subject to

 vec(R12)
vec(Yu)

vec(ıR̃22)

 =

 IG ⊗RA

IG ⊗Wu

IG ⊗ ıR̃B

SδU +

Ĉ ⊗ IK 0 0

0 Ĉ ⊗ IMu 0

0 0 Ĉ ⊗ IMu

 vec(V̄ )
vec(Vu)

vec(ıV̂u)

 .

Assume that the solution of the GLLSP (2.3), for obtaining the 3SLS estimator of (1.1), is available.

Employing the GQRD (2.4), yields the equivalent GLLSP

argmin
vA,vB ,Vu,V̂u,δU

(
‖vA‖2 + ‖vB‖2 + ‖Vu‖2F −

∥∥∥V̂u∥∥∥2
F

)
subject to


yA
yB

vec(Yu)

vec(ıR̃22)

 =


⊕iRi

0
(IG ⊗Wu)S

(IG ⊗ ıR̃B)S

 δU +


U11 U12 0 0
0 U22 0 0

0 0 Ĉ ⊗ IMu 0

0 0 0 Ĉ ⊗ IMu




vA
vB

vec(Vu)

vec(ıV̂u)

 ,

(3.18)

where vB = U−122 yB and so the latter reduces to

argmin
vA,Vu,V̂u,δU

(
‖vA‖2 + ‖Vu‖2F −

∥∥∥V̂u∥∥∥2
F

)
subject to

 ŷA
vec(Yu)

vec(ıR̃22)

 =

 ⊕iRi

(IG ⊗Wu)S

(IG ⊗ ıR̃B)S

 δU +

U11 0 0

0 Ĉ ⊗ IMu 0

0 0 Ĉ ⊗ IMu

 vA
vec(Vu)

vec(ıV̂u)

 ,

(3.19)

where ŷA = yA − U12vB. For the solution of (3.19) consider the hyperbolic QR decomposition

(HQRD)

Q̃H
u

 ⊕iRi ŷA
(IG ⊗Wu)S vec(Yu)

(IG ⊗ ıR̃B)S vec(ıR̃22)

 =

⊕iR̃i ỹA
0 ỹB
0 ıỹC

 (3.20a)

and the RQ decomposition (RQD)

Q̃H
u

U11 0 0

0 Ĉ ⊗ IMu 0

0 0 Ĉ ⊗ IMu

 P̃ = Ũ =

Ũ11 Ũ12 ıŨ13

0 Ũ22 ıŨ23

0 0 Ũ33

 . (3.20b)
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Here Q̃u is a Φ̃-unitary matrix with respect to the signature matrix Φ̃ = diag(Iκ+GMu ,−IGMu), that

is, Q̃uΦ̃Q̃
H
u = Φ̃ and is defined as the product of K hyperbolic Householder transformations [5, 22].

Also P̃ is a unitary matrix of order (κ+ 2GMu) and Ũ ∈ C(κ+2GMu)×(κ+2GMu), R̃i ∈ R(ki+gi)×(ki+gi)

for i = 1, . . . , G, are upper triangular and non singular. Then the GLLSP (3.19) becomes

argmin
ṽA,ṽB ,ṽC ,δU

∥∥∥∥∥∥
 ṽAṽB
ıṽC

∥∥∥∥∥∥
h

subject to

 ỹAỹB
ıỹC

 =

⊕iR̃i

0
0

 δU +

Ũ11 Ũ12 ıŨ13

0 Ũ22 ıŨ23

0 0 Ũ33

 ṽAṽB
ıṽC

 , (3.21)

where ‖x‖h = xHΨx is the hyperbolic norm of a complex column vector x with respect to the

signature matrix Ψ [5, 28]. Also let

P̃H

 vA
vec(Vu)

vec(ıV̂u)

 =

 ṽAṽB
ıṽC

 .

It follows that ṽB and ṽC can be obtained from the solution of the triangular system

(
ỹB
ıỹC

)
=

(
Ũ22 ıŨ23

0 Ũ33

)(
ṽB
ıṽC

)
, (3.22)

and ṽA is set to zero in order to minimize the argument in (3.21). Hence the updated 3SLS (U3SLS)

estimator is given by

δ̂U3SLS =
(
⊕iR̃i

)−1
ˆ̃yA, (3.23)

where ˆ̃yA = ỹA − Ũ12ṽB + Ũ13ṽC .

The main computational steps of the proposed numerical method for the recursive estimation of

the SEM are illustrated in Algorithm 1. When the SEM (1.1) is updated with new observations for

the first time, previous computations from the QRD (2.1) and the solution of the GLLSP (2.3) are

utilized. If new observations become available and the SEM has already been updated by solving

the GLLSP (3.19), previous computations from the UQRD (3.7) and the solution of the GLLSP

(3.19) are utilized. When observations are sequentially added into the model, the input in the

current updating of the model is the output obtained from the previous updating. Therefore, after

the first update of the SEM, no data from the original SEM are required. Moreover, in practice,

the special sparse structure of the matrices is exploited by employing the computational strategies
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presented in the Appendix.

Algorithm 1 Estimating the USEM (3.3) by obtaining the estimator of the pseudo SEM (3.17).

1. Given the SEM (1.1), estimate the USEM (3.3).
Input: The new data added to the model are Yu, Xu as defined in (3.1), R11, R12 from the QRD

(2.1), and also ŷA,Ri, i = 1, . . . , G, U11 from the solution of the GLLSP in (2.3).
Output: The 3SLS estimator δ̂U3SLS in (3.23), ˆ̃yA, R̃i, i = 1, . . . , G, Ũ11.

2. Repeat updating
Input: The new data added to the model are Yu, Xu as defined in (3.1), R̃11, R̃12 from the UQRD

(3.7), and also ˆ̃yA, R̃i, i = 1, . . . , G and Ũ11 from the solution of the GLLSP in (3.19).
Output: The 3SLS estimator δ̂U3SLS in (3.23), R̃11, R̃12, ˆ̃yA, R̃i, i = 1, . . . , G, Ũ11.

3. Compute the updating QRD in (3.7).
4. Compute the HQRD in (3.20a) and the RQD in (3.20b).
5. Solve the triangular system in (3.22).
6. Compute ˆ̃yA = ỹA − Ũ12ṽB + Ũ13ṽC .

7. Solve the triangular system
(
⊕iR̃i

)
δ̂U3SLS = ˆ̃yA, for δ̂U3SLS.

8. End Repeat Updating

3.2 Iterative recursive 3SLS

Assume that the U3SLS estimator in (3.23) has been obtained and the solution of (3.19) is

available. Now the iterative estimator of the SEM (3.3) based on the solution of (3.19) needs to be

computed so that the estimates for δU are improved. In order to derive the iterative 3SLS (I3SLS)

estimator, Σ is now estimated using the 3SLS residuals, that is,

vec( ˆ̃E) = vec(Ỹ )− (IG ⊗ W̃ )Sδ̂U3SLS.

Now ˆ̃Σ = ˆ̃E
T ˆ̃E/(M+Mu) is the updated variance-covariance matrix and ˆ̃Σ = ˆ̃C

T ˆ̃C is the Cholesky

decomposition. The GLLSP (3.19) is now updated with ˆ̃C taken into account and hence the GLLSP

to be solved is given by

argmin
vA,Vu,V̂u,δIU

(
‖vA‖2 + ‖Vu‖2F −

∥∥∥V̂u∥∥∥2
F

)
subject to

 ŷA
vec(Yu)

vec(ıR̃22)

 =

 ⊕iR̃i

(IG ⊗Wu)S

(IG ⊗ ıR̃B)S

 δIU +

Ũ11 0 0

0 ˆ̃C ⊗ IMu 0

0 0 ˆ̃C ⊗ IMu


 vA

vec(Vu)

vec(ıV̂u)

 .

(3.24)

Given that the HQRD in (3.20a) is available, the RQD in (3.20b) will be re-computed, that is,
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Q̃H
u

Ũ11 0 0

0 ˆ̃C ⊗ IMu 0

0 0 ˆ̃C ⊗ IMu

 ˆ̃P = ˆ̃U =


ˆ̃U 11

ˆ̃U 12
ˆ̃U 13

0 ˆ̃U 22
ˆ̃U 23

0 0 ˆ̃U 33

 , (3.25)

where ˆ̃P ∈ R(κ+2GMu)×(κ+2GMu) is a unitary matrix and ˆ̃U ∈ C(κ+2GMu)×(κ+2GMu) is upper triangular

and non singular. The transformations in (3.25) are applied to (3.24). The resulting GLLSP is

solved in a way similar to (3.21). The iterative procedure is repeated until the estimate for Σ of

the previous and the current iteration converge.

4. Estimating the SEM after deleting observations

The downdating of the SEM is the problem of removing the effect of some observations from an

existing estimator. Namely, this is the case where rows of data are excluded after the estimation

procedure has been completed and hence a reduced observations model has to be estimated. Ob-

servations may have to be deleted when they are considered to be old and misleading, when they

have been shown to be outliers or for the identification of influential data [1, 7, 11, 35].

Assume that the 3SLS estimator of the SEM (1.1) has been computed and then some observa-

tions, say Md, will be deleted from each structural equation. This means that the 3SLS estimator

will have to be re-computed. Without loss of generality, consider that the last Md observations will

be deleted from each equation and let

Y =

(
Y̌
Yd

)
, X =

(
X̌
Xd

)
and E =

(
Ě
Ed

)
,

where Y̌ ∈ R(M−Md)×G, Yd ∈ RMd×G andX, E are partitioned conformably. Also let W̌ = (X̌ Y̌ ).

The downdated observations SEM to be estimated is given by

vec
(
Y̌
)

=
(
IG ⊗ W̌

)
SδD + vec

(
Ě
)
, vec

(
Ě
)
∼ (0,Σ⊗ IM−Md

) , (4.1)

which has the downdated 3SLS estimator

δ̂D3SLS =
(
ST
(
Σ̂−1 ⊗ W̌ TX̌(X̌TX̌)−1X̌TW̌

)
S
)−1

STvec
(
W̌ TX̌(X̌TX̌)−1X̌T Y̌ Σ̂−1

)
. (4.2)

Theorem 2 presents the theoretical pseudo SEM which is proved to be equivalent to the downdated
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SEM (4.1). The downdated observations 3SLS estimator in (4.2) is then derived recursively.

Theorem 2. The downdated observations 3SLS estimator in (4.2) is equivalent to the 3SLS esti-

mator of the pseudo SEM

 vec (X)
vec (ıYd)
vec
(
Ř22

)
 =

 IG ⊗W
IG ⊗ ıWd

IG ⊗ ŘB

SδD +

 vec (E)
vec (ıEd)

vec
(

˜̌Ed

)
 ,

 vec (E)
vec (ıEd)

vec
(

˜̌Ed

)
 ∼

0,

Σ⊗ IM 0 0
0 −Σ⊗ IMd

0
0 0 Σ⊗ IMd

 ,

(4.3)

where (4.3) Ř22 and ŘB are defined from the HQRD

Q̌H

(
R11 R12

ıXd ıYd

)
=

(
Ř11 Ř12

0 Ř22

)
=

(
ŘA

ŘB

)
. (4.4)

Here Q̌ is Φ̌-unitary with respect to the signature matrix Φ̌ = diag(IK ,−IMd
), R11, R12 are avail-

able from (2.1) and Ř11 ∈ RK×K is the upper triangular and non singular factor from the QRD of

X̌.

Proof. The 3SLS estimator in (4.2) is the GLS estimator of the TSEM

vec
(
X̌T Y̌

)
=
(
IG ⊗ X̌TW̌

)
SδD + vec

(
X̌T Ě

)
, vec

(
X̌T Ě

)
∼
(
0,Σ⊗ X̌TX̌

)
. (4.5)

after endogeneity has been eliminated in the downdated SEM (4.1). It holds that XTX = X̌TX̌ +

XT
dXd = RT

11R11 and also that XTY = X̌T Y̌ + XT
d Yd = RT

11R12 where they, respectively, give

X̌TX̌ = RT
11R11 −XT

dXd = ŘT
11Ř11 and X̌T Y̌ = RT

11R12 −XT
d Yd = ŘT

11Ř12. The above imply

the HQRD in (4.4). The downdated TSEM (4.5) is now written as

vec
(
Ř12

)
=
(
IG ⊗ ŘA

)
SδD + vec

(
ˇ̌E
)
, vec

(
ˇ̌E
)
∼ (0,Σ⊗ IK) . (4.6)

Based on the updating of the SEM (see (3.14)-(3.15)) it follows that

ŘT
AŘA =

RA

ıWd

ŘB

H

Ψ

RA

ıWd

ŘB

 and ŘT
AŘ12 =

RA

ıWd

ŘB

H

Ψ

R12

ıYd
Ř22

 , (4.7)

where Ψ = diag (IK ,−IMd
, IMd

). The latter implies the TSEM
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vec (R12)
vec (ıYd)
vec
(
Ř22

)
 =

 IG ⊗RA

IG ⊗ ıWd

IG ⊗ ŘB

SδD +

 vec
(
Ē
)

vec (ıEd)

vec
(

˜̌Ed

)
 ,

 vec
(
Ē
)

vec (ıEd)

vec
(

˜̌Ed

)
 ∼

0,

Σ⊗ IK 0 0
0 −Σ⊗ IMd

0
0 0 Σ⊗ IMd


(4.8)

or equivalently the pseudo SEM in (4.3). �

Analogously to Theorem 1, the relationships in Theorem 2 and (4.7) show the equivalence of

models (4.8) and (4.6) when the method of GLS is applied. Hence, the equivalence of the 3SLS

estimators of the pseudo SEM (4.3) and the downdated SEM (4.1) is proved.

To compute efficiently the 3SLS estimator of the proposed pseudo SEM in (4.8), consider the

following GLLSP

argmin
V̄ ,Vd,V̌d,δD

(∥∥V̄ ∥∥2
F
− ‖Vd‖2F +

∥∥V̌d∥∥2F) subject to

vec (R12)
vec (ıYd)
vec
(
Ř22

)
 =

 IG ⊗RA

IG ⊗ ıWd

IG ⊗ ŘB

SδD +

Ĉ ⊗ IK 0 0

0 Ĉ ⊗ IMd
0

0 0 Ĉ ⊗ IMd

vec
(
V̄
)

vec (ıVd)
vec
(
V̌d
)
 .

(4.9)

As in the case of the updating of the SEM, previous computations can be efficiently used for the

solution of (4.9). That is, if the orthogonal transformations from the GQRD (2.4a) - (2.4b) are

applied to the first block of rows in (4.9) and the solution of (2.5) is used, then the GLLSP (4.9) is

equivalent to

argmin
vA,Vd,V̌d,δD

(
‖vA‖2 − ‖Vd‖2F +

∥∥V̌d∥∥2F) subject to

vec (R12)
vec (ıYd)
vec
(
Ř22

)
 =

 ⊕iRi

IG ⊗ ıWd

IG ⊗ ŘB

SδD +

U11 0 0

0 Ĉ ⊗ IMd
0

0 0 Ĉ ⊗ IMd

 vA
vec (ıVd)
vec
(
V̌d
)
 .

The solution of the latter GLLSP is analogous to that of (3.19).

5. Numerical trials on a macroeconomic model

The effectiveness and practicability of the proposed method in estimating large-scale models

is illustrated. A series of experiments has been conducted for the recursive estimation of the US
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macroeconomic model developed by [9, 10]. Herein, the specification of the most recent version of

the US, the US+ and the Japan models is considered with 25, 116 and 10 equations, respectively‡.

The method of 3SLS is employed for the recursive estimation of these macroeconometric models.

The variables used are quarterly. For the purposes of investigating the effectiveness of the new

methods, synthetic data is used. It is assumed that there are available data spanning the period

1952:Q1 to 2015:Q4 for all three models, resulting in 256 observations.

Two methods have been considered, herein referred to as afresh (see Section 2) and recursive

(see Section 3.1). When new data arrive, the afresh method re-estimates the SEM using the full

data set whereas the proposed recursive method estimates the model using previous estimates and

the current data only. It is important to note that the afresh method is less computationally costly

than the standard 3SLS method which requires the inversion of the large covariance matrix of the

SEM [1, 20]. Figure 1 demonstrates the computational advantage of the recursive method when

compared with the afresh method. Firstly, it is assumed that the Japan, the US and the US+ models

have been estimated for the period 1952:Q1 up to 1994:Q4, giving 172 observations. Then as new

data arrive, the estimates of the models are updated to incorporate the new available information.

The times required by the two methods to update the model with the new data once they become

available, starting from 1995:Q1 up to the last available observation in 2015:Q4, are compared in

order to give the efficiency ratio shown in Figure 1. Moreover, leave-one-out experiments within the

context of cross-validation analysis and for the identification of influential observations have been

conducted. The conclusions reached are the same with those drawn from Figure 1.

The experimental results confirm that the new method for the recursive estimation of the SEM

outperforms other methods that estimate the model afresh. The results shown vary in the number

of structural equations (G) and the number of exogenous variables (K). It is shown that the

efficiency of the proposed method is more significant when G and K increase. Further investigation

demonstrates that the efficiency of the recursive method becomes more important as the number

of observations in the model (M) increases. Therefore, the practicability of the new method arises

when estimating multivariate models in high dimensions and when analysing big data sets. The

‡The latest version, as of writing this manuscript, is found in http://fairmodel.econ.yale.edu/mmm2.htm. The
specification of the US+ model is the one in its original form [9].
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Figure 1: Effectiveness (execution times ratio) of the afresh and recursive methods for the sequential estimation
of large-scale macroeconometric models which consist of 10, 25 and 116 stochastic equations. Results are presented
when the number of exogenous variables included in the models is K = 70, 100, 150. It is assumed that the models
are initially estimated using quarterly data for the period 1952:Q1 to 1994:Q4. Then the estimates are updated
recurrently once new observations arrive. The last available data point is assumed to be 2015:Q4 so that a total of
84 new observations are included in the model sequentially.

strategies employed for the efficient execution of the new method and further experimental results

are presented in the Appendix.

6. Conclusions

The aim has been to investigate thoroughly the recursive computation of the three-stage least

squares (3SLS) estimator of the simultaneous equations model (SEM) using matrix factorizations.

A novel method of updating the 3SLS estimator, when new observations are obtained, has been

developed. The numerical solution derived an alternative SEM where the original SEM is updated

with the extra observations and also with the factors that are required to purge the model of the

endogeneity effects of the additional observations. The result is a pseudo transformed SEM which

is free of endogeneity and can be estimated efficiently via the method of generalized least squares

(GLS). The GLS estimator, of the pseudo transformed SEM, yields the 3SLS estimator that would

be obtained if the original SEM was estimated afresh with all of the available data.

Within the context of developing numerically stable and computationally efficient algorithms,
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the new method derives the updated 3SLS estimator by considering the proposed pseudo model as

a generalized linear least squares problem. In updating the 3SLS estimates, orthogonal, hyperbolic

and unitary transformations are employed. This method not only solves the problem of recursively

estimating the SEM when new data become available, it also enables an algorithm to be developed

that can handle big data sets. The method has also been extended to allow observations to be

deleted. In addition, an iterative algorithm has been developed that uses the 3SLS residuals in

improving the initial estimates of the parameters. The proposed method can derive the 3SLS

estimator even when the dispersion matrix is singular.

The designed algorithms have been implemented based on computationally efficient strategies

that take advantage of the sparse structure of the SEM. Due to the structure of the SEM and

the proposed pseudo SEM, the computational experiments show that the proposed algorithms are

more efficient when the number of observations added to the model is smaller than the number of

exogenous variables.

Acknowledgements

The authors are grateful to the Editor, the referee amd D.S.G. Pollock for their valuable comments
and suggestions.

References

[1] David A. Belsley. Paring 3SLS calculations down to manageable proportions. Computer Science
in Economics and Management, 5(3):157–169, 1992.

[2] A. W. Bojanczyk, R. P. Brent, P. van Dooren, and F. R. de Hoog. A note on downdating the
Cholesky factorization. SIAM Journal on Scientific and Statistical Computing, 8(3):210–221,
1987.

[3] A. W. Bojanczyk and A. O. Steinhardt. Stabilized hyperbolic Householder transformations.
IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(8):1286–1288, 1989.

[4] Adam Bojanczyk, Nicholas J. Higham, and Harikrishna Patel. Solving the indefinite least
squares problem by hyperbolic QR factorization. SIAM Journal on Matrix Analysis and Ap-
plications, 24(4):914–931, 2003.

[5] Adam Bojanczyk, Sanzheng Qiao, and Allan O. Steinhardt. Unifying unitary and hyperbolic
transformations. Linear Algebra and its Applications, 316(13):183 – 197, 2000.

[6] Jean-Paul Chavas. Recursive estimation of simultaneous equation models. Journal of Econo-
metrics, 18(2):207 – 217, 1982.

18



[7] R. Dennis Cook. Detection of influential observation in linear regression. Technometrics,
19(1):15–18, 1977.

[8] Warren Dent. Information and computation in simultaneous equations estimation. Journal of
Econometrics, 4(1):89 – 95, 1976.

[9] Ray C. Fair. Testing Macroeconometric Models. Harvard University Press, Cambridge MA,
1994.

[10] Ray C. Fair. Estimating How the Macroeconomy Works. Harvard University Press, Cambridge
MA, 2004.

[11] Stella Hadjiantoni and Erricos J. Kontoghiorghes. Estimating large-scale general linear and
seemingly unrelated regressions models after deleting observations. Statistics and Computing,
forthcoming, 2016.

[12] Andrew C. Harvey and Garry D. A. Phillips. Statistical Analysis and Forecasting of Economic
Structural Change, chapter Testing for Structural Change in Simultaneous Equation Models,
pages 25–36. Springer Berlin Heidelberg, Berlin, Heidelberg, 1989.

[13] John Haslett. A simple derivation of deletion diagnostic results for the general linear model with
correlated errors. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
61(3):603–609, 1999.

[14] Stephen Haslett. Linear Algebra and Statistics: In Celebration of C. R. Rao’s 75th Birthday
(September 10, 1995) Updating linear models with dependent errors to include additional data
and/or parameters. Linear Algebra and its Applications, 237:329 – 349, 1996.

[15] Jerry A. Hausman. Chapter 7 specification and estimation of simultaneous equation models.
In Zvi Griliches and Michael D. Intriligator, editors, Handbook of Econometrics, volume 1 of
Handbook of Econometrics, pages 391 – 448. Elsevier, 1983.

[16] S. R. Jammalamadaka and D. Sengupta. Inclusion and exclusion of data or parameters in the
general linear model. Statistics & Probability Letters, 77(12):1235 – 1247, 2007.

[17] S.R. Jammalamadaka and D. Sengupta. Changes in the general linear model: A unified ap-
proach. Linear Algebra and its Applications, 289(1):225 – 242, 1999.

[18] L.S. Jennings. Simultaneous equations estimation: Computational aspects. Journal of Econo-
metrics, 12(1):23 – 39, 1980.

[19] G. G. Judge, W. E. Griffiths, C. H. Hill, H. Lütkepohl, and T.-C. Lee. The Theory and Practice
of Econometrics, 2nd Edition. Wiley, New York, 1985.

[20] Erricos J. Kontoghiorghes and Elias Dinenis. Computing 3SLS Solutions of simultaneous equa-
tion models with a possible singular variance-covariance matrix. Computational Economics,
10(3):231–250, August 1997.

[21] S. Kourouklis and C. C. Paige. A constrained least squares approach to the general Gauss-
Markov linear model. Journal of the American Statistical Association, 76(375):620–625, 1981.

[22] Hanyu Li, Hu Yang, and Hua Shao. Two-sided generalized hyperbolic QR factorization and
its perturbation analysis. Linear Algebra and its Applications, 438(3):1267 – 1292, 2013.

19



[23] Qiaohua Liu. Modified GramSchmidt-based methods for block downdating the Cholesky fac-
torization. Journal of Computational and Applied Mathematics, 235(8):1897 – 1905, 2011.

[24] Serge J. Olszanskyj, James M. Lebak, and Adam W. Bojanczyk. Rank-k modification methods
for recursive least squares problems. Numerical Algorithms, 7(2):325–354, 1994.

[25] C. C. Paige. Fast numerically stable computations for generalized linear least squares problems.
SIAM Journal on Numerical Analysis, 16(1):165–171, 1979.

[26] R. L. Plackett. Some theorems in least squares. Biometrika, 37(1-2):149–157, 1950.

[27] D.S.G. Pollock. Recursive estimation in econometrics. Computational Statistics & Data Anal-
ysis, 44(12):37 – 75, 2003.

[28] C. Rader and A. Steinhardt. Hyperbolic Householder transformations. IEEE Transactions on
Acoustics, Speech and Signal Processing, 34(6):1589 – 1602, 12 1986.

[29] Craig Riddell. Recursive Estimation Algorithms for Economic Research, pages 397–406. NBER,
July 1975.

[30] Barbara Rossi and Atsushi Inoue. Out-of-sample forecast tests robust to the choice of window
size. Journal of Business & Economic Statistics, 30(3):432–453, 2012.

[31] Michael Stewart and G. W. Stewart. On hyperbolic triangularization: Stability and pivoting.
SIAM Journal on Matrix Analysis and Applications, 19(4):847–860, 1998.

[32] Darrell A. Turkington. Matrix Calculus and Zero-One Matrices: Statistical and Econometric
Applications. Cambridge University Press, 2002.

[33] Peter C. Young. Recursive Estimation and Time-Series Analysis. Springer-Verlag, Berlin
Heidelberg, 2nd edition, 2011.

[34] Arnold Zellner and H. Theil. Three-stage least squares: Simultaneous estimation of simulta-
neous equations. Econometrica, 30(1):pp. 54–78, 1962.

[35] Junlong Zhao, Chenlei Leng, Lexin Li, and Hansheng Wang. High-dimensional influence mea-
sure. Ann. Statist., 41(5):2639–2667, 10 2013.

20


