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Abstract

Non-fundamentalness arises when current and past values of the observables do not con-

tain enough information to recover SVAR disturbances. Using Granger causality tests,

the literature suggested that several small scale SVAR models are non-fundamental and

thus not necessarily useful for business cycle analysis. We show that causality tests

are problematic when SVAR variables cross sectionally aggregate the variables of the

underlying economy or proxy for non-observables. We provide an alternative testing

procedure, illustrate its properties with Monte Carlo simulations, and re-examine a

prototypical small scale SVAR model.
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1 Introduction

Structural Vector Autoregressive (SVAR) models have been extensively used over the last 30

years to study sources cyclical fluctuations . The methodology hinges on the assumption that

structural shocks can be obtained from linear combinations of current and past values of the

observables. Non-fundamentalness arises when this is not the case. In a non-fundamental

system, structural shocks obtained via standard identification procedures may have little

to do with the true disturbances, even when identification is correctly performed, making

SVAR evidence unreliable.

Since likelihood or spectral estimation procedures can not distinguish fundamental vs.

non-fundamental Gaussian systems (see e.g. Canova (2007), page 114), it is conventional

in applied work to rule out all the non-fundamental representations that possess the same

second-order structure of the data. However, this choice is arbitrary. There are rational

expectation models (Hansen and Sargent, 1991), optimal prediction models (Hansen and

Hodrick, 1980), permanent income models (Fernández-Villaverde et al., 2007), news shocks

models (Forni et al., 2014), and fiscal foresight models (Leeper et al., 2013), where optimal

decisions may generate non-fundamental solutions. In addition, non-observability of certain

states or particular choices of observables may make fundamental systems non-fundamental.

Despite the far-reaching implications it has for applied work, little is known on how to

empirically detect non-fundamentalness. Following the lead of Lutkepohl (1991), Giannone

and Reichlin (2006) and Forni and Gambetti (2014) (henceforth, FG) suggest that, under

fundamentalness, external information should not Granger cause VAR variables. Using

such a methodology, FG and Forni et al. (2014) argued that several small scale SVARs are

non-fundamental, thus implicitly questioning the economic conclusions that are obtained.

Considering the popularity of small scale SVARs in macroeconomics, this result is disturbing.

This paper shows that Granger causality diagnostics may lead to spurious results in common

and relevant situations.

Why are there problems? Because of small samples, instabilities, identification or inter-
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pretation difficulties, one typically uses a small scale SVAR to examine the transmission of

relevant disturbances, even if the process generating the data (DGP) features many more

variables and shocks. But the shocks recovered by such SVAR systems are linear combina-

tions of a potentially larger set of primitive structural shocks driving the economy. Thus, any

variable excluded from the SVAR, but containing information about these primitive distur-

bances, predicts SVAR shocks (and thus Granger cause the endogenous variables), regardless

of whether the model is fundamental or not.

To illustrate the point, suppose we want to measure the effects of technology shocks on

economic activity. Small scale SVARs designed for this purpose typically include an aggregate

measure of labour productivity, hours, and a few other aggregate variables. Suppose that

what drives the economy are sector-specific, serially correlated productivity disturbances.

The technology shock recovered from an SVAR will be a linear transformation of current and

past sectoral productivity shocks. Since, e.g., sectoral capital or sectoral labour productivity

have information about sectoral disturbances, they will predict SVAR technology shocks,

both when the model is fundamental and when it is not.

A similar problem occurs when the SVAR features a proxy variable. For example, TFP

is latent and typical estimates are obtained from output, capital and hours worked data. If

capital and hours worked are excluded from the SVAR, any variable that predicts them will

Granger cause estimated TFP, regardless of whether the model is fundamental or not.

In general, whenever a small scale SVAR is used, aggregation rather than non-fundamentalness

may be the reason for why Granger causality tests find predictability. Thus, if non-fundamentalness

is of interest, it is crucial to have a testing approach which is robust to aggregation and non-

observability problems. We propose an alternative procedure, based on ideas of Sims (1972),

which is has this property and exploits the fact that, under non-fundamentalness, future

SVAR shocks predict a vector of variables excluded from the SVAR.

We perform Monte Carlo simulations using a version of the model of Leeper et al. (2013)

as DGP with capital tax, income tax, and productivity disturbances. We assume that the
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SVAR includes capital and an aggregate tax variable (or an aggregate tax rate computed from

revenues and output data) and show that our approach has good small sample properties. In

contrast, spurious non-fundamentalness arises with standard diagnostics. Absent aggregation

problems, our approach and a Granger causality test have similar small sample properties.

We re-examine the small scale SVAR employed by Beaudry and Portier (2006) designed

to measure the macroeconomic effects of news. We find that the model is fundamental

according to our test but non-fundamental according to a Granger causality diagnostic. We

show that the rejection of the null with the latter is due to aggregation: once coarsely

disaggregated TFP data is used in the SVAR, Granger causality no longer rejects the null of

fundamentalness. The dynamics responses to news shocks in the systems with aggregated

and disaggregated TFP measures are however similar (see also Beaudry et al. (2015)). Thus,

the SVAR disturbances the two systems recover are likely to be similar combinations of the

primitive structural shocks and, thus, not necessarily economically interpretable.

Two caveats need to be mentioned. First, our analysis is concerned with Gaussian

macroeconomic variables. For non-Gaussian situations, see Hamidi Saneh (2014) or Gourier-

oux and Monfort (2015). Second, although we focus on SVARs, our procedure also works

for SVARMA models, as long as the largest MA root is sufficiently away from unity.

The rest of the paper is organized as follows. Section 2 provides examples of non-

fundamental systems and highlights the reasons for why problem occurs. Section 3 shows

why standard tests may fail and propose an alternative approach. Section 4 examines the

performance of various procedures using Monte Carlo simulations. Section 5 investigates the

properties of a small scale SVAR system. Section 6 concludes.

2 A few example of non-fundamental systems

As Kilian and Lutkepohl (2016) highlighted, the literature has primarily focused on non-

fundamentalness driven by a mismatch between agents and econometricians information
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sets, because of omitted variables (see e.g. Giannone and Reichlin (2006), Kilian and Murphy

(2014)), or of the timing of news revelation (see e.g. Leeper et al. (2013) , Forni et al. (2014)).

However, there may be other reasons for why it emerges.

First, non-fundamentalness may be intrinsic to the optimization process and to the mod-

elling choices an investigator makes, see e.g. Hansen and Sargent, 1991). Optimizing models

producing non-fundamental solutions are numerous; the next example shows one.

Example 1. Suppose the dividend process is dt = et − aet−1, where a < 1, and suppose

stock prices are expected discounted future dividends: pt = Et
∑

j β
jdt+j, 0 < β < 1. The

equilibrium value of pt in terms of the dividends innovations is

pt = (1− βa)et − aet−1 (2.1)

Thus, even though the dividends process is fundamental (a < 1), the process for stock prices

could be non-fundamental if | (1−βa)
a
| < 1, which occurs when 1

1+β
< a. If a ≥ 0.5, any

economically reasonable value of β will make stock prices non-fundamental. On the other

hand, if we allow stock prices to have a bubble component ebt whose expected value is zero,

the vector (et, e
b
t) is fundamental for (dt, pt), regardless of the value of β. Thus, allowing for

bubbles in theory makes a difference as far as recovering dividend shocks from the data. �

Second, non-fundamentalness may be due to non-observability of some of the endogenous

variables of a fundamental model. The next example illustrates how this is possible.

Example 2. Suppose the production function (in logs) is:

Yt = Kt + et (2.2)

and the law of motion of capital is:

Kt = (1− δ)Kt−1 + aet (2.3)
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If both (Kt, Yt) are observable this is just a bivariate restricted VAR(1) and et is fundamental

for both (kt, yt). However, if the capital stock is unobservable, (2.2) becomes

Yt − (1− δ)Yt−1 = (1 + a)et + (1− δ)et−1 (2.4)

Clearly, if a < 0 and |a| < |δ|, et can not be expressed as a convergent sum of current

and past values of Yt and (2.4) is non-fundamental. In addition, if δ and a are both small,

(2.4) has a MA root close to unity and a finite order VAR for Yt poorly approximates the

underlying bivariate process; see also Ravenna (2007), and Giacomini (2013). �

Third, a particular variable selection may induce non-fundamentalness, even if the system

is, in theory, fundamental. Hansen and Hodrick (1980) showed that this happens when

forecast errors are used in a VAR. The next example shows a less known situation.

Example 3. Consider a standard consumption-saving problem. Let income Yt = et be a

white noise. Let β = 1
R
< 1 be the discount factor and assume quadratic preferences. Then:

Ct = Ct−1 + (1−R−1)et (2.5)

Thus, growth rate of consumption has a fundamental representation. However, if we setup

the empirical model in terms of savings, St ≡ Yt − Ct, the solution is

St − St−1 = R−1et − et−1 (2.6)

and the growth rate of saving is non-fundamental. �

In sum, there may be many reasons for why an empirical model may be non-fundamental.

Assuming away non-fundamentalness is problematic. Focusing on omitted variable or an-

ticipation problems is, on the other hand, reductive. One ought to have procedures able to

detect whether a SVAR is fundamental and, if it is not, whether violations are intrinsic to

theory or due to applied investigators choices.
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3 The Setup

Because in this section we need to distinguish the structural disturbances driving the fluc-

tuations in the DGP from the shocks a SVAR may recover, we use the convention that ”

primitive” structural shocks are the disturbances of the DGP and ”SVAR” structural shocks

those obtained with the empirical model.

We assume that the DGP for the observables can be represented by an n-dimensional

vector of stationary variables χt driven by s ≥ n serial and mutually uncorrelated primitive

structural shocks ςt.

Assumption 1. The vector χt satisfies

χt = Γ(L)Cςt

where C is a n× s matrix, Γ(L) =
∑∞

i=0 ΓiL
i, Γ0 = I, Γi’s are (n× n) matrices each i, L is

the lag operator, and
∑∞

i=0 Γ2
i <∞.

The DGP in (3) is quite general and covers, for example, stationary dynamics general

equilibrium (DSGE) models solved around a deterministic steady state or non-stationary

DSGEs solved around a deterministic or a stochastic balanced growth path. Stationarity is

assumed for convenience; the arguments we present are independent of whether χt stochas-

tically drifts or not. Assumption 1 places mild restrictions on the roots of Γ(L). In theory,

ςt could be fundamental for χt or not.

Given a typical sample, n the dimension of χt is generally large and Γ(L) is of infinite

dimension. Thus, for estimation and inferential purposes an applied investigator typically

confines attention to an m-dimensional vector xt, where Hx
t ⊂ H

χ
t , and Hj

t is the closed

linear span of {js : s ≤ t}, jt = (xt, χt)
1.

Assumption 2. The vector xt is driven by a m × 1 vector of mutually and serially

1The linear span is the smallest closed subspace which contains the subspaces.
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uncorrelated SVAR structural shocks ςx,t:

xt = Γx(L)Cxςt (3.1)

≡ Π(L)ut = Π(L)Dςx,t (3.2)

where m < n, Γx(L) is an m ×m matrix for every L, Cx is a also a m × s matrix, Π(L) =∑∞
i=0 ΠiL

i, Πi are m×m matrices for each i, Π0 = I,
∑∞

i=0 Π2
i <∞, D is an m×m matrix.

Equation (3.1) covers many cases of interest in macroeconomics. For example, xt may

contain a subset of the variables belonging to χt, linear combinations, regression residuals, or

forecast errors computed from the elements of χt. Thus, the framework includes the case of

a variable belonging to the DGP but unobserved and thus omitted from the empirical model

(as in example 2); the situation where the DGP has disaggregated variables but the empirical

model is set up in terms of aggregated variables; the case where the DGP has an unobservable

variable (e.g. total factor productivity) proxied by a linear combination of observables (i.e.

output, capital and labor); and the case where all DGP variables are observables (e.g.,

we have consumption data) but the empirical model contains linear combinations of the

observables (i.e. savings as in example 3).

Since the dimension of ςt is larger than the dimension of xt, cross-sectional aggregation

occurs. That is, the econometrician estimating an SVAR may be able to recover the m× 1

vector ςx,t from the reduced form residuals ut, but never the s × 1 vector ςt. For example,

the DGP may describe a small open economy subject to external shocks coming from many

countries, while the empirical model is specified so that only rest of the world variables are

used. If Γ(L) has a block exogenous structure, it may be possible to aggregate the vector

external shocks into one shock without contamination from other disturbances, see e.g. Faust

and Leeper (1988). However, even in this case, it is clearly impossible to recover the full

vector of country specific external disturbances.

Next, we provide the definition of fundamentalness for the empirical model (3.2) (see also
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Rozanov (1967)) and Alessi et al. (2011)).

Definition 1: An uncorrelated process {ut} is xt-fundamental if Hu
t = Hx

t for all t. It is

non-fundamental if Hu
t ⊂ Hx

t and Hu
t 6= Hx

t , for at least one t.

The empirical model (3.2) is fundamental if and only if all the roots of the determinant of

the Π(L) polynomial lie outside the unit circle in the complex plane - in this caseHu
t = Hx

t , for

all t. Alternatively, the model is fundamental if it is possible to express ut as a convergent sum

of current and past xt’s. Fundamentalness is closely related to the concept of invertibility:

the latter requires that no root of the determinant of Π(L) is on or inside the unit circle.

Since we consider stationary variables, the two concepts are equivalent in our framework.

In standard situations, there is a one-to-one mapping between the ut and ςt and thus

examining the fundamentalness of ut provides information about the fundamentalness of ςt.

When the mapping is not one-to-one but the relationship between ut and ςt has a particular

structure, it may be possible to find conditions insuring that when ut is fundamental for xt,

ςt is fundamental for χt, see e.g. Forni et al. (2009). In all other situations, many of which

are of interest, knowing the properties of ut for xt may tells us little about the properties

of the primitive shocks ςt for χt.

Note that, although ςx,t are linear combination of ςt, they may still be economically

interesting. An aggregate TFP shock may be meaningful, even if the sectoral TFP shocks

drive the economy, as long as several sectoral TFP disturbances produce similar dynamics

for the variables of the SVAR. On the other hand, it is not generally true that a fundamental

shock is necessarily structurally interpretable (this occurs, for example, when the wrong D

matrix is used to recover ςx,t from a fundamental ut).

3.1 Standard approaches to detect non-fundamentalness

Checking whether a Gaussian VAR is fundamental or not is complicated because the likeli-

hood function or the spectral density can not distinguish between a fundamental and a non-

fundamental representations. Earlier work by Lippi and Reichlin (1993, 1994) informally
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compared the dynamics produced by fundamental and selected non-fundamental representa-

tions. Giannone and Reichlin (2006) proposed to use Granger causality tests. The procedure

works as follows. Suppose we augment xt with a vector of variables ytxt
yt

 =

Π(L) 0

B(L) C(L)


ut
vt

 (3.3)

where vt are specific to yt and orthogonal to ut Assume that all the roots of the determinant

of B(L) are outside the unit circle. If (3.2) is fundamental, ut = Π(L)−1xt, and

yt = B(L)Π(L)−1xt + C(L)vt (3.4)

where B(L)Π(L)−1 is a one-sided in the non-negative powers of L. Thus, under fundamen-

talness, yt is a function of current and past values of xt, but xt does not depend on yt. Hence,

to detect non-fundamentalness one can check whether xt is predicted by lags of yt.

While such an approach is useful to examine whether there are variables omitted from

the empirical model, it is not clear whether it can reliably detect non-fundamentalness when

shock aggregation is present. The reason is that cross-sectional aggregation is not innocuous.

For example, Chang and Hong (2006) show that aggregate and sectoral technology shocks

behave quite differently and Sbrana and Silvestrini (2010) show that volatility predictions

are quite different depending on the degree of cross sectional aggregation of the portfolio one

considers. The next example shows that aggregation may lead to spurious conclusions when

using Granger causality to test for fundamentalness in small scale SVARs.

Example 4. Suppose the DGP is given by the following trivariate process:

χ1t = ς1t + b1ς1t−1 + aς2t + aς3t (3.5)

χ2t = aς1t + ς2t + b2ς2t−1 + aς3t + ς4t (3.6)

χ3t = aς1t + aς2t + ς3t + b3ς3t−1 − ς4t (3.7)
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where ςt = [ς1t, ς2t, ς3t, ς4t]
′ ∼ iid(0, diag(Σς)) and a ≤ 1.

Suppose an econometrician sets up a bivariate empirical model with x1t = χ1t and x2t =

0.5(χ2t + χ3t). Thus, the second variable is an aggregated version of the last two variables

of the DGP. The process generating xt is

xt =

 x1t

x2t

 =

 1 + b1L a a

a 0.5((a+ 1) + b2L) 0.5((a+ 1) + b3L)




ς1t

ς2t

ς3t

 (3.8)

Because with two endogenous variables one can recover at most two shocks, the econometri-

cian implicitly estimates:

xt =

 x1t

x2t

 =

 1 + b1L a

a 1 + cL


 u1t

u2t

 (3.9)

where σ2
u1 = σ2

ς1. Letting ρ0 + ρ1L ≡ [0.5(a + 1) 0.5(a + 1)] + [0.5b2 0.5b3]L, and Σ̂ς =

diag{σ2
ς2, σ

2
ς3}, c and σ2

u2 are obtained from:

E(x2tx
′
2t) ≡ γ(0) = ρ0Σ̂ςρ

′
0 + ρ1Σ̂ςρ

′
1 = (1 + c2)σ2

u2 (3.10)

E(x2tx
′
2t−1) ≡ γ(1) = ρ1Σ̂ςρ

′
0 = cσ2

u2 (3.11)

These two conditions can be combined to obtain the quadratic equation:

c2γ(1)− cγ(0) + γ(1) = 0 (3.12)

Given γ(0), γ(1) (3.12) can be used to compute the solution for c and then σ2
u2 = c−1γ(1).

Since ut in (3.9) is a white noise, it is unpredictable using ut−s (or xt−s), s > 0. However,

it can be predicted using ςt−s, even when ut is fundamental. In fact, letting c∗ be the
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fundamental solution of (3.12) and using (3.8) and (3.9) have:

u2t = (1 + c∗L)−1[ρ0ς̂t + ρ1ς̂t−1]

= ρ0ς̂t + c∗ρ0ς̂t−1 + (c∗)2ρ0ς̂t−2 + (c∗)3ρ0ς̂t−3 + · · ·

+ ρ1ς̂t−1 + c∗ρ1ς̂t−2 + (c∗)2ρ1ς̂t−3 + (c∗)3ρ1ς̂t−4 + · · · (3.13)

where ς̂ = [ς2t, ς3t]
′. Since χ2t−s and χ3t−s carry information about ςt−s, lags of yt = [χ2t, χ3t]

predict ut, and thus xt. Notice that in terms of equation (3.3), ς4t plays the role of vt. �.

To gain intuition for why predictability tests give spurious results notice that (3.13)

implies (1 + c∗L)u2t = ρ0ς̂t + ρ1ς̂t−1. Thus, under aggregation, estimated SVAR shocks are

linear functions of current and past primitive structural shocks, making them predictable

using any variable which has information about the lags of the primitive structural shocks.

This occurs even if the VAR is correctly specified (i.e. it is there are sufficient lags to recover

ut as in (3.9)). In standard SVARs without aggregation, the condition corresponding to

(3.13) is ut = ρςt. Thus, absent misspecification, lags of yt will not predict ut.

Granger causality tests have been used by many as a tool to detect misspecification in

small scale VARs. For example, if a serially correlated variable is omitted from the VAR,

the ut the econometrician recovers are serially correlated and thus predictable using any

variable correlated with the omitted one, see e.g. Canova et al. (2010). When they are

applied to systems like those in example 4, causality tests detect misspecification but for the

wrong reason. The VAR system is fundamental, the ut derived from (3.9) are white noise,

but Granger causality tests reject the predictability null because aggregation has created a

particular correlation structure in SVAR shocks.

Example 4 also clearly highlights that the concepts of predictable, fundamental, and

structural shocks are distinct. The ut’s in (3.9) are predictable, regardless of whether they

are fundamental or not. In addition, ut = ςx,t are structural, in the sense that the responses

of x1t to ut and to ςit, i = 1, 2, 3, are similar even ut are predictable. Finally, ut may be
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non-fundamental (if c, the non-fundamental solution of (3.12) is used in (3.13)), even if they

are structural.

A similar outcome obtains if the empirical model contains, e.g., an estimated proxy for an

observable variable or residuals computed from the elements of χt. Suppose (x1t = χ1t, x2t =

χ1t − γ1χ2t − γ2χ3t)
′, and γ1, γ2 are (estimated) parameters. For example, x2t are Solow

residuals and γ1, γ2 are the labor and the capital shares. The process generating xt is:

xt =

 1 + b1L a a 0

(1− γa− (1− γ)a)− b1L (a− γ − a(1− γ))− b2L (a− γa− (1− γ))− b3L) −γ1 + γ2




ς1t

ς2t

ς3t

ς4t


(3.14)

As before, the econometrician estimates (3.9). Also in this situation, ut is unpredictable

using ut−s or xt−s. However, lags of any yt constructed as noisy linear transformation of

[χ2t, χ3t] predict ut, even when it is fundamental for xt.

In sum, the existence of variables that Granger cause xt may have nothing to do with

fundamentalness. What is crucial to create spurious results is that SVAR shocks linearly

aggregate the information contained in current and past primitive structural shocks.

Although to some readers example 4 may look special, it is not. We next formally show

that predictability obtains, in general, under linear cross-sectional aggregation. This together

with the fact that small scale SVARs are generally used in business cycle analysis, even when

the DGP may feature a large number of primitive structural shocks, should convince skeptical

readers of the relevance of example 4. Proposition 1 shows that the class of moving average

models is closed with respect to linear transformations and Proposition 2 that aggregated

moving average models are predictable.
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Proposition 1. Let χ1t be a zero-mean MA(q1) process:

χ1t = ς1t + Φ1ς1t−1 + Φ2ς1t−2 + · · ·+ Φq1ς1t−q1 ≡ Φ(L)ς1t (3.15)

with E(ς1tς1t−j) = σ2
1 if j = 0 and 0 otherwise,and let χ2t be a zero-mean MA(q2) process:

χ2t = ς2t + Ψ1ς2t−1 + Ψ2ς2t−2 + · · ·+ Ψq2ς2t−q2 ≡ Ψ(L)ς2t (3.16)

with E(ς2tς2t−j) = σ2
2 if j = 0 and 0 otherwise. Assume that χ1t and χ2t are independent at

all leads and lags. Then

xt = χ1t + γχ2t = ut + Π1ut−1 + Π2ut−2 + · · ·+ Πqut−q ≡ Π(L)ut (3.17)

where q = max{q1, q2}, γ is a vector of constants, and ut is a white noise process.

Proof: The proof follows from Hamilton (1994), page 106.�

Proposition 2. Let xt be an m-dimensional process obtained as in Proposition 1. Then

ς1t−s and ς2t−s, s ≥ 1 Granger cause xt.

Proof: It is enough to show that

P
[
xt|xt−1, xt−2, · · · , ς1t−1, ς1t−2, · · · , ς2t−1, ς2t−2, · · ·

]
6= P

[
xt|xt−1, xt−2, · · ·

]
when the model is fundamental, where P is the linear projection operator. Here Hx

t = Hu
t .

Hence, it suffices to show that ut is Granger caused by lagged values of ς1t and ς2t. That is

P
[
ut|ut−1, ut−2, · · · , ς1t−1, ς1t−2, · · · , ς2t−1, ς2t−2, · · ·

]
6= P

[
ut|ut−1, ut−2, · · ·

]
From Proposition 1, we have that Π(L)ut = Φ(L)ς1t+Ψ(L)ς2t, and therefore ut = Π(L)−1Φ(L)ς1t+

Π(L)−1Ψ(L)ς2t, where Π(L)−1 exists since the model is fundamental. Hence, Π(L)−1Φ(L)
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and Π(L)−1Ψ(L) are one-sided polynomial in the non-negative powers of L and

P[ut|ut−1, ut−2, · · · , ς1t−1, ς1t−2, · · · , ς2t−1, ς2t−2, · · · ] = P[ut|ς1t−1, ς1t−2, · · · , ς2t−1, ς2t−2, · · · ] 6= 0

where the equality follows from ut being a white noise process. �

Thus, although ut in (3.17) is unpredictable given own lagged values, it can be predicted

using lagged values of ς1t and ς2t because the information contained in the histories of ς1t

and ς2t is not optimally aggregated into ut.

While the analysis is so far concerned with the fundamentalness of the vector ut, it is

common in the VAR literature to focus attention on just one shock, see e.g. Christiano et al.

(1999) or Gaĺı (1999). The next example shows when one can recover a shock from current

and past values of the observables, even when the system is non-fundamental.

Example 5. Consider the following systems

x1,t = u1t (3.18)

x2,t = u1t + u2t − 3u2t−1

x1,t = u1t − 2u2t−1 (3.19)

x2,t = u1t−1 + u2t−1

Both systems are non-fundamental - the determinants of the MA matrix are 1 − 3L, and

L(1 − 2L) respectively, and they both vanish for L < 1. Thus, it is impossible to recover

ut = (u1t, u2t) from current and lagged xt = (x1,t, x2,t)
′. However, while in the first system

u1t can be obtained from x1,t, in the second system no individual shock can not be obtained

from linear combinations of current and past xt’s. �

A necessary condition for a SVAR shock to be an innovation is that it is orthogonal to

the past values of the observables. FG suggest that a shock derived as in the first system of
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example 5 is fundamental if it is unpredictable using (orthogonal to the) lags of the principal

components obtained from variables belonging to the econometrician’s information set.

Three important points need to be made about such an approach. First, fundamentalness

is a property of a system not of a single shock. Thus, orthogonality tests are, in general,

insufficient to assess fundamentalness. Second, as it is clear from example 5, when one shock

can be recovered, it is not the shock that creates non-fundamentalness in the first place.

Finally, an orthogonality test has the same shortcomings as a Granger causality test. It will

reject the null of unpredictability of a SVAR shock using disaggregated variables or factors

providing noisy information about them, when the SVAR shock is a linear combinations of

primitive disturbances, for exactly the same reasons that Granger causality tests fail.

3.2 An alternative approach

In this section we propose an alternative testing approach that we expect to have better

properties in the situations of interest in this paper. To see what the procedure involves

suppose we still augment (3.2) with a vector of additional variables yt = B(L)ut + C(L)vt.

If (3.2) is fundamental, ut can be obtained as from current and past values of xt

ut = xt −
r∑
j=1

ωjxt−j (3.20)

where ω(L) = Π(L)−1 and r is generally finite. Thus, under fundamentalness yt only depends

on current and past values of ut. If instead (3.2) is non-fundamental, ut can not be recovered

from the current and past values of the xt. A VAR econometrician can only recover u∗t =

xt −
∑r

j=1 ω
∗
jxt−j, where ω(L)∗ = Π(L)−1θ(L)−1, which is related to ut via

u∗t = θ(L)ut (3.21)
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where θ(L) is a Blaschke matrix 2. Thus, the relationship between yt and the shocks recovered

by the econometrician is yt = B(L)θ(L)−1θ(L)ut+C(L)vt ≡ B(L)∗u∗t +C(L)vt. Since B(L)∗

is generally a two-sided polynomial, yt depends on current, past and future values of u∗t .

This proves the following proposition.

Proposition 3. The system (3.2) is fundamental if u∗t+j, j ≥ 1 fails to predict yt.

Example 6. To illustrate proposition 3, let xt = (1− 2.0L)ut, then:

xt = (1− 2.0L)
(1− 0.5L)

(1− 2.0L)

(1− 2.0L)

(1− 0.5L)
ut ≡ (1− 0.5L)u∗t (3.22)

where u∗t = (1−2.0L)
(1−0.5L)ut. Let yt = (1− 0.5L)ut + (1− 0.6L)vt. Then

yt = (1− 0.5L)
(1− 0.5L)

(1− 2.0L)
u∗t + (1− 0.6L)vt

=
∞∑
j=0

(1/2)j((1− 0.5L)2u∗t+j) + (1− 0.6L)vt−j (3.23)

Two points about our testing procedure need to be stressed. First, Sims (1972) has

shown that xt is exogenous with respect to yt if future values of xt do not help to explain yt.

Similarly here, a VAR system is fundamental if future values of xt (ut) do not help to predict

the variables yt, excluded from the empirical model. Thus, although the null tested here and

with Granger causality is the same, aggregation/non-observability problems may make the

testing results different. Second, our approach is likely to have better size properties, when

SVAR shocks are linear functions of lags of primitive shocks, because yt generally contains

more information than xt - under fundamentalness, future values of ut will not predict yt.

Note also that our test is sufficiently general to detect non-fundamentalness due to structural

causes, omitted variables, or the use of proxy indicators.

2Blaschke matrices are complex-valued filters. The main property of Blaschke matrices is that they take
orthonormal white noises into orthonormal white noises. See Lippi and Reichlin (1994) for more details.
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4 Some Monte Carlo evidence

To evaluate the small sample properties of traditional predictability tests and of our new

procedure, we carry out a simulation study using a version of the model of Leeper et al.

(2013), with two sources of tax disturbances. The representative household maximizes:

E0

∞∑
t=0

βt log(Ct) (4.1)

subject to

Ct + (1− τt,k)Kt + Tt ≤ (1− τt,y)AtKα
t−1 = (1− τt,y)Yt (4.2)

where Ct, Kt, Yt, Tt, τt,k and τt,y denote time-t consumption, capital, output, lump-sum

transfers, investment tax and income tax rates, respectively; At is a technology disturbance

and Et is the conditional expectation operator. To keep the setup tractable, we assume

full capital depreciation. The government sets tax rates randomly and adjusts transfers to

satisfy Tt = τt,yYt + τt,kKt. The Euler equation and the resource constraints are:

1

Ct
= αβEt

[(1− τt+1,y)

(1− τt,k)
1

Ct+1

At+1K
α
t

Kt

]
(4.3)

Ct +Kt = AtK
α
t−1 (4.4)

Log linearizing, combining (4.3) and (4.4), we have

K̂t = αK̂t−1 +
∞∑
i=0

θiEtÂt+i+1 − κk
∞∑
i=0

θiEtτ̂t+i,k − κy
∞∑
i=0

θiEtτ̂t+i+1,y (4.5)

where κk = τk(1−θ)
(1−τk)

, κy = τy(1−θ)
(1−τy) , θ = αβ 1−τy

1−τk
, K̂t ≡ log(Kt)− log(K), Ât ≡ log(At)− log(A),

τ̂t,k ≡ log(τt,k) − log(τk), τ̂t,y ≡ log(τt,y) − log(τy) and lower case letters denote percentage

deviations from steady states.

We posit that technology and investment tax shocks are iid: Ât = ςt,A, τ̂t,k = ςt,k; and
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that the income tax shock is a MA(1) process: τ̂t,y = ςt,y + bςt−1,y. Then (4.5) is:

K̂t = αK̂t−1 + ςt,a − κkςt,k − κybςt,y (4.6)

We assume that an econometrician observes K̂t and an aggregate tax variable:

τ̂t = ωτ̂t,y + τ̂t,k = ςt,k + ω(ςt,y + bςt−1,y) (4.7)

where ω controls the relative weight of income taxes in the aggregate. Alternatively, one can

assume that investment and income tax revenues are both observables, but an econometrician

works with a weighted sum of them. If (K̂t, τ̂t) are the variables the econometrician uses in

the VAR, our design covers both the cases of aggregation and of a relevant latent variable.

In fact, the DGP for the observables is:

(1− αL)K̂t

τ̂t

 =

1 −κk −κyb

0 1 ω(1 + bL)



ςt,a

ςt,k

ςt,y

 ≡ Γx(L)Cxςt (4.8)

while the process recoverable by the econometrician is

(1− αL)K̂t

τ̂t

 =

1 ρ

0 1 + cL


ut,1
ut,2

 ≡ Π(L)ut (4.9)

where σ2
1 = σ2

a while c, σ2
2, ρ are obtained from:

c2 − c((1 + b2)/b+ σ2
k/(ω

2bσ2
y)) + 1 = 0 (4.10)

σ2
2 = bω2σ2

y/c (4.11)

ρ = −
√

(ω2κ2yb
2σ2

y + κ2kσ
2
k)/σ

2
2 (4.12)
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By comparing (4.9) and (4.8), one can see that the aggregate tax shock ut,2 will produce the

same qualitative dynamic response in K̂t as the investment and the income tax shocks but

the scale of the effect will be altered. Depending on the size of ω, the aggregate shock will

looks more like the income or the investment tax shock. For the exercises we present, we let

ςt,a, ςt,k, ςt,y ∼ iid N(0, 1); set α = 0.36, β = 0.99, τy = 0.25, τk = 0.1, ω = 1 and vary b so

that c ∈ (0.1, 0.8) (fundamentalness region) or c ∈ (2, 9) (non-fundamentalness region).

To perform the tests, we need additional data not used in the empirical model (4.9). We

assume that an econometrician observes a panel of 30 time series generated by:

(1− 0.9L)yi,t = ςt,a + γiςt,y + (1− γi)ςt,k + ξi,t, i = 1, · · · , 30 (4.13)

where ξi,t ∼ iid N(0, σ2
ξ ), and γi is Bernoulli, taking value 1 with probability 0.5.

The properties of our procedure, denoted by CH, are examined with the regression:

ft =

p1∑
j=1

φjft−j +

p2∑
j=0

ψ−jut−j +

q∑
j=1

ψjut+j + et (4.14)

where ft is a s× 1 vector of principal components of (4.13) and ut is estimated using

xt =
r∑
j=1

ρjxt−j + ut (4.15)

where xt = (τ̂t, K̂t)
′. The null is HCH

0 : RΨ = 0, where Ψ = Vec[ψ1, ψ2, · · · , ψq], R is a

matrix of zeros and ones. We report the results for p1 = 4, p2 = 0, q = 2, r = 4.

To examine the properties of Granger causality tests, denoted by GC, we employ

xt =

p1∑
j=0

φjxt−j +

p2∑
j=1

ϕjft−j + et (4.16)

where again xt = (τ̂t, K̂t)
′. The null is HGC

0 : RΦ = 0 where Φ = Vec[ϕ1, ϕ2, · · · , ϕp2 ] and R

is a matrix of zeros and ones. We report results for p1 = 4, p2 = 2.
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To perform an orthogonality test, denoted by OR, we first estimate (4.15) with r = 4.

The tax shock, ut,τ , is identified as the only one affecting τ̂t. Then, in the regression

ut,τ =

p2∑
j=1

λjft−j + et (4.17)

the ortogonality null is HOR
0 : RΛ = 0 where Λ = Vec[λ1, λ2, · · · , λq] and R is a matrix of

zeros and ones. We report results for p2 = 2.

To maintain comparability, all null hypotheses are tested using an F-test, setting s = 3

and σ2
ξ = 1 and no correction for generated regressors in (4.14) and (4.17). The appendix

present results for the CH test when other values of p2, σ
2
ξ , s, and q are used. We set T = 200,

which is the length of the time series used in section 5, and T = 2000.

To better understand the properties of the tests, we also run an experiment with no

aggregation problems. Here τk,t = 0,∀t, so that the DGP for capital and taxes is

(1− αL)K̂t

τ̂t

 =

1 −κyb

0 (1 + bL)


ςt,a
ςt,y

 (4.18)

and the process for the additional data is

(1− 0.9L)yi,t = ςt,a + γiςt,y + ξi,t, i = 1, · · · , n (4.19)

The percentage of rejections of the null in 1000 replications when the model is funda-

mental are in tables 1 and 2. Our procedure is undersized (it rejects less than expected

from the nominal size) but its performance of independent of the nominal confidence level

and the sample size. Granger causality and orthogonality tests are prone to spurious non-

fundamentalness. This is clear when T=2000; in the smaller sample predictability due to

aggregation is somewhat harder to detect.

Why are traditional predictability tests rejecting the null much more than one would

21



Table 1: Size of the tests: aggregation, T=200

c 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

CH
10%
5%
1%

1.5
0.8
0.1

1.3
0.5
0.1

0.5
0.1
0.1

0.6
0.3
0.2

1.4
0.3
0.1

1.7
0.9
0.2

1.2
0.4
0.1

1.7
1.1
0.1

GC
10%
5%
1%

13.1
7.5
2.0

15.1
8.2
2.7

16.5
9.5
2.2

15.8
9.2
3.1

19.5
11.2
4.3

27.4
15.5
5.8

38.9
26.7
10.9

55.1
42.2
19.6

OR
10%
5%
1%

5.2
2.9
0.1

5.7
2.3
0.5

5.3
2.9
0.6

6.2
2.5
0.2

6.5
3.5
0.2

6.2
2.3
0.7

8.5
4.2
0.7

13.2
6.5
1.6

Notes: The table reports the percentage of rejections of the null hypothesis in 1000 replications
when there is aggregation; CH is the test proposed in this paper; OR is the orthogonality test;
GC is the Granger causality test. The length of the vector of principal components used in the
testing equation is s=3.

Table 2: Size of the tests: aggregation, T=2000

c 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

CH
10%
5%
1%

0.1
0.1
0.1

0.4
0.2
0.1

0.2
0.2
0.1

0.1
0.1
0.1

0.2
0.1
0.1

0.1
0.1
0.1

1.9
1.0
0.1

9.5
4.2
0.8

GC
10%
5%
1%

83.3
75.3
49.7

86.6
75.1
44.7

88.8
76.3
46.0

92.4
83.9
58.7

98.1
96.1
83.9

99.9
99.8
98.6

100
100
100

100
100
100

OR
10%
5%
1%

34.0
21.4
7.4

30.1
18.5
6.8

29.4
18.5
7.3

30.2
19.0
6.4

41.7
27.9
9.0

52.1
36.0
13.0

81.0
66.4
34.9

99.1
96.5
81.8

Notes: The table reports the percentage of rejections of the null hypothesis in 1000 replications
when there is aggregation; CH is the test proposed in this paper; OR is the orthogonality test;
GC is the Granger causality test. The length of the vector of principal components used in the
testing equation is s=3.
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Table 3: Size of the tests: no aggregation, T=200

c 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

CH
10%
5%
1%

2.5
1.1
0.1

1.7
0.6
0.1

2.5
0.6
0.2

1.6
1.2
0.1

1.5
0.5
0.1

2.3
0.8
0.1

2.8
1.2
0.2

2.6
1.0
0.3

GC
10%
5%
1%

11.4
5.6
1.3

10.5
5.0
1.0

13.3
6.2
1.6

13.5
8.2
1.6

10.9
5.3
1.1

14.8
7.4
2.0

15.5
9.2
2.4

28.4
19.8
6.1

OR
10%
5%
1%

4.4
1.7
0.2

5.1
1.3
0.1

5.3
2.8
0.5

4.7
2.2
0.3

4.0
1.3
0.1

6.4
2.3
0.6

6.2
2.6
0.6

8.9
4.9
1.8

Notes: The table reports the percentage of rejections of the null hypothesis in 1000 replications
when there is no aggregation; CH is the test proposed in this paper; OR is the orthogonality
test; GC is the Granger causality test. The length of the vector of principal components used
in the testing equation is s=3.

Table 4: Size of the tests: no aggregation, T=2000

c 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

CH
10%
5%
1%

0.9
0.3
0.1

1.3
0.5
0.1

1.0
0.5
0.1

0.9
0.3
0.1

0.5
0.2
0.1

1.0
0.3
0.1

1.3
0.5
0.1

6.0
3.8
1.7

GC
10%
5%
1%

13.2
7.4
1.6

13.3
8.0
1.9

15.6
8.7
2.5

14.8
9.0
3.1

18.2
11.1
3.0

26.7
16.3
5.2

53.8
41.2
19.4

99.8
99.3
95.3

OR
10%
5%
1%

3.9
1.3
0.3

5.2
3.2
0.7

5.6
1.7
0.4

4.8
1.8
0.4

4.2
1.7
0.2

6.8
3.2
0.4

8.7
4.8
1.2

20.9
17.8
6.0

Notes: The table reports the percentage of rejections of the null hypothesis in 1000 replications
when there is no aggregation; CH is the test proposed in this paper; OR is the orthogonality
test; GC is the Granger causality test. The length of the vector of principal components used
in the testing equation is s=3.
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Table 5: Power of the tests: aggregation, T=200

c 2 3 4 5 6 7 8 9

CH
10%
5%
1%

99.9
99.5
98.7

100
100
100

100
100
100

100
100
100

100
100
100

100
100
100

100
100
100

100
100
100

GC
10%
5%
1%

100
100
100

100
100
100

100
100
100

100
100
100

100
100
100

100
100
100

100
100
100

100
100
100

OR
10%
5%
1%

100
100
100

100
100
100

100
100
100

100
100
100

100
100
100

100
100
100

100
100
100

100
100
100

Notes: The table reports the percentage of rejections of the null hypothesis in 1000 replications
when there is aggregation; CH is the test proposed in this paper; OR is the orthogonality test;
GC is the Granger causality test. The length of the vector of principal components used in the
testing equation is s=3.

Table 6: Power of the tests: no aggregation, T=200

c 2 3 4 5 6 7 8 9

CH
10%
5%
1%

100
100
100

100
100
100

100
100
100

100
100
100

100
100
100

100
100
100

100
100
100

100
100
100

GC
10%
5%
1%

100
100
100

100
100
100

100
100
100

100
100
100

100
100
100

100
100
100

100
100
100

100
100
100

OR
10%
5%
1%

100
100
100

100
100
100

100
100
100

100
100
100

100
100
100

100
100
100

100
100
100

100
100
100

Notes: The table reports the percentage of rejections of the null hypothesis in 1000 replications
when there is no aggregation; CH is the test proposed in this paper; OR is the orthogonality
test; GC is the Granger causality test. The length of the vector of principal components used
in the testing equation is s=3.
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expect from the nominal size? The answer is obtained recalling equation (3.13). ut are

linear combinations of current and past values of Ât, τ̂t,k, τ̂t,y while ft are linear combinations

of Ât, τ̂t,k, τ̂t,y and ξi,t, ı = 1, . . . , 30. Since τ̂t,k is serially correlated, lags of ft may help to

predict xt even when lags of xt are included, in particular, when the draws for γi are small.

It is known that Granger causality tests have poor size properties when xt is persistent,

see e.g. Ohanian (1988). Tables 3 and 4 disentangle aggregation from persistence problems:

since they have been constructed absent aggregation, they report size distortions due to

persistent data. It is clear that, when b > 0.6, the size of Granger causality tests is distorted.

To properly run such tests, the lag length p1 of the testing equation must be made function

of the (unknown) persistence of the DGP. However, when b > 0.8, distortions are present

even if p1 = 10. The orthogonality test performs better because it preliminary filters xt with

a VAR. Thus, high serial correlation in xt is less of a problem.

Comparing the size tables constructed with and without aggregation, one can see that

the properties of the CH test do not depend on the presence of aggregation or the persistence

of the DGP. On the other hand, aggregation make the properties of Granger causality and

orthogonality tests significantly worse.

Tables 5 and 6 report the empirical power of the tests when T=200 with and without ag-

gregation. All tests are similarly powerful to detect non-fundamentalness when it is present,

regardless of the confidence level and the nature of the DGP. Although not reported for

reasons of space, the power of the three tests is unchanged when T=2000.

The additional tables in the appendix indicate that the size properties of the CH test

are insensitive to the selection of three nuisance parameters: the variance of the shocks to

the additional data σ2
ξ , the number of principal components used in the testing equation

s, and the number of leads of the first stage residuals used in the testing equation q. On

the other hand, the choice of p2, the number of lags of the first stage residuals used in the

testing equations, matters. This is true, in particular, when the persistence of the DGP

increases and is due to the fact that with high persistence, r=4 is insufficient to whiten
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the first stage residual, and the presence of serial correlation in ut makes its future values

spuriously significant. To avoid this problem in practice, we recommend users to specify the

testing equation with only leads of ut. Alternatively, if lags of ut are included, r should be

large to insure that serial correlation in the first stage residuals is negligible.

5 Reconsidering a small scale SVAR

Standard business cycle theories assume that economic fluctuations are driven by surprises in

current fundamentals, such as aggregate productivity or the monetary policy rule. Motivated

by the idea that changes in expectations about future fundamentals may drive business

fluctuations, Beaudry and Portier (2006) study the effect of news shocks on the real economy

using a SVAR that contains stock prices and TFP.

Since models featuring news shocks have solutions displaying moving average components,

empirical models with a finite number of lags may be unable to capture the underlying

dynamics, making the SVARs considered in the literature prone to non-fundamentalness. In

addition, Forni et al. (2014) provide a stylized Lucas tree model where perfectly predictable

news to the dividend process may induce non-fundamentalness in a VAR system comprising

the growth rate of stock prices and the growth rate of dividends. The solution of their model,

when news come two periods in advance is:

∆dt

∆pt

 =

 L2 1

β2

1−β + βL β
1−β


ς1t
ς2t

 ≡ C(L)ςt (5.1)

where dt are dividends, pt are stock prices, 0 < β < 1 is the discount factor. Since |C(L)|

vanishes for L = 1 and L = −β, ut is non-fundamental for (∆dt,∆pt). Intuitively, this

occurs because agents’ information set, which includes current and past values of structural

shocks, is not aligned with the econometrician’s information set, which includes current and

past values of the growth rate of dividends and stock prices. The fundamental and non-
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Table 7: Testing fundamentalness: VAR with TFP growth and stock prices growth.

PC=3 PC=4 PC=5 PC=6 PC=7 PC=8 PC=9 PC=10
sample 1960-2010

CH 0.05 0.08 0.03 0.15 0.13 0.08 0.14 0.13
GC 0.02 0.00 0.04 0.01 0.00 0.00 0.00 0.00

Fernald data, sample 1960-2005
GC(agg) 0.02 0.16 0.22 0.00 0.00 0.02 0.01 0.01
GC(dis) 0.17 0.52 0.54 0.11 0.09 0.17 0.25 0.34

Wang data, sample 1960-2009
GC(agg) 0.05 0.02 0.11 0.03 0.00 0.00 0.00 0.00
GC(dis) 0.37 0.38 0.51 0.40 0.27 0.28 0.27 0.23

Notes: The table reports the p-value of the tests; CH is the test proposed in this paper; GC
is the Granger causality test; the row GC(agg) reports the results of the test using aggregate
data, the row GC(dis) the results of the test using disaggregated data; PC is the number of
principal component in the auxiliary regression. In CH test the number of leads tested is two
and the preliminary VAR has 4 lags. In GC test the lag length of the VAR is chosen with BIC
and two lags of the principal components are used in the tests.

fundamental dynamics this model generates in response to news shocks are similar because

the root generating non-fundamentalness (L = −β) is near unity, see also Beaudry et al.

(2015). In general, the properties of the SVAR the econometrician considers depend on the

process describing the information flows, on the variables observed by the econometrician

and those included in the SVAR.

To reexamine the evidence we estimate a VAR with the growth rates of capacity adjusted

TFP and of stock prices for the period 1960Q1 to 2010Q4, both of which are taken from

Beaudry and Portier (2014) and we use the same principal components as in Forni et al.

(2014). Table 7 reports the p−values of the tests, varying the number of principal components

employed in the auxiliary regression, which enter in first difference in all the tests. In the CH

test, the testing model has four lags of the PC and we are examining the predictive power

of 2 leads of the VAR residuals. In the GC test the lag length of the VAR is chosen by BIC

and two lags of the principal components are used in the tests.

The CH test finds the system fundamental and, in general, the number of PC included in
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the testing equations does not matter. In contrast, a Granger causality test rejects the null

of fundamentalness. Since the VAR includes TFP, which is a latent variable, and estimates

are obtained from an aggregated production function, differences in the results could be due

to aggregation and/or non-observability problems.

To verify this possibility we consider a VAR where in place of utilization adjusted ag-

gregated TFP we consider two different utilization adjusted sectoral TFP measures. The

first was constructed by John Fernald at the Federal Reserve Bank of San Francisco, and is

obtained using the methodology of Basu et al. (2013), which produces time series for pri-

vate consumption TFP, private investment TFP, government consumption and investment

TFP and ’ net trade” TFP. The second panel of table 7 presents results obtained in a VAR

which includes consumption TFP (obtained aggregating private and public consumption),

investment TFP (obtained aggregating private and public investments) and net trade TFP,

all in log growth rates, and the growth rate of stock prices. Because the data ends in 2005,

the first row of the panel reports the p-values of a Granger causality test for the original

bivariate system restricted to the 1960-2005 sample.

As an alternative, we use the utilization adjusted industry TFP data constructed by

Christina Wang at the Federal Reserve Bank of Boston. We reaggregate industry TFPs

into manufacturing, services and ’others’ sectors, convert the data from annual to quarterly

using a polynomial regression and use the growth rate of these three variables together with

the growth rate of stock prices in the VAR. The third panel of table 7 presents results

obtained with this VAR. Because the data ends in 2009, the first row of the panel reports

the p-values of a Granger causality test for the original bivariate system restricted to the

1960-2009 sample.

Granger causality tests applied to the original bivariate system estimated over the two

new samples still find the VAR non-fundamental. When the test is used in the VARs with

sectoral/industry TFP measures, the null of non-fundamentalness is instead not rejected for

all choices of vectors of principal components. Since this result holds when we enter the
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sectoral/industry TFP variables in level rather than growth rates, when we allow for a break

in the TFP series, and when we use only two sectoral/industry TFP variables in the VAR,

the conclusion is that a Granger causality test rejects the null in the original VAR because of

aggregation problems. The diagnostic of this paper, being robust to aggregation problems,

correctly identifies the original bivariate VAR as fundamental.

Clearly, if the DGP is a truely sectoral model, the shocks and the dynamics produced

by both the bivariate and the four variable VAR systems are likely to be averages of the

shocks and dynamics of the primitive economy, which surely includes more than two or four

disturbances. The interesting question is whether the news shocks extracted in the two and

four variable systems produce different TFP responses.

For illustration, figure 1 reports the responses of stock prices and of TFP to standard-

ized technology news shocks in the original VAR and in the four varibale VAR with Fernald

disaggregated TFP measures. For the four variable VAR we only present the responses of

investment TFP since the responses of the other two TFP variables are insignificantly differ-

ent from zero. It is clear that the conditional dynamics in the two systems are qualitatively

similar and statistically indistinguishable. Nevertheless, median responses are smaller, un-

certainty is more pervasive, and the hump in the TFP response muted in the larger system.

Hence, cross sectional aggregation does not change much the dynamics but makes TFP re-

sponses artificially large and more precisely estimated. Researchers often construct models

to quantitatively match the dynamics induced by shocks in small scale VARs. Figure 1

suggests that the size and the persistence of the structural shocks needed to produce the

aggregate evidence are probably smaller than previously agreed upon.

6 Conclusions

Small scale SVAR models are often used in empirical business cycle analyses even though

the economic model one thinks has generated the data has a larger number of variables
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Figure 1: Responses to technology news shocks

Note: The dotted regions report pointwise 68 % credible intervals; the solid line is the pointwise median

response. The x-axis reports quarters, the y-axis the response of the level of the variable in deviation from

the predictable path.

and shocks. In this situation, SVAR shocks are linear transformations of current and past

primitive structural shocks perturbing the economy. SVAR shocks might be fundamental or

non-fundamental, depending on the details of the economy, the information set available to

the econometrician, and the variables chosen in the empirical analysis. However, variables

providing noisy information about the primitive structural shocks will Granger cause SVAR

shocks, even when the SVAR is fundamental. A similar problem arises when SVAR variables

proxy for latent variables. We conduct a simulation study illustrating that spurious non-

fundamentalness may indeed occur when the SVAR used for the empirical analysis is of

smaller scale than the DGP of the data.

We propose an alternative testing procedure which has the same power properties as

existing diagnostics when non-fundamentalness is present, but does not face aggregation

or non-observability problems when the system is fundamental. We also show that the
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procedure is robust to specification issues and to nuisance features. We demonstrate that a

Granger causality diagnostic finds that a bivariate SVAR measuring the impact of news is

non-fundamental, while our test finds it fundamental. The presence of an aggregated TFP

measure in the SVAR explains the discrepancy. When sectoral TFP measures are used, a

Granger causality diagnostic also finds the SVAR fundamental.

A few lessons can be learned from our paper. First, Granger causality tests may give

misleading conclusions when testing for fundamentalness whenever aggregation or non-

observability problems are present. Second, to derive reliable conclusions, one should have

fundamentalness tests that are insensitive to specification and nuisance features. The test

proposed in this paper satisfies both criteria; those present in the literature do not. Finally,

if one is willing to assume that the DGP is a particular structural model, the procedure

described Sims and Zha (2006) can be used to check if a particular VAR shock can be re-

covered from current and past values of the observables, therefore by-passing the need to

check for fundamentalness. However, when the DGP is unknown, the structural model one

employs misspecified, or the exact mapping from the DGP and the estimated SVAR hard

to construct, procedures like ours can help researchers to understand whether small scale

SVARs are good starting points to undertake informative business cycle analyses.
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Appendix

This appendix reports the size of the CH test when nuisance parameters are varied. We

change the number of lags of first stage residuals in the auxiliary regression p2; the variance

of the error in the DGP for the additional variables, σ2
ξ ; the number of principal components

used in the auxiliary regressions, s, the number of leads of the first stage residuals in the

auxiliary regression q. Tables with power are omitted, since they identical to those reported

in the text.

Table A1: Size of the CH test, aggregation, varying p2

c 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

p2 = 4
10%
5%
1%

11.2
2.5
1.6

13.5
2.3
1.9

14.5
2.5
1.2

13.3
2.2
1.6

14.8
2.9
2.2

20.1
4.6
4.1

29.0
6.1
6.2

44.1
11.9
12.3

p2 = 2
10%
5%
1%

10.5
5.8
1.8

13.2
7.1
2.0

12.1
5.4
0.9

12.5
6.0
1.1

14.1
7.6
2.1

19.3
12.2
3.2

27.0
15.9
5.7

40.8
29.7
12.5

Notes: The table reports the percentage of rejections of the null hypothesis in 1000 replications
when there is aggregation, T=200, and three principal components of the large dataset are
considered; p2 represents the number of lags in the testing equation (4.14).
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Table A2: Size of the CH-test, aggregation, varying σ2
ξ

c 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
10% 2.20 1.80 1.70 2.10 1.60 2.10 1.80 3.00

σ2
ξ = 4 5% 1.10 0.70 0.40 0.60 0.50 1.00 0.60 0.90

1% 0.30 0.10 0.10 0.00 0.00 0.20 0.20 0.10

10% 1.00 0.70 0.20 0.80 0.50 1.50 0.60 1.10
σ2
ξ = 0.25 5% 0.50 0.40 0.10 0.20 0.40 0.50 0.30 0.30

1% 0.00 0.20 0.00 0.10 0.00 0.00 0.10 0.10

Notes: The table reports the percentage of rejections of the null hypothesis in 1000 replications
when there is aggregation, T=200, and three principal components of the large dataset are
considered; σ2ξ is the variance of the idiosyncratic error in the DGP for additional data.

Table A3: Size of the CH test, aggregation, varying s

c 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
10% 1.10 1.10 0.30 0.60 0.80 1.00 1.00 1.70

s = 2 5% 0.50 0.50 0.00 0.30 0.40 0.50 0.10 0.60
1% 0.10 0.10 0.00 0.10 0.00 0.10 0.00 0.10

10% 1.70 1.80 0.70 1.80 1.40 1.90 1.40 2.50
s = 4 5% 0.80 0.70 0.10 0.60 0.50 0.60 0.50 1.10

1% 0.20 0.10 0.00 0.10 0.00 0.20 0.10 0.10

Notes: The table reports the percentage of rejections of the null hypothesis in 1000 replications
when there is aggregation, T=200, and three principal components of the large dataset are
considered; s is the length of the vector of factors in the testing equation (4.14).
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Table A4: Size of the CH test, aggregation, varying q

c 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
10% 1.80 3.10 2.40 1.90 2.00 2.60 1.60 3.70

q = 1 5% 0.70 1.40 0.80 0.30 0.70 1.50 0.70 2.10
1% 0.00 0.10 0.00 0.00 0.40 0.10 0.30 0.50

10% 1.20 0.80 0.50 0.70 0.90 1.20 0.60 1.80
q = 2 5% 0.40 0.20 0.20 0.30 0.30 0.50 0.30 0.80

1% 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.10

Notes: The table reports the percentage of rejections of the null hypothesis in 1000 replications
when there is aggregation, T=200, and three principal components of the large dataset are
considered; q represents the number of leads in the testing equation (4.14).
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