The Evolution and Testing of a Medium Sized
Numerical Package

David Barnes and Tim Hopkins
Computing Laboratory, University of Kent, Canterbury,
Kent, CT2 TNF, U.K.

February 18, 2000

ABSTRACT We investigate the evolution of a medium sized software
package, LAPACK, through its public releases over the last six years
and establish a correlation, at a subprogram level, between a simply
computable software metric value and the number of coding errors
detected in the released routines. We also quantify the code changes
made between issues of the package and attempt to categorize the
reasons for these changes.

We then consider the testing strategy used with LAPACK. Currently
this consists of a large number of mainly self-checking driver programs
along with sets of configuration files. These suites of test codes run a
very large number of test cases and consume significant amounts of
cpu time. We attempt to quantify how successful this testing strategy
is from the viewpoint of the coverage of the executable statements
within the routines being tested.

1 Introduction

Much time, effort and money is now spent in the maintenance and
upgrading of software; this includes making changes to existing code
in order to correct errors as well as adding new code to extend func-
tionality. Some sources suggest that as much as 80% of all money
spent on software goes on post-release maintenance [Hat98]. When
any type of change is made, programmers need to have enough un-
derstanding of the code to be confident that any changes they make
do not have a detrimental effect on the overall performance of the

i

ii

software. All too often a change that fixes one particular problem
causes the code to act incorrectly in other circumstances.

We are interested in investigating whether it is possible, via the
use of some quantitative measurements, to determine which parts of
a software package are the most difficult to understand and thus,
probably, the most likely to contain undetected errors and the most
likely to cause further problems if subjected to code changes and
updates.

Prior work in this area ([Hop96] and [Hop97b]) has shown that,
for a number of rather simple codes, software metrics can be used
successfully to identify problem routines in a library of Fortran sub-
routines. This paper extends this work by applying it to a much
larger body of code which has gone through a number of revisions
both to extend functionality and to correct errors. This allows us to
identify where it has been necessary to make changes to the code
and why, and to correlate the occurrence of errors in the software
with the values of a particular software metric.

Our hope is that it will be possible to identify, prior to its release,
whether a package contains subprograms which are likely to provide
future maintenance problems. This would allow authors to rethink
(and possibly reimplement) parts of a package in order to simplify
logic and structure and, hence, improve maintainability and under-
standability. Our ultimate goal is to be able to improve the quality
and reliability of released software by automatically identifying fu-
ture problem subprograms.

LAPACK [ABB"95] was an NSF supported, collaborative project
to provide a modern, comprehensive library of numerical linear al-
gebra software. It contains software for the solution of linear sys-
tems; standard, non-symmetric and generalized eigenproblems; lin-
ear least squares problems and singular value decomposition. The
package serves as an efficient update to the Eispack ([SBD*76] and
[GBDMT77]) and Linpack [DMBS79] libraries that were developed
in the 1970’s. The complete package is available from netlib (see
http://www.netlib.org/bib/mirror.html for information as to where
your nearest server is). Mostly written in standard Fortran 77 [ANS79],
LAPACK uses the BLAS Level 2 [DDHH88] and Level 3 [DDDH90]
routines as building blocks. LAPACK both extends the functional-
ity and improves the accuracy of its two predecessors. The use of
block algorithms helps to provide good performance from LAPACK

iii

routines on modern workstations as well as supercomputers and the
project has spawned a number of additional projects which have pro-
duced, for example, a distributed memory [BCC*97] and a Fortran
90 [WD98] version of at least subsets of the complete library.

An integral part of the complete software package is the very ex-
tensive test suite which includes a number of test problems scaled at
the extremes of the arithmetic range of the target platform. Such a
test suite proved invaluable in the porting exercise which involved the
package being implemented on a large number of compiler/hardware
combinations prior to its release.

In section 2, following a short introduction to LAPACK, we pro-
vide a detailed analysis of the size of the package and the extent of
the source changes made between successive versions. We also cate-
gorize all the changes made to the executable statements and obtain
a count of the number of routines that have had failures fixed. We
then report on a strong connection between the size of a relatively
simple software code metric and a substantial fraction of the routines
in which failures have been corrected.

In section 4 we look quantitatively at how well the testing material
supplied with the package exercises the LAPACK code and suggest
how the use of a software tool may improve this testing process.
Finally we present our conclusions.

2 The LAPACK Library Source Code

The LAPACK routines consist of both user callable and support pro-
cedures; in what follows we do not differentiate between these. The
source directory of the original release, 1.0, consisted of 930 files (only
two files, dlamch and slamch contain more than one subprogram; the
six routines in each of these files being used to compute machine pa-
rameters for the available double and single precision arithmetics).
Table 1 shows how the number of files has increased with successive
releases of the package along with the release dates of each version.

A number of straightforward metrics exist for sizing software, for
example, the number of lines in the source files. This is somewhat
crude and we present in Table 2 a more detailed view of the size
of the package. The column headed ‘executable’ shows the number
of executable statements in the entire package whilst that headed
‘non-exec’ gives the number of declarative and other non-executable

iv

Version | No. of files Release Date
1.0 930 | 29 February 1992
1.0a 932 | 30 June 1992

1.0b 932 | 31 October 1992
1.1 1002 | 31 March 1993

2.0 1080 | 30 September 1994

TABLE 1. Number of library source files for each released version

statements. The third column gives the total number of code state-
ments being the sum of the previous two columns. The final two
columns provide the total number of comment lines in the code and
the total number of blank lines and blank comment lines.

The large number of non-executable statements is partially due
to the use of the NAGWare 77 declarization standardizer [Num92]
which generates separate declaration blocks for subroutine argu-
ments, local variables, parameter values, functions, etc. This is actu-
ally no bad thing as it aids the maintenance of the code by allowing a
reader to immediately identify the type and scope of each identifier.
A ratio of executable to non-executable statements of 1.8 is, how-
ever, on the low side, as this implies that there are relatively small
amounts of code packaged amidst large quantities of declarations
which generally makes code difficult to read and assimilate.

Comments form an important part of the documentation of any
software and this is especially the case for LAPACK where the de-
scription of the arguments to all procedures (both user callable and
internal) is detailed enough to allow the use of the routine without
the need for a separate printed manual. This accounts for the high
level of commenting, around 1.5 non-blank comments per executable
line. There is also heavy use of blank comment lines (or totally blank

Version | Executable Non-exec Lines | Comments Blank
1.0 59684 35010 94694 143249 52581
1.0a 59954 35104 95058 143439 52679
1.0b 59897 34876 94773 142185 52243
1.1 67473 38312 105785 156077 57516
2.0 76134 41986 118120 169813 62618

TABLE 2. Statement counts by type

Version | Operators Operands | Total | % Increase
1.0 370784 325907 | 696691

1.0a 371605 326524 | 698129 0.02
1.0b 370928 326089 | 697017 —0.02
1.1 415626 364816 | 780442 11.9
2.0 468487 411122 | 879609 12.7

TABLE 3. Total number of operators and operands

lines); such lines act as an aid to readability within both the textual
information and the source code.

A more detailed view of code size may be obtained by consider-
ing the operators and operands that make up the source. These are
defined abstractly in Halstead [Hal77] and there appears to be no
general agreement as to which language tokens are considered oper-
ators and which operands for any particular programming language.
The values given in Table 3 were generated using the nag metrics
tool [Num92] which defines an operator to be

e a primitive operator, for example, x, +, .EQ., . AND. etc,

e a statement which counts as an operator, for example, ASSIGN,
IF, ELSE IF, GOTO, PRINT, READ and WRITE,

e a pair of parentheses, an end-of-statement, or a comma,
and operands as

e constants,

e name of variables and constants,

e strings (all strings are considered distinct from each other).

Thus the declarative part of any program is ignored by this metric
as it is not considered to add to the complexity of the code.

At each new version of the package complete routines were added
and deleted and changes were made to routines that were common
to both the new and previous versions. Table 4 show the distribution
of affected routines. Changes to program units common to succes-
sive versions have been categorized depending on whether only com-
ments, only non-comments, or both comments and non-comments
were changed. This shows that although there were textual changes

vi

Changed
Version ~ Added Deleted Total c/only s/only Both

1.0 —1.0a 2 0 147 75 34 38
1.0a—1.0b 2 2 339 236 33 70
1.0b—1.1 72 2 570 554 0 16
1.1 —=2.0 84 6 634 279 128 227

TABLE 4. Routine changes at each version

to 1690 routines over the four revisions 1144 of these involved changes
to comment lines only (this accounts for 64% of all the changed rou-
tines).

We analyzed the routines that had been changed between releases
by running the two versions through the Unix file comparison tool
diff and processing the output to count the number of changed com-
ment and non-comment statements.

Diff classifies changes in three ways, lines in the new version that
did not appear in the old (App), lines in the old version that did
not appear in the new (Del) and blocks of lines that have changed
between the two (Changes). Table 5 gives the totals for comment
and non-comment statements according to the categories for all the
changed routines at each version. It should be noted here that some
changes to statements are due to changes in statement labels which
occur when a label is either inserted or deleted and the code is
passed through the NAGWare Fortran 77 source code formatter,
nag_polish [Num92]. In a few cases diff exaggerates the number of
changes due to synchronization problems which may occur if a line
happens to be repeated or sections of code are moved. No attempt
was made to compensate for this; indeed it may be argued that a
move of a section of code should be treated as both a delete and an
add. Resynchronization problems appeared to be relatively few and
far between and, it was felt, they were unlikely to perturb the final
results by more than a few percent. In all cases comment changes re-
flecting the new version number and release date have been ignored.

Finally Table 6 gives a breakdown of the non-comment and com-
ment lines added and deleted via complete routines between releases.

Although the release notes made available with each new revision
gave some details of which routines had had bug fixes applied to them
this information was far from complete. It is not safe to assume that

vii

Comments Non-comments
Changes Changes
Version | Del App (old/new) | Del App (old/new)
1.0 —1.0a | 38 134 550/484 | 69 312 775/808
1.0a—1.0b | 258 605 2183/1573 | 384 593 1325/1722
1.0b—1.1 | 227 70 9428/8354 | 34 36 724/752
1.1 —2.0 | 541 527 4393/4688 | 449 730 2363/2274

TABLE 5. Interversion statement changes from diff

all non-comment code changes are necessarily bug fixes. In order to
determine the nature of the changes to routines at each release, a
visual inspection of each altered single precision complex and double
precision real routine was conducted using a graphical file difference
tool [BRWS8S8]. As a result we have categorized the code changes
between all at each revision as being one of

i: enhanced INFO checks or diagnostics and INFO bug fix (usually an
extended check on the problem size parameter N),

pr: further uses of machine parameters (for example, the use of
DLAMCH(’Precision’) in DLATBS at version 1.0a to derive plat-
form dependent values),

c: cosmetic changes (for example, the use of DLASET in place of
DLAZRO in the routine DPTEQR at version 2.0),

en: enhancement (for example, the addition of equilibration func-
tionality to the routine CGBSVX at version 1.0b),

ef: efficiency change (for example, the quick return from the routine
CGEQPF in the case when M or N is zero at version 1.1),

Added Deleted
Version Com Non-com | Com Non-com
1.0 —1.0a 160 86 0 0
1.0a—1.0b 99 65 | 160 86
1.0b—1.1 14351 10196 | 160 86
1.1 —2.0 13770 12248 311 129

TABLE 6. Added and deleted routines by comment and non-comment lines

viii

re: removal of redundant code (for example, a CABS2 calculation in
CGEEQU was not required and was removed at version 1.0a),

mb: minor bug (typically a few lines of changed code; for example,
the changes made to DLAGS2 at version 2.0 to add an additional
variable and to modify a conditional expression to use it),

Mb: major bug (a relatively large code change; for example, the
changes made to the routine DSTEQR at version 2.0).

Such a classification provides a much firmer base from which to inves-
tigate a possible correlation between complexity and coding errors.

Routines in the LAPACK library are in one of four precisions; sin-
gle or double precision, real or complex. While the single and double
precision versions of a routine can generally be automatically gen-
erated from one another using a tool like nag_apt [Num92]|, the real
and complex parts of the package are often algorithmically quite dif-
ferent. For this reason we only consider the single precision complex
and the double precision real routines in the remaining sections of
this paper. These routines may be identified by their name starting
with either a C (single precision complex) or a D (double precision
real).

3 The Path Count Metric

Table 7 provides a summary of the number of single precision com-
plex and double precision real routines that fall into each category for
successive releases of the package. We were interested in discovering
whether there was any relationship between those routines needing
bug fixes and any software complexity metric values. One metric, a
version of Nejmeh’s path count metric [Nej88], is calculated by the
QA Fortran tool [Pro92]. This metric is an estimate of the upper
bound on the number of possible static paths through a program
unit (based solely on syntax). Note that some paths so defined may
not be executable but such impossible routes cannot usually be de-
termined by simple visual inspection. The path count complexity of
a function is defined as the product of the path complexities of the
individual constructions. Thus, for example, the path complexity of a
simple if-then-else statement is 2 while three consecutive if-then-else
statements would have an associated value of 2% = 8. Three nested

ix

1.0a 1.0b 1.1 20

c,D C,D C,D C,D
mb |9, 9 12,9 1, 3 16,14
Mb |3, 3 1,1 0,0 1,2
re [2,0 1,1 0,0 0,0
i [3, 5 810 1,1 9,9
pr [3,4 1,0 0, 0 34
em [0, 0 55 0, 0 1,2
ef [0, 0 3,1 1,1 1,1
¢ [1, 0 0,1 0, 1 10515

TABLE 7. Number of routines affected by each category of source code
change

if statements would have a path count of 4. This metric provides a
useful measure of the effort required to test the code stringently as
well as giving an indication of code comprehensibility and maintain-
ability. A reduction in the path count caused by restructuring code
would imply the elimination of paths through the code which were
originally either impossible to execute or irrelevant to the compu-
tation. This would be likely to reduce the time spent in the testing
phase of the software development. An example of the use of this
metric to identify problem code within a small library of relatively
small Fortran routines may be found in [Hop96] and [Hop97a).

The metric value returned by the package has a maximum value of
5 x 10° although, realistically, a program unit can be classified as too
complex to test fully when this value exceeds 10°. Table 8 gives the
number of routines in which faults were correlated against the value
of the path metric. (We differentiate here between routines that were
introduced before version 2 and those that were added at version
2 and cannot, therefore, have had source changes applied to them.)
This data clearly shows a high correlation between routines identified
as complex by the path count metric and those having had bug fixes
applied to them. 41% of all the bugs occurred in routines with a
path count metric in excess of 10° and these routines constitute
just 16% of the total number of subprograms making up the library.
The chance of a bug occurring in these routines would appear to be
around 6 times more likely than in routines with a path count of less
than 10°. It should also be noted that a large number of the routines
added at version 2.0 have extremely large path counts and, from

|log;o(Path Counts) | %
>8 7 6 &5 <5|>5H

v2.0 5 1 0 4 26 28
<2.0 10 6 10 8 285 16
Faults 8 3 7 3 30 41

Y%routines | 80 50 70 37 11 —
TABLE 8. Occurence of Faults against Path Count Metric

our current analysis, we would expect a high percentage of these to
require patches to be applied in forthcoming releases.

4 Testing

The test suite forms an integral part of the LAPACK software pack-
age. The code was designed to be transportable; all new LAPACK
code was to be portable while efficiency of the package as a whole
was to be platform dependent. This was achieved by coding in stan-
dard Fortran 77 [ANST79] for portability of the higher level routines
and using platform specific versions of the BLAS to obtain high ef-
ficiency. Thus, by using the BLAS Levels 2 and 3 definition codes
([DDHHS8S8], [DDDH90]) the entire package may be made portable
at the price of suboptimal execution speed.

Two test suites are provided with the released package; one for
checking the installation and the other for producing platform depen-
dent timings. All the tests are self checking in that the only output
that a user has to check is in the form of summaries of the number of
tests applied to each user routine along with the number of successes
and counts and details of any failures.

Matrix data is either generated randomly or specially constructed
(see [DM89] for more details). In both cases the testing software uses
a metric to decide whether each computed solution is ‘correct’. Test
cases are also generated to exercise the routines on data at the ex-
tremes of the floating point arithmetic ranges. The number, and to
a minor extent, the range of tests applied, may be controlled by the
user at a data file level. However this generally precludes the user
from forcing execution through specific sections of the code which
usually requires specially constructed data. To all intents and pur-
poses the test strategy must be categorized as white box (or glass
box) testing, where test cases are selected by considering their effect

xi

Basic %
Routines Blocks Executed

C install 258 12019 89.56
C timing 124 5324 72.84
D install 263 12852 89.20
D timing 143 6615 72.41

TABLE 9. Basic block execution for installation and timing test suites

on the code rather than just testing their adherence to the specifi-
cation as is the case with black box testing.

We were interested in determining quantitatively how effective this
strategy was in exercising the code. The minimal requirement of a
test suite should be to ensure that all the executable statements in
the package are executed at least once. Note that this is very different
from path coverage as defined earlier.

We used the NAGWare 77 source code instrumenter and execu-
tion analysis tools nag_profile and nag_history [Num92| to determine
cumulatively the number of times each basic block was executed. (A
basic block is a straight line section of code, i.e., it does not contain
any transfer of control statements.) This allowed us to determine how
many basic blocks were not exercised by the test suite. We ran the
instrumented code on both the installation and timing test suites.

Table 9 compares the number and percentage of basic blocks exe-
cuted using both test suites.

Further analysis showed that of the 1388 unexecuted blocks, 214
(15.4%) were concerned with the checking of input arguments. The
worst case was the routine, DGEGS, used for computing the general
Schur factorization which has 48% of its basic blocks untested.

We looked in detail at the routine DGBBRD. This routine consisted of
111 basic blocks containing 124 executable statements. The installa-
tion test omitted to cover 13 basic blocks of which 11 were concerned
with checking the consistency of the input arguments. The final two
were in the main body of the code.

The code operates on a banded, rectangular (M x N), matrix
where the user provides the number of sub- and super-diagonals, K L
and KU respectively. The configuration file used to provide data for
this routine specified M, N and K, the total bandwidth. Code within
the test routine then splits K into KL and KU. Although a total of
1500 calls are made to DGBBRD the test data failed to generate the

xii

special case M = N = 2, KU = 0 and KL > 0. The problem was
that with M and N both greater than zero the code to set KL and
KU could not generate KU = 0 and KL > 0. Providing data for
a separate test is straightforward and the two previously untested
blocks executed successfully.

As well as using the profiling information from nag_profile to iden-
tify the basic blocks of code that were not being executed by the test
data, we can also use it to check that individual tests (or batches of
tests) actually contribute to the overall statement coverage. Ideally
we would like to minimize the number of test cases being run to
obtain maximum coverage. We note here that it may not be possi-
ble to exercise 100% of the basic blocks, for example, there may be
defensive code that exits if convergence is not attained although no
numerical examples are known which trip this condition.

Using DGBBRD again as our example, we obtained individual basic
block coverage profiles for each of the 20 M and N pairs (each pair
generates a number of calls to the routine for different KL and KU
values). It was found that two of these 20 tests covered 83 of the
98 executed blocks and four could be chosen to cover all 98. The
effect of using just this minimal number of tests was to reduce the
execution time for testing this routine by a factor of four without
any loss of code coverage. A further reduction in the execution time
could be made by reducing the number of (KL, KU) pairs chosen
for a given (M, N) pair.

The above analysis could be applied to all the test drivers in order
to reduce the total number of tests being executed whilst maximizing
the code coverage.

5 Conclusion

We have analyzed the source code changes made between successive
versions of the LAPACK software library and we have presented
strong evidence that the path count software metric is a good indi-
cator of routines that are likely to require post release maintenance.
We note that many of the newly introduced routines have metric
values indicative of problem code.

By using a profiling tool we have been able to measure how well
the installation testing software, provided with the package, executes
the LAPACK sources. The coverage is extremely good although we

xiii

believe that it could be improved further. In addition we have shown
that, from the point of view of code coverage, many of the tests do
not contribute as they fail to exercise any blocks of code that are not
already executed by other tests. We are certain that by analyzing
the output from this tool it would be possible both to reduce the
number of tests necessary to obtain the attained code coverage and
to improve the coverage by pinpointing untested sections of code.

One of the most worrying trends is that there appears to be a
definite trend towards very complex routines being added to the
library. Of the new routines introduced at version 2.0 almost 30%
had path counts in excess of 10°; this is almost double the percentage
of routines introduced prior to that version. Whilst it may be argued
that new routines are solving more complex problems it is possible
to structure these codes so that the components are far simpler from
a software complexity viewpoint and are thus much easier to test
thoroughly. It is highly likely that over half of the routines with a
path count of 10° or more will require bug fixes in the near future.

It is difficult to compare the quality of LAPACK with other li-
braries of numerical software since, as far as we know, no other
public domain numerical package has either a complete source code
change history or a complete set of the sources of all the relevant
releases available. That apart we believe that LAPACK is a high
quality software package with a bug fix being applied on average for
approximately every 600 executable statements.

A similar complexity analysis to the one performed in this paper
could be applied to any Fortran 77 software; extracting the required
metric values is very simple via QA Fortran, and the NagWare 77
profiling tool allows a relatively painless analysis of the statement
coverage. Far more difficult is the automatic generation of test data;
there appear to be no tools available, at least not in the public do-
main, that would help in this area. Generating test drivers and data
to ensure a high percentage of statement coverage is thus both diffi-
cult and time consuming.

The path count metric detailed in section 3 could be used in a sim-
ilar way for both C and Fortran 90 and indeed for almost all imper-
ative languages. For object oriented languages a different approach
would be necessary and there is not as yet any general consensus on
which metrics are most appropriate. A general discussion of object
oriented software metrics may be found in Lorenz and Kidd [LK94].

Xiv

It is our intention to extend the work presented in this paper to
investigate the detection of errors in released software. We propose
using the path count metric to identify possible problem routines
and to subject these routines to extensive white box testing in an
attempt to exercise as many paths through the code as possible.
Current work ([TCM98b], [TCM98a] and [TCMM98]) provides some
hope of generating data to exercise specified paths through code and
this would certainly open up new possibilities for fault detection.

6 REFERENCES

[ABBT95] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. J.
Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, S. Ostrouchov, and D. Sorensen. LA-
PACK: users’ guide. STAM, Philadelphia, second edi-
tion, 1995.

[ANS79] ANSIL. Programming Language Fortran X3.9-1978.
American National Standards Institute, New York,
1979.

[BCCT97] L.S. Blackford, J. Choi, A. Cleary, E. D’Azevedo,
J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling,
G. Henry, A. Petitet, K. Stanley, D. Walker, and R.C.
Whaley. ScaLAPACK Users’ Guide. SIAM, Phiadel-
phia, 1997.

[BRW88] David Barnes, Mark Russell, and Mark Wheadon. De-
veloping and adapting UNIX tools for workstations. In
Autumn 1988 Conference Proceedings, pages 321-333.
European UNIX systems User Group, October 1988.

[DDDH90] J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammar-
ling. Algorithm 679: A set of level 3 basic linear algebra
subprograms. ACM Trans. Math. Softw., 16(1):18-28,
March 1990.

[DDHHS88] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J.
Hanson. Algorithm 656: An extended set of basic lin-
ear algebra subprograms: Model implementation and
test programs. ACM Trans. Math. Softw., 14(1):18-32,
March 1988.

[DM8Y]

[DMBS79]

[GBDMT7]

[Hal77]

[Hat98]

[Hop96]

[Hop97a|

[Hop97b]

[LK94]

[Nej8s]

[Num92]

XV

J. Demmel and A. McKenney. A test matrix genera-
tion suite. Technical Report MCS-P69-0389, Argonne
National Laboratories, Illinois, March 1989.

J. J. Dongarra, C. B. Moler, J. R. Bunch, and G. W.
Stewart. LINPACK: Users’ Guide. SIAM, Philadel-
phia, 1979.

B. S. Garbow, J. M. Boyle, J. J. Dongarra, and C. B.
Moler. Matriz Eigensystem Routines — EISPACK Guide
Ezxtension, volume 51 of Lecture notes in computer sci-
ence. Springer-Verlag, New York, 1977.

M.H. Halstead. Elements of Software Science. Oper-
ating and Programming Systems Series. Elsevier, New
York, 1977.

Les Hatton. Does OO sync with how we think? IEEE
Software, pages 46-54, May/June 1998.

T.R. Hopkins. Restructuring software: A case study.
Software — Practice and FExzperience, 26(8):967-982,
July 1996.

T.R. Hopkins. Is the quality of numerical subroutine
code improving? In E. Arge, A.M. Bruaset, and H.P.
Langtangen, editors, Modern Software Tools for Sci-
entific Computing, pages 311-324. Birkhauser Verlag,
Basel, 1997.

T.R. Hopkins. Restructuring the BLAS Level-1 rou-
tine for computing the modified Givens transformation.
ACM SIGNUM, 32(4):2-14, October 1997.

M. Lorenz and J. Kidd. Object-Oriented Software Met-
rics. Object-Oriented Series. Prentice Hall, Englewood
Cliffs, New Jersey, 1994.

B. A. Nejmeh. NPATH: A measure of execution
path complexity and its applications. Commun. ACM,
31(2):188-200, 1988.

Numerical Algorithms Group Ltd., Oxford, UK. NAG-
Ware f77 Tools, second edition, September 1992.

xvi

[Pro92]

[SBD*76]

[TCM98a]

[TCMO98b]

[TCMM98]

[WD98]

Programming Research Ltd, Hersham, Surrey. QA For-
tran 6.0, 1992.

B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
Y. Ikebe, V. C. Klema, and C. B. Moler. Matriz Eigen-
system Routines — EISPACK Guide, volume 6 of Lecture
notes in computer science. Springer-Verlag, New York,
second edition, 1976.

Nigel Tracey, John Clark, and Keith Mander. Auto-
mated program flaw finding using simulated annealing.
In Software Engineering Notes, Proceedings of the Inter-

national Symposium on Software Testing and Analysis,
volume 23, pages 73-81. ACM/SIGSOFT, March 1998.

Nigel Tracey, John Clark, and Keith Mander. The way
forward for unifying dynamic test-case generation: The
optimisation-based approach. In International Work-

shop on Dependable Computing and Its Applications
(DCIA), pages 169-180. IFIP, January 1998.

Nigel Tracey, John Clark, Keith Mander, and John Mc-
Dermid. An automated framework for structural test-
data generation. In Proceedings of the International
Conference on Automated Software Engineering. IEEE,
October 1998.

J. Wasniewski and J.J. Dongarra. High performance
linear algebra package — LAPACKY90. Technical Report
(CS-98-384, University of Tennessee, Knoxville, April
1998.

A Availability of Tools

The main software tools mentioned in the paper are available as

follows:

QA Fortran: Programming Research Limited, 1/11 Molesey Road,
Hersham, Surrey, KT12 4RH, UK.
(http://www.prqa.co.uk/qafort.htm)

Xvil

NagWare 77: NAG Ltd, Wilkinson House, Jordan Hill Road, Ox-
ford, OX2 8DR, UK.
(http://www.nag.co.uk/nagware/NANB.html)

Perl: http://www.perl.com/pace/pub.

Vdiff: A graphical file comparator, Kent Software Tools.
(http://www.cs.ukc.ac.uk/development /kst /).

Other analysis of the code reported in the paper was performed using
bespoke perl scripts.

