
The Evolution and Testing of a Medium SizedNumeri
al Pa
kageDavid Barnes and Tim HopkinsComputing Laboratory, University of Kent, Canterbury,Kent, CT2 7NF, U.K.February 18, 2000ABSTRACT We investigate the evolution of a medium sized softwarepa
kage, LAPACK, through its publi
 releases over the last six yearsand establish a 
orrelation, at a subprogram level, between a simply
omputable software metri
 value and the number of 
oding errorsdete
ted in the released routines. We also quantify the 
ode 
hangesmade between issues of the pa
kage and attempt to 
ategorize thereasons for these 
hanges.We then 
onsider the testing strategy used with LAPACK. Currentlythis 
onsists of a large number of mainly self-
he
king driver programsalong with sets of 
on�guration �les. These suites of test 
odes run avery large number of test 
ases and 
onsume signi�
ant amounts of
pu time. We attempt to quantify how su

essful this testing strategyis from the viewpoint of the 
overage of the exe
utable statementswithin the routines being tested.1 Introdu
tionMu
h time, e�ort and money is now spent in the maintenan
e andupgrading of software; this in
ludes making 
hanges to existing 
odein order to 
orre
t errors as well as adding new 
ode to extend fun
-tionality. Some sour
es suggest that as mu
h as 80% of all moneyspent on software goes on post-release maintenan
e [Hat98℄. Whenany type of 
hange is made, programmers need to have enough un-derstanding of the 
ode to be 
on�dent that any 
hanges they makedo not have a detrimental e�e
t on the overall performan
e of thei



iisoftware. All too often a 
hange that �xes one parti
ular problem
auses the 
ode to a
t in
orre
tly in other 
ir
umstan
es.We are interested in investigating whether it is possible, via theuse of some quantitative measurements, to determine whi
h parts ofa software pa
kage are the most diÆ
ult to understand and thus,probably, the most likely to 
ontain undete
ted errors and the mostlikely to 
ause further problems if subje
ted to 
ode 
hanges andupdates.Prior work in this area ([Hop96℄ and [Hop97b℄) has shown that,for a number of rather simple 
odes, software metri
s 
an be usedsu

essfully to identify problem routines in a library of Fortran sub-routines. This paper extends this work by applying it to a mu
hlarger body of 
ode whi
h has gone through a number of revisionsboth to extend fun
tionality and to 
orre
t errors. This allows us toidentify where it has been ne
essary to make 
hanges to the 
odeand why, and to 
orrelate the o

urren
e of errors in the softwarewith the values of a parti
ular software metri
.Our hope is that it will be possible to identify, prior to its release,whether a pa
kage 
ontains subprograms whi
h are likely to providefuture maintenan
e problems. This would allow authors to rethink(and possibly reimplement) parts of a pa
kage in order to simplifylogi
 and stru
ture and, hen
e, improve maintainability and under-standability. Our ultimate goal is to be able to improve the qualityand reliability of released software by automati
ally identifying fu-ture problem subprograms.LAPACK [ABB+95℄ was an NSF supported, 
ollaborative proje
tto provide a modern, 
omprehensive library of numeri
al linear al-gebra software. It 
ontains software for the solution of linear sys-tems; standard, non-symmetri
 and generalized eigenproblems; lin-ear least squares problems and singular value de
omposition. Thepa
kage serves as an eÆ
ient update to the Eispa
k ([SBD+76℄ and[GBDM77℄) and Linpa
k [DMBS79℄ libraries that were developedin the 1970's. The 
omplete pa
kage is available from netlib (seehttp://www.netlib.org/bib/mirror.html for information as to whereyour nearest server is). Mostly written in standard Fortran 77 [ANS79℄,LAPACK uses the BLAS Level 2 [DDHH88℄ and Level 3 [DDDH90℄routines as building blo
ks. LAPACK both extends the fun
tional-ity and improves the a

ura
y of its two prede
essors. The use ofblo
k algorithms helps to provide good performan
e from LAPACK



iiiroutines on modern workstations as well as super
omputers and theproje
t has spawned a number of additional proje
ts whi
h have pro-du
ed, for example, a distributed memory [BCC+97℄ and a Fortran90 [WD98℄ version of at least subsets of the 
omplete library.An integral part of the 
omplete software pa
kage is the very ex-tensive test suite whi
h in
ludes a number of test problems s
aled atthe extremes of the arithmeti
 range of the target platform. Su
h atest suite proved invaluable in the porting exer
ise whi
h involved thepa
kage being implemented on a large number of 
ompiler/hardware
ombinations prior to its release.In se
tion 2, following a short introdu
tion to LAPACK, we pro-vide a detailed analysis of the size of the pa
kage and the extent ofthe sour
e 
hanges made between su

essive versions. We also 
ate-gorize all the 
hanges made to the exe
utable statements and obtaina 
ount of the number of routines that have had failures �xed. Wethen report on a strong 
onne
tion between the size of a relativelysimple software 
ode metri
 and a substantial fra
tion of the routinesin whi
h failures have been 
orre
ted.In se
tion 4 we look quantitatively at how well the testing materialsupplied with the pa
kage exer
ises the LAPACK 
ode and suggesthow the use of a software tool may improve this testing pro
ess.Finally we present our 
on
lusions.2 The LAPACK Library Sour
e CodeThe LAPACK routines 
onsist of both user 
allable and support pro-
edures; in what follows we do not di�erentiate between these. Thesour
e dire
tory of the original release, 1.0, 
onsisted of 930 �les (onlytwo �les, dlam
h and slam
h 
ontain more than one subprogram; thesix routines in ea
h of these �les being used to 
ompute ma
hine pa-rameters for the available double and single pre
ision arithmeti
s).Table 1 shows how the number of �les has in
reased with su

essivereleases of the pa
kage along with the release dates of ea
h version.A number of straightforward metri
s exist for sizing software, forexample, the number of lines in the sour
e �les. This is somewhat
rude and we present in Table 2 a more detailed view of the sizeof the pa
kage. The 
olumn headed `exe
utable' shows the numberof exe
utable statements in the entire pa
kage whilst that headed`non-exe
' gives the number of de
larative and other non-exe
utable



iv Version No. of �les Release Date1.0 930 29 February 19921.0a 932 30 June 19921.0b 932 31 O
tober 19921.1 1002 31 Mar
h 19932.0 1080 30 September 1994TABLE 1. Number of library sour
e �les for ea
h released versionstatements. The third 
olumn gives the total number of 
ode state-ments being the sum of the previous two 
olumns. The �nal two
olumns provide the total number of 
omment lines in the 
ode andthe total number of blank lines and blank 
omment lines.The large number of non-exe
utable statements is partially dueto the use of the NAGWare 77 de
larization standardizer [Num92℄whi
h generates separate de
laration blo
ks for subroutine argu-ments, lo
al variables, parameter values, fun
tions, et
. This is a
tu-ally no bad thing as it aids the maintenan
e of the 
ode by allowing areader to immediately identify the type and s
ope of ea
h identi�er.A ratio of exe
utable to non-exe
utable statements of 1.8 is, how-ever, on the low side, as this implies that there are relatively smallamounts of 
ode pa
kaged amidst large quantities of de
larationswhi
h generally makes 
ode diÆ
ult to read and assimilate.Comments form an important part of the do
umentation of anysoftware and this is espe
ially the 
ase for LAPACK where the de-s
ription of the arguments to all pro
edures (both user 
allable andinternal) is detailed enough to allow the use of the routine withoutthe need for a separate printed manual. This a

ounts for the highlevel of 
ommenting, around 1.5 non-blank 
omments per exe
utableline. There is also heavy use of blank 
omment lines (or totally blankVersion Exe
utable Non-exe
 Lines Comments Blank1.0 59684 35010 94694 143249 525811.0a 59954 35104 95058 143439 526791.0b 59897 34876 94773 142185 522431.1 67473 38312 105785 156077 575162.0 76134 41986 118120 169813 62618TABLE 2. Statement 
ounts by type



vVersion Operators Operands Total % In
rease1.0 370784 325907 6966911.0a 371605 326524 698129 0:021.0b 370928 326089 697017 �0:021.1 415626 364816 780442 11:92.0 468487 411122 879609 12:7TABLE 3. Total number of operators and operandslines); su
h lines a
t as an aid to readability within both the textualinformation and the sour
e 
ode.A more detailed view of 
ode size may be obtained by 
onsider-ing the operators and operands that make up the sour
e. These arede�ned abstra
tly in Halstead [Hal77℄ and there appears to be nogeneral agreement as to whi
h language tokens are 
onsidered oper-ators and whi
h operands for any parti
ular programming language.The values given in Table 3 were generated using the nag metri
stool [Num92℄ whi
h de�nes an operator to be� a primitive operator, for example, �, +, :EQ:, :AND: et
,� a statement whi
h 
ounts as an operator, for example, ASSIGN,IF, ELSE IF, GOTO, PRINT, READ and WRITE,� a pair of parentheses, an end-of-statement, or a 
ommaand operands as� 
onstants,� name of variables and 
onstants,� strings (all strings are 
onsidered distin
t from ea
h other).Thus the de
larative part of any program is ignored by this metri
as it is not 
onsidered to add to the 
omplexity of the 
ode.At ea
h new version of the pa
kage 
omplete routines were addedand deleted and 
hanges were made to routines that were 
ommonto both the new and previous versions. Table 4 show the distributionof a�e
ted routines. Changes to program units 
ommon to su

es-sive versions have been 
ategorized depending on whether only 
om-ments, only non-
omments, or both 
omments and non-
ommentswere 
hanged. This shows that although there were textual 
hanges



vi ChangedVersion Added Deleted Total 
/only s/only Both1.0 !1.0a 2 0 147 75 34 381.0a!1.0b 2 2 339 236 33 701.0b!1.1 72 2 570 554 0 161.1 !2.0 84 6 634 279 128 227TABLE 4. Routine 
hanges at ea
h versionto 1690 routines over the four revisions 1144 of these involved 
hangesto 
omment lines only (this a

ounts for 64% of all the 
hanged rou-tines).We analyzed the routines that had been 
hanged between releasesby running the two versions through the Unix �le 
omparison tooldi� and pro
essing the output to 
ount the number of 
hanged 
om-ment and non-
omment statements.Di� 
lassi�es 
hanges in three ways, lines in the new version thatdid not appear in the old (App), lines in the old version that didnot appear in the new (Del) and blo
ks of lines that have 
hangedbetween the two (Changes). Table 5 gives the totals for 
ommentand non-
omment statements a

ording to the 
ategories for all the
hanged routines at ea
h version. It should be noted here that some
hanges to statements are due to 
hanges in statement labels whi
ho

ur when a label is either inserted or deleted and the 
ode ispassed through the NAGWare Fortran 77 sour
e 
ode formatter,nag polish [Num92℄. In a few 
ases di� exaggerates the number of
hanges due to syn
hronization problems whi
h may o

ur if a linehappens to be repeated or se
tions of 
ode are moved. No attemptwas made to 
ompensate for this; indeed it may be argued that amove of a se
tion of 
ode should be treated as both a delete and anadd. Resyn
hronization problems appeared to be relatively few andfar between and, it was felt, they were unlikely to perturb the �nalresults by more than a few per
ent. In all 
ases 
omment 
hanges re-
e
ting the new version number and release date have been ignored.Finally Table 6 gives a breakdown of the non-
omment and 
om-ment lines added and deleted via 
omplete routines between releases.Although the release notes made available with ea
h new revisiongave some details of whi
h routines had had bug �xes applied to themthis information was far from 
omplete. It is not safe to assume that



viiComments Non-
ommentsChanges ChangesVersion Del App (old/new) Del App (old/new)1.0 !1.0a 38 134 550/484 69 312 775/8081.0a!1.0b 258 605 2183/1573 384 593 1325/17221.0b!1.1 227 70 9428/8354 34 36 724/7521.1 !2.0 541 527 4393/4688 449 730 2363/2274TABLE 5. Interversion statement 
hanges from di�all non-
omment 
ode 
hanges are ne
essarily bug �xes. In order todetermine the nature of the 
hanges to routines at ea
h release, avisual inspe
tion of ea
h altered single pre
ision 
omplex and doublepre
ision real routine was 
ondu
ted using a graphi
al �le di�eren
etool [BRW88℄. As a result we have 
ategorized the 
ode 
hangesbetween all at ea
h revision as being one ofi: enhan
ed INFO 
he
ks or diagnosti
s and INFO bug �x (usually anextended 
he
k on the problem size parameter N),pr: further uses of ma
hine parameters (for example, the use ofDLAMCH('Pre
ision') in DLATBS at version 1.0a to derive plat-form dependent values),
: 
osmeti
 
hanges (for example, the use of DLASET in pla
e ofDLAZRO in the routine DPTEQR at version 2.0),en: enhan
ement (for example, the addition of equilibration fun
-tionality to the routine CGBSVX at version 1.0b),ef: eÆ
ien
y 
hange (for example, the qui
k return from the routineCGEQPF in the 
ase when M or N is zero at version 1.1),Added DeletedVersion Com Non-
om Com Non-
om1.0 !1.0a 160 86 0 01.0a!1.0b 99 65 160 861.0b!1.1 14351 10196 160 861.1 !2.0 13770 12248 311 129TABLE 6. Added and deleted routines by 
omment and non-
omment lines



viiire: removal of redundant 
ode (for example, a CABS2 
al
ulation inCGEEQU was not required and was removed at version 1.0a),mb: minor bug (typi
ally a few lines of 
hanged 
ode; for example,the 
hanges made to DLAGS2 at version 2.0 to add an additionalvariable and to modify a 
onditional expression to use it),Mb: major bug (a relatively large 
ode 
hange; for example, the
hanges made to the routine DSTEQR at version 2.0).Su
h a 
lassi�
ation provides a mu
h �rmer base from whi
h to inves-tigate a possible 
orrelation between 
omplexity and 
oding errors.Routines in the LAPACK library are in one of four pre
isions; sin-gle or double pre
ision, real or 
omplex. While the single and doublepre
ision versions of a routine 
an generally be automati
ally gen-erated from one another using a tool like nag apt [Num92℄, the realand 
omplex parts of the pa
kage are often algorithmi
ally quite dif-ferent. For this reason we only 
onsider the single pre
ision 
omplexand the double pre
ision real routines in the remaining se
tions ofthis paper. These routines may be identi�ed by their name startingwith either a C (single pre
ision 
omplex) or a D (double pre
isionreal).3 The Path Count Metri
Table 7 provides a summary of the number of single pre
ision 
om-plex and double pre
ision real routines that fall into ea
h 
ategory forsu

essive releases of the pa
kage. We were interested in dis
overingwhether there was any relationship between those routines needingbug �xes and any software 
omplexity metri
 values. One metri
, aversion of Nejmeh's path 
ount metri
 [Nej88℄, is 
al
ulated by theQA Fortran tool [Pro92℄. This metri
 is an estimate of the upperbound on the number of possible stati
 paths through a programunit (based solely on syntax). Note that some paths so de�ned maynot be exe
utable but su
h impossible routes 
annot usually be de-termined by simple visual inspe
tion. The path 
ount 
omplexity ofa fun
tion is de�ned as the produ
t of the path 
omplexities of theindividual 
onstru
tions. Thus, for example, the path 
omplexity of asimple if-then-else statement is 2 while three 
onse
utive if-then-elsestatements would have an asso
iated value of 23 = 8. Three nested



ix1.0a 1.0b 1.1 2.0C, D C, D C, D C, Dmb 9, 9 12, 9 1, 3 16,14Mb 3, 3 1, 1 0, 0 1, 2re 2, 0 1, 1 0, 0 0, 0i 3, 5 8,10 1, 1 9, 9pr 3, 4 1, 0 0, 0 3, 4en 0, 0 5, 5 0, 0 1, 2ef 0, 0 3, 1 1, 1 1, 1
 1, 0 0, 1 0, 1 105,15TABLE 7. Number of routines a�e
ted by ea
h 
ategory of sour
e 
ode
hangeif statements would have a path 
ount of 4. This metri
 provides auseful measure of the e�ort required to test the 
ode stringently aswell as giving an indi
ation of 
ode 
omprehensibility and maintain-ability. A redu
tion in the path 
ount 
aused by restru
turing 
odewould imply the elimination of paths through the 
ode whi
h wereoriginally either impossible to exe
ute or irrelevant to the 
ompu-tation. This would be likely to redu
e the time spent in the testingphase of the software development. An example of the use of thismetri
 to identify problem 
ode within a small library of relativelysmall Fortran routines may be found in [Hop96℄ and [Hop97a℄.The metri
 value returned by the pa
kage has a maximum value of5�109 although, realisti
ally, a program unit 
an be 
lassi�ed as too
omplex to test fully when this value ex
eeds 105. Table 8 gives thenumber of routines in whi
h faults were 
orrelated against the valueof the path metri
. (We di�erentiate here between routines that wereintrodu
ed before version 2 and those that were added at version2 and 
annot, therefore, have had sour
e 
hanges applied to them.)This data 
learly shows a high 
orrelation between routines identi�edas 
omplex by the path 
ount metri
 and those having had bug �xesapplied to them. 41% of all the bugs o

urred in routines with apath 
ount metri
 in ex
ess of 105 and these routines 
onstitutejust 16% of the total number of subprograms making up the library.The 
han
e of a bug o

urring in these routines would appear to bearound 6 times more likely than in routines with a path 
ount of lessthan 105. It should also be noted that a large number of the routinesadded at version 2.0 have extremely large path 
ounts and, from



x blog10(Path Counts)
 %> 8 7 6 5 � 5 > 5v2.0 5 1 0 4 26 28<2.0 10 6 10 8 285 16Faults 8 3 7 3 30 41%routines 80 50 70 37 11 �TABLE 8. O

uren
e of Faults against Path Count Metri
our 
urrent analysis, we would expe
t a high per
entage of these torequire pat
hes to be applied in forth
oming releases.4 TestingThe test suite forms an integral part of the LAPACK software pa
k-age. The 
ode was designed to be transportable; all new LAPACK
ode was to be portable while eÆ
ien
y of the pa
kage as a wholewas to be platform dependent. This was a
hieved by 
oding in stan-dard Fortran 77 [ANS79℄ for portability of the higher level routinesand using platform spe
i�
 versions of the BLAS to obtain high ef-�
ien
y. Thus, by using the BLAS Levels 2 and 3 de�nition 
odes([DDHH88℄, [DDDH90℄) the entire pa
kage may be made portableat the pri
e of suboptimal exe
ution speed.Two test suites are provided with the released pa
kage; one for
he
king the installation and the other for produ
ing platform depen-dent timings. All the tests are self 
he
king in that the only outputthat a user has to 
he
k is in the form of summaries of the number oftests applied to ea
h user routine along with the number of su

essesand 
ounts and details of any failures.Matrix data is either generated randomly or spe
ially 
onstru
ted(see [DM89℄ for more details). In both 
ases the testing software usesa metri
 to de
ide whether ea
h 
omputed solution is `
orre
t'. Test
ases are also generated to exer
ise the routines on data at the ex-tremes of the 
oating point arithmeti
 ranges. The number, and toa minor extent, the range of tests applied, may be 
ontrolled by theuser at a data �le level. However this generally pre
ludes the userfrom for
ing exe
ution through spe
i�
 se
tions of the 
ode whi
husually requires spe
ially 
onstru
ted data. To all intents and pur-poses the test strategy must be 
ategorized as white box (or glassbox) testing, where test 
ases are sele
ted by 
onsidering their e�e
t



xiBasi
 %Routines Blo
ks Exe
utedC install 258 12019 89.56C timing 124 5324 72.84D install 263 12852 89.20D timing 143 6615 72.41TABLE 9. Basi
 blo
k exe
ution for installation and timing test suiteson the 
ode rather than just testing their adheren
e to the spe
i�-
ation as is the 
ase with bla
k box testing.We were interested in determining quantitatively how e�e
tive thisstrategy was in exer
ising the 
ode. The minimal requirement of atest suite should be to ensure that all the exe
utable statements inthe pa
kage are exe
uted at least on
e. Note that this is very di�erentfrom path 
overage as de�ned earlier.We used the NAGWare 77 sour
e 
ode instrumenter and exe
u-tion analysis tools nag pro�le and nag history [Num92℄ to determine
umulatively the number of times ea
h basi
 blo
k was exe
uted. (Abasi
 blo
k is a straight line se
tion of 
ode, i.e., it does not 
ontainany transfer of 
ontrol statements.) This allowed us to determine howmany basi
 blo
ks were not exer
ised by the test suite. We ran theinstrumented 
ode on both the installation and timing test suites.Table 9 
ompares the number and per
entage of basi
 blo
ks exe-
uted using both test suites.Further analysis showed that of the 1388 unexe
uted blo
ks, 214(15.4%) were 
on
erned with the 
he
king of input arguments. Theworst 
ase was the routine, DGEGS, used for 
omputing the generalS
hur fa
torization whi
h has 48% of its basi
 blo
ks untested.We looked in detail at the routine DGBBRD. This routine 
onsisted of111 basi
 blo
ks 
ontaining 124 exe
utable statements. The installa-tion test omitted to 
over 13 basi
 blo
ks of whi
h 11 were 
on
ernedwith 
he
king the 
onsisten
y of the input arguments. The �nal twowere in the main body of the 
ode.The 
ode operates on a banded, re
tangular (M � N), matrixwhere the user provides the number of sub- and super-diagonals,KLand KU respe
tively. The 
on�guration �le used to provide data forthis routine spe
i�edM , N andK, the total bandwidth. Code withinthe test routine then splits K into KL and KU . Although a total of1500 
alls are made to DGBBRD the test data failed to generate the



xiispe
ial 
ase M = N = 2, KU = 0 and KL > 0. The problem wasthat with M and N both greater than zero the 
ode to set KL andKU 
ould not generate KU = 0 and KL > 0. Providing data fora separate test is straightforward and the two previously untestedblo
ks exe
uted su

essfully.As well as using the pro�ling information from nag pro�le to iden-tify the basi
 blo
ks of 
ode that were not being exe
uted by the testdata, we 
an also use it to 
he
k that individual tests (or bat
hes oftests) a
tually 
ontribute to the overall statement 
overage. Ideallywe would like to minimize the number of test 
ases being run toobtain maximum 
overage. We note here that it may not be possi-ble to exer
ise 100% of the basi
 blo
ks, for example, there may bedefensive 
ode that exits if 
onvergen
e is not attained although nonumeri
al examples are known whi
h trip this 
ondition.Using DGBBRD again as our example, we obtained individual basi
blo
k 
overage pro�les for ea
h of the 20 M and N pairs (ea
h pairgenerates a number of 
alls to the routine for di�erent KL and KUvalues). It was found that two of these 20 tests 
overed 83 of the98 exe
uted blo
ks and four 
ould be 
hosen to 
over all 98. Thee�e
t of using just this minimal number of tests was to redu
e theexe
ution time for testing this routine by a fa
tor of four withoutany loss of 
ode 
overage. A further redu
tion in the exe
ution time
ould be made by redu
ing the number of (KL, KU) pairs 
hosenfor a given (M , N) pair.The above analysis 
ould be applied to all the test drivers in orderto redu
e the total number of tests being exe
uted whilst maximizingthe 
ode 
overage.5 Con
lusionWe have analyzed the sour
e 
ode 
hanges made between su

essiveversions of the LAPACK software library and we have presentedstrong eviden
e that the path 
ount software metri
 is a good indi-
ator of routines that are likely to require post release maintenan
e.We note that many of the newly introdu
ed routines have metri
values indi
ative of problem 
ode.By using a pro�ling tool we have been able to measure how wellthe installation testing software, provided with the pa
kage, exe
utesthe LAPACK sour
es. The 
overage is extremely good although we



xiiibelieve that it 
ould be improved further. In addition we have shownthat, from the point of view of 
ode 
overage, many of the tests donot 
ontribute as they fail to exer
ise any blo
ks of 
ode that are notalready exe
uted by other tests. We are 
ertain that by analyzingthe output from this tool it would be possible both to redu
e thenumber of tests ne
essary to obtain the attained 
ode 
overage andto improve the 
overage by pinpointing untested se
tions of 
ode.One of the most worrying trends is that there appears to be ade�nite trend towards very 
omplex routines being added to thelibrary. Of the new routines introdu
ed at version 2.0 almost 30%had path 
ounts in ex
ess of 105; this is almost double the per
entageof routines introdu
ed prior to that version. Whilst it may be arguedthat new routines are solving more 
omplex problems it is possibleto stru
ture these 
odes so that the 
omponents are far simpler froma software 
omplexity viewpoint and are thus mu
h easier to testthoroughly. It is highly likely that over half of the routines with apath 
ount of 105 or more will require bug �xes in the near future.It is diÆ
ult to 
ompare the quality of LAPACK with other li-braries of numeri
al software sin
e, as far as we know, no otherpubli
 domain numeri
al pa
kage has either a 
omplete sour
e 
ode
hange history or a 
omplete set of the sour
es of all the relevantreleases available. That apart we believe that LAPACK is a highquality software pa
kage with a bug �x being applied on average forapproximately every 600 exe
utable statements.A similar 
omplexity analysis to the one performed in this paper
ould be applied to any Fortran 77 software; extra
ting the requiredmetri
 values is very simple via QA Fortran, and the NagWare 77pro�ling tool allows a relatively painless analysis of the statement
overage. Far more diÆ
ult is the automati
 generation of test data;there appear to be no tools available, at least not in the publi
 do-main, that would help in this area. Generating test drivers and datato ensure a high per
entage of statement 
overage is thus both diÆ-
ult and time 
onsuming.The path 
ount metri
 detailed in se
tion 3 
ould be used in a sim-ilar way for both C and Fortran 90 and indeed for almost all imper-ative languages. For obje
t oriented languages a di�erent approa
hwould be ne
essary and there is not as yet any general 
onsensus onwhi
h metri
s are most appropriate. A general dis
ussion of obje
toriented software metri
s may be found in Lorenz and Kidd [LK94℄.



xivIt is our intention to extend the work presented in this paper toinvestigate the dete
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