University of

"1l Kent Academic Repository

Sette, loram S., Chadwick, David W. and Ferraz, Carlos A. G. (2017) Authorization
Policy Federation in Heterogeneous Multicloud Environments. |IEEE Cloud
Computing, 4 (4). pp. 38-47. ISSN 2325-6095.

Downloaded from
https://kar.kent.ac.uk/64214/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1109/MCC.2017.3791018

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/64214/
https://doi.org/10.1109/MCC.2017.3791018
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Authorisation Policy Federation in
Heterogeneous Multi-Cloud Environments

Ioram S. Sette, Federal University of Pernambuco (UFPE) and
Recife Center for Advanced Studies and Systems (CESAR),
David W. Chadwick, University of Kent at Canterbury (UKC),
and Carlos A. G. Ferraz, Federal University of Pernambuco (UFPE)

Abstract—Current Infrastructure as a Service (IaaS) cloud
platforms have their own authorisation system, containing differ-
ent access control policies and models. Clients with accounts in
multiple cloud providers struggle to manage their rules in order
to provide a homogeneous access control experience to users. This
work proposes a solution: an Authorisation Policy Federation
(APF) of heterogeneous cloud accounts. These federated accounts
share a centrally managed policy written in Disjunctive Normal
Form (DNF) using a cloud-independent ontology. This shared
abstract policy can be translated to local cloud formats, and back
again. Prototypes were implemented for OpenStack and Amazon
Web Services (AWS) cloud formats, and rules were successfully
translated with a Level of Semantic Equivalence (LSE) higher
than 80%.

Index Terms—multi-cloud, heterogeneous clouds, access con-
trol, authorisation policy federation.

I. INTRODUCTION

ECURITY is a significant barrier to the adoption of

cloud technologies when they are vendor-provided in-
frastructures shared by multiple tenants [1]. This problem is
aggravated in multi-cloud environments, a recent development
to avoid vendor lock-in and provide service diversity and price
competition, amongst other advantages [2]. In this scenario,
each cloud may use a different platform. If the user’s services
and resources are spread across them, this increases the
complexity of management and of ensuring the security of
the user’s information.

Authentication in multi-cloud environments can be facili-
tated by the Identity Federations, which provide facilities such
as Single Sign-On (SSO) and strong or multi-factor authen-
tication. Users authenticate once via their Identity Provider
(IdP) to gain access to multiple heterogeneous Cloud Service
Providers (CSPs). Users are identified by a unique set of
attributes issued by their IdP, giving them a homogeneous
identification and authentication experience.

Homogeneous authorisation is also a desire for multi-
cloud environments. One approach could be an ”Authorisation
Federation”, in which a central Policy Decision Point (PDP)
allows or denies service access requests. This Authorisation as
a Service (AaaS) model [3] means that a single homogeneous
policy can be used by all CSPs, which leads to ease of policy
management, and less chance of policy conflicts. However, it
suffers from a number of disadvantages: it is a single point of
failure, each CSP has to be modified to call the central PDP,
and poor performance can result due to network latency.

Alternative approaches such as fully decentralised solu-
tions [4], [5] may be complex for security administrators to
manage, in order to provide a consistent set of authorisation
rules. How can we define homogeneous policies when each
PDP could use a different policy language with different func-
tionality and access control model? How can we synchronise
the policy between CSPs? The advantages of distributed PDPs
are clear: the CSPs do not need to be modified as they use
their existing PDPs, and the PDPs are already tailored to their
respective CSPs for performance, functionality, manageability
etc. Providing the disadvantages can be overcome we believe
this is a preferable solution.

Our solution, which we call Authorisation Policy Federation
(APF), allows clients of heterogeneous multi-clouds to define
a homogeneous authorisation policy that applies equally to all
users across all clouds. A central Policy Administration Point
(PAP), called the Federated Authorisation Policy Management
Service (FAPManS), stores the abstract authorisation policy
using a cloud-independent ontology. Translation/mapping en-
gines (adaptors) convert the abstract policy into cloud de-
pendent policies (and vice-versa), so that they can be en-
forced using the existing cloud authorisation mechanisms. A
publish-subscribe infrastructure is responsible for keeping the
abstract and cloud dependent policies synchronised. Policy
management occurs in the background with offline updates,
and therefore does not affect the performance of online policy
decisions. The performance of the authorisation itself is de-
termined by the local cloud PDP engines and is not impacted
by our solution.

Prototypes of FAPManS and adaptors for OpenStack and
AWS TaaS cloud platforms were designed and implemented.
Policies were successfully translated from their local format
to the abstract format and back again with Level of Semantic
Equivalences (LSEs) higher than 80%. Rules that could not
be translated were either cloud or tenant-specific, or indicated
that mapping rules were missing in the prototype adaptors.

The rest of this paper is structured as follows. Section 2
provides a literature review. Section 3 presents the require-
ments and architecture of our proposed solution. Section 4 has
the implementation. Section 5 validates our solution. Section 6
concludes and indicates where further research is still required.

II. LITERATURE REVIEW

According to Celesti et al. [6], cloud environments will
evolve from “monolithic” islands of cloud services to “hori-

zontal federations”, in which clouds cooperate to increase their
capacities and reduce cost. In [2], environments with multiple
clouds are classified according to their level of interoperability,
ranging from isolated CSPs on multi-cloud environments to
cloud federations.

Anastasi et al. [7] propose a Usage Control (UCON) sys-
tem for Contrail (http://contrail-project.eu) - a broker-based
solution to interconnect clouds. The authorisation decision
takes place in the broker’s security service, using eXtensible
Access Control Mark-up Language (XACML)-based policies.
The clouds interoperate with this system through Attribute
Managers (AMs), which transfer fresh values of mutable
attributes to the central Policy Information Point (PIP). Tests
on prototypes showed an acceptable scalability for realistic se-
tups. Another model for federated access control using brokers
is defined in [8]. This solution is proposed for heterogeneous
multi-provider multi-cloud environments under the context
of the Intercloud Architecture Framework (ICAF). Federated
Identity Management establishes trust relationships among the
broker and the federated clouds. Authorisation is performed by
domain specific access control engines (PDP) using XACML
policies.

Service Access and Manipulation Operation Specification
(SAMOS) [9] is a semantic-aware multi-cloud orchestration
solution based on ontologies. Although its architecture in-
cludes a central authorisation manager, it is not clear how the
authorisation policies are translated and configured inside the
cloud platforms.

Tang et al. [3] formalised and extended the Multi-Tenancy
Authorisation System (MTAS), which is a centralised solution
based on hierarchical Role-Based Access Control (RBAC) in
the Platform as a Service (PaaS) layer that serves the Software
as a Service (SaaS) layer. This solution provides a central PAP
and PDP AaaS, using XACML policies. Bernabe et al. [10]
propose a semantic-aware version of MTAS, which uses an
ontology for laaS resources defined in Web Ontology Lan-
guage (OWL). Policy translation into XACML is performed
at authorisation time, prior to the authorisation decision. The
system performance is not reported, but we anticipate it will
be slow.

Ngo et al. [4] propose a distributed Multi-Tenant Attribute-
Based Access Control (MT-ABAC) infrastructure for multi-
provider heterogeneous environments. The Dynamic Access
Control Infrastructure (DACI) provides dynamic trust estab-
lishment for entities in TaaS clouds. However, cloud providers
need to integrate their authorisation engines to DACI. Almu-
tairi et al. [5] propose a distributed access control architecture
for a multi-tenant multi-cloud environment based on a decen-
tralised PAP integrated with an identity federation. It provides
semantic and contextual constraints to protect services and
resources.

In contrast, our work proposes a distributed authorisation
architecture for heterogeneous multi-cloud environments, with
abstract authorisation policies being defined in a central PAP
using a common language, and translated to each PDP using
cloud specific adaptors. Table I compares related works with
ours.

TABLE I
SUMMARY OF RELATED WORKS

Work Het. Model Policy lang. PDP PAP

(71 No ABAC XACML Centr'ed” Centr'ed”
[8] Yes ABAC XACML Centr'ed” Centr'ed”
[9] No not Ontology-based Centr'ed” Centr’ed”

mentioned
[3] No RBAC XACML Centr’ed Centr’ed
[10] Yes H XACML Centr’ed Centr’ed
[4] *#% MT-ABAC XACML Distr’ed Distr’ed
[5] Yes RBAC XML-based Distr’ed Distr’ed
Ours Yes wE Ontology-based Distr’ed Centr’ed
and DNF

*) Broker model.

*#%) Many Access Control (AC) models are supported, such as Attribute-Based Access
Control (ABAC) and (hierarchical) RBAC

*##%) The architecture supports heterogeneity, but the clouds must implement the DACI
engine.

III. HOMOGENEOUS ACCESS CONTROL IN
HETEROGENEOUS MULTI-CLOUD ENVIRONMENTS

The requirements for our solution evolved from working
in cloud security over several years and discovering where
implementors and users were having problems - the pain
points. In particular we worked on OpenStack, one of the most
popular open source cloud implementations. We spoke with
many users and developers whilst performing our research.
The requirements were developed in an organic informal way,
rather than by following a strict software engineering method
such as questionnaires or brainstorming.

A. Requirements

1) Support SSO and multiple Identity Federation pro-
tocols. SSO and Identity Federation allow users to
access multiple services from different IaaS cloud
providers by using a single set of authentication cre-
dentials [11]. However, there is no ubiquitous feder-
ation protocol, so any solution must be capable of
supporting any set of federation protocols, e.g. OpenlD
Connect (http://openid.net/connect/), Security Assertion
Mark-up Language (SAML) (http://saml.xml.org) and
Application Bridging for Federated Access Beyond web
(ABFAB) [12]. The authors already introduced protocol
independent federated identity management to Open-
Stack [13], and this remains a key requirement. After
the user is authenticated, the IdP provides a set of user
identity attributes to the CSPs.

2) Provide equivalent authorisation policies on accounts
of multiple heterogeneous IaaS clouds. It is essential
for homogeneous authorisation that the policy rules are
equivalent on each heterogeneous CSP account.

3) Provide simple policy manageability. Security ad-
ministrators must be able to define a single common
authorisation policy that can be used in multiple het-
erogeneous laaS CSPs. Managing multiple policies in
different languages via different interfaces is a complex
task that must be avoided.

4) Be scalable and available. The entire authorisation
process must be scalable. The evaluation of authorised
access to a CSP can be performed multiple times for a

single cloud job, for instance, as each different service
is accessed (database, network, cpu etc.). Even access
to a single service might require several access con-
trol decisions, e.g. if UCON is used. This is different
from authentication, which usually takes place just once
for a set of accesses. Therefore, the performance of
authorisation decisions must not decrease when new
cloud accounts share a common policy. Furthermore,
the authorisation process must not be a unique point of
failure. The IaaS CSPs must be available and authorising
properly regardless of any external component of the
solution.

5) Be easy for adoption. The proposed solution must
require minimal intervention on existing CSPs to facili-
tate its adoption. For instance, the replacement of their
authorisation engines is not desired, neither is forcing
them to be compatible with a different policy language,
e.g. XACML.

6) Provide quick policy synchronisation. The solution
must provide an efficient synchronisation mechanism to
quickly update the policies of all cloud accounts when
the common policy is modified.

B. Architecture

We achieve homogeneous access control in multi-cloud
environments with an architecture composed of the existing
heterogeneous PDPs provided by the CSPs and a centralised
global PAP, called the FAPManS. This architecture is instan-
tiated for two APFs (« and () on three CSPs in Figure 1.

Users authenticate through a federated IdP in order to gain
access to multiple clouds (requirement 1). IdPs are responsible
for authentication of their users, and also for user attribute
assignment that is subsequently used in the authorisation. Note
that as part of federated authentication, each CSP maps the IdP
assigned attributes into the locally equivalent ones [13]. Ad-
ministrators also use an IdP to access the FAPManS interface.

Security administrators create and manage common homo-
geneous policies using the FAPManS interface (requirements
2 and 3). These policies are defined in a common language,
using the DNF. DNF is very useful for representing a union of
independent rules that each grant access (the “deny all except”
type). Deny rules are only needed as a subset of a grant rule
e.g. allow all staff except the janitor. Since it is a normal form,
any policy that can be represented as logical expressions can
be converted to DNF. We believe this is the case for all policy
formats used by current IaaS cloud platforms.

The normalized aspect of DNF makes it easy to compare
different policies written in different languages. This is not true
when using other policy languages, such as XACML, which
is recursive, non-normalised, and one policy can be defined in
multiple ways.

A DNF Policy is composed of “rules” combined with the
“OR” logical operator. These “rules” are in turn composed of
“conditions” combined with the “AND” operator. Conditions
are the basic element of DNF policies, and they represent
a single comparison of an attribute and an expected value.
Attributes can be a characteristic of a subject, an action, a

Federated
Authorisation
Policy
Management;
Service

— e ——
@ Federated Policies ® PDP ll

..... PEP g v

Federation @ g

Admin Federation B
Admin

PR e VS

‘/ Adapter Adapte ! :

| - : . |
A Cloud B\ g
‘r' ! ‘ (platform 2) dao
\ ‘ ‘
N~ e\ ey
| Cloud PDP .ﬂ?CIoud o
\ (platform 1) PAP f (platform 3

PDP

Tenant T1 Admin Tenant T2 Admin ~ Tenant T3 Admin

Fig. 1. Example instantiation of the architecture.

resource or the environment. Common attributes, comparison
operators and values are defined in an ontology for IaaS cloud
elements [14].

Members of an APF are tenants of federated heteroge-
neous cloud providers that want to enforce globally defined
authorisation policies on their accounts. Each global abstract
authorisation policy is translated to and from the multiple
policy languages used in the different cloud technologies of
the tenant APF members via Adaptors.

Each cloud runs an instance of the Adaptor, that can
translate DNF policies into their cloud specific equivalents
and vice versa. This allows the original cloud authorisation
engines to remain unchanged.

Agents are clients of the publish-subscribe synchronisation
mechanism, which each tenant must execute in their APF
member accounts (requirement 6). Agents are notified when
an abstract policy is updated, and they are responsible for re-
trieving the updated rules from FAPManS, calling the adaptor
to translate them into the local syntax and semantics, check
that no conflict exist, and to update the local policy in the local
PAP. It is the tenant administrator’s responsibility to activate
this, using the CSP’s existing mechanism. Conversely, when a
local policy is updated, the agent is responsible for verifying
if it conflicts with the global policy, and if not, calling the
adaptor to translate it to the abstract policy and then updating
FAPManS. When an agent detects any conflict it notifies the
tenant administrator to take the proper mitigating action before
any updates are applied to FAPManS.

When a cloud tenant joins an APF, the rules in the common
policy must be enforceable in their account. The agent is able
to validate compliance by calling the adaptor. Additionally,
tenant administrators are able to create local rules, valid
only under the scope of their local accounts, and these will
not be translated into the abstract policy (although they will
be copied to/from FAPManS). Importantly, these local rules
must not conflict with the common federated ones, i.e. they
can not override the decision of any rule from the common
policy, but they can supplement them. For example, a common

policy rule might grant staff from any organisation in the
federation access to a local resource, whilst a local rule might
additionally grant students from the local organisation access
to the same resource. However, a local rule would not be
able to deny access to staff from one or more organisations in
the federation. As in a political federation, APF members are
autonomous but they must obey the federal rules.

The original cloud AC mechanisms are not modified in our
solution. This makes it easy for adoption (requirement 5).
Local policies can have a mix of federated and non federated
rules, providing the latter do not conflict with the former.

As seen in Figure 1, the FAPManS architecture comprises
a policy repository, a PAP-Application Programming Interface
(API) that allows access to policies, a PAP-Graphical User
Interface (GUI) that allows human administrators to manage
their policies via the PAP-API, a PDP that grants access to
authorised administrators and agents, and a publish-subscribe
service that notifies each federated member when the abstract
policy is updated.

Regarding the scalability (requirement 4) of FAPManS,
since it operates only in background mode, multiple instances
of it can be deployed in order to handle a large number of
APFs. Moreover, the distributed nature of the architecture, as
seen in Figure 1, makes it scalable and available to suit many
different scenarios.

In the Figure 1 scenario, APF « is composed of two
accounts of a cloud tenant T; in heterogeneous clouds A
and B. T, shares the same set of rules between its different
accounts, therefore all its rules are stored and managed in
FAPManS. On the other hand, APF 3 is formed by two
different cloud tenants T, and T3, who have accounts in clouds
B and C, respectively. They have their local authorisation
policies already stored in clouds B and C. Since they now have
a common project, they want to share some resources stored in
both of their cloud accounts. Their shared authorisation rules
will be stored in FAPManS, and depending upon their local
PDPs, their local rules likewise.

IV. IMPLEMENTATION

The FAPManS module and two adaptors were
implemented as a proof of concept. The source
code for these modules is publicly available at

https://github.com/ioram7/{cfas,os_adaptor,aws_adaptor}.

All modules were implemented as Representational State
Transfer (REST) APIs in Python using the Django REST
Framework (http://www.django-rest-framework.org/) and a
MySQL (https://www.mysql.com) database. Python is the pro-
gramming language used in the OpenStack project, and there
is also a powerful library called Python Electronic Design Au-
tomation (PyEDA) (https://pyeda.readthedocs.org/en/latest/),
which can convert logical expressions to their DNF equivalent
- a very useful function for our application.

A. FAPManS

FAPManS stores DNF policies in a relational database
and provides an API and a GUI for policy management.
The API allows administrators to create, read, update and

delete abstract policies and also individual rules. Conditions
are reused in multiple rules for space saving. Therefore,
they are automatically created when policies or rules are
defined. They cannot be updated or deleted as this could
cause undesirable side effects. Their components (attributes,
operators and values) may contain sensitive information, like
names of secret unreleased projects or products. Consequently,
APF administrators are only allowed to list the conditions
referenced by their own rules. Policies and rules returned in the
API calls are in a defined JavaScript Object Notation (JSON)
format.

The FAPManS implementation supports policies with hier-
archical attributes. For example, if the definition of attribute
“role” says that a “professor” is superior to a “student”, and
there is a rule saying that students can “read” certain files, then
PDP engines that support hierarchical attributes will automat-
ically authorise “professors” to “read” these files. Cloud PDPs
that do not support hierarchical attributes can signal this, and
FAPManS will automatically expand the set of rules, creating
the additional one(s) needed to grant “professors” access.

Another feature implemented in the FAPManS GUI/API
allows administrators to “search” for policy rules that match
some conditions. This allows administrators to search for
which roles are needed to perform a specific action, or which
actions a certain role can undertake, important functionality
currently missing from OpenStack. The search criteria allows
multiple conditions combined by the operators “or” or “and”
indicating, respectively, that “any” or “all” conditions must
match.

B. Adaptors

Two adaptor prototypes were implemented to validate the
solution, one for AWS and one for OpenStack. Policy transla-
tion comprises syntactic and semantic translation. The former
is responsible for transforming the logical expression of a local
policy into DNF JSON format, or vice-versa. The latter is
responsible for mapping the attributes, operators and values
in the conditions to semantically equivalent elements in the
opposite language (i.e. abstract ontology to/from local policy
language terms).

OpenStack policies are defined in files called “policy.json”,
one for each cloud service (e.g. Keystone, Nova etc.). Rules
are grouped by the OpenStack API calls, which usually
contains a service, an action and a resource (e.g. iden-
tity:get_user or compute:update). Syntax translations splits
these rules into multiple conditions like: “resource_service =
identity” and “action = get” and ‘“resource_type = user’; or
“resource_service = compute” and “action = update” and “re-
source_type = vm” (which is implicit for a compute resource).
Each of these API calls contains the on subject conditions
that determine who is allowed to perform the action. An
empty subject condition means that any authenticated user
can perform that action. In the syntactic translation, rules
containing multiple subject conditions (e.g. “role: admin or
is_admin”) are split into separate sets of AND rules in the
DNF. The adaptor needs to combine back into one API rule
when the policy is translated back to the local syntax.

AWS policies are also defined in a proprietary JSON format.
They comprise “user-based” and “resource-based” policies,
attached to users and resources respectively. An AWS pol-
icy is composed of independent statements (rules) combined
by the operator “OR”. Differently from OpenStack rules,
which are all implicitly permit, AWS rules may be “allow”
or “deny”. Statements with the explicit “deny” effect have
precedence over the ‘“allow” ones. This means that if one
rule says “role=professors, action=read, file=A, effect=allow”
and another one that says “role=professor, name=David, ac-
tion=read, file=A, effect=deny”, the second one must pre-
vail for David. Consequently the implemented prototype first
collects together all the rules attached to both users and
resources before performing syntax translation. Then, “al-
low” and “deny” rules are combined together with logical
“AND”, the effect is discarded, and the “deny” rules are
negated, e.g. “(role=professor, action=read, file=A) AND NOT
(role=professor, name=David, action=read, file=A)”. Further
logical simplification then takes place. Whilst this transforma-
tion maintains the policy’s original semantics, the current AWS
adaptor implementation discards the deny rules, meaning that
if an administrator subsequently creates a DNF rule that allows
a subject to perform an action that was originally denied, e.g.
“name=David, action=read, file=A” , the original deny rule
will not be considered. As a future enhancement, FAPManS
should store the deny rules so that they can be applied to
subsequent DNF policy updates.

Semantic translation is responsible for mapping condition
elements from specific cloud terms to abstract ones defined in
the ontology, and vice-versa. Both adaptors implemented these
mapping rules as entries in tables of a relational database. A
simple ontology for IaaS clouds was also defined in OWL. For
example, an OpenStack condition “resource_type = compute”
may be mapped to “resource.type = VM” in the ontology. The
adaptor flags any condition attribute or operator that could not
be translated as “cloud-X specific”. This is stored in FAPManS
so that all agents can decide if the rule should be applied to
their local policy or not.

C. Agents

Since a complete agent was not implemented, API calls to
FAPManS and the adaptors were manually activated through
the curl (https://curl.haxx.se) application.

V. VALIDATION

As our objective was to provide homogeneous policies on
heterogeneous laaS clouds, its success relies significantly on
the accuracy of the policy translations.

The following tests were wused to validate our
implementation. Rules from default OpenStack Keystone
and Nova policies as provided in the open source releases
were translated from OpenStack to DNF/ontology in step
1. In step 2, some examples of policy rules in AWS
format from the Elastic Compute Cloud (EC2) User Guide
(http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Exam-
plePolicies_ EC2.html) were translated from AWS to
DNF/ontology. Rules in DNF/ontology resulting from step 1

TABLE II
LSE FOR THE FOUR VALIDATION SCENARIOS.

Step| Description | Initial Num- | Intermediary| Number of | LSE
ber of Rules | Rules in | Rules Fully
DNF translated
syntax (final
and local | format)
semantics
1 OpenStack 34 39 33 (DNF 84.6%
to DNF (OpenStack) syntax and
ontology)
2 AWS to 3 (AWS) 6 5 (DNF 83.3%
DNF syntax and
ontology)
3 DNF to 39 (33 39 34 100%
Open- ontology, 6 (OpenStack
Stack OpenStack) syntax and
semantics)
4 DNF to 39 (33 33 33 (AWS 84.6%
AWS ontology, 6 syntax and
OpenStack) semantics)

were translated back to OpenStack in step 3, and to AWS in
step 4.

In order to measure the success rate of adaptor translation,
the metric “Level of Semantic Equivalence (LSE)” was defined
as

RuzesTTanslated

L =
SE RUZBSA”

RulesTransiated 1S the number of DNF rules that could be
translated by the adaptor and Rules 4;; is the total number of
DNF rules in a policy (including cloud specific ones).

A cloud specific rule cannot be translated if its destination
cloud uses a different cloud technology, or any of its condi-
tions’ elements does not have a mapping rule defined for it
in the adaptor/ontology. The latter could be because the APF
administrator forgot to define the element in the ontology, or
because the element is specific to a cloud technology and does
not have a global meaning.

The results of these validation scenarios, are presented in
Table II. All LSEs are above 80%, showing that most of the
rules could be successfully translated. However, it is important
to analyse the rules that could not be translated, in order to
determine the cause, since these rules will contain important
access control specifications.

In step 1, 34 local OpenStack rules were syntactically
translated into 39 DNF Rules, still using OpenStack se-
mantics. Six of these rules could not be semantically trans-
lated because some of the terms were not defined in the
ontology (e.g. Keystone’s actions “list_groups_for_user” and
“check_user_in_group”) or mapping rules were missing in
the adaptor (e.g. Nova’s project_id should be mapped to the
ontology’s tenant.id, but the mapping rule was not defined). If
these missing ontology elements are deemed to be common to
all the APF’s clouds, they can easily be added to the Ontology.
Otherwise, they can be kept as OpenStack specific rules. The
missing mapping rule can be easily added to the adaptor.

In step 2, three AWS rules were syntactically translated into
six DNF Rules using local AWS terms. One of these six rules

could not be translated into the ontology because the follow-
ing condition had no equivalence: ‘‘StringEquals’’:
‘‘ec2:ResourceTag/purpose’’: ‘*‘test’’. This
rule should either be rewritten using equivalent ontology terms
(e.g. resource.owner.group="test”), or remain an AWS cloud
specific rule.

Step 3 translated the 39 DNF rules from step 1 (in ontology
and OpenStack semantics) back to OpenStack format. As
expected, the LSE was 100%.

Step 4 translated the same 39 DNF rules from step 1 to AWS
format. The 33 rules defined in ontological terms were suc-
cessfully translated to AWS. Six OpenStack specific rules ob-
viously could not be translated because they are not in the on-
tology, and do not have an equivalence in the AWS language.
These six rules include the actions “list_groups_for_user and
check_user_in_group”. So, they were discarded by the AWS
(pseudo)agent.

Measuring the performance of the translation was not per-
formed in this validation, since normally it is not a time-
critical part of the access control. Policy administration, which
includes policy management and translation, happens prior
to access control decisions being made. The authorisation
enforcement and decision processes are the responsibility of
the cloud providers. Since their PDPs have not been modified,
our solution does not add any performance overhead to them.
However, performance could be an issue if the policy admin-
istrator noticed a vulnerability in the abstract policy that could
allow an attacker to penetrate the CSP, and wanted the policy
update to be activated as soon as possible. Consequently we
propose to measure the performance as future work.

We could not find other research that validated the transla-
tion process in terms of semantic equivalence, so we cannot
compare our solution to theirs. Other researchers have mea-
sured the performance of their policy translations, but this was
usually because the translation was part of the decision making
process.

VI. CONCLUSION

This paper has presented a solution to enable the enforce-
ment of homogeneous authorisation policies across multiple
heterogeneous laaS clouds. Authorisation Policy Federations
(APFs) allow policies to be defined and stored in a common
ontology in DNF, and managed from a central PAP, named
FAPManS. Adaptors are responsible for translating abstract
policies to local cloud-specific formats, and vice-versa, pre-
serving their semantics.

Prototypes of FAPManS and adaptors for OpenStack and
AWS cloud platforms were implemented to validate the solu-
tion. These adaptors could translate basic policies with a Level
of Semantic Equivalence (LSE) greater than 80%. Security
administrators can use the LSE to determine how closely their
existing policies match the abstract terms defined by the APF.
Rules that cannot be translated can be analysed to determine
if they are cloud-specific, or if the APF’s ontology should be
expanded to incorporate them.

As future work, the common policy format should be
improved to preserve the semantics of the explicit deny rules.

The proposed architecture could also be validated on other
cloud types besides IaaS, such as PaaS or SaaS. Currently the
mapping rules are hardcoded into the adaptors, but these could
be read from the ontology by adding extra tables to FAPManS.

REFERENCES

[1] N. Gonzalez, C. Miers, F. Redigolo, M. Simplicio, T. Carvalho,
M. Nislund, and M. Pourzandi, “A quantitative analysis of current
security concerns and solutions for cloud computing,” Journal of Cloud
Computing: Advances, Systems and Applications, vol. 1, no. 1, p. 11,
2012. [Online]. Available: http://dx.doi.org/10.1186/2192-113X-1-11

[2] A. N. Toosi, R. N. Calheiros, and R. Buyya, “Interconnected cloud
computing environments: Challenges, taxonomy, and survey,” ACM
Comput. Surv., vol. 47, no. 1, pp. 7:1-7:47, May 2014. [Online].
Available: http://doi.acm.org/10.1145/2593512

[3] B. Tang, R. Sandhu, and Q. Li, “Multi-tenancy authorization models for
collaborative cloud services,” in Collaboration Technologies and Systems
(CTS), 2013 International Conference on, May 2013, pp. 132-138.

[4] C. Ngo, Y. Demchenko, and C. de Laat, “Multi-tenant attribute-based
access control for cloud infrastructure services,” Journal of Information
Security and Applications, vol. 27-28, pp. 65 — 84, 2016, special Issues
on Security and Privacy in Cloud Computing. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2214212615000654

[5] A. Almutairi, M. Sarfraz, S. Basalamah, W. Aref, and A. Ghafoor, “A
distributed access control architecture for cloud computing,” Software,
IEEE, vol. 29, no. 2, pp. 36-44, March 2012.

[6] A. Celesti, F. Tusa, M. Villari, and A. Puliafito, “Three-phase
cross-cloud federation model: The cloud sso authentication,” in
Proceedings of the 2010 Second International Conference on
Advances in Future Internet, ser. AFIN ’10. Washington, DC,
USA: IEEE Computer Society, 2010, pp. 94-101. [Online]. Available:
http://dx.doi.org/10.1109/AFIN.2010.23

[7]1 G. Anastasi, E. Carlini, M. Coppola, P. Dazzi, A. Lazouski, F. Martinelli,
G. Mancini, and P. Mori, “Usage control in cloud federations,” in Cloud
Engineering (IC2E), 2014 IEEE International Conference on, March
2014, pp. 141-146.

[8] Y. Demchenko, C. Ngo, C. de Laat, and C. Lee, “Federated access
control in heterogeneous intercloud environment: Basic models and
architecture patterns,” in Cloud Engineering (IC2E), 2014 IEEE Inter-
national Conference on, March 2014, pp. 439-445.

[9] D. Fang, X. Liu, I. Romdhani, and C. Pahl, “An approach to unified

cloud service access, manipulation and dynamic orchestration via

semantic cloud service operation specification framework,” Journal of

Cloud Computing, vol. 4, no. 1, p. 14, 2015. [Online]. Available:

http://dx.doi.org/10.1186/s13677-015-0039-3

J. B. Bernabe, J. M. M. Perez, J. M. A. Calero, E J. G.

Clemente, G. M. Perez, and A. F. G. Skarmeta, “Semantic-

aware multi-tenancy authorization system for cloud architectures,”

Future Generation Computer Systems, vol. 32, pp. 154 — 167,

2014, special Section: The Management of Cloud Systems, Special

Section: Cyber-Physical Society and Special Section: Special Issue

on Exploiting Semantic Technologies with Particularization on

Linked Data over Grid and Cloud Architectures. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0167739X12001070

P. Cigoj and B. J. Blazi¢, “An authentication and authorization solution

for a multiplatform cloud environment,” Information Security Journal:

A Global Perspective, vol. 24, no. 4-6, pp. 146-156, 2015. [Online].

Available: http://dx.doi.org/10.1080/19393555.2015.1078424

J. Howlett, S. Hartman, H. Tschofenig, and J. Schaad, “Application

bridging for federated access beyond web (abfab) architecture,” Internet

Requests for Comments, RFC Editor, RFC 7831, May 2016.

D. W. Chadwick, K. Siu, C. Lee, Y. Fouillat, and D. Germonville,

“Adding federated identity management to openstack,” Journal of

Grid Computing, vol. 12, no. 1, pp. 3-27, 2014. [Online]. Available:

http://dx.doi.org/10.1007/s10723-013-9283-2

I. S. Sette, “Access control in iaas multi-cloud heterogeneous environ-

ments,” Ph.D. dissertation, Universidade Federal de Pernambuco, Recife,

PE, Brazil, August 2016.

[10]

[11]

[12]

[13]

[14]

