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Effect (MAEE) in MgO-CaO-SiO2 Silicate Glasses using Molecular Dynamics 

 

Laura A. Swansbury and Gavin Mountjoy*   

School of Physical Sciences, University of Kent, Canterbury, Kent, CT2 7NH, U.K. 

 

Abstract 

Oxide glasses containing a mixture of modifier ions have a wide range of applications, and it is often 

assumed that these modifier ions mix homogenously in the melt.  Silicate glasses are known for their 

significant industrial importance and are often doped with magnesium and calcium modifier ions to 

utilise their properties for applications. This study investigated the structural and dynamical impact 

imposed on a glass by the presence of two different types of alkaline earth cations. This was 

achieved through increasingly substituting magnesium for calcium in xMgO-(50-x)CaO-50SiO2 glasses 

which were modelled computationally using classical molecular dynamics simulation (MD). A mixed 

alkaline earth effect (MAEE) was found to cause the suppression of the modifier ion diffusivity. An 

absence of any significant deviation from the expected trends in the structural investigations 

confirmed that the MAEE is not a structural effect. This MAEE was therefore analogous to the mixed 

alkali effect (MAE), and was most prominent for roughly equimolar mixtures of calcium and 

magnesium ions. Interestingly, there was also evidence of the diffusivity being enhanced when only 

a small amount of a second alkaline earth ion was added.   

Introduction 

Among the classification of glasses, oxide glasses have received the most attention in terms of 

research and applications.  The strongly established modified random network model  [1] recognises 

the role of special p-block elements (Si, B, P, and Ge) as glass formers which are required to obtain a 

glass network.  Foremost among these, and coinciding with the natural abundance of silicon and 

oxygen ions, are silicate glasses.  In contrast, s-block elements of alkali and alkaline earth ions are 

network modifiers, and disrupt the connectivity of the glass network.  Although the latter may seem 

detrimental, it is essential for achieving economic production of glasses for applications.  The role of 

modifier ions has been thoroughly investigated for both fundamental glass science and for 

applications.  A contemporary example the latter is the diffusion of alkali ions, where Li ion 

conductivity is central to Li ion battery technology.  The modified random network model predicts 

that modifier ions occupy “channels”, hence understanding the diffusion of alkali ions is linked to 

understanding of the glass structure.   

Among the key phenomena observed in alkali silicate glasses is the mixed alkali effect (MAE) [2].  

Glasses containing a mixture of two alkali ion types have suppressed conductivity relative to the 

endpoint compositions which only contain one alkali ion type. Figure 1 (left) illustrates this effect for 



electrical conductivity measurements on (KxNa1-x)2Si4O9 glasses [3]. The MAE is smallest for alkali ions 

of a similar size, and is larger for alkali ions of notably different size. Studies indicate that the 

coordination numbers of alkali ions is not significantly different in a mixed alkali glass compared to 

the endpoint compositions.  Instead, the distribution of neighbouring alkali ions is expected to follow 

trends based on random mixing.  A possible way to link the local atomic environment (structure) and 

diffusion (dynamics) of modifier ions is to consider that in a mixed alkali silicate glass, diffusion may 

be hindered if there are two different sizes of modifier ion sites which are not interchangeable.   

 

 

  

Figure 1: To the left, electrical conductivity measurements on (KxNa1-x)2Si4O9 glasses [3]. To the right, liquid fragility index 

values for sodium aluminosilicate glasses [4]. (In each case the dashed line shows a linear trend between endpoint 

compositions, and the solid line is a cubic fit to the data.) 

Recently, a handful of studies have proposed that a mixed alkaline earth effect (MAEE) occurs in 

oxide glasses when one alkaline earth ion is substituted for another [4]. The MAEE is known to affect 

ion motion, and ultimately cause deviation from linearity in the dynamic properties of the glass. 

Figure 1 (right) illustrates this effect on the liquid fragility index of sodium aluminosilicate glasses [4]. 

Although the MAEE is poorly understood, it is thought to be analogous to the mixed alkali effect 

(MAE) which involves substituting one alkali ion for another. Studies of the MAE have been more 

numerous, with several different proposals on the origin of the MAE (e.g. [5], [6]). Despite this, it has 

been reported that the conclusions drawn about the MAE fail to satisfy all experimental findings [7]. 

In comparison, the MAEE has received relatively little attention, despite the need to understand 

ionic transport in silicate glasses containing alkaline earths [8]. 

Silicate glasses are ubiquitous and are well known for their industrial importance. The addition of 

alkaline earth modifier ions facilitates their array of applications, from construction and 

communications to medical implants. Modifier ions commonly include magnesium and calcium, 

which are the most commonly occurring alkaline earth ions in the earth’s crust. Calcium is commonly 

featured in silicates [2] to provide durability after the addition of sodium which acts to lower the 

melting temperature. A silicate network disrupted by the two alkaline earth modifier ions 

magnesium and calcium therefore became the focus of this study.  

Glasses of the metasilicate composition xMgO-(50-x)CaO-50SiO2 were modelled computationally 

using classical molecular dynamics simulation (MD) to investigate the impact of mixing alkaline earth 

ions on an atomic level. To the author’s knowledge, this is the first classical molecular dynamics 

study of the MAEE. Computational simulation was used to help comprehend why the MAEE occurs 

by noting when it is observed, and to what extent the amount of substituting ion affects the scale of 



the MAEE. This was achieved through studying the structural and dynamical properties over the 

range of glass compositions.  

Methodology 

Interatomic potential parameters of Buckingham form were used to describe the interactions 

between atoms in the MgO-CaO-SiO2 system. The Buckingham form is presented in equation 1 

where the potential, V���r�, acts between the atoms i and j which are separated by a distance r. The 

term q is the ion charge, and the terms	A, ρ, and C are potential parameters. The interatomic 

potential parameters used in this work were developed by Teter [9], and are listed in table 1.  

V���r� =
����

�π�����
+ A��exp�

����
ρ

� − ���
����

    (1) 

Table 1: Two-body Buckingham interatomic potential parameters from Teter [9]. 

i − j q� (e) A	�eV� ρ	�Å� C	�eV	Å!�
Si − O 
Ca − O 
Mg − O 
O − O 

2.4 
1.2 
1.2 
-1.2 

13703 
7747 
7063 
1845 

0.1938 
0.2526 
0.2109 
0.3436 

54.68 
93.11 
19.21 

192.58 
 

The interatomic potential parameters in table 1 were tested using the General Utility Lattice 

Program (GULP) [10]. This initially involved the energy minimisation of known crystalline structures 

using the interatomic potential parameters. The input crystalline structures used were acquired from 

the Crystal Structure Database (CDS) [11], and included CaO [12], MgO [13], SiO2 [14], CaSiO3 [15], 

MgSiO3 [16] and MgCaSi2O6 [17] crystalline structures. The output structures attained following 

GULP energy minimisation were then compared to the input crystalline structures, and the 

differences between them used to assess the performance of the interatomic potential parameters. 

As shown in table 2, the input the output structural parameters were in close agreement, confirming 

the suitability of the interatomic potential parameters from Teter [9] in this study.  

 

 

 

 

 

 

 

 

 

 



Table 2: Crystal lattice parameters, nearest neighbour distances (R), and coordination numbers (N(r)) for CaO, MgO, 

SiO2, CaSiO3, MgSiO3, and MgCaSi2O6 structures before (plain text) and after (italic text) GULP energy minimisation. 

Structural Parameter CaO MgO SiO2 CaSiO3 MgSiO3 MgCaSi2O6 

Vol (Å3) 
28.27 
27.18 

19.38 
18.24 

113.12 
114.96 

795.09 
785.95 

832.53 
854.93 

226.66 
219.75 

a (Å) 
3.42 
3.38 

3.02 
2.96 

4.92 
4.94 

15.42 
15.19 

18.23 
18.38 

6.74 
6.62 

b (Å) 
3.42 
3.38 

3.02 
2.96 

4.92 
4.94 

7.32 
7.31 

8.82 
8.87 

6.74 
6.62 

c (Å) 
3.42 
3.38 

3.02 
2.96 

5.41 
5.45 

7.06 
7.08 

5.18 
5.25 

5.29 
5.23 

RSiO (Å)  
 

 1.61 
1.59 

1.62 
1.59 

1.64 
1.59 

1.63 
1.59 

RCaO (Å) 2.42 
2.39 

  2.40 
2.42 

 2.16 
2.38 

RMgO (Å)  
 

2.13 
2.09 

  2.11 
2.13 

2.16 
2.12 

Si-O N(r)   4.00 
4.00 

4.00 
4.00 

4.00 
4.00 

4.00 
4.00 

Ca-O N(r) 6.00 
6.00 

  6.00 
6.00 

 4.00 
4.00 

Mg-O N(r)  6.00 
6.00 

  6.00 
6.00 

6.00 
6.00 

 

Classical molecular dynamics simulations of xMgO-(50-x)CaO-50SiO2 systems where x varies from 

x=0 to x=50 in steps of 5 were performed using DLPOLY 2.0 [18]. The glass densities for the end 

member compositions (x=0, and x=50) were obtained from the literature [19], [20]. It was assumed 

that the glass densities of the intermediate compositions were a linear combination of the end 

member densities. Each system contained 3,000 atoms within a cubic box which had a side length of 

approximately 33 Å. The time-step was 2fs, and the relaxation time was 2ps. An NVT Berendsen 

thermostat was used throughout and all simulation stages were fully equilibrated.  

A random starting configuration was used and each simulation began at 5000K to ensure a 

homogeneous distribution of atoms. The system was then successively cooled to 2000K in steps of 

100K before being quenched to 300K at a rate of 1013 Ks-1. The single temperature stages ran for 

5,000 timesteps while the quench stage required 85,000 timesteps. A stage at 300K followed to 

ensure the formation of a solid glass model and ran for 80,000 timesteps. This stage at 300K was 

then repeated to form the sampling stage which was used for analysis. Similar methodologies have 

previously been shown to produce realistic models of yMgO-(100-y)SiO2 [20] and zCaO-(100-z)SiO2 

[19] glasses, and include the endpoint compositions (50MgO-50SiO2 and 50CaO-50SiO2) investigated 

in this present study.  

To study dynamical properties, the mean square displacement (MSD) of atoms was analysed from 

molecular dynamics trajectories.  This was done over 20,000 timesteps at a higher temperature of 

1200K to amplify the diffusivity. The temperature of 1200K was below the melting temperatures of 



both endpoint compositions (the 50MgO-50SiO2 and 50CaO-50SiO2 endpoint compositions have 

melting temperatures of 1830K and 1816K respectively). 

Results 

Visual representations of the glass models at 300K where x=5, x=25, and x=45 are shown in figure 2. 

It can be seen that the modifier ion distribution appears to be mixed in the silicate network and that 

there are no obvious regions of clustering or phase separation. In order to further examine the 

structure of the glass models, nearest neighbour distance and coordination number values were 

obtained.  

 

 

 

 

 

Figure 2: From left to right, glass models of xMgO-(50-x)CaO-50SiO2, where x=5, x=25, and x=45. The yellow tetrahedra 

are silicon atoms; and the red, grey, and green spheres represent oxygen, calcium and magnesium atoms respectively. 

The plots of the nearest neighbour distance as a function of x (shown in figure 3) reveal minimal 

variation in the nearest neighbour distance as magnesium ions are substituted for calcium ions. The 

short range order correlations including Si-O, O-O, and Si-Si have average nearest neighbour 

distances of 1.60 Å, 2.59 Å, and 3.10 Å respectively as expected for a silicate network. The average 

nearest neighbour distances for the remaining correlations are detailed in table 3.  

 

Figure 3: Nearest neighbour distances, R, as a function of x for the xMgO-(50-x)CaO-50SiO2 glasses. 

 

 



 

Table 3: Average nearest neighbour distance, R, and coordination number, N(r), values where the standard deviations 

have been included in the parentheses. The cut-off distances used to identify the coordination numbers are also 

included. Note, a ‘-‘ indicates that the values of N(r) change significantly with x. 

Correlation R N(r) rcutoff (Å) 
Si-O 1.60(2) 4.00(0) 2.00 

Mg-O 2.02(3) 4.62(7) 2.75 
O-O 2.59(2) 4.30(3) 2.85 
Ca-O 2.49(2) 6.29(10) 3.00 
Si-Si 3.10(2) 2.14(8) 3.40 

Si-Mg 3.27(2) - 3.90 
Si-Ca 3.57(1) - 4.50 

Mg-Mg 3.26(5) - 4.10 
Ca-Mg 3.60(4) - 4.70 
Ca-Ca 3.92(3) - 4.90 

 

Coordination numbers can be obtained by integrating the pair correlation functions up to a cut-off 

distance rcutoff. By applying the cut-off distances listed in table 3, the coordination numbers in figure 

4 were attained. Figure 4 shows that the short range order (SRO) correlations such as Si-O, O-O, and 

Si-Si maintained almost constant coordination number values as magnesium ions were substituted 

for calcium ions. As quantified in table 3, the average coordination numbers of 4.0, 4.3, and 2.1 

respectively were consistent with a dominant metasilicate glass network structure. The Ca-Mg, 

Mg-Mg, and Si-Mg coordination numbers increased linearly, while the Si-Ca and Ca-Ca coordination 

numbers decreased linearly as x increased.  

 

Figure 4: Coordination number values, N(r), (based on the cut-off distances in table 4) as a function of x for the xMgO-

(50-x)CaO-50SiO2 glasses. 

The silicon network connectivity, Qn, describes the number of bridging oxygen ions per SiO4 

tetrahedral structural unit, and can indicate the impact of modifier ions on the silicate network. The 

Qn distributions for the glass models are shown in figure 5, where it can be seen that all of the glass 

models have similar Qn distributions with the proportion of Q2 species being dominant as expected 

for a metasilicate.  



 

Figure 5: The silicon network connectivity, Q
n
, distributions in the xMgO-(50-x)CaO-50SiO2 glasses. 

Mean squared displacement (MSD) measurements at 1200K were performed to investigate the 

dynamical properties of the glass systems. The temperature of 1200K was chosen to intensify the ion 

diffusion without reaching the melting temperatures of the glasses. As illustrated in figure 6, the 

MSD values for the oxygen and silicon ions displayed minimal variation. In contrast, there were 

significant deviations from linearity in the MSD values for magnesium and calcium ions, particularly 

when the system contained an equimolar mixture of magnesium and calcium ions. It can also be 

seen in figure 6 that the MSD of magnesium ions generally exceeds the MSD of calcium ions. 

Interestingly, there was an increase in MSD of both magnesium and calcium ions with minimal 

mixing, i.e. for x=5 and x=45.  

  

Figure 6: The mean squared displacement (MSD) values for magnesium, calcium, oxygen, and silicon ions as a function x 

for the xMgO-(50-x)CaO-50SiO2 glasses. The magnesium and calcium ion trends have been fitted using cubic functions, 

whilst the oxygen and silicon ion trends were fitted using linear functions. 

Discussion 

The xMgO-(50-x)CaO-50SiO2 system was ideally suited to investigate whether any MAEE would occur 

when two different types of alkaline earth ion were present in a glass system. This is partly due to 

the simplicity of the glass compositions which only contained silicate tetrahedra and two types of 

alkaline earth ions. There were no other ions in the system, such as alkaline ions, that could have 



affected the above results. Additionally, the glass compositions contained a high alkaline earth 

content of 50% which enabled any MAEE present to be readily detected.  

Figure 3 showed that the nearest neighbour distances for all correlations remained almost constant 

as magnesium ions were substituted for calcium ions. Similarly, the coordination numbers for all 

short range order correlations (figure 4) were almost constant as magnesium ions were substituted 

for calcium ions. The Ca-Mg, Mg-Mg, and Si-Mg coordination number values predictably rose linearly 

as x increased due to the increasing proportion of magnesium ions in the system. Conversely, the 

Mg-Ca, Ca-Ca, and Si-Ca coordination numbers decreased linearly as x increased due to the 

decreasing proportion of calcium ions in the system. This linear increase or decrease in coordination 

number was a significant result because it showed that the alkaline earth ions in the glass systems 

were stochastically mixed (figure 7). In addition, since deviations beyond those caused by limited 

statistics were not observed in figures 3 and 4, it was evident that the MAEE was not a structural 

effect, analogous with the conclusions drawn about the MAE [2].    

 

Figure 7: The coordination number, N(r), trends in the xMgO-(50-x)CaO-50SiO2 glass models (solid lines) compared to the 

expected trends (dashed lines) based on the atomic number density and cut-off distances applied. 

Since structural analyses were conducted within the immediate local environment, and alkaline 

earth ions were not affected by other alkaline earth ions in this vicinity, it was important to consider 

the atomic environment on a less local scale and begin to study the dynamics of the glasses. The 

mean squared displacement plot in figure 6 showed that ion diffusivity was at its highest when x was 

large. Figure 6 also showed that the diffusivity of calcium ions was generally lower than that of 

magnesium ions. This is because a calcium ion is of greater mass compared to a magnesium ion, 

causing it to exhibit greater inertia. Although the alkaline earth ion diffusivity was expected to 

increase linearly, it was clearly suppressed around x=25, providing evidence for a MAEE. Since ions 

are known to migrate between adjacent sites [2], and the glasses are stochastically mixed, it was 

evident that diffusivity was not preferred between dissimilar alkaline earth ions, hindering ion 

hopping analogous to the MAE [5]. The prevention of ion hopping is likely to be caused by the 

difference in ion site volumes between magnesium and calcium ions. Since calcium ions have a 

larger ionic radius compared to magnesium ions (as illustrated by the relative average Ca-O and Mg-

O nearest neighbour distances of 2.49 Å and 2.02 Å respectively in figure 3), it would be difficult for a 

calcium ion to diffuse into a magnesium ion site. The heightened alkali earth ion diffusivity for 

compositions containing minimal proportions of magnesium or calcium ions (i.e. at x=5, x=45) in 



figure 6 is likely to have been caused by an increase in the entropy of the system, encouraging higher 

diffusivity. However, this requires further investigation.   

Conclusion 

In conclusion, the xMgO-(50-x)CaO-50SiO2 system was ideal for investigating whether a MAEE occurs 

in an analogous manner to the MAE. This was due to the simplicity of the compositions and the high 

alkaline earth ion content of 50%. Structural investigations included nearest neighbour distance, 

coordination number, and silicon network connectivity calculations. None of the nearest neighbour 

distances or coordination number values exhibited deviations beyond those caused by the limited 

statistics of the models. The linear increase in the Ca-Mg, Mg-Mg, and Si-Mg coordination numbers 

and the linear decrease in the Mg-Ca, Ca-Ca, and Si-Ca coordination numbers elucidated that the 

alkaline earth ions were stochastically mixed in the glasses. An absence of any significant deviation 

from the expected trends in the structural investigations confirmed that the MAEE is not a structural 

effect. By calculating mean squared displacement values at 1200K, a significant suppression in the 

alkaline earth ion diffusivity for an equimolar mixture of calcium and magnesium ions (around x=25) 

was observed. It therefore became apparent that the MAEE influences the dynamic properties of the 

glass and is analogous to the MAE. The MAEE is likely to be caused by differences in ionic radius and 

mass between the two alkaline earth ions in the system. 
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