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Topic Introduction

Live Cell Imaging in Fission Yeast

Daniel P. Mulvihill'
School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom

INTRODUCTION

Live cell imaging complements the array of biochemical and molecular genetic approaches to provide a
comprehensive insight into functional dependencies and molecular interactions in fission yeast. Fluo-
rescent proteins and vital dyes reveal dynamic changes in the spatial distribution of organelles and the
proteome and how each alters in response to changes in environmental and genetic composition. This
introduction discusses key issues and basic image analysis for live cell imaging of fission yeast.

The size and shape of the fission yeast lends itself to elegant microscopy-based analysis. From the
late 1950s Murdoch Mitchison and Carl Robinow developed techniques to image organelle dynamics
in living yeast by suspending cells in media containing gelatin to raise the refractive index of the
mounting medium to match that of the cytoplasm (Mitchison 1957, 1970; Robinow and Marak 1966).
Later studies substituted polyvinylpyrrolidone for gelatin (Hagan et al. 1990). However, these ap-
proaches have long been surpassed by the exploitation of powerful fission yeast genetics to image
fusions between a protein of interest and fluorescent proteins (FP). Virtually all state-of-the-art
imaging techniques have been used to study fission yeast: standard and inverse fluorescence recovery
after photobleaching (FRAP and iFRAP, respectively) (Busch et al. 2004; Hachet et al. 2011), Forster
resonance energy transfer (FRET) (Flory et al. 2004), fluorescence-lifetime imaging microscopy
(FLIM) (Hachet et al. 2011), bimolecular fluorescence complementation (BiFC) (Hachet et al.
2011; Grallert et al. 2013a), laser ablation (Khodjakov et al. 2004), and quantification (Wu and
Pollard 2005) and super-resolution (Lando et al. 2012; Dodgson et al. 2013) microscopies.

CHOOSING A FLUORESCENT MARKER

Fluorescent Dyes

Fluorescence live cell imaging in fission yeast began with the application of 4’,6-diamidino-2-phenyl-
indole (DAPI) to capture snapshots of the detailed morphology of nuclei in cell cycle mutants (Toda
etal. 1981). Subsequently, a range of vital dyes has been used to visualize organelles, membranes, and
ion concentrations in living cells: Hoechst (Chikashige et al. 1994), DASPMI (Yaffe et al. 1996),
MitoTracker (Chu et al. 2007), FM4-64 (Bone et al. 1998), filipin (Takeda and Chang 2005), and
Fura-2 (Zhang et al. 1997). Although many have a negligible impact on cell physiology when used
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properly, care should be taken to ensure that the correct concentration is used and that the incubation
period is appropriate to minimize the impact on cell function. For example, illumination-mediated
excitation of DNA-binding molecules can damage DNA and thus impact on nuclear organization. For
this reason DAPI has been surpassed by Hoechst 33258 for live cell imaging (see Protocol: Micro-
scopic Observation of Living Cells Stained with Fluorescent Probes [Asakawa et al. 2016]).

Fluorescent Proteins

762

cDNAs encoding FP tags can easily be fused to the 3’ terminus of a gene at its genomic locus in less
than a week via polymerase chain reaction techniques (Wach et al. 1997; Bihler et al. 1998; Janke et al.
2004), whereas recombinase-mediated cassette exchange (RMCE) and marker switch approaches that
take marginally longer support tagging at the amino terminus (Maclver et al. 2003; Watson et al. 2008;
Tang et al. 2011). The aim is to support stable expression at wild-type levels, because the single
integrated FP-tagged allele remains under the control of the endogenous promoter at the endogenous
chromosomal location. However, it is important to remember that even if the fusion has no impact on
protein function, introduction of foreign sequences into the genome can alter noncoding RNA or
heterochromatin functions at and around the target locus. Full details of the methods for genomic
manipulation are provided in Introduction: Molecular Genetic Tools and Techniques of Fission Yeast
(Murray et al. 2016).

Theintroduction of any external factor to a cell can impact normal physiology. Careful consideration
must therefore be given to the choice of fluorescent markers and design of fusions to minimize the impact
on protein function. Functional domains in the candidate protein can suggest a preferred terminus for
tagging (e.g., if the activating/interacting domain is at the amino terminus, attempt tagging at the
carboxyl terminus). Often the inclusion of glycine- and alanine-rich linker sequences between the
protein and the FP can overcome negative influences on function. However, there are no definitive
rules that can predict which mode of tagging will be optimal for a particular target/FP combination,
making it essential to test functionality of amino- and carboxyl-tagged versions of a protein of interest
using an appropriate assay. If antibodies are available, immunofluorescence staining (see Protocol:
Immunofluorescence Microscopy of Schizosaccharomyces pombe Using Chemical Fixation [Hagan
2016]) of both wild-type and the FP-fusion expression strains to determine whether the distribution of
the target protein is affected by fusion to the FP is an excellent assay of functionality. Alternatively, use
imaging, biochemistry, and genetics to assess the impact the fusion has on the process in which it
participates. For example, synthetic lethality or suppression of conditional mutations in a functionally
related molecule is often a simple yet sensitive means of revealing subtle impacts on function.

A large range of FPs with specific excitation and emission wavelengths, folding times, and quantum
yields (i.e., the number of fluorescence events triggered by the excitation photon) have now been
characterized. The founding green fluorescent protein (GFP) remains the best-characterized and
most photostable FP (i.e., it is less susceptible to damage from the excitation light source). For studying
true protein dynamics, single molecule analysis, and quantitation of molecule composition at defined
locations (Wu and Pollard 2005) it is vital that the FP is monomeric. There are benefits and drawbacks
for each FP. For example, although blue/cyan wavelength FPs provide the best spatial resolution
(resolution is a function of wavelength), they are not as bright as GFP variants and the shorter
wavelengths used to excite the cyan FPs are more toxic than longer wavelengths. In contrast, although
imaging red fluorescent proteins (RFPs) is least toxic and their emission spectra allow excellent wave-
length detection separation from GFP (e.g., mCherry is an excellent partner for GFP in colocalization
and FLIM experiments), they are generally less bright, less stable, and bleach more rapidly than GFP,
especially at higher culture temperatures (e.g., 36°C) (Fig. 1A). Each FP also has a characteristic
maturation period (i.e., the time it takes for the newly synthesized FP polypeptide to fold into its
mature fluorescent conformation). Although rapid maturation is beneficial for most applications
(the dLanYFP derivative mNeonGreen requires <1 min whereas GFP requires ~25 min; Shaner
et al. 2013), slow-folding RFPs requiring several hours (Baird et al. 2000) support lineage analysis of
organelle inheritance over successive rounds of cell division (Grallert et al. 2004; Lam et al. 2012).
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FIGURE 1. Approaches to imaging. (A) Comparison of fission yeast calmodulin—FP fusion strains and camera chips.
Maximum projections from 21 z-plane images of cam1-gfp (left panels), cam1-yfp (center panels), and cam1-mCherry
(right panels) cells. Images were captured with either an emCCD (upper panels) or CMOS (lower panels) camera, each
using 1x binning. Light intensity, filters, and exposure times are comparable between cameras. Images were captured
with 50-msec exposure times for GFP and yellow fluorescent protein (YFP), whereas mCherry images were captured
with a 100-msec exposure. (B,C) Two approaches for differentially labeling strains to support direct comparison of
phenotypes, localization patterns, and signal intensity under identical imaging conditions in the same field of view. (B)
orb2” and orb2-24 cells, each overexpressing a GFP-Myo1 fusion (green) at 36°C. orb2” cells were transiently
resuspended in TRITC-labeled lectin solution (magenta) before mounting alongside unlabeled wild-type cells. (C) A
mixed mounting of tea 1-gfp sid4-tdTomato and tea 1-gfp tea2A cells. tea2™ sid4-tdTomato cells (magenta spindle pole
bodies) have strong Tea1-GFP signal (green) at the cell poles whereas the signal intensity is markedly reduced in the
tea2A cells whose spindle pole bodies are unlabeled. (D) Lifeact-expressing cells imaged on the indicated systems with
images captured and processed as indicated. Scale bars: 5 pm.
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For low-abundance proteins, brightness can be enhanced by fusing multiple FP tags (e.g., 3XGFP
or 2xXTomato tags fused in tandem) (Grallert et al. 2006; Martin and Chang 2006; Martin-Garcia and
Mulvihill 2009; Bendezti and Martin 2011), although this signal enhancement comes at the cost of
increased mass (e.g., 3XGFP tags increase the mass of an endogenous protein by 81 kDa) and thus
could have a greater impact on fusion protein function than a single tag. Such concerns appear to be a
particular issue for cytoskeletal studies. A detailed characterization of the impact of different fusion
strategies to label the a-tubulin Atb2 highlights the impact of FP labeling strategy and gene promoter
usage on microtubule organization and cell viability (Snaith et al. 2010). Actin polymers are exqui-
sitely sensitive to labeling strategies: it has proven impossible to generate functional FP-labeled actin,
and even expression of small FP-conjugated actin binding peptides are either lethal or can delay cell
division (Karagiannis et al. 2005; Riedl et al. 2008; Huang et al. 2012).

In summary, careful consideration must be given as to the aim of the experiment to select the
most appropriate FP for the task. Whichever FP is chosen, internal controls for each experiment are
vital to characterize the impact of each particular labeling strategy on the interpretation of results.
Although GFP has long been an excellent FP for most imaging applications, its position will be
continually challenged making it important to consult members of the fission yeast community
involved in imaging (e.g., via Pomblist: http:/listserver.ebi.ac.uk/mailman/listinfo/pombelist) to es-
tablish which probes are best suited for fission yeast imaging. At the time of writing, the similar
absorption and emission spectra and rapid folding yet threefold brighter signal suggest that mNeon-
Green will likely be the first to eclipse GFP (Shaner et al. 2013).

CELL PREPARATION, MAINTAINING CELLULAR ENVIRONMENT, AND EXPERIMENTAL DESIGN

Growth Media

Mounting

764

Strains must be cultured appropriately and mounted carefully. As in all cell biology analyses, adher-
ence to good strain husbandry is essential (see Introduction: Growth and the Environment of Schiz-
osaccharomyces pombe [Petersen and Russell 2016]). Cells should have been growing in the log phase
for a minimum of 2 d before each imaging experiment, and should be maintained in conditions that
are as close to a nonstressed environment as possible for the duration of the experiment to avoid
stimulating the TOR and MAP kinase pathways that will alter cell physiology (Toone and Jones 2004;
Petersen 2009).

Yeast extract-based media autofluoresce at most wavelengths used for live cell imaging, making
minimal media more appropriate. Filter sterilization of synthetic minimal media avoids the carame-
lization that generates background fluorescence, making filter-sterilized Edinburgh Minimal Medium
(EMM2) a common choice. Because amino acid supplements increase autofluorescence and can
impact protein distribution, imaging prototrophs is highly advisable. The type of nitrogen source
dictates the metabolic and signaling pathways engaged within the cell (see Introduction: Growth
and the Environment of Schizosaccharomyces pombe [Petersen and Russell 2016]). Such alterations
in physiology can be exploited to great benefit when high background is experienced in EMM2. Simply
switching to minimal sporulation liquid (MSL) medium (Egel et al. 1994) can abolish this background,
presumably because proteins are more rapidly turned over by autophagy in MSL such that superfluous
FP—fusion proteins that have yet to be incorporated into structures of interest are removed.

The mode of cell mounting is determined by the geometry of the microscope frame (upright or
inverted) as well as the duration and the nature of the experiment being undertaken. For upright
microscopes the simplest approach is to prepare a pad of agarose media on the center of a slide onto
which cells are directly mounted from the culture (i.e., with no centrifugation steps). A coverslip is
then placed directly on top of the cells and held in place using wax or tape (Fig. 2A-C). The
environment must remain humid because cells can drift out of the plane of imaging if the agarose
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FIGURE 2. Slide chamber assembly for live cell imaging. Assembly of simple slide-based chambers for live cell
imaging for upright (A-C) and inverted (D-F,G-I) microscopes. (A—C) For an upright scope filter-sterilized media
containing 2% ultrapure agarose is poured between 2 x 1-2-mm thick spacers that have been fixed 40 mm apart onto
a clean microscope slide (A). Once cooled and set, cells are added directly to the surface of the agarose pad (B), which
is then covered with a 25 x 50 mm coverslip (C) held in place with wax or tape. (D-F) A simple flow cell. Coverslips
are coated with lectin by transiently applying a solution (e.g., 1 mg/mL soybean lectin) before immediately being
removed and the coverslip dried (D). The coverslip is inverted and placed carefully onto a slide with appropriately
spaced double-sided sticky tape (E). Yeast cells are adhered to the surface of the lectin-coated 25 x 50 mm coverslip
and excess cells are washed off with media. The space between coverslip and slide is filled with preconditioned
minimal media (F) before the slide is mounted coverslip down onto an inverted microscope. (C-/) Imaging under an
agarose pad. A molten solution of 0.5% ultrapure agarose in filter-sterilized medium is poured onto a 2-cm coverslip
resting on a smaller diameter coin (G). When the agarose has set, a drop of cells is placed on the oxygen-permeable
base of the culture dish and the agarose pad/coverslip is inverted onto the cells. The plate is imaged in a Perspex box
containing a damp tissue to maintain a humid atmosphere throughout imaging. After 20 min of settling, cells remain
stationary for days, although the flexibility of the membrane demands focusing approximately every 10 min during an
imaging period.

pad dehydrates. This method is excellent for maintaining cell viability during short-term imaging
experiments.

An inverted microscope supports more approaches to cell mounting, enabling longer experiments
and greater flexibility in experimental design. Cells are generally mounted directly onto the surface of
the coverslip of an inverted slide or onto the bottom of a glass-bottomed multiwell plate. A coating of
lectin that adheres to the hydrophobic glass surface and carbohydrates in the cell wall is generally used
to attach cells to the glass. The affinity of lectins for cell walls can also be exploited to differentially label
the cell surface of different strains with different fluorescent lectins (May and Mitchison 1986). One or
more strains are labeled with a fluorescent lectin before being mixed with unlabeled cells immediately
before imaging. This simple approach supports the ultimate controlled experiment: the simultaneous
imaging of two genetically distinct cells in the same field of view, where one culture is labeled with a
fluorescent lectin whereas the other is not (Fig. 1B; Beinhauer et al. 1997; Alvarez-Tabarés et al. 2007;
Grallert et al. 2007; Attanapola 2009; Martin-Garcia and Mulvihill 2009). Alternatively, an additional
fusion protein at a distinct location that emits at a different wavelength can be incorporated into the
control strain (Fig. 1C).

A simple flow chamber can also be used to mount cells for short-term (~20 min) observation. In
this method, a solution of an appropriate lectin (e.g., 1 mg/mL soybean agglutinin or 2 mg/mL
concanavalin A) is applied transiently to a coverslip and the residual solution is air-dried: coverslips
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remain competent for up to 12 h after coating. Cells from a liquid culture (i.e., without centrifugation)
are then adhered onto the coverslip. After unbound cells have been washed away, the cell-coated
coverslip is anchored to a clean slide with strips of double-sided tape to generate a chamber that is
filled with preconditioned media (Fig. 2D-F).

A number of commercially available chambers support more controlled experiments. The Cell-
ASIC ONIX (Hayward, USA) and Cherry Biotech (Rennes, France) microfluidics systems or the
Bioptechs FCS2 culture dish chamber system (Butler, USA) all support precise media flow, gas
exchange, and temperature control. Because cells are trapped within an elastic flow chamber, micro-
fluidics systems avoid the need to adhere cells onto a chamber surface. This means that progeny
remain within the focal plane to support imaging over successive generations (Wood and Nurse
2013). In contrast, because only the first generation of cells will adhere to a lectin-coated surface
and daughters float away from the focal plane in this approach, the rapid media exchange around
static cells in microfluidic systems makes them ideal for drug exchange during observation. However,
if microfluidics are not available, drug exchange can be achieved equally well using a simple Pasteur
pipette-mediated exchange of media within a glass-bottomed dish to which cells have been attached
using a lectin (Grallert et al. 2013b). A further alternative to microfluidics for long-term imaging over
several cell cycles is to trap cells under a thick agarose/medium pad on an oxygen-permeable trans-
parent membrane such as the Lumox culture hydrophilic dish (Fig. 2G-I; Greiner Bio-One,
Germany) (Grallert et al. 2004). Although it is technically more challenging to generate custom
microfluidic chambers, the ability of such chambers to constrain growth to reshape cells has
proven highly informative (Minc et al. 2009; Chang et al. 2014).

Temperature Control

Temperature control is a vital component of any live imaging experiment. Several aids support
temperature control, with enclosure of the stage in a box through which preheated air is circulated
(e.g., Solent Scientific, Southampton, UK) being the most straightforward. When temperatures above
ambient are set, the connection between the objective and the cooler body of the microscope means
that the objective acts as a heat sink to locally reduce temperature at the point of observation where
temperature control is most critical. Objective heating collars (e.g., Bioptechs) and/or direct heating of
the observation chamber (in addition to the Perspex box, e.g., Bioptechs, CellASIC or Cherry Biotech)
are excellent solutions. Optimal results are obtained when all approaches (stage, objective, and
chamber heating) are applied. Whatever the approach, best results are obtained when the system is
set to temperature and allowed to equilibrate to a steady-state overnight before an experiment is
undertaken, thus minimizing temperature gradients that can cause a continual and rapid loss of focus
resulting from expansion/contractions during observation.

Conversely, the plethora of temperature-sensitive (¢s) mutants makes rapid shifts of chamber
temperature a highly attractive option for live cell imaging. Such shifts are easily controlled with
the heated objective collar/slide system of Bioptechs, or the CellASIC or Cherry Biotech microfluidic
systems (Velve-Casquillas et al. 2010; Bouhlel et al. 2015). However, it is important to remember that
rapid temperature shifts invoke a stress response that will change cell physiology within 2 min (Toone
and Jones 2004), making it essential that appropriate controls are used. A second common pitfall with
the use of s mutants is the assumption that a particular mutation confers an immediate and complete
loss of function. All ts mutants were isolated because of their ability to block colony formation on
plates, not because there is complete inactivation or degradation of the protein on temperature shift in
liquid culture. Consequently, many #s mutants are hypomorphs that retain considerable function and
some take more than a generation to completely lose function. Refinement of the instant degradation
“degron technology” that works so effectively in budding yeast and mammalian cells (Nishimura et al.
2009; Holland et al. 2012) for use in fission yeast offers great potential for eradicating both the stress of
temperature shift and residual function of hypomorphic #s mutations.

However cells are mounted, it is essential to minimize stress during imaging. Heat fluctuations and
light damage should both be minimized, and a constant supply of nutrients and oxygen are essential.
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Imaging stress can lead to a number of effects on protein organization. Certainly microtubule dy-
namics can change within 30 min of mounting, making it important to stop image capture and
remount fresh samples after 20 min. Ultraviolet (UV) stress not only elevates cytoplasmic noise
signal, but can also drive changes in protein distribution and cell cycle progression. Therefore, it is
important to be consistent for all of your experiments and consider whether the localization pattern
was observed immediately, or after the sample had been on the imaging system for a prolonged period.

LIVE CELL IMAGING SYSTEMS

Wide-Field Versus

Objective Lenses

Cite this introduction as

The most fundamental consideration when choosing a live cell imaging system is whether it should be
an upright or inverted frame. Inverted microscopes have significant benefits for live cell imaging
because cells can be mounted directly onto the coverslip or bottom of the glass chamber/microfluidic
system that will sit on the objective. The advantages of this configuration include culture in liquid
media that can be exchanged during the experiment, minimization of the distance and refractive index
changes between cell and lens, and optional commercial modules to keep the sample in focus
throughout the experiment (e.g., the Olympus zero-drift compensation or Nikon Perfect Focus
systems)—a useful feature for long-term experiments.

Confocal Microscopy

Wide-field (WF) describes a standard epifluorescence microscope. There are several types of confocal
microscopes that can be classified as either point scan or parallel scan systems. Although point
scanning systems allow exquisite detail within deeper metazoan samples, the speed of acquisition
they support means that the faint signals within yeast bleach before a full image can be captured, and
the intensity of the transient illumination required make them phototoxic to fission yeast. Further-
more, the requirement for a separate dedicated detection head and laser for each FP adds unnecessary
cost. In contrast, a parallel scanning (e.g., spinning disk) confocal microscope uses a simultaneous
multiplex capture system allowing image exposure rates equivalent to a WF system, thus minimizing
phototoxicity and supporting the use of electron-multiplying charge-coupled device (emCCD)-based
cameras for image detection.

WEF and confocal systems differ in one important respect. The entire sample is illuminated in WF,
whereas confocal systems illuminate a thin section of the sample, thereby minimizing background
fluorescence from out-of-focus light. When using WF microscopy to image the thicker samples usually
encountered with metazoan tissue culture this background can be so significant that it effectively
reduces the overall resolution of the system. Because S. pombe are only 4 um wide, the background
generated from signals beyond the focal plane is minimal, such that WF microscopy usually gives
excellent results. Although they are small, the width of fission yeast exceeds the depth of the focal planes
of either WF or confocal systems. It is therefore necessary to capture a consecutive series of images in
the vertical z-axis to capture the entire signal within a cell. Because this is an inherent component of the
confocal approach, the stage or objective of WF systems must be fitted with piezo motors to support
accurate stepwise capture of consecutive slices over a defined distance with a defined period.

Ultimately, there are no hard and fast rules to predict whether a WF or spinning disk system will
give best results with a particular fusion protein. In some cases the increase in z-slice clarity supported
by spinning disk confocal microscopy captures signals and dynamic movements that are not seen on a
WE system equipped with equivalent optics (Fig. 1D; Alvarez-Tabarés et al. 2007; Attanapola 2009). If
you are fortunate enough to have access to both types of system (either in-house, or via a visit to a
colleague’s laboratory), it is highly advisable to try out both to determine which is best suited to the
study of your particular question/protein.

The choice of objective will be determined by the FP-fusion signal, the specific assay, and the
sensitivity of the imaging platform. It is highly advisable to test a variety of lenses from colleagues
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or by trialing from the manufacturers before purchase. Detailed analysis of protein organization in
yeast generally demands objectives with magnification powers above 60X, although the increased field
of view allowed by a 40X lens can be attractive when studying a bright population-wide phenomenon.
To capture the faint signals of most FP-fusion proteins in yeast it is critical to use an objective with the
highest numerical aperture (NA). NA is an indication of the objective’s ability to gather light and
resolve fine detail (i.e., the higher the NA, the more fluorescent signal one can detect). The NA of a
particular objective is always embossed on its side alongside the magnification. The highest NA lenses
often have a simpler architecture, lacking elements required for phase contrast or differential inter-
ference contrast imaging that can reduce the amount of detectable light by up to 50%. Objectives that
have been specifically developed for total internal reflection fluorescence (TIRF) applications have the
highest NAs (e.g., 1.49 or 1.6, depending on coverslip material). Their short working distance is
beneficial for imaging yeast, and the higher their magnification the lower the background from
signals outside the focal plane, thus improving the signal-to-noise ratio (Fig. 3).

Unprocessed Deconvolved Deconvolved
max projection max projection single slice

100x 1.45 NA 100x 1.4 NA 60x 1.4 NA

150x 1.45 NA

FIGURE 3. Objective choice and image processing. Images of gfp—atb2 myo52-mCherry cells captured on the same
widefield system with the same camera and the indicated lenses (all from the same manufacturer) either with or
without deconvolution. Arrows highlight spatial resolution allowed by WF microscopy that allows the researcher to
discern that microtubules (green) fit cleanly into gaps between foci of the myosin V (magenta). Scale bars: 5 pm.
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The options available for illumination are lasers, halogen bulbs, and light-emitting diodes (LEDs).
LEDs are rapidly becoming the source of choice because they are bright enough for virtually all live cell
imaging applications (often brighter than halogen bulbs), generate no significant heat or UV radiation
and, like lasers, emit light of defined wavelengths. Most importantly the intensity of LED emission can
be precisely controlled. In contrast, although xenon, tungsten, and halogen systems generate enough
light, each has a characteristic spectrum of illumination with some wavelengths being weaker than
others, and they all radiate significant amounts of heat and UV radiation. Heating can be minimized
with liquid light guides or optical fibers to deliver light, and filters can eliminate UV. Another draw-
back to these light sources is that the intensity of illumination at the target can only be modulated
reproducibly using neutral density filters. Once the frequency and cost of bulb replacement is con-
sidered (the lifetime of a halogen bulb is ~300 h, whereas the lifetime of an LED is >10,000 h, and the
cost of replacing halogen bulbs is ~100 times that of an LED), an upgrade to LEDs is highly attractive.
Although lasers are powerful, tunable, produce light of a precise wavelength, and generate minimal
heat to the sample, the cost associated with the demand for different stably mounted lasers for each FP
and safety considerations currently make them less attractive for WF systems than LEDs.

Selecting the right filter combination is as important as the choice of the right objective. When using
a white light source, WF systems demand both an excitation filter that excludes wavelengths outside
the excitation frequency to deliver a specific wavelength for each specific FP, and an emission filter that
allows passage of the light emitted by that FP but excludes the excitation (and often other) wave-
lengths. Monochromatic LEDs or lasers dispense with the need for excitation filters.

Filters are generated by coating a glass surface with specific minerals to create a precise diffraction
grating effect. Magnetron sputter-coated filters are the filters of choice, transmitting light with effi-
ciencies reaching 97%. For simultaneous multi-wavelength experiments, band pass filters are used.
Band pass filters support the passage of the strongest portions of a spectrum but exclude the weaker
“tails” of the spectra, thus capturing slices of the strongest part of an emission spectrum rather than its
entirety. By supporting the capture of consecutive spectral slices, a series of band pass filters supports
the capture of signals from multiple FPs in a single sample. However, the need to capture only the
strongest part of the spectrum diminishes the amount of light captured because the signal from the
“tail” is ignored (see Fig. 2 in Introduction: Fixed Cell Imaging in Schizosaccharomyces pombe [Hagan
and Bagley 2016]). Furthermore, each additional coating that is applied to reduce the emission
bandwidth diminishes the intensity of the signal transmitted. Consequently, imaging an FP with a
filter set that is designed for multi-wavelength imaging will give a considerably fainter signal than a
much simpler “long pass” emission filter, which supports the passage of every photon emitted from
the FP-fusion to the detector.

Charge-coupled device (CCD), emCCD, and complementary metal oxide semiconductor (CMOS)
cameras support rapid exposure times (e.g., <0.5 msec full-chip frame rate for CMOS cameras). The
different camera chips use different technologies and each has specific benefits/drawbacks. Although
emCCD cameras are extremely sensitive (>90% quantum efficiency) and have been the mainstay of
live cell imaging for almost two decades, the much less expensive CMOS detectors are becoming
increasingly attractive. Although the individual pixels of CMOS detectors are less efficient than
emCCDs, the CMOS detector chip can be much larger than emCCD chips, supporting maximal
spatial resolution at lower magnifications than are required for CCD-based chips. Importantly, CMOS
detectors have extremely low electric background noise and so generate images with a much better
signal-to-noise ratio than emCCD or CCD detectors. This enhanced signal-to-noise ratio goes a long
way to compensate for the reduced sensitivity (Fig. 1A). Critically, the larger CMOS detectors support
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greater levels of “binning.” “Binning” is the process by which the charges from adjacent pixels on the
camera chip that are generated when photons collide with the pixel well are combined to give a single
composite signal. For example, combining the signal from a 4 x 4 array of 16 pixels will give an overall
sensitivity that is 16-fold greater than when sampling each pixel. Thus, binning supports faster readout
and improved signal-to-noise ratios at the expense of reduced spatial resolution. However, the loss of
spatial resolution is related to the size of the detector. The larger CMOS detectors therefore support far
greater levels of binning than emCCD and CCD chips before erosion of image quality. Consequently,
faint and/or dynamic signals can be imaged at meaningful frame rates using the larger chips of CMOS
cameras. Thus, although emCCD chips remain the system of choice for most low-light applications at
the time of writing, rapid developments in CMOS technology are likely to see these advantages
eclipsed as major manufacturers abandon CCD technology to concentrate on pushing CMOS tech-
nology to greater heights.

The optimal acquisition conditions in live cell imaging vary significantly depending on the specific
protein and imaging system. There is always a balance between sensitivity, acquisition rate, and
experiment duration. High-intensity excitation light induces photochemical oxidation to irreversibly
photobleach the FP. Thus, although high-intensity excitation light generates excellent signals, the
number of images that can be acquired is limited. Reducing the excitation intensity by half and
doubling the exposure time has a disproportionately positive impact on the number of possible
frames than can be captured.

Understanding acquisition software can help to improve image acquisition rates and reduce
background noise. Storing images directly to the data drive on capture can add an additional 100
msec to the acquisition rates. “Streaming” enables thousands of images to be stored instantly on the
camera or computer RAM chips for the duration of the experiment before the data is subsequently
written to the long-term storage disc. Alternatively, an average image can be calculated by combining
the input from a number (typically three) of stream capture images, considerably reducing nonspecific
background noise. Finally, rather than using the entire surface area of the detector to capture an image,
it is possible to define a much smaller “region of interest” to reduce the amount of time required to
capture and download an image.

A number of commercial and open source options support image processing, analysis, and visuali-
zation. A variety of information can be extracted from the image data: duration, volume, signal
intensity, and in some cases, tracking of dynamic molecules. Each package will concentrate on the
application of particular algorithms. Two widely used approaches merit a brief mention here.

Maximum Projection

770

Maximum projections are a composite image from consecutive focal planes in the z-axis of a sample.
The volume of pixels with maximum intensity from each consecutive focal plane is combined to
generate a single image. This technique is computationally fast, but the two-dimensional output
does not provide a good sense of depth of the original data. It is important to remember that some
or all of the background fluorescence of each individual slice will be captured. This accumulation
of background signal significantly erodes the signal-to-noise ratio of the final composite such that
signals that were clearly differentiated in an individual slice can become lost in the increasing back-
ground “fog” of a maximum projection. Thus, although the use of maximum projection software has
become the routine end to most image capture, it is important to remember that returning to
individual slices can give better resolution and more information for punctate structures that
reside in one plane alone (Fig. 3).
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Image Deconvolution

CONCLUSION

Deconvolution is a computational method for removing background generated from signals beyond
the focal plane (Van der Voort and Strasters 1995). This is computationally slow and requires
calibration of the imaging platform to calculate the degree to which the signal from a point is distorted
by the optics of the system. Computation is then used to reassign the distorted signal back to a
theoretical set of points from which it is assumed the distorted signal emanated. The result can be
a considerable enhancement of resolution and removal of background fluorescence. When applied to
images of consecutive focal planes, considerable improvement over standard maximum projection
can be achieved (Figs. 1D, 3). It is critical to undertake any analysis of the image data before decon-
volution because the process not only normalizes intensities to maximize the dynamic range, but also
can remove faint but significant signals.

One final word of warning when assessing analyzed data: do not become focused on differences
observed in absolute figures obtained from live cell imaging experiments from different laboratories.
These will differ from laboratory to laboratory and can be affected by the precise genetic makeup of
strain and the way in which the cells were cultured, mounted, and observed under the microscope, as
well as by the detailed configuration of the imaging system. The most important points are to ensure
consistency of imaging conditions in one’s own experiments, that all appropriate controls are applied,
and that cell stress and phototoxicity have been minimized.

A number of resources provide more detail about the concepts and methodologies underlying and
physics of imaging and the technologies discussed here, including optical physics textbooks (Smith
2007), dedicated microscopy manuals (Goldman et al. 2010), and online resources (e.g., http://www
.microscopyu.com). For more detail on filter selection, see manufacturers’ websites (e.g., http:/www
.chroma.com or http://www.semrock.com).

RELATED INFORMATION

For step-by-step methods that involve live cell imaging in fission yeast, see Protocol: Microscopic
Observation of Living Cells Stained with Fluorescent Probes (Asakawa et al. 2016), Protocol:
Visualization of a Specific Genome Locus by the lacO/LacI-GFP System (Ding and Hiraoka 2016),
and Protocol: Live Cell Imaging of the Schizosaccharomyces pombe Sexual Life Cycle (Merlini
et al. 2016).
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