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Typical definition

Purchasing decision is positively correlated with losses
-Chiappori and Salanie (2000) “Positive Correlation Test”
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Typical definition

Purchasing decision is positively correlated with losses
-Chiappori and Salanie (2000) “Positive Correlation Test”

@ Empirical results are mixed and vary by market.
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Adverse Selection

Adverse Selection
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Typical definition
Purchasing decision is positively correlated with losses
-Chiappori and Salanie (2000) “Positive Correlation Test”

@ Empirical results are mixed and vary by market.
Life Insurance | Cawley and Philipson (1999)
Auto Insurance | Chiappori and Salanie (2000)

Cohen (2005)

Annuity Finkelstein and Poterba (2004)

Health Insurance | Cardon and Hendel (2001)

x| OO X|Xx
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@ Restricting risk classification = Policy is over-subscribed by high
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@ Good measure?
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Adverse Selection

@ Restricting risk classification = Policy is over-subscribed by high
risks BAD?

@ Good measure?
Definition

expected claim per policy  E[QL]

Ad Selection (AS) = = 1
verse Selection (AS3) expected loss per risk E[QIE[L] @

where Q: quantity of insurance; L: risk experience.
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risks BAD?

@ Good measure?
Definition

expected claim per policy  E[QL]

Ad Selection (AS) = = 1
verse Selection (AS3) expected loss per risk E[QIE[L] @

where Q: quantity of insurance; L: risk experience.

AS at pooled i
Adverse Selection Ratio: S = : il ?o ° p‘remlum ﬂe' (2
AS at risk-differentiated premiums
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Adverse Selection

@ Restricting risk classification = Policy is over-subscribed by high
risks BAD?

@ Good measure?
Definition

expected claim per policy  E[QL]

Ad Selection (AS) = = 1
verse Selection (AS3) expected loss per risk E[QIE[L] @

where Q: quantity of insurance; L: risk experience.

AS at pooled i
Adverse Selection Ratio: S = : il ?o ° p‘remlum ﬂe' (2
AS at risk-differentiated premiums

> 1 = Adverse Selection.
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Adverse Selection

Example

Example

@ A population of 1000
@ Two risk groups

200 high risks with risk 0.04
800 low risks with risk 0.01

@ No moral hazard
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Adverse Selection

Example

Full risk classification

Low risks High risks Aggregate

Risk 0.01 0.04 0.016
Total population 800 200 1000
Expected population losses 8 8 16
Break-even premiums

(differentiated) 0.01 0.04 0.016
Numbers insured 400 100 500
Adverse Selection Ratio (S) 1
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Adverse Selection

Example

Full risk classification

Low risks High risks Aggregate

Risk 0.01 0.04 0.016
Total population 800 200 1000
Expected population losses 8 16
Break-even premiums

(differentiated) 0.01 0.04 0.016
Numbers insured 400 100 500

Adverse Selection Ratio (S)
No adverse selection.
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Example
Restriction on risk classification-Case 1
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Adverse Selection

Example

Restriction on risk classification-Case 1

Low risks High risks Aggregate

Risk 0.01 0.04 0.016
Total population 800 200 1000
Expected population losses 8 16
Break-even premiums 0.02 0.02 0.02
(pooled)

Numbers insured 300(400) 150(100) 450(500)

Adverse Selection Ratio (S)
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Adverse Selection

Example

Restriction on risk classification-Case 1

Low risks High risks Aggregate
Risk 0.01 0.04 0.016
Total population 800 200 1000
Expected population losses 8 8 16
Break-even premiums 0.02 0.02 0.02
(pooled)
Numbers insured 300(400) 150(100) 450(500)
Adverse Selection Ratio (S) 1.25>1

Moderate adverse selection
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Example
Restriction on risk classification-Case 2

M Hao (SMSAS-University of Kent)

Insurance Risk



Adverse Selection

Example

Restriction on risk classification-Case 2

Low risks High risks Aggregate

Risk 0.01 0.04 0.016
Total population 800 200 1000
Expected population losses 8 16
Break-even premiums 0.02154 0.02154  0.02154
(pooled)

Numbers insured 200(400) 125(100) 325(500)

Adverse Selection Ratio (S)
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Adverse Selection

Example

Restriction on risk classification-Case 2

Low risks High risks Aggregate

Risk 0.01 0.04 0.016
Total population 800 200 1000
Expected population losses 8 16
Break-even premiums 0.02154 0.02154  0.02154
(pooled)

Numbers insured 200(400) 125(100) 325(500)

Adverse Selection Ratio (S)
Heavier adverse selection
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Adverse Selection

Example

Restriction on risk classification-Case 2

Low risks High risks Aggregate

Risk 0.01 0.04 0.016
Total population 800 200 1000
Expected population losses 8 16
Break-even premiums 0.02154 0.02154  0.02154
(pooled)

Numbers insured 200(400) 125(100) 325(500)

Adverse Selection Ratio (S)
Heavier adverse selection

1.3462>1

Adverse selection suggests pooling is always bad. But is it?
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Loss Coverage

@ Aim of insurance: provide protection for those who suffer losses.
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Loss Coverage

@ Aim of insurance: provide protection for those who suffer losses.

» High risks most need insurance.
» Restriction on risk classification seems reasonabile.
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@ Aim of insurance: provide protection for those who suffer losses.

» High risks most need insurance.
» Restriction on risk classification seems reasonabile.

@ Thomas (2008, 2009) “Loss Coverage’:
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Loss Coverage

Loss Coverage

@ Aim of insurance: provide protection for those who suffer losses.

» High risks most need insurance.
» Restriction on risk classification seems reasonabile.

@ Thomas (2008, 2009) “Loss Coverage’:
Definition

insured ted 1
Loss Coverage (LC) = —oured eXpected Jo55es a
population expected losses
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Loss Coverage

Loss Coverage

@ Aim of insurance: provide protection for those who suffer losses.
» High risks most need insurance.
» Restriction on risk classification seems reasonable.

@ Thomas (2008, 2009) “Loss Coverage’:
Definition

i d ted 1
Loss Coverage (LC) — 1nsure‘ expected losses (3)
population expected losses
LC at a pooled premium 7¢
LC at at risk-differentiated premium 7r;

> 1, Favorable!

Loss Coverage Ratio: C =
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Loss Coverage

Example

No restriction on risk classification

Low risks High risks Aggregate

Risk 0.01 0.04 0.016
Total population 800 200 1000
Expected population losses 8 8 16
Break-even premiums

(differentiated) 0.01 0.04 0.016
Numbers insured 400 100 500
Insured losses 4 4 8
Loss coverage ratio (C) 1
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Loss Coverage

Example

No restriction on risk classification

Low risks High risks Aggregate

Risk 0.01 0.04 0.016
Total population 800 200 1000
Expected population losses 8 8 16
Break-even premiums

(differentiated) 0.01 0.04 0.016
Numbers insured 400 100 500
Insured losses 4 4 8
Loss coverage ratio (C) 1

No adverse selection.
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Example
Restriction on risk classification-Case 1
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Loss Coverage

Example

Restriction on risk classification-Case 1

Low risks High risks Aggregate

Risk 0.01 0.04 0.016
Total population 800 200 1000
Expected population losses 8 16
Break-even premiums 0.02 0.02 0.02
(pooled)

Numbers insured 300(400) 150(100) 450(500)
Insured losses 3 9
Loss coverage ratio (C) 1.125>1
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Loss Coverage

Example

Restriction on risk classification-Case 1

Low risks High risks Aggregate
Risk 0.01 0.04 0.016
Total population 800 200 1000
Expected population losses 8 8 16
Break-even premiums 0.02 0.02 0.02
(pooled)
Numbers insured 300(400) 150(100) 450(500)
Insured losses 3 6 9
Loss coverage ratio (C) 1.125>1

Moderate adverse selection (S = 1.25) but favorable loss

coverage.
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Example
Restriction on risk classification-Case 2
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Loss Coverage

Example

Restriction on risk classification-Case 2

Low risks High risks Aggregate

Risk 0.01 0.04 0.016
Total population 800 200 1000
Expected population losses 8 16
Break-even premiums 0.02154  0.02154  0.02154
(pooled)

Numbers insured 200(400) 125(100) 325(500)
Insured losses 2 7
Loss coverage ratio (C) 0.875<1
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Loss Coverage

Example

Restriction on risk classification-Case 2

Low risks High risks Aggregate

Risk 0.01 0.04 0.016
Total population 800 200 1000
Expected population losses 8 8 16
Break-even premiums 0.02154 0.02154  0.02154
(pooled)

Numbers insured 200(400) 125(100) 325(500)
Insured losses 2 5 7
Loss coverage ratio (C) 0.875<1

Heavier adverse selection (S = 1.3462) and worse loss coverage.
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Loss Coverage

Example

Restriction on risk classification-Case 2

Low risks High risks Aggregate

Risk 0.01 0.04 0.016
Total population 800 200 1000
Expected population losses 8 8 16
Break-even premiums 0.02154 0.02154  0.02154
(pooled)

Numbers insured 200(400) 125(100) 325(500)
Insured losses 2 5 7
Loss coverage ratio (C) 0.875<1

Heavier adverse selection (S = 1.3462) and worse loss coverage.
Loss coverage might be a better measure!
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Demand Function
Definition

d(u, ) : the proportional demand for insurance for risk p at premium 7.

J
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Demand Function

Definition

d(u, ) : the proportional demand for insurance for risk p at premium 7r.J

It is assumed to have the following properties:
° %d(u, 7) < 0 : a decreasing function of premium.
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Demand Function

Definition

d(u, ) : the proportional demand for insurance for risk p at premium W.J

It is assumed to have the following properties:
° %d(u, 7) < 0 : a decreasing function of premium.

@ d(u1,m) < d(ue, ) : the proportional demand is greater for the
higher risk-group.
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Demand Function

Demand Function

Definition
d(u, ) : the proportional demand for insurance for risk p at premium W.J

It is assumed to have the following properties:
e Zd(u,m) < 0:adecreasing function of premium.
@ d(u1,m) < d(ue, ) : the proportional demand is greater for the

higher risk-group.
Definition
Demand elasticity: e(u, 7) = —%/‘1—” i.e. sensitivity of demand to
premium changes.
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Demand Function

Iso-elastic demand function

€(u, ™) = A, i.e. constant
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Demand Function

Iso-elastic demand function

€(u, ™) = A, i.e. constant

(5)
—A
d(p,m) =71 [g] .
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Demand Function

Iso-elastic demand function
7=1,1=0.01,A=04,08and 1.2

1.0

Demand
04 06

0.2

POO >
Noo s

0.0
!

0.010 0.015 0.020 0.025 0.030 0.035 0.040

Premium
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Equilibrium Premium
Equilibrium premium, 7¢, ensures a zero expected total profit,
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Equilibrium Premium

Equilibrium premium, 7¢, ensures a zero expected total profit, i.e.

d(u1,me)(me — p1)p1 + d(pz,me)(me — p2)p2 =0.  (7)
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Equilibrium premium, 7¢, ensures a zero expected total profit, i.e.
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Equilibrium Premium

Equilibrium premium, 7¢, ensures a zero expected total profit, i.e.

d(pr,me)(me — p1)p1 +  d(pz, me)(me — p2)p2 =0.  (7)
“Profit" from low risk-group = “Loss" from high risk-group

Yy
d(/’biaﬂ—e) = Ti[E] ai:1a2
i
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Equilibrium Premium

Equilibrium premium, 7¢, ensures a zero expected total profit, i.e.

d(pr,me)(me — p1)p1 +  d(pz, me)(me — p2)p2 =0.  (7)
“Profit" from low risk-group = “Loss" from high risk-group

Yy
d(/’biaﬂ—e) = Ti[E] ai:1a2
i

If Ay = Ao = A,
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Equilibrium Premium

Equilibrium premium, 7¢, ensures a zero expected total profit, i.e.

d(p1,me)(me — p1)p1 +  d(pz, me)(me — p2)p2 =0.  (7)
“Profit" from low risk-group = “Loss" from high risk-group

Yy
d(/’biaﬂ—e) = Ti[E] ai:1a2

i
If A = Ao = )\, " "
_ 041M1+ + 0‘2M2+ (8)
g + azpy
where
= TP i_q2 (9)
T1P1 + T2P2

(Fair-premium demand-share)
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Equilibrium Premium

Unique equilibrium premium
p1 =9000, 7 =1,u1 =0.01; 0o =1000, 72 = 1,2 = 0.04, A1 = o =1

Profit plot

Total profit
-50

-100

0.010 0.015 0.020 0.025 0.030 0.035 0.040

Premium
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Results on adverse selection

Adverse Selection Ratio

Qipq + oppp
aj=— P42

T1P1 + T202

(Fair-premium demand-share)
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Results on adverse selection and loss coverage

Results: Adverse Selection Ratio (S)
p1 = 9000, 71 = 1,1 = 0.01; p, = 1000, 72 = 1, o = 0.04

Adverse selection ratio plot

2.0 25 3.0

Adverse Selection Ratio (S)
1.5

1.0
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Results on loss coverage

Loss Coverage Ratio

e LOZ‘IN?—H +052/112+1
Te® g + appip

(11)
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Results on adverse selection and loss coverage

Results: Loss Coverage Ratio (C)
p1 =9000, 71 =1, 1 =0.01; po = 1000, 2 = 1, uo = 0.04

Loss coverage ratio plot

1.0

0.6

0.4

Loss Coverage Ratio (C)

0.2
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Results on adverse selection and loss coverage

Results: Loss Coverage Ratio (C)
p1 = 9000, 7 = 1,41 = 0.01; p2 = 1000, 72 = 1, 2 = 0.03,0.04, 0.05,0.08

Loss coverage ratio plot

1.08 1.12
! !

Loss Coverage Ratio (C)
1.04
|

1.00
|

0.0 0.2 0.4 0.6 0.8 1.0
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Summary

@ When there is restriction on risk classification, a pooled premium
me IS charged across all risk-groups.
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Summary
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Summary
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Summary

@ When there is restriction on risk classification, a pooled premium
me IS charged across all risk-groups.

@ There will always be adverse selection = Adverse selection may
not be a good measure.

@ Loss coverage is an alternative metric.

@ Adverse selection is not always a bad thing!
A moderate level of adverse selection can increase loss
coverage.
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Further Research

Further Research

@ Other/more general demand e.g. d(u, w) = re' G,
@ Loose restriction on demand elasticities.
@ Partial restriction on risk classification.
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