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SUMMARY

We use knot count and path count metrics to identify which routines in the Level 1 BLAS might benefit
from code restructuring. We then consider how both logical restructuring and the improvements in the
facilities available from successive versions of Fortran have allowed us to improve both the complexity of
the code as measured by knot count, path count and cyclomatic complexity, and the user interface of one of
the identified routines which compute the Euclidean norm of a vector. With these reductions in complexity
we hope that we have contributed to improvements in the maintainability and clarity of the code. Software
complexity metrics and the control graph are used to quantify and provide a visual guide to the quality of
the software, and the performance of a Fortran code restructuring tool is reported. Finally we give some
indication of the cost of the extra numerical robustness offered by the BLAS routine over the use of new
Fortran 90 intrinsic functions.
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INTRODUCTION

Three of the most important qualities of software, as far as the end user is concerned, are
robustness, reliability and efficiency. Those interested in fixing bugs and upgrading software
are also keen that the code be easy to understand, test, and maintain. Details of these, and
other important software factors may be found in Fenton1 and Watts2.

The ability to produce clear, readable code depends both on the implementation language
and the programmer. The programming language needs to have the control and data structures
available to allow the coder to generate a clean and simple, yet efficient, implementation of
the algorithm. In general, the fewer facilities a language provides the more difficult it is for a
programmer to generate such code.

Fortran has evolved from the very simple ‘high level’ language of the 1950’s, through
Fortran 66, the first programming language to be standardised3, and Fortran 774, a relatively
minor modernisation, to the much larger and more complex Fortran 905.

The Level 1 Basic Linear Algebra Subroutines (BLAS)6, originally published in Fortran
66, implemented a number of common vector operations and were designed to be used as
building blocks for linear algebra software. Routines were provided to deal with the different
numerical data types available in Standard Fortran 66 (default precision for real and complex
and double precision real). The routines were designed to be both numerically robust and
efficient (many used loop unrolling7 to obtain better performance), although for maximal
efficiency it was expected that specially tuned versions would be made available for particular
hardware platforms.
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First we describe briefly three software metrics and look at how they were used to help
identify which of the Level 1 BLAS were likely to be difficult to understand, test and maintain.
We then consider how restructuring the code affected the metrics to ascertain whether the
chosen measures offer any help in quantifying the improvements made to the code. We also
report on how well two Fortran code restructurers fared on the original and rewritten Fortran
66 routines. A Fortran 77 version of one of the routines is presented. We then consider
how the new facilities offered by Fortran 90 may be used to improve both the code and the
user interface. Finally we look at the impact which the universal use of IEEE floating-point
arithmetic may have on the underlying method and the cost of numerical robustness.

SOFTWARE COMPLEXITY MEASURES

In attempting to assist in the production of high quality software, various methods have been
proposed to limit the complexity of individual code modules and many methods of measuring
code complexity have been advocated (see Zuse8 for an extensive bibliography). In order to
help in quantifying the effects of any changes we make to the software, we will consider the
use of three of these metrics

1. knot count9 which provides some indication of coding clarity,
2. path count (a variant on the metric proposed by Nejmeh 10) which gives an estimate of

the effort required for testing,
3. cyclomatic complexity11 which also attempts to estimate the testing effort required.

In addition we will look at a pictorial representation of the code in the form of a control graph.
The program control graph is a directed graph consisting of basic blocks of code (nodes)
connected by directed arcs (edges) corresponding to the flow of control between these nodes.
A basic block of code is a sequence of executable statements containing no decisions or
transfers of control. Cyclomatic complexity is related to the control graph and is defined to be
the cyclomatic number

V �G� � edges � nodes � 2

This may be shown to be equivalent to the number of predicates used in the code plus one. It
is generally accepted that compound predicates contribute more to program complexity than
simple predicates and Myers 12 suggests the use of a complexity interval whose lower bound
is V �G� and whose upper bound is one more than the total number of conditions.

Work by Shepperd13 and Shepperd & Ince14 has highlighted a number of theoretical problems
with the use of cyclomatic complexity as a software metric; we consider these further in the
Conclusion.

The knot count of Woodward et al9 gives a good indication of program clarity. It is dependent
both on the implementation language and the order of statements in the code. A knot is said to
occur in a piece of code whenever the paths associated with two transfers of control intersect
(see Figure 1 for two examples). The greater the number of knots in a program unit the less
intelligible the code is likely to be.

The static path counts given below are similar to Nejmeh’s NPATH statistic10 and provide
an upper bound for the number of possible static paths through the code. Note that some
paths so defined may not be executable. The path count complexity of a function is defined as
the product of the path complexities of the individual constructions. Thus, for example, the
path complexity of a simple if-then-else statement is 2 while three consecutive if-then-else
statements would have an associated value of 23 � 8. Three nested if statements would have



2 TIM HOPKINS

do 10 i = 1,n

a(i) = a(i) + b(i)

if (a(i).gt.bmax) go to 20

continue

a(n+1) = 1

continue

10

20

if (a.lt.1) goto 10

goto 20

10  b = 1

20    continue

  C  Fortran 66 IF−THEN−ELSE

b = 2

Figure 1. Examples of Knots in Fortran Code

a path count of 4. This metric provides a useful measure of the effort required to test the
code stringently as well as giving an indication of code maintainability. A reduction in the
path count caused by restructuring code would imply the elimination of paths through the
code which were originally either impossible to execute or irrelevant to the computation. This
would be likely to reduce the time spent in the testing phase of the software development.

All the values of the software metrics stated in this paper have been generated using
QAFortran15.

THE LEVEL 1 BLAS

The original BLAS publication 6 did not define double precision complex routines. In addition a
number of subprograms, for example, multiple precision versions and several mixed precision
routines, no longer appear on the BLAS reference card 16 which is now widely considered to
be the official definition of the BLAS.

Table I gives the number of lines of executable code in each of the 46 routines listed on the
card along with the values of the three metrics defined above. Where routines exist for more
than one data type the values given are for the subprogram generating the largest values.

The *NRM2 and *ROTMG families of routines stand out as having very high knot and
path counts. Given the low numbers of executable statements, these values indicate that the
routines are likely to be difficult to understand, due to the high knot count, and difficult to test
thoroughly, due to the large number of possible paths through the code.

To study the effects of code restructuring on these metrics we have chosen a routine from
the shorter of the two families, SNRM2. In fact the metric values for SNRM2 are somewhat
less than the values given in Table I for the routine which acts on complex input data. The
restructuring detailed below is equally applicable to the complex data routine but is easier to
follow, as is the description of the underlying algorithm, when applied to the real data case.



RESTRUCTURING SOFTWARE: A CASE STUDY 3

Table I. Metric Values for BLAS 1 Routines

Routine LOC McCabe Knots Paths
*ROTG 22 5:6 2 16
*ROTMG 121 18:18 92 98304
*ROT 22 7:8 1 8
*ROTM 84 13:15 17 144
*SWAP 37 10:11 2 16
*SCAL 22 8:9 2 8
*COPY 31 10:11 2 16
*AXPY 29 11:12 2 16
*DOT 29 10:11 4 32
*DOTU 22 7:8 1 8
*DOTC 22 7:8 1 8
*xDOT 23 7:8 3 16
*NRM2 48 18:19 64 10240
*ASUM 22 8:9 4 8
I*AMAX 22 8:9 3 8

THE EUCLIDEAN NORM ROUTINES

Given an n-vector, fxigni�1, the Euclidean norm is defined as

jjxjj2 �
�

nX
i�1

x2
1

� 1
2

�1�

There are four BLAS routines available for this calculation; one for each of the numerical data
types mentioned above. The underlying algorithm is relatively simple and may be considered
as a compromise between the efficiency of a naive implementation of (1) as a simple square-
and-add loop, and the provable numerical robustness of Blue’s algorithm17. The BLAS routines
form partial sums of squares as

1
x2

max

rX
i�1

x2
i

where

xmax �

�
1 if cutlo � z � cuthi
z if z � cuthi or z � cutlo

and
z � maxi�1��rjxij

Thus as each element is added into the partial sum there may be, at worst, a change of scale.
The values of cutlo and cuthi are dependent on the machine arithmetic and are set in the
published code to values which are hopefully applicable to all machines in order to assist
with portability (see also below in the section on THE FUTURE OF THE *NRM2 ROUTINES).
The original, published code for the single precision version, snrm2, with the introductory
comments stripped out and with some minor corrections, is presented in Figure 2. (This is the
code currently available from netlib18.)
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REAL FUNCTION SNRM2 ( N, SX, INCX)
INTEGER I, INCX, IX, J, N, NEXT
REAL SX(1), CUTLO, CUTHI, HITEST, SUM, XMAX, ZERO, ONE
DATA ZERO, ONE /0.0E0, 1.0E0/
DATA CUTLO, CUTHI / 4.441E-16, 1.304E19 /

1 IF(N .GT. 0 .AND. INCX.GT.0) GO TO 10
2 SNRM2 = ZERO
3 GO TO 300
4 10 ASSIGN 30 TO NEXT
5 SUM = ZERO
6 I = 1
7 IX = 1

C BEGIN MAIN LOOP
8 20 GO TO NEXT,(30, 50, 70, 110)
9 30 IF( ABS(SX(I)) .GT. CUTLO) GO TO 85

10 ASSIGN 50 TO NEXT
11 XMAX = ZERO

C PHASE 1. SUM IS ZERO
12 50 IF( SX(I) .EQ. ZERO) GO TO 200
13 IF( ABS(SX(I)) .GT. CUTLO) GO TO 85

C PREPARE FOR PHASE 2.
14 ASSIGN 70 TO NEXT
15 GO TO 105

C PREPARE FOR PHASE 4.
16 100 CONTINUE
17 IX = J
18 ASSIGN 110 TO NEXT
19 SUM = (SUM / SX(I)) / SX(I)
20 105 XMAX = ABS(SX(I))
21 GO TO 115

C PHASE 2. SUM IS SMALL.
C SCALE TO AVOID DESTRUCTIVE UNDERFLOW.

22 70 IF( ABS(SX(I)) .GT. CUTLO ) GO TO 75
C COMMON CODE FOR PHASES 2 AND 4.
C IN PHASE 4 SUM IS LARGE. SCALE TO AVOID OVERFLOW.

23 110 IF( ABS(SX(I)) .LE. XMAX ) GO TO 115
24 SUM = ONE + SUM * (XMAX / SX(I))**2
25 XMAX = ABS(SX(I))
26 GO TO 200
27 115 SUM = SUM + (SX(I)/XMAX)**2
28 GO TO 200

C PREPARE FOR PHASE 3.
29 75 SUM = (SUM * XMAX) * XMAX

C FOR REAL OR D.P. SET HITEST = CUTHI
C FOR COMPLEX SET HITEST = CUTHI

30 85 HITEST = CUTHI/FLOAT( N )
C PHASE 3. SUM IS MID-RANGE. NO SCALING.

31 DO 95 J = IX, N
32 IF(ABS(SX(I)) .GE. HITEST) GO TO 100
33 SUM = SUM + SX(I)**2
34 I = I + INCX
35 95 CONTINUE
36 SNRM2 = SQRT( SUM )
37 GO TO 300
38 200 CONTINUE
39 IX = IX + 1
40 I = I + INCX
41 IF( IX .LE. N ) GO TO 20

C END OF MAIN LOOP.
C COMPUTE SQUARE ROOT AND ADJUST FOR SCALING.

42 SNRM2 = XMAX * SQRT(SUM)
43 300 CONTINUE
44 RETURN
45 END

Figure 2. Original Fortran 66 Code for snrm2
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FORTRAN 66 TO FORTRAN 77

However harmful it may be considered 19, the use of explicit GOTO statements and labels was
unavoidable in Fortran 66 due to the extremely limited control structures that were provided.
For example, there was no IF-ELSE IF-ELSE block available; thus even a simple IF-THEN-
ELSE construction required two labels and two GOTO statements, and generated a knot. In
restructuring the code we looked primarily at reducing the knot count; we also report the
number of explicit GOTO statements and target labels (i.e., those labels that appear explicitly
in a GOTO statement) in the code as these contribute both to the knot count and to the ease of
understanding of the code. It was hoped that the path count and cyclomatic complexity values
would provide an indication of the effect of any restructuring had on the test effort required.
Any reduction in these metrics could be viewed as a reduction in the work required to ensure
a comprehensive path coverage was achieved.

Figure 3 shows the control graph of the source given in Figure 2 and reflects the complexity of
the code. Each circle in the control graph represents a basic block. The numbers in parentheses
denote the lines of code, given in the equivalent source code listing, which make up each basic
block; the other number is the block number and is included for ease of reference. The most
telling of the metric values is the knot count which, at 41, is extremely high for a routine
containing just 44 executable statements. The cyclomatic complexity interval is (13:14) and
the path count is 1024, again very high for such a short routine and far in excess of the 200
maximum for a routine quoted in Nejmeh10 for a similar metric. In addition the code contains
15 explicit gotos and 13 target labels.

Spag20, a software tool designed to improve the structure of Fortran 66 by rearranging
(and if necessary duplicating) statements and using Fortran 77 constructions, produced some
improvements. The knot count was almost halved to 23, the cyclomatic complexity interval
was reduced to (10:11) and the path count was reduced to 256. Nag struct, one of NAG’s suite
of Fortran 77 software tools21, only managed a reduction of one in the knot count although
the path count was reduced by a factor of almost three.

Restructuring the original code by hand was more successful. This new Fortran 66 version
had a knot count of just 17 and a path count of 256. The cyclomatic complexity interval was
(11:16), showing that, although the number of predicates was reduced, the logical complexity
of some of them had increased. It is interesting to note here that spag, even using Fortran 77
as its target language, did not manage to reduce the number of knots to this level.

The hand coded Fortran 77 version given in Figure 4 has a knot count of 2 whilst the path
count has been reduced to 65. The cyclomatic complexity interval remains the same as for
the input Fortran 66 code. There is now a single explicit GOTO and just three labels, two of
which are used as do-loop terminators. The other label, both knots and the explicit GOTO are
required to test for a zero input vector and the possible return of a zero value.

Figure 5 shows the control graph for the hand coded Fortran 66 version of the routine and
clearly shows the improvement in structure over the original. The implicit use of IF-THEN-
ELSE constructs is now obvious and it is the translation of these into explicit Fortran 77
constructs which accounts for a large proportion of the reduction in knots. Both commercial
restructurers fared much better on this code, generating versions with almost as few knots (4
in each case) and paths (spag, 96 and nag struct, 65) as the hand crafted Fortran 77.
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Figure 3. Control graph for the Original Fortran code

FORTRAN 90

Although the new features of Fortran 90 do not provide more than a cosmetic improvement
to the final Fortran 77 code (for example, use of the new relational operators) the ENDDO
and EXIT statements do allow the removal of the remaining three labels albeit with a little
contortion in the case of the break out from the loop testing for the zero vector.

However the new language does offer scope for improving the user interface. Most users
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REAL FUNCTION SNRM2(N, SX, INCX)
REAL CUTLO, CUTHI, ZERO, ONE, HITEST, SUM, XMAX, SX(*)
PARAMETER (CUTLO=8.232E-11, CUTHI=1.304E19, ZERO=0.0E0,

* ONE=1.0E0)
INTEGER INCX, N, I, NN
LOGICAL TINY, HUGE

*
1 IF (N.LE.0 .OR. INCX.LT.1)THEN
2 SNRM2=ZERO
3 ELSE
4 NN = N*INCX
5 HITEST = CUTHI/FLOAT(N)
6 DO 10 I=1,NN,INCX
7 IF (SX(I) .NE. ZERO) GO TO 20
8 10 CONTINUE

* ZERO VECTOR
9 SNRM2 = ZERO

10 RETURN
11 20 TINY = ABS(SX(I)) .LE. CUTLO
12 HUGE = ABS(SX(I)) .GE. HITEST
13 XMAX = ABS(SX(I))
14 SUM = ZERO
15 IF (.NOT.TINY .AND. (.NOT.HUGE)) THEN

* MIDRANGE ... NO SCALING
16 SUM = SUM + SX(I)*SX(I)
17 ELSE

* NEED TO SCALE
18 SUM =ONE
19 ENDIF
20 DO 30 I=I+INCX,NN,INCX

* TRANSITION FROM TINY (SCALED) TO MIDRANGE (UNSCALED)
21 IF (TINY .AND. ABS(SX(I)).GT.CUTLO) THEN
22 TINY = .FALSE.
23 SUM = (SUM*XMAX)*XMAX
24 ENDIF
25 IF(.NOT.TINY .AND. (.NOT.HUGE)) THEN

* TRANSITION FROM MID-RANGE TO HUGE
26 IF(ABS(SX(I)).GE.HITEST)THEN
27 HUGE = .TRUE.
28 XMAX = ABS(SX(I))
29 SUM=ONE + (SUM/XMAX)/XMAX
30 ELSE

* NO TRANSITION (I.E. MIDRANGE)
31 SUM=SUM+SX(I)*SX(I)
32 ENDIF
33 ELSE
34 IF(ABS(SX(I)) .LE. XMAX) THEN

* NO NEED TO CHANGE SCALE
35 SUM = SUM +(SX(I)/XMAX)**2
36 ELSE

* NEED TO SCALE UPWARDS
37 SUM = ONE + SUM*(XMAX/SX(I))**2
38 XMAX = ABS(SX(I))
39 ENDIF
40 ENDIF
41 30 CONTINUE
42 IF(TINY .OR. HUGE) THEN

* SCALE RESULT
43 SNRM2 = XMAX*SQRT(SUM)
44 ELSE
45 SNRM2 = SQRT(SUM)
46 ENDIF
47 ENDIF
48 END

Figure 4. Restructured Fortran 77 Code for snrm2
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Figure 5. Control graph for the Restructured Fortran 66 code

of the *nrm2 routines have no need of the incx parameter, the most common requirement
being to compute the norm of an entire vector. Certainly users would be happier with a call
to a single routine rather than having to call different routines for different types of vector;
after all Fortran 77 compilers allow this for intrinsic functions like sin and cos. Being able
to write

x_norm = nrm2(x,n)
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where the value returned is given by (1) no matter what the type of x would be a step in the
right direction. In fact Fortran 90 provides the ability to use

x_norm = nrm2(x)

where, provided the vector x is defined as an assumed-shape array, the routine can obtain the
length of the vector, n, internally. Additionally, the other two arguments may still be provided
if required and the original Fortran 77 routines may be used inside a wrapper routine.

function snrm2_opt(sx, n, incx) result (sp_norm)
integer, optional, intent(in) :: n, incx
real, intent(in) :: sx(:)
real :: sp_norm

integer :: local_n, local_incx
real :: snrm2

if (present(n)) then
localn = n

else
local_n = size(sx)

endif

if (present(incx)) then
local_incx = incx

else
local_incx = 1

endif

sp_norm = snrm2(local_n, sx, local_incx)
end function snrm2_opt

Figure 6. Fortran 90 Wrapper Routine for snrm2

The three new facilities provided by Fortran 90 which are helpful here are assumed-shape
(allocatable) arrays, optional arguments, and user defined generic functions. The maximum
size of an array no longer needs to be determined at compile time; dynamic allocation allows
the correct amount of storage to be reserved for the particular problem being solved and the
size of such arrays may be ascertained when they are passed as parameters to subprograms.
Thus

real, dimension(:), allocatable :: vector
read *, size_of_problem
allocate (vector(size_of_problem))

defines a real array of length size of problem. A wrapper routine, with n and incx
as optional arguments can be used to generate default values when these parameters are not
explicitly provided by the user. The version of a wrapper routine implementing this for a real
vector, snrm2 opt, is given in Figure 6.

The change in the order of the parameters in snrm2 opt is important as the non-optional
argument (the input vector) must come first. Similar wrappers may be constructed for the
other vector types. It should be noted that explicit use of the double precision type statement
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has been superseded in Fortran 90 by the use of a real declaration with an appropriate kind
selector.

Finally, a generic function, nrm2, may be constructed as shown in Figure 7. We note that
withinnrm2 theincx parameter only needs to be retained for backwards compatibility, since
Fortran 90 allows a stride value as part of the triplet used to define an array section. We may
thus replace, for example,

x_norm = snrm2(n,x,incx)

with

nn = 1 + (n-1)*incx
x_norm = nrm2(x(1:nn:incx))

The interface module needs to be USE’d in all program units and modules wishing to refer to
nrm2. The improvements in the interface can be obtained without translating the underlying
*nrm2 functions into Fortran 90. Thus Fortran 90 may be viewed as providing added value
to existing code.

module generic_nrm2
interface nrm2
function snrm2_opt(sx, n, incx) result (sp_norm)

integer, optional, intent(in) :: n, incx
real, intent(in) :: sx(:)
real :: sp_norm

end function snrm2_opt

function dnrm2_opt(dx, n, incx) result (dp_norm)
integer, optional, intent(in) :: n, incx
double precision, intent(in) :: dx(:)
double precision :: dp_norm

end function dnrm2_opt

function cnrm2_opt(cx, n, incx) result (c_norm)
integer, optional, intent(in) :: n, incx
complex, intent(in) :: cx(:)
real :: c_norm

end function cnrm2_opt

function znrm2_opt(zx, n, incx) result (z_norm)
integer, optional, intent(in) :: n, incx
complex*16, intent(in) :: zx(:)
double precision :: z_norm

end function znrm2_opt

end interface

end module generic_nrm2

Figure 7. Fortran 90 Generic Function for Computing the Euclidean Norm of a Vector

THE FUTURE OF THE *NRM2 ROUTINES

The four BLAS routines, *nrm2, scale partial sums to avoid unnecessary overflows, under-
flows and possible loss of accuracy. Thus, for example, the 3-vector whose elements are all
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maxreal�2 would cause an overflow if a simple square-and-add loop were used. This is

unreasonable since the final result,
p

3
p
maxreal�2, is representable by the floating-point

system.
There are two developments since the original routine was published which are worthy of

mention. First the IEEE floating-point standard22 and second the vector and matrix operations
available in Fortran 90.

With the increased adoption of the IEEE floating-point standard it may be assumed that the
parameters cutlo and cuthi may soon be replaced by their IEEE values rather than using
the given universal values. These two parameters are defined as

cutlo � sqrt�u�eps�

cuthi � sqrt�v�

where u and v are the smallest and largest positive numbers representable and eps is the
smallest number such that 1� eps � 1. (It should be noted that these values may be obtained
via the new Fortran 90 numerical inquiry functions tiny, huge, and epsilon.) Table II
gives the values as published, which are claimed to be applicable over all machines, along
with values specifically associated with the IEEE single and double precision definitions. The
probability of scaling taking place in a double precision IEEE routine would appear to be
extremely small for most practical applications.

Table II. cutlo and cuthi Values

Published 6 IEEE Standard
Single Double Single Double

cutlo 4�4e� 16 8�2e� 11 3�1e� 16 1�0e� 146
cuthi 1�3e� 19 1�3e� 19 1�8e� 19 1�3e� 154

Second, Fortran 90 provides two new intrinsic functions, dot product and sum which
could be used to generate the required norm. These are both generic in the same sense as the
nrm2 function defined above. Thus

nrm��x� � sqrt�dot product�x� x��

� sqrt�sum�x � x��
It should be noted that neither the dot product nor the sum function offers the numerical
robustness of the nrm2 routines in providing accurate results for a very wide range of
numerical inputs.

The overheads involved in using snrm2, rather than a simple square-and-add loop in the
case of data requiring no scaling, mainly consist of the additional tests at lines 21, 25 and 26
in Figure 4. To gauge the extra cost involved a comparison was made of the execution times
of the four methods

1. snrm2,
2. a simple square-and-add code,
3. the Fortran 90 intrinsic function, dot product,
4. the Fortran 90 intrinsic function, sum.

In each case the vector of length 1000000 was computed 50 times. Three compilers were
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used, SUN f77 (version 1.4), NAG f90 (version 2.0a(264)) and EPC f90 (version 1.0.1) all
running on a SUN 4/670MP under SunOS 4.3.

Table III shows the timings, in seconds, obtained using the Unix time command. Several
runs of each program were made and the times averaged. The optimised timings are for the
highest level of optimisation available and the non-optimised timings are for debug mode
using the -g flag. (Note that all three compilers offer more stringent checking in the form of
array bound, and in some cases, unassigned variable checks.)

Overall the cost of snrm2 compared to the square-and-add code is a factor of around two
to three. The effectiveness of the dot product intrinsic function was not consistent, being
much faster than square-and-add using the EPC compiler and about the same using the NAG
compiler. The sum routine had little to offer. The snrm2 code appears to be slightly more
susceptible to optimisation than either the square-and-add, or dot product and sum codes.

In order to ascertain quantitatively where the extra time was being spent in snrm2, rtp23,
a real time profiler, was used to obtain timing information at a statement level. This showed
that the execution of the statement

sum = sum + sx(i)*sx(i)

accounted for approximately 15% of the total execution time of the snrm2 code and 43%
with the simple square-and-add routine. For snrm2 approximately 30% of the time was used
in performing the tests at lines 25 and 26 in Figure 4. It should be noted that rtp uses code
sampling to obtain its timings; care was thus taken to ensure that the results obtained were as
independent as possible of the sampling frequency.

Table III. Execution times in seconds for vector norm computations

Compiler mode snrm2 square-and-add dot product sum
Sun f77 non-opt 114.4 64.0 – –
Sun f77 opt 62.7 22.4 – –
Nag f90 non-opt 151.1 63.3 75.0 130.2
Nag f90 opt 69.2 32.9 30.2 49.1
Epc f90 non-opt 264.3 128.4 29.9 67.3
Epc f90 opt 80.2 44.1 13.9 42.5

CONCLUSION

We have looked at how the use of a combination of software metrics (knot and path counts)
along with the number of executable lines of code allowed the identification of old Fortran
code that was difficult both to understand and to test comprehensively. This would imply that
the code would also be hard to maintain. TableIV provides a summary of the various versions
of the routine generated along with the associated metric values.

The hand restructured Fortran 66 version, code 4. in Table IV, appeared to be more structured
than the codes produced from the original SNRM2 using the code restructuring tools whose
target language is Fortran 77. This was highlighted by the fact that both the knot and path
counts were reduced to almost ‘optimal’ values when the same tools were applied to the
hand-crafted code. This suggests that code 4. was a logically clearer implementation of the
algorithm than the original code. The use of Fortran 90 allowed a significant improvement in
the user interface.
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Table IV. Summary of code versions and associated metrics

Code Version Language LOC Knots Paths Cyclomatic GOTO’s Labels
1. original f66 44 41 1024 13:14 15 13
2. spag on 1. f77 47 23 256 10:11 12 10
3. nag struct on 1. f77 60 40 385 13:14 12 11
4. hand coded 1. f66 43 17 256 11:16 15 10
5. spag on 4. f77 48 4 96 11:16 2 2
6. nag struct on 4. f77 48 4 65 11:16 2 2
7. hand coded 4. f77 48 2 65 11:16 1 3
8. Fortran 90 f90 53 0 65 11:16 0 0

In addition we would assert that the reduction in the path count can be translated into a
significant saving in the effort required to produce adequate test data for the code.

It is interesting to note that the cyclomatic complexity interval of the original unstructured
code is contained within the interval for the best reported Fortran 77 version. Given that the
metric was being applied to Fortran code, for which it was originally intended, and that the
path count has been reduced by a factor of almost 16, the values obtained for the cyclomatic
complexity clearly do not reflect the reduction in testing effort obtained by restructuring. This
also reinforces the point made by Shepperd & Ince14 that cyclomatic complexity is insensitive
to the structure of the software.

In the case of ‘dusty deck’ Fortran 66 code, automatic restructurers may be able to reduce
both the knot and path counts although the extent to which they are successful is very dependent
on the way in which the original code was structured. It is worth noting here that the metrics
do not always, in themselves, completely reflect improvements; applying spag to the original
code lead to a significant reduction in the metric values although the resultant code was still
difficult to understand.

Similar reductions in both knot and path counts have also been obtained for the routine
SROTMG (see Hopkins24 for details).

An analysis of the knot and path counts for the 96 Level 2 and Level 3 BLAS2526 both
developed in Fortran 77, reveals no knots and a maximum path count of 6912 for a 140
line routine. These routines generally contain more executable statements than the Level
1 routines. However the path and knot counts indicate that they are likely to be easier to
understand and test than several of the shorter BLAS Level 1 routines. This would suggest
that using a combination of number of executable statements with path and knot counts may
be helpful in identifying code that is likely to be difficult to understand and maintain.

The overheads of numerical robustness of code were considered and quantified for several
commercial compilers; certainly savings would be made in safe cases where vector norm
calculations form a substantial part of the computational effort. The final generic function
illustrates how end-users may benefit from the backwards compatibility and the new facilities
offered by Fortran 90 which allow important core routines, written in Fortran 66 and 77, to be
successfully repackaged.
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