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Modelling and Analysis of Hub-and-Spoke Networks under Stochastic Demand and
Congestion

Nader Azizi*'t, Navneet Vidyarthi?, Satyaveer S. Chauhan?

Abstract Motivated by the strategic importance of congestion management, in this paper we
present a model to design hub-and-spoke networks under stochastic demand and congestion.
The proposed model determines the location and capacity of the hub nodes and allocate non-
hub nodes to these hubs while minimizing the sum of the fixed cost, transportation cost and the
congestion cost. In our approach, hubs are modelled as spatially distributed M/G/1 queues and
congestion is captured using the expected queue lengths at hub facilities. A simple
transformation and a piecewise linear approximation technique are used to linearize the
resulting nonlinear model. We present two solution approaches: an exact method that uses a
cutting plane approach and a novel genetic algorithm based heuristic. The numerical
experiments are conducted using CAB and TR datasets. Analysing the results obtained from a
number of problem instances, we illustrate the impact of congestion cost on the network
topology and show that substantial reduction in congestion can be achieved with a small
increase in total cost if congestion at hub facilities is considered at the design stage. The
computational results further confirm the stability and efficiency of both exact and heuristic

approaches.
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1 Introduction

Instead of serving every origin-destination pair directly, a hub-and-spoke network provides
service via a smaller set of links between origins-hub, pairs of hubs, and hub-destinations. The
use of fewer links in the network concentrates the flow by reducing setup costs, centralizes
commodity handling and sorting operations, and allows the economies of scale on
transportation cost to be exploited.

Hub-and-spoke systems have various applications including air passenger and air freight
transportation (e.g., Bryan and O’Kelly, 1999; Martin and Roman, 2004), less-than- truckload
freight transportation (e.g., Cunha and Silva, 2007; Cheung and Muralidharan (1999)), rail
freight transportation (e.g., Jeong et al., 2007), urban public transportation/rapid transit (e.g.,
Nickel et al., 2001), postal delivery (Ernst and Krishnamoorthy, 1996, 1999; Cetiner et al.,
2010), express package and cargo delivery (e.g.,Yaman et al., 2007), and telecommunications
and computer networks (e.g., Carello et al., 2004) and physical distribution in supply chains
(e.g., Lapierre et al., 2004). Since the seminal work of O’Kelly (1986 a) several variants and
extensions of the hub location problem such as p-hub median, uncapacitated hub location, p-
hub centre and hub covering problem have been proposed and studied in the literature.
Campbell and O’Kelly (2012) provide a detailed account of this research area.

Hub location problems are categorised into two distinctive groups namely single and
multiple allocation problems. In a single allocation version of the problem, all incoming and
outgoing traffic from and to every node is routed via a single hub whereas in a multiple
allocation, each demand node can receive and send flow through more than one hub. Earlier
studies on hub-and-spoke systems focuses on providing a tight mathematical formulation for
the problem, more recent studies however, aim to develop efficient solution methods for large
scale instances of the problem.

Over the years a number of approximation and exact methods have been developed to tackle
various hub location problems. Examples of such methods include greedy randomized adaptive
search procedure (e.g., Klincewicz, 1992), tabu search (e.g., Klincewicz, 1992), simulated
annealing (e.g., Abdinnour-Helm, 2001), genetic algorithm (e.g., Abdinnour-Hel and
Venkataramanan, 1998; Kratica et al., 2007; Azizi et al. 2016), evolutionary algorithms (e.g.,
Koksalan and Soylu, 2010), neural networks (e.g., Smith et al., 1996), Particle Swarm
Optimisation (e.g., Azizi, 2017) general variable neighbourhood search (e.g., llic et al., 2010),
Lagrangean relaxation (e.g., Elhedhli and Wu, 2010), Benders decomposition (e.g., Camargo
et al., 2009b; Contreras et al., 2012), branch and bound (e.qg., Ernst and Krishnamoorthy, 1996,



1998Db), branch and price (e.g., Contreras et al., 2011c), and branch and cut (e.g., Yaman and
Carello, 2005) among others. Further information about the hub location problem and its
various solution techniques could be found in review articles such as Klincewicz (1998), Bryan
and O’Kelly (1999), Alumur and Kara (2008), and Campbell and O’Kelly (2012).

Adopting the hub-and-spoke topology provides enterprises with the opportunity of
exploiting the economies-of-scale through flow concentration and consolidation on the inter-
hub links. However, studies have shown that these networks may suffer from the increasing
flow at hubs which result in congestion in these facilities. Uncertainty in demand and variability
in service times at hubs are the other potential causes of congestion. In urban traffic, to deal
with congestion one way is to use the pricing. Pricing is a mechanism to charge the users for
the negative externalities generated by the peak demand in excess of available supply. In airline
transportation, empirical studies have shown that hubbing is the primary contributor to air
traffic delays and congestion (Mayer and Sinai, 2003). Increasing capacity by, for instance,
building new runaways to allow more take offs and landings is one way to ease the congestion
and delays at major airports. For example, in 2008, O’Hare International Airport in Chicago, a
hub for both United and American Airlines, opened a new runway to ease congestion and
improve on-time performance. However, such strategies (e.g., building new runways) are often
Very expensive.

Furthermore, research has shown that uncapacitated hub location models that do not
consider fixed cost associated with opening hubs and/or accounts for hub capacities produce
solutions in which some hubs are subjected to heavy traffic while others rarely used (Camargo
et al., 2011). In short, congestion is an important strategic issue in hub-and-spoke systems that
needs to be considered seriously when deciding the location of the hub facilities and allocating
demand points to these hubs.

In this study, we present a model that captures the effect of congestion at hub facilities in
the context of hub-and-spoke network. More specifically, our model simultaneously determines
the location and capacity of the hubs and allocates demand to these facilities such that the sum
of the congestion cost, the fixed cost of opening hubs and the transportation cost is minimal.
The proposed model captures the trade-off between the transportation cost savings induced by
the economies of scale and the cost associated with the flow congestion at hub facilities. We
setup the problem as a network of spatially distributed queues (at hubs) with Poisson arrivals
and general service time distributions (i.e., M/G/1 queues). The congestion effects are captured
using the average number of users in the system. The problem is modelled as a nonlinear integer

program.



To linearize the model, we use a piecewise linear approximation technique. The resulting
model is then solved for small and medium size problem instances using a cutting plane
approach, a well-known exact method. To solve larger instances, we further present a Genetic
Algorithm (GA) based heuristic. We demonstrate the efficiency of the proposed heuristic by
comparing its performance against the optimal solutions provided by our exact algorithm for a
class of benchmark problems. Explicit consideration of the congestion cost in deciding hub
locations, their capacity levels, and the flow routing decisions distinguishes this work from
other hub location models.

The work of Grove and O’Kelly (1986) is one of the earliest studies to investigate the effect
of congestion in hub-and-spoke networks. By simulating a single allocation hub network with
fixed hub locations, Grove and O’Kelly demonstrated how schedule delays of airline systems
are influenced by the amount of flow at hubs.

At least three different approaches have been proposed in the literature to model congestion
at hub facilities. The first approach attempts to address the congestion by restricting the amount
of flow passing through hubs using capacity constraints. The main drawback of this approach
is that capacity constraints with deterministic demand do not imitate the exponential nature of
the congestion effects. As a remedy to this shortcoming, Elhedhli and Hu (2005) proposed the
use of a power law function to represent the congestion cost in the objective function. The
value of the power-law function proposed by Elhedhli and Hu (2005) increases exponentially
as more flow arrives at hubs. The function is expressed by f(x) = ax?, where x is the flow at
a hub and a and b are positive constants. Nevertheless the work of Elhedhli and Hu (2005) do
not account for variability in demand and stochastic processing times at hubs. Along the same
line, Camargo et al. (2009a) proposed a generalized convex cost function to model congestion
in an uncapacitated multiple-allocation hub location problem under deterministic demand.
Camargo et al. (2011) extended their model to deal with uncapacitated single-allocation hub
location problem under congestion using a power-law function as well as average queuing
delay function (M/M/1 queue). They present an outer approximation technique combined with
Benders Decomposition to solve the model.

The second approach to capture congestion effects models a hub as a queue and uses
performance measures such as average waiting time or the probability distribution of the queue
length to measure congestion (Guldmann and Shen, 1997; Marianov and Serra, 2003; Elhedhli
and Wu, 2010). Guldmann and Shen (1997) present a nonlinear model for hub-and-spoke
network design that selects hubs and links, determines hub capacities, and assigns flows over

paths, while minimizing the sum of the fixed cost, capacity cost, and the operating/congestion
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cost on the links and at hubs. In the work of Guldmann and Shen (1997) hubs are modelled as
M/M/1 queues and congestion is computed using the mean waiting time at hubs. Marianov and
Serra (2003) present a model to find the optimal location of the hubs in airline networks. In
Marianov and Serra’s study hubs are modelled as M/D/c queues and congestion is captured
using a probabilistic capacity constraint that limits the queue length at hub facilities. To solve
the model, they proposed a Tabu search based heuristic. More recently, Elhedhli and Wu (2010)
present a model where hubs are modelled as M/M/1 queues and congestion at hubs is computed
as the ratio of the total flow to the surplus capacity. They present a Lagrangean heuristic to
solve the non-linear mixed integer programming formulation of the problem. Similar to
Elhedhli and Wu (2010) approach, we calculate the congestion as the ratio of the flow to the
surplus capacity but in our study hubs are modelled as M/G/1 queues and congestion is
computed using the number of users at these facilities.

In the literature, another stream of research addresses network design with stochastic
demand and capacity selection but without considering the congestion effects. Examples of
such studies include Correia et al. (2010) and Alumur et al. (2012). Unlike other studies in this
area that often assume demand is deterministic and hub capacity is exogenous, in this paper
variability in demand and service times at hubs is modelled explicitly and hub capacity
decisions are considered endogenous.

Another related body of the literature is the facility location problems with immobile
servers, stochastic demand, and congestion. Application of such problems ranges from location
of emergency medical clinics, fire stations, automated teller machines, and internet mirror site
location to design of telecommunication network and distribution networks in supply chains to
name a few (Boffey et al.,2007; Vidyarthi et al., 2009). To ensure the problem is tractable,
researchers in this area often make strong assumptions such as fixing the number of facilities
and/or their capacities, considering identical facilities and having exponential demand and
service processes (Boffey et al., 2007). To the best of our knowledge, all the references to date
in this area have addressed the general discrete facility location problem without assuming any
special network structure. This paper is an attempt to model the effect of stochastic demand
and congestion cost on the location of the hub facilities in networks with hub-and-spoke
topologies.

The remainder of this paper is organized as follows. In Section 2 we present the problem
description and mathematical formulation. Linearization and the cutting plane approach will
be discussed in section 3. Section 4 describes the proposed genetic algorithm based heuristic.

Computational results, sensitivity analysis, and observations are presented in section 5. In
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section 6 we summarize our findings and present the concluding remarks with some future

research directions.

2 Model Formulation

The single allocation p-hub median problem has been studied by O’Kelly (1987), Campbell
(1994b), Skorin-Kapov and Skorin-Kapov (1994), O’Kelly et al. (1995), Ernst and
Krishnamoorthy (1996), Smith et al. (1996), Ebery (2001), Elhedhli and Hu (2005), and many
others. To develop a model that accounts for congestion, we use the classical uncapacitated
single allocation p-hub median problem due to Skorin-Kapov et al. (1996). The Skorin-Kapov
et al. (1996) formulation provides the tightest linear programming bound. The model has four
underlying assumptions: (1) hub arcs have no setup cost (2) distances between nodes satisfy
the triangle inequality (3) flows are consolidated by hubs (direct connections between non-hub
nodes are not permitted) and (4) economies of scale exist in the form of a constant discount
factor and only applies to flow cost between hub nodes. Assumptions (1) and (2) imply that
hub nodes are fully interconnected and the last three assumptions result in origin-destination
paths that include at least one and at most two hub nodes.

The basic components of the p-hub median model is described as follows. Let
N =1, 2, ..., nbe the set of nodes that exchange traffic and the potential hub locations. We use
k and m as indices for potential hub locations and i and j as indices for the origin and destination
nodes. Therefore, paths between origin-destination (O-D) pairs are of the form of i —j —k —m;
i and j represent the origin and destination and k and m the hubs to which i and j are respectively
allocated. C;jxn, is the total cost of routing flow (i, j) through path (i, j, k, m) and it is given by
Cijem = Aij(XCik + ACim + 5y j) Where Jij is the flow from origin i to destination j that will
be routed through one or two hubs; cj is the unit transportation cost between origin i and
destination j; y is the coefficient of collection cost (per unit flow) from any origin to any hub
node; ¢ is the coefficient of distribution cost (per unit flow) from any hub node to any
destination; and « is the inter-hub discount factor.

In Skorin-Kapov et al. (1996) p-hub median model zik and xixm are the two decision
variables. The decision variable zix is equal 1 if node i is allocated to hub k and 0 otherwise; in
particular, zk« = 1 implies that node k is selected as a hub. The decision variable Xijxm is the
routing variable and equals 1 if the flow from node i to node j routed via hubs located at nodes

k and m and O otherwise. With these notations, the formulation of the uncapacitated single-



allocation p-hub median problem (USApHMP) due to Skorin-Kapov et al. (1996) is presented

as follows:
i j k m
S. t. z Zik = 1 Vi (2)
k
Zik = Zkk Vi, k (3)
Z Zyg =D (4)
k
D Fjem =z Vi (5)
m
z Xijkm = Zjm Vi, j,m (6)
k
xijkm ) Zik € {0,1} Vi,j, k,m (7)

Constraint set (2) ensures that every node is assigned to exactly one hub. Constraint (3)
guarantees that a node will be assigned to an open hub. Constraint (4) ensures that exactly p
hubs are opened in the network. Constraint (5) and (6) ensure that all the traffic between an

origin-destination pair has been routed via a hub sub-network.

2.1 Modelling Congestion

In order to model congestion at hub facilities, we use the queuing delay function. Queuing
based congestion captures the stochastic nature of the demand, variation in service times at hub
facilities, the capacity of hubs, and represent the exponential nature of the delay as incoming
flow reaches the capacity. For example, in airline networks though most flights follow a
schedule, they are subject to delays both at the origin airports and during the flight which makes
their arrival non-deterministic (Marianov and Serra, 2003). Upon arrival at an airport, airplanes
go through three stages of service: landing at runways, service at gates, and departure through
take-off runways. The service times at hubs are also highly variable and depend on several
factors including types of planes and the prevailing weather conditions. Under these situations,
it is reasonable to model airport hubs as queuing stations, where the queue is formed by
airplanes waiting for landing and subsequent unloading/loading at the gates. In this case,
congestion refers to the number of airplanes that are in the system (queuing +service) and the
congestion cost is the cost per unit time incurred by the airline companies for the duration of
the use of airport hubs.



A distribution network in supply chain in which trucks arrive at cross docks (or warehouses)
for unloading, sorting, and loading of consignments is another example of the systems with
potential congestion effects. Service times at cross docks depend on several factors including
the availability of loading/unloading, sorting time of consignments and availability of
personnel. Under these situations, it is reasonable to model cross docks (i.e., hubs) as queuing
stations where the queue is formed by trucks waiting for unloading/loading at docks. In such
cases, congestion refers to the number of trucks in the system (queuing +service).

In hub-and-spoke systems where to be concerned about the capacity and/congestion depends
primarily on the type of resources and operations involved. For instance, as noted by Correia
et al. 2010 in traffic logistics, the crucial capacity to consider is the inbound flow and the
outbound is not important as people go in different directions depending on their destination.
Similarly in other applications such as postal service where hub facilities are used for sorting
operations the hub capacities also refer to the incoming flow from non-hub nodes. In such cases
the incoming flow from other hubs as well as the outgoing flow can be ignored as they do not
need to be processed (Ernst and Krishnamoorthy, 1999; Contreras et al 2009).

To model variability in demand, we assume the flow rate from origin i to destination j is an
independent random variable that follows a Poisson process with mean Zij. Due to the
superposition property of Poisson processes, the aggregate flow rate of traffic entering hub k
via collection is also a random variable that follows a Poisson process with mean

A = Xi Xj Xom Aij Xijem - Although we model only the volume of traffic entering a hub via

collection, the model can be extended to consider the traffic entering the hub via transfer as
well.

We model the service times at hubs as a random variable that follows a general distribution.
The service rate reflects hub capacity or the amount of flow that a hub is able to process in a
given time period. In the literature, the following two approaches have been frequently used to
model flexible capacity of a queuing system. The first approach is to model a single-server with
flexible server capacity level (e.g., ). In this case, the decision variable is p which can be either
continuous or discrete and the resulting model is M/G/1 queue. The second approach is to
assume multiple parallel servers each with a given capacity level (p). In this approach, the
decision variable is the number of servers (e.g., s) to be installed at a particular location and
the resulting model is M/G/s queue. The capacity can be adjusted in discrete steps by varying
the number of servers. Under reasonably high service utilization, a system with s parallel
servers (each with a capacity p) will perform similarly to single server with capacity sp.

Therefore, we choose to capture congestion effects at hubs using M/G/1 queue.



For each hub node k, the model is allowed to select one of the discrete capacity levels, i,
Mk2,..., Mk with fixed costs of Fx1 , Fio , ..., Fx respectively. These fixed costs refer to the
amortized cost of acquiring capacity level at each hub facility. Let y« be a binary variable that
equals 1 if hub k is equipped with capacity level I, and 0 otherwise. Each hub then can be
modelled as an M/G/1 queue where mean service rate of hub k (with capacity level I) is given
by

e = Yiz1 b Vit
and the variance in service times is

0k =21 T Vi
Let 7« represent the mean service time at hub k (z« = 1/pk ), pk be the utilization of hub k
(px = A Ik ), and ¢ be the squared coefficient of variation of service times(c? = a2 /1% ).
Under steady state condition (Ak <pi) and first-come-first-serve queuing discipline, the average
waiting time (including the service time) of a unit flow at hub k is given by the Pollaczek-
Khintchine (PK) formula:

1+ cﬁ) TiPr <1 + c,%) A 1
k =

+ — Vk
2 )J1-pg 2 Ju(pe — 4D

E[W,] = (

The expected total number of users at hub k is obtained by multiplying the unit waiting time at

hub k by the expected demand:

1+ c,§> 2% A

ElLi] = ( 2 ,uk(.uk_lk)-l_ﬁ

This expression is equivalent to

2
1+ Cl%lYkl)(ZiZj Yom Aij xijkm) 4 X 2 om Aij Xijkem
2%t Yia (Bt i Vi = 20 25 Zom Aij Xijier) X1 M Vi

E[Lr(x,y)] = (8)

The expression for E[L,] is non-linear with respect to decision variables x and y.

2.2 Single-allocation p-hub location problem with stochastic demand and congestion

The resulting nonlinear integer programming formulation for the single-allocation p-hub
location problem with stochastic demand, congestion and capacity selection is presented as

follows:
[P]: min Zzzzcijkmxijkm +Zszl Vi + HZIE[Lk(x,y)] 9)
Tk m K1 %

s.t (2)—(6)



2.0 Fiem < ) Vi vk (10)
i j m l

z YL = Zkk vk (11)
1

Xijkm Vi Zik € {01} Vi, j,k,m (12)

The objective function (9) minimizes the total network cost including the regular transportation
cost, the fixed cost and the congestion cost. The first term in the objective function calculates
the total transportation cost of the flow between all origin-destination node pairs. The second
term accounts for the fixed cost (amortized over the planning period) of locating hubs with
adequate service capacity level. The third term computes the total expected congestion cost at
hubs and is expressed as the product of congestion cost factor per unit user @ and the expected
total number of users in the system, E[L]. Constraint set (10) is the capacity constraints at hubs.
The capacity constraints can also be interpreted as the stability (steady state) condition of a
queue (A; < uy ). Constraint set (11) ensures that a capacity level is assigned to hub k if node

k is selected as a hub.

3 Model Linearization and Exact Solution Approach

The nonlinear term in the objective function [P] described above is linearized using simple
transformation and a piecewise linear function. The resulting linear model has exponential
number of constraints, but it is tractable using a Cutting Plane Algorithm (CPA) based exact
solution approach.

3.1 Linearization

In order to linearize the objective function (9), the multiple terms in the expression for

E[L(x,y)] can be rearranged and written as follows

1 A
ElLeCs )] = 5{(1+ ) +-c)

__ Tk
(e — Ag)

This is equivalent to

1{(1 + Yt Vi) Xi X Xom Aij Xijkm N (1 =Xt yi) TiXj Zom Aij Xijiem }
2( XitaYi — ZiZj Xm Aij Xijkm 21 MYk

(13)

we define nonnegative auxiliary variables px and Rk such that

_ Ak _ Xi 2 XmAij Xijim
Uy X1 MYk

Pk
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and
Ak ZiZj Zm/lij Xijkm
Rk = = Vk
U — Ak XilaYi — ZiZj Xm /1ij Xijkm

This implies that

Z Z Z Ry, Z Z Z
)lij Xijkm = 1+R. HkiVkt = Pk HiiYkl = HkiWki
T T m k5 7 7

where wy; = py if y,; = 1 and 0 otherwise.
As there is at most one capacity level I” with yx- = 1 while yx = 0 for all other | # I’, the
expression Wi = pk Yk can be ensured by adding the following set of constraints:

Wit < Yk Vk,l

z Wk = Pk vk
1

The hub utilization can be expressed as p; =

R . R .
X The function p;, = —% is concave w.r.t.
1+Rg 1+Rg

Rk, and it can be approximated by an infinite set of piecewise linear functions that are tangent

hy2
to the function at a given set of points R} i.e. py = minpcy %Rk + B 5 (-
(1+R}) (1+R})

This can be written as
1 (RE)®

<——— R+ ’ Vk,h € H
(1+R}) (1+R})

Pk

As a result, the nonlinear term of the objective function reduces to:

1
E[Ly] = §{<1 + Z Ciu ykl) Ry + (1 - z Cit ykl) Pk}

] 7
1 2
=5 Ry + pi + zckl (Wt — Wir)
1

where v = Ry; if yw = 1 and 0 otherwise.
Because there exists at most one |’ with yx' = 1 while yx = 0 for all other 1 #1”, the expression
vk = Rk Yy can be ensured by adding the following set of constraints:
Uy < Myy,; Vk,l

X1V = Ry Vk

The resulting linear Mixed Integer Programing (MIP) formulation is presented as follows:
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[PLey]: min Z Z Z Cijkm Xijiem + Z Z Fri Yia
T T m X 1
Z {Rk +pr + z ci (Vg — Wkl)} (14)
%

i
+
l

N|

s.t (2)—(6);(10) — (11)

ij Xijkm =
Zzzﬂ Xijk —Zﬂklwkl 0 Vk (15)
i j m l

1 R
N (R:)

e < (1+—Rkh)2Rk Gy Vi, h € H (16)
Wit = Vi < 0 vk, I 17)
Prc— 2w =0 vk (18)
iV =1 vk (19)
Vit = Myg, < 0 Vi, | (20)
Ry —2ivj =0 vk (21)
Xijiem » Yo Zie € {01} Vi, j, k,m,l (22)
0O<pe<l; O<wy<1 Vkl (23)
R vy =0 vk, 1 (24)

Stability (steady state) requirements of queuing system (A, < u,) translate into capacity
constraints, and are enforced by the constraints (15) and (17).

For coefficient of variance of service times, ¢ =0 (M/D/1 case) and ¢ = 1 (M/M/1 case), the
expression reduces to E[Ly]y/p/1 = %{Rk + pr} and E[Ly ]y m/1 = Ry respectively.

This will further simplify the model as:

) 0
[PL(H)M/D/l]: min Z Z Z Z Cijkm Xijkem + Z Z Fry Y + EZ(R]‘ + pr)
R T T T

s.t (2)—(6);(10) — (11); (15) — (19)
Xijkm » Yiv Zik €101} Vi j,kIm
RRZO;OSpkﬁl; 0<wy<1 Vk!I

and

[PL(H)M/M/1]5 min zzzzcijkmxijkm+zszlYRl +92Rk
T X1 3
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s.t (2) —(6);(10) — (11); (15) — (19)

Xijkm »Yev Zik €1{0,1} Vi j,k1lm

Ri=0,0<p <1, 0<wy<1 Vk!

To avoid establishing hubs with long queues in the above models the value of p, could be set

to less than 1 e.g., < 0.95.

3.2 Exact solution approach

The objective of [PL(H)] is a minimization, therefore, at least one of the constraints in (16)
will be binding. This implies that
1 (RY)’ )

R, +
(1+RM> " (1 +RY

Pk = minhEH( Vk when y;,; =1

The nonlinearity of [P] was eliminated at the expense of an infinite number of constraints in

the linear MIP model [P, )]. To solve [P,y |with an infinite number of constraints, we present
the following cutting plane algorithm. For an initial and finite set of points (R,Ql)ﬁ oy’ [P L(H)]
is a relaxation of the full problem [P, ], hence a lower bound to[ P, | or [P] is provided by

the optimal objective function value of v(Py ), which is given by

LB = U(PL(H)) = Zzzz Cijiem Xijkm +Zszl3_’kl
i ] k om 1

o (. L

+§z Ry +Pk+zck1 (Vi — W)

k l

[PL(H)] is a feasible solution to [P] and so the upper bound is obtained as:
UB = Z z Z z Cijkm Xijkem + Z Z Fri Vi
i j k m k1

N QZ {(1 + X1 Vi) 2i j Xom Aij Xijkem
2 - X1 iaYkt — %i Xj Xm Aij Xijkm

+ (1= Xict1 Vi) 2i Xj X Aij X jrem }
1 MYk

If the best known upper bound coincides with the lower bound at a given iteration then the

optimal solution is obtained and the algorithm is terminated. Otherwise, a new set of points

R,’(‘"e‘” are generated using the current solution (x, ¥) as follows
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Rlnew — Xi2j Xm Aij Xijiem
k YtV — 2i 2 Xom Aij Xijkm

This new set of points is appended to (Ri) . _,, and is used to generate a set of cuts

1 Rhnew 2
Pk =< h 2 Rk + ( s h ) 2
(1 + Rknew) (1 + Rknew)

Vk,h € H

The algorithmic steps of the cutting plane approach is outlined in Figure 1.

Initialization:
UB «X;LB « —x;q < 0
Choose an initial set of points R"
While UB # LB do
Solve [Py a] to obtain (29,59, 2%, p, w9, R’ o7
Update the lower bound: LB? « v(P, 0,
Update the upper bound: UBY « min{UB9™1,Z(x%,59,z%)}
20 %) X AijXijkm vk
DY =20 2 Zom AijXijiem

Get new points: R'™e¥=

hnew\?
Generate new cuts: < ;R + M
- P = Y

O e
Append new cuts: H9t1 « H2 U {h,,,,}
q<q+1
End while

Fig.1 The cutting plane algorithm

As will be shown in our computational results, the above models formulation could be used to
solve small to medium size problem instances to optimality. Due to the limitation in using exact
methods such as cutting plan approach in solving large problem instances of the proposed
model, one way forward is to design an efficient metaheuristic. In this study, we present a
metaheuristic based on a well-known evolutionary algorithm of Genetic Algorithm. These

algorithm is discussed in the following section.

4 Genetic algorithm

Genetic algorithm (GA) is an efficient metaheuristic based on the evolutionary idea of natural
selection and genetics. Various types of the algorithm have been successfully applied to a wide
range of combinatorial optimization problems (Salhi, 2017). The works of Kratica et al. (2007)

and Koksalan and Soylu (2010) are examples of GAs application in hub location problems. In
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the following, we briefly describe the GA based heuristic used in this study to solve our model.
The proposed GA begins to search the solution space by randomly generating a population of
solutions. Then two parent chromosomes from the current population are selected one at a time
to generate offspring chromosomes. The newly generated chromosomes are constructed via
crossover and mutation operators. Upon completion of the (offspring) population, members of
the current as well as those in the newly generated population are ranked in descending and
ascending order respectively. Elements of the two populations are compared one to another
and those inferior members of the current population are replaced by chromosomes with higher
quality in the offspring population. The algorithmic steps of the proposed GA is outlined in
Figure 2. In the following subsections, we elaborate on the solution representation, initial

population generation, crossover and mutation operators.

4.1 Solution representation

In our GA, a solution is represented by an array (string) with the length of 1 x N where N
corresponds to the number of nodes in the network. For instance, a solution to a problem with
10 nodes and 3 hubs could be represented as [1 33 35 3 1 15 5]. Decoding the string from left
to right, the first location corresponds to node number 1, the second location corresponds to
node number 2, and so on. Each location on the string (i.e., a gene) contains a number which
may or may not be the same as the “location number”. Each of these numbers refers to a hub
in the network. Each hub node is allocated to itself. For example, nodes 1, 3, and 5 are assumed
to be hubs and therefore, they are allocated to themselves and other nodes in the network have

been assigned to one of these hubs.

4.2 Initial population

Solutions of the initial population are generated randomly. The procedure to generate a member
of the population (i.e., chromosome) is presented as follows. First, an empty one-dimensional
array of length N is constructed. The location of hubs is then determined by generating p
(unidentical) random integers between 1 and N. Each of these p integers is assigned to its
corresponding position in the chromosome. For example, if the first random number is “3” then
it occupies the third position (from left) in the chromosome. To complete the chromosome, the
rest of the (non-hub) nodes are randomly allocated to the p hubs in such way that at least one
node from the remaining N — p nodes is assigned to each hubs. The proposed solution
representation scheme and initial population generation procedure ensures the feasibility of the

solutions.
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Initialization:
Set the GA parameters: crossover probability pc ; mutation probability pn ; population
size pop.size; and the computational time
t—0
Generate an initial population: P (t)
Evaluate the initial population: P (t)
Do while (the termination condition is not met)
te—t+1
Select two parents randomly from P (¢ — 1)
Generate a random number, Randoml € {0, 1}
If Random; < P, then
Perform crossover
Perform mutation
Evaluate offsprings
If Offspring’s fitness function is improved upon mutation then
Add the mutated offspring to the new population
Else
Add the crossovered offspring to the new population
End If
Else
Select one of the two parents randomly
Generate a random number
If Random; < Py, then
Perform mutation
If chromosome’s or parents fitness function is improved upon mutation then
Add the mutated offspring to the new population
Else
Add the parent to the population
End If
Else
Add the selected parent to the new population
End If
End If
Rank the parents in population P (t) in descending order.
Rank the offspring population O(t) in ascending order.
Insert the superior members of P (t) and O(t) into P (t + 1)
Evaluate P (t + 1)
Loop

Fig.2 The pseudo code of the proposed genetic algorithm

4.3 Crossover operation

The classical GA’s crossover operators (e.g., two-point crossover) that combine parents’
chromosomes to construct new offspring often generate infeasible solutions which slows down
the search process. This phenomena is commonly blamed for poor performance of the genetic
algorithm based heuristics in solving some combinatorial optimization problems. In this study,
we tailored a special type of crossover operator to produce such offspring chromosomes that

are safely decoded into feasible solutions. Details of the crossover operation are briefly

16



described as follows. To generate an offspring, first a template chromosome (i.e., an empty
array) with the length of the number of nodes in the problem in hand is constructed and then
two parents are selected randomly from the current population. The genetic structure of the
offspring chromosome is assembled by taking one of the two parents and transferring the first
gene from the parent into the offspring template chromosome. This gene (i.e., a hub) is placed
in the offspring chromosome array where the location corresponds to its value. For instance, if
the value of the selected gene is 3 then it is placed in the third location of the offspring array.
Once the gene is transferred, the parent chromosome is scanned and all other genes with the
same value (e.g., 3) are similarly moved to their corresponding locations in the offspring
chromosome. The other parent is then selected and the above steps are repeated. This process
continues by consecutively selecting the remaining genes in parent chromosomes and
embedding them into the offspring chromosome. The crossover operation stops when the

offspring chromosome is completely constructed.

4.4 Mutation operations

To mutate a chromosome, we randomly select two unidentical genes that represent non-hub
nodes in the network and swap their positions. For example, if the selected chromosome for
mutation is [1 33 353 115 5], then we select two unidentical genes from the non-hub nodes
e, 2,4,6,7,8,9, and 10 randomly. If the selected non-hub nodes are 7 and 9 with genes 1
and 5, then swapping their position yields the mutated offspring [1 3335351 1 5]. Following
the mutation operation, the fitness values of the original offspring and the mutated
chromosomes are compared. The chromosome with the lower cost is inserted into the new
population. This approach is different from traditional mutation operators that are usually
applied with low probability on any chromosome in the population. In our case, the mutation

operator will either improve a chromosome, or leave it unchanged.

5 Computational results

270 test problems are derived from U.S. Civil Aeronautics Board (CAB) (O’Kelly, 1987) and
Turkish (TR) datasets (YYaman et al., 2007). The algorithms were coded in C and run on a Dell
Intel Core PC with 2.40 GHz processor with 2 GB of RAM. The MIP problems were solved
using the callable library of CPLEX 11.2. The MIP problems are solved to optimality (with a
gap of 107%) using the exact approach. For the GA, we report the best solution obtained after

20 replications of the algorithm for every instance.
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Test problems

Using the CAB dataset, we generate 216 problem instances by setting the number of nodes
(N) to 10, 15, 20, and 25, the number of hubs (p) to 3 and 4, the inter-hub discount factor («)
t0 0.2, 0.4 and 0.8, the congestion cost factor (¢) to 1, 20, and 50, and the coefficient of variance
of service times (c) to 0 (M/D/1 case), 1 (M/M/1 case), and 2 (M/G/1 case). The average flow
rate/demand Aij and the unit transportation cost cij between each pair of nodes (i, j) are obtained
from the dataset. The collection and distribution cost coefficients are set to y = 0 = 1 per unit.
For every potential hub, we generate three capacity levels: small (S), medium (M) and large
(L); the associated fixed costs are set to 150 (S), 200 (M) and 250 (L) and the capacity levels

are decided using % + BA; X Xk Aij, Where K is the hub in a one-hub network with

n nodes that receives the least total flow. The coefficient g is set to 0.21, 0.22, 0.23, 0.24 for
10, 15, 20, and 25 nodes respectively. Ay is a constant that takes the value of -1, 0, and 1 for |
= 1(S), 2(M), and 3(L) respectively.

The TR dataset consists of flow and distance between 81 cities in Turkey. We generate 54
instances of the problem by setting N to 25, 55, and 81, pto 3 and 4, « t0 0.2, 0.5and 0.8, 6 to
1,20,and 50, cto 0, 1 and 2, and y = & = 1 per unit. Similar to that in CAB dataset, we generate
three capacity levels: small, medium and large for every potential hub in the network; the
corresponding fixed costs to each capacity level are 50 (S), 100 (M) and 150 (L). The capacity

Z Z]ikl

levels are decided according to Y+ BA, Y, X j=k Aij.- Similar to that in CAB dataset, k

is the hub in a one-hub network with n nodes that receives the least total flow. The coefficient
fis set to 0.20, 0.25, and 0.27 for problem with 25, 55, and 81 nodes respectively.

5.1 Anillustrative example

One of the objectives of this research is to compare the network configurations and their
associated costs (e.g., regular and total transportation costs) of a single allocation p-hub median
problem with and without congestion effects consideration. For this purpose we solve a
problem from the CAB dataset with N = 15 nodes, p = 3 hubs, and inter- hub discount factor
(i.e., «) of 0.4 to optimality (with a gap of 10°%) using the exact method. Table 1 summarizes
the results for various unit of congestion cost 4 (i.e., the #is set to 0, 1, 10, 20, 30, 50, 100, and
200) under three scenarios: M/D/1 (c = 0), M/M/1 (c = 1), and M/G/1 (c = 2). The
computational results in Table 1 include the total objective function value (OBJ), the
transportation cost (TC), the fixed cost (FC), the congestion cost (CC), the total number of
users in the system (EE[L]), the hub locations and their capacities, the aggregate flow arrival rate
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at hubs (A« ), the service capacity at hubs (j« ), the average hub utilization (p« ), the average
queue length (Lk ), the number of iterations of the cutting plane algorithm (#ITR), and the CPU
time in seconds (CPU(s)).

Figure 3 illustrates the effect of changing congestion cost factor € on the total expected
number of users in the system E[L]. Figure 4 shows the trade-off between the total expected
number of users E[L]and the sum of fixed costs and expected transportation costs. The insights
are summarized as follows:

4 M/D/1 Case MW M/M/1 Case M/G/1 Case
4 M/D/1 Case MM/M/1 Case M/G/1 Case
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Fig.3 The effect of changing congestion Fig.4 The trade-off between the total
cost factor on the total expected number expected number of users in the system and
of users in the system the sum of transportation cost and fixed cost

Observation 1: The hub-and-spoke network configuration (location, capacity, and allocation
of nodes to hubs) that considers congestion ef#cts differs from the traditional configurations
that ignores congestion and/hub capacity.

The optimal network for the classical single allocation p-hub median problem with 15 nodes,
3 hubs and inter-hub discount factor of 0.4 (i.e., ) recommends Chicago, Dallas-FW and Los
Angeles as the optimal locations for the three hub facilities. The network configuration also
show that while 10 out of the 15 cities are allocated to Chicago hub, the Los Angeles hub does
not serve any of the demand nodes (cities); the two other cities are assigned to the remaining
hub, Dallas-FW. This is understandable as the objective of the classical version of the problem
iS just to minimize the transportation cost. Table 1 presents the configuration of the hub-and-
spoke networks for different values of the congestion cost factor (i.e., ). The optimal network
without congestion (¢ = 0, ¢ = 1) i.e., the capacitated version suggests Chicago (Large), Los
Angeles (Medium), and Memphis (Medium) as the location of the hub facilities, whereas the
model with congestion (6 = 30, ¢ = 1) recommends to open hubs at Chicago (Large), Cleveland
(Large), and Dallas-FW (Large). From this observation, it can be concluded that the topologies

of these three networks (i.e., classical, capacitated, and capacitated with congestion) differ both
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in terms of recommended hub locations and the allocation of demand to these facilities.

Further examination of Table 1 confirms that the network configurations (i.e. hub location,
their capacity levels, and allocation of nodes to hubs) changes as the values of the congestion
cost factor varies. The results also show that as the congestion cost factor increases, the model
tries to reallocate non-hub nodes in order to balance the amount of flow passing through hubs
and ultimately reduce the overall congestion in the network. For example, at # =0 and ¢ = 1,
the total flow passing through hubs are: Chicago (Large; 1,204,290), Los Angeles (Medium;
399,236), and Memphis (Medium; 768,188), whereas when congestion effect is considered (6
=20, ¢ = 1) the selected hubs and their flow are: Chicago (Large; 797,140), Cleveland (Large;
828,076), and Dallas-FW (Large; 739,725). The results in Table 1 further show that for very
high values of congestion cost factors the configurations are not significantly different for
M/D/1, M/M/1, and M/G/1 cases.

Although establishing hubs with large capacity is expensive especially at the beginning, the
decision provides the firm with the competitive advantage of routing the flow in a timely and
responsive manner. In short, capacity selection, and allocation/routing of flow are interrelated

decisions and should be made in conjunction rather than isolation.

Observation 2: Substantial reduction in congestion can be achieved with a small increase in

total costs (fixed cost + transportation cost) by incorporating congestion cost in the model.

Examining Figure 3 show that by incorporating the congestion cost factor into the model (0 =
0 to 10 to 20 to 30), the average queue length at hubs [E[L]decreases substantially at the
beginning which results in relatively low level of congestion in the network. Further
examination of Figure 3 reveals that large reduction in the congestion can be achieved without
large increase in the fixed cost and transportation cost (see also the steepness of the left part of
the curve in Figure 4). This is also evident from Table 1 where for M/G/1 case, the total
expected queue length E[L]decreases from 4988.52 to 25.56 with very small value of § = 1.
The rationale behind this significant reduction in overall congestion is that with increase in
congestion cost (a) hubs with higher capacity levels are utilized (b) flow is distributed more

evenly across the existing hubs and (c) the average hub utilization is increased.

Observation 3: For a fixed value of coefficient of variance of service times c, an increase in
congestion cost factor, 0, results in (i) a decrease and then an increase in the transportation

costs (TC); (ii) an increase in congestion costs (CC); (iii) a decrease in total expected queue
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length E[L], (iv) a decrease in average hub utilization (p); (v) a decrease in queue length at
hubs (Lk); (vi) a reduction in hub congestion and (vii) an increase in computing time of the
algorithms.

For a fixed value of coefficient of variance of service times c, as the congestion cost factor
increases, the queue length at hubs and consequently the total expected queue length in the
system [E[L]decreases. Increase in the congestion cost factor also causes (naturally) the total
congestion cost to grow. For instance, in M/M/1 case, as @ increases from 1 to 10 to 20, the
expected queue length,[E[L], decreases from 19.81 to 9.62 to 8.30, and the congestion cost
increases from 19.81 to 96.21 to 166.1. The model tradeoffs the congestion cost against the
transportation cost and the fixed cost through (1) reallocation of nodes to hubs in an attempt to
balance the flows at hubs (2) hubs capacities improvement and/or (3) change in the potential
hub locations. Reallocating the flow initially reduces and then increases the transportation cost
(e.g. as @increases from 0 to 1 to 10, the transportation cost (TC) decreases from 938.2 to 914.9
and then increases to 940.2). As @ increases from 0 to 1, the total fixed cost of establishing a
hub also increases from 650 to 700 because of the change in hubs capacity levels. As a result
of the above changes, the average utilization is more even across the various hub locations. We
also observed that the length of the computational times in various problem instances is
affected by the congestion cost factor, the quality of the solution of LP relaxation and the

number of iterations of the branch and bound.

Observation 4: For a fixed value of the congestion cost factor 0, an increase in coefficient of
variance of service times (c) results in (i) an increase in transportation cost (TC); (ii) an
increase in congestion cost (CC); (iii) an increase in total expected queue length E[L]; (iv) a
decrease in average hub utilization (p); (v) a decrease in queue length at hubs (Lx ); (vi) an

increase in hub congestion; and (vii) an increase in computation time of algorithms.

As the variability in service times increases, the total expected queue length increases which
cause the congestion cost to increase. In response to an increase in service times, the proposed
model reallocates and/or reroutes the flow in order to reduce the congestion at hubs. For
example, as shown in Table 1, with 6 = 10, as the variability in service time increases from ¢ =
0 to 1 to 2, the total expected queue length increases from E[L]= 6.54 to 9.62 to 17.67, which
cause the congestion cost to rise from 65.52 to 96.21 to 176.7 unit. In this case, the model
reallocates the flow by changing the assignment of the non-hub nodes in the network to

minimize congestion. This can be verified by examining the flow that passes through the
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Table 1 Comparison of the Hub Location and Network Configuration for M/D/1, M/M/1, and M/G/1Cases: An
Illustrative Example - 15 Node, 3 Hubs, a = 0:4, CAB Dataset

0 c oBJ TC FC CC E(L) Hubopened Ak ik Pk Ly |#ITR) CPU(s)
(capacity level)
0 0 1588.2 938.2 650 0 999.68 Chicago(L) 1,204,290 1,275,193 094 8.8 0 929
Los Angeles (M) 399,236 768,188 052  0.80
Memphis (M) 768,188 768,188 1.00 990
1 1588.2 938.2 650 0 1996.89 Chicago (L) 1,204,290 1,275,193 094 16.81 0 92.7
Los Angeles (M) 399,236 768,188 0.52 1.08
Memphis (M) 768,188 768,188 1.00 1979
2 1588.2 938.2 650 0 4988.53 Chicago (L) 1,204,290 1,275,193 0.94 40.61 0 92.7
Los Angeles (M) 399,236 768,188 052  1.92
Memphis (M) 768,188 768,188 1.00 4946
1 0 1625 9149 700 109 1081 Chicago(L) 1,204,290 1,275,193 094 8.8 0 71
Los Angeles (M) 276,108 768,188 0.36  0.46
Memphis (L) 844,544 1,275,193 0.69 1.48
1 1634.7 9149 700 19.81 19.81 Chicago (L) 1,204,290 1,275,193 0.94 16.98 9 1170
Los Angeles (M) 276,108 768,188 0.36 0.56
Memphis (L) 844,544 1,275,193 0.69 2.26
2 1653 9274 700 2556 25.56 Chicago (L) 1,130,983 1,275,193 0.89 18.28 1 141
Los Angeles (M) 276,108 768,188 0.36 0.86
Memphis (L) 957,851 1,275,193 0.75 6.94
10 0 1694.3 928.7 700 6552 6.54 Chicago(L) 1,124,035 1,275,193 0.88 4.15 4 75.1
Los Angeles (M) 276,108 768,188 0.36  0.46
Memphis (L) 964,800 1,275,193 0.76  1.98
1 1736.4 940.2 700 96.21 9.62 Chicago (L) 1,050,728 1,275,193 0.82 4.68 5 1179
Los Angeles (M) 276,108 768,188 0.36  0.56
Memphis (L) 1,038,107 1,275,193 0.81 4.38
2 1840.7 964.0 700 176.7 17.67 Chicago (L) 1,050,728 1,275,193 0.82 10.47 6 1534
Los Angeles (M) 399,236 768,188 0.52 1.93
Memphis (L) 914,978 1,275,193 0.72 5.27
20 0 1756.4 940.2 700 116.2 5.81 Chicago(L) 1,050,728 1,275,193 0.82 2.75 5 1196
Los Angeles (M) 276,108 768,188 0.36  0.46
Memphis (L) 1,038,107 1,275,193 0.81 2.6
1 1830.1 9640 700 166.1 8.30 Chicago (L) 1,050,728 1,275,193 0.82  4.68 1 378
Los Angeles (M) 399,236 768,188 0.52 1.08
Memphis (L) 914,978 1,275,193 0.72 2.54
2 1950.4 1011.0 750 189.4  9.47 Chicago (L) 797,140 1,275,193 0.63 3.23 1 374
Cleveland(L) 828,076 1,275,193 0.65 3.66
Dallas-FW (L) 739,725 1,275193 0.58  2.58
30 0 18145 940.2 700 1743 581 Chicago(L) 1,050,728 1,275,193 0.82 2.75 5 1317
Los Angeles (M) 276,108 768,188 0.36  0.46
Memphis (L) 1,038,107 1,275,193 0.81 2.60
1 1908.1 1011.0 750 147.0 4.90 Chicago (L) 797,140 1,275,193 0.63 1.67 1 366
Cleveland(L) 828,076 1,275,193 0.65 1.85
Dallas-FW (L) 739,725 1,275,193 0.58 1.38
2 2052.1 1007.2 750 2949 9.83 Chicago (L) 857,469 1,275,193 0.67 4.12 2 289
Cincinnati(L) 828,124 1,275,193 0.65 3.66
Dallas-FW (L) 679,349 1275193 0.53  2.05
50 0 19231 9640 700 259.1 5.18 Chicago(L) 1,050,728 1,275,193 0.82 275 1 942
Los Angeles (M) 662,732 1,275,193 052  0.80
Memphis (L) 914,978 1,275,193 0.72 1.63
1 2006.1 10110 750 2450 4.90 Chicago (L) 797,140 1,275,193 0.63 1.67 1 254
Cleveland(L) 828,076 1,275,193 0.65 1.85
Dallas-FW (L) 739,725 1,275,193 0.58 1.38
2 2234.6 1011.0 750 4735 9.47 Chicago (L) 797,140 1,275,193 0.63 3.23 1 210
Cleveland(L) 828,076 1,275,193 0.65 3.66
Dallas-FW (L) 739,725 1,275193 0.58  2.58
100 0 2102.3 10122 750 340.1 3.40 Chicago(L) 857,469 1,275,193 067 1.36 0 136
Cincinnati(L) 767,747 1,275,193 0.60 1.06
Dallas-FW (L) 739,725 1,275,193 0.58 0.98
1 22569 10122 750 4947 495 Chicago (L) 857,469 1,275,193 0.67 2.05 1 550
Cincinnati(L) 767,747 1,275,193 0.60 151
Dallas-FW (L) 739,725 1,275,193 0.58 1.38
2 2708.1 1011.0 750 9471 9.47 Chicago (L) 797,140 1,275,193 0.63 3.23 1 253
Cleveland(L) 828,076 1,275,193 0.65 3.66
Dallas-FW (L) 739,725 1,275193 0.58  2.58
200 0 2439.3 10149 750 6743 3.37 Chicago(L) 754,054 1,275,193 059 1.02 1 207
Cincinnati(L) 828,124 1,275,193 0.65 1.25
Dallas-FW (L) 782,764 1,275,193 0.61 1.10
1 27427 10149 750 977.8 4.89 Chicago (L) 754,054 1,275,193 0.59 145 1 214
Cincinnati(L) 828,124 1,275,193 0.65 1.85
Dallas-FW (L) 782,764 1,275,193 0.61 1.59
2 3648.0 1019.3 750 1879 9.39 Chicago (L) 814,430 1,275,193 0.64 3.46 1 325
Cincinnati(L) 767,747 1,275,193 0.60 2.88
Dallas-FW (L) 782,764 1,275193 0.61  3.05
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following hubs: the flow passes through Chicago changes from 1,124,035 to 1,050,728;
through Los Angeles changes from 276,108 to 399,236; and through Memphis changes from
964,800 to 1,038,107 to 914,978. The location and the capacity of the hubs remain unchanged:
Chicago (L), Los Angeles (M), and Memphis (L). The average hub utilization first decreases
from 0.67 to 0.66 and then increases to 0.69. The average queue length at hubs, Lk, increases
from 4.15 to 4.68 to 10.47 at Chicago hub; from 0.46 to 0.56 to 1.93 at Los Angeles hub; and
from 1.93 to 4.38 to 5.27 at Memphis hub.

We also observed that as the nonlinear component of the objective function dominates, the
cutting plane algorithm requires more iterations to converge and therefore, the CPU time
increases from 75 to 1179 to 1534 seconds. In some cases, the proposed model prescribes
increasing the service capacity of hubs and/or changing the locations of the hubs and routings
of flows while trading off the congestion cost against the fixed cost and the transportation cost.
For example, for p = 20, as the variability in service times increases from ¢ = 1 to 2, the hub
locations and their capacities changes from Chicago (L), Los Angeles (M), and Memphis (L)
to Chicago (L), Cleveland (L), and Dallas-FW (L).

5.2 The effect of Adding a Priori Set of Cuts on the Performance of Exact Solution Approach

Our second set of experiments compares the performance of the cutting plane algorithm with
(CPA-ap) and without a priori set of cuts (CPA-Q) in terms of the number of iterations (#ITR)

and the computational times (CPU(s)). We generate a priori set of cuts to approximate the
function —— at 32 points as R" = [0, 0.0326554, 0.102376, 0.179404, 0.264797, 0.359813,

0.465954, 0.585027, 0.719222, 0.871213, 1.04429, 1.24255, 1.47111, 1.7365, 2.04706,
2.41367, 2.85069, 3.37736, 4.02001,4.8154, 5.81609, 7.09939, 8.78276, 11.0518, 14.2139,
18.8083, 25.854, 37.4721, 58.7112, 104.244, 233.952, 988.484]. This provides an initial

approximation within 0.001 to the function % (See Elhedhli (2005) for further information).

Table 2 demonstrates the effect of adding a priori set of cuts at the start of the cutting plane
algorithm on the computational times and the number of iterations. The results show that for
the CPA-@ the CPU times (per second) are on average 998 (M/D/1 case), 1069 (M/M/1 case),
and 1077 (M/G/1 case) and the average number of iterations is 12 in all three cases. With the
addition of a priori cuts, the average CPU times reduce significantly to 134, 131, 161 second
and the average number of iterations reduces to 0.5, 0.7, and 0.9 for M/D/1, M/M/1, and M/G/1
cases respectively. Furthermore, our results show that the effect of adding a priori set of cuts

on the computational time of CPA is more significant as the congestion cost factor and the
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coefficient of service time increases. This is expected as larger values of ¢ and @ inflate the
approximation error and requires additional cuts.

It is worthwhile to mention that in some instances of M/G/1 the CPU times are lower than
their corresponding M/M/1 and/or M/D/1 cases due to the quality of LP relaxation bound
obtained at root node of the branch and bound algorithm. Overall, the proposed algorithm along
with a set of a priori cuts (CPA-ap) proved to be an efficient method in solving the model.
Therefore, we use the algorithm with a set of a priori cuts (CPA-ap) in all the other set of

experiments reported in this paper.

5.3 Performance of the Exact Approach and the Genetic Algorithm

Table 3, 4, and 5 report the computational performance of the two solution approaches, the
CTA and the GA, on CAB dataset under different values of coefficient of variance of service
times: ¢ =0, 1, and 2. We report the computational performance of the GA on larger instances
from TR dataset in Table 6. It is worth noting that results on the performance of the exact
approach (i.e., CTA) on TR dataset was not available as computational times exceeded the time
limit of 25,000 seconds (6.94 hours). These tables show the total cost (OBJ), the transportation
cost (TC), the fixed cost (FC), the congestion cost (CC), the number of iterations (#ITR), and
the CPU times in seconds (CPU). The results of the GA are reported as the upper bound (UB)

and percentage gap are calculated as %Gap = w;)_—BOJB] % 100.

For all instances derived from the CAB dataset, the exact approach provides optimal
solutions (with optimality gap of 10°®) within an average CPU time of 1176, 1351, and 2075
seconds for M/D/1, M/M/1, and M/G/1 cases. The maximum CPU times for M/D/1, M/M/1,
and M/G/1 cases are 9449, 10569, and 20367 second while the maximum number of iterations
are 2, 2 and 4 respectively. The number of iterations of the exact method implies that only a
fraction of constraints (16) of PL(H) is used which confirms stability and efficiency of the
algorithm in finding optimal solutions. As expected, with increase in the number of hubs to be
opened, the problem requires more computational effort. The CPU time for the exact approach
also increases as the inter-hub discount factor takes larger values. Finally, our results confirm
that with increase in the value of the congestion cost factor 6, the congestion cost function
dominates and consequently the exact method requires excessive computational time to solve
a problem to optimality.

For the CAB dataset, GA provides quality solutions in very short computing times

(<10 second). The average percentage gaps of the solutions provided by the algorithm are 3.8,
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3.6, and 3.4 % in M/D/1, M/M/1, and M/G/1 cases respectively. The genetic based heuristic
approach finds optimal solutions for 14 (M/D/1 case), 11 (M/M/1 case), and 13 (M/G/1 case)
instances. For the TR dataset, GA provides feasible solutions to the problems with up to 81
nodes within an average computing time of 40 second. Note that unlike the exact approach,
increasing inter-hub discount factor « and/or the congestion cost factor 8 do no significantly
impact the computational performance of the GA. our computational result confirms the
stability and the efficiency of the GA in finding near-optimal solutions to the problem within

reasonable optimality gap.

Table 2 The effect of adding a priori set of cuts in cutting plane algorithm on computation time

M/D/1(c=0) M/M/1(c=1) M/G/1(c=2)

CPA-0 CPA-ap CPA-0 CPA-ap CPA-0 CPA-ap
n p o 6 OB] #TR CPU([) #IMR CPU() OBJ ~ #ITR  CPU(S) #ITR CPU(s) OBJ #ITR CPU(s) #ITR CPU(s)
10 3 02 1 11595 9 23 0 3 11706 9 26 0 3 12041 11 41 1 10
20 13173 8 55 0 4 13755 7 53 1 10 15053 10 60 1 10

50 14555 8 72 1 10 15637 10 70 1 11 18607 13 106 1 14

04 1 12360 11 40 0 6 12472 11 37 0 3 12806 11 46 1 11
20 13925 7 51 0 4 14508 7 58 1 10 15806 9 60 1 11

50 1530.8 8 79 1 7 16390 10 71 1 11 19421 12 92 1 18

08 1 13891 14 106 0 9 14003 10 80 0 8 14338 12 98 0 13
20 15349 10 88 0 6  15%.38 9 73 1 12 17266 7 65 1 12

50 1676.8 8 78 1 11 17850 8 79 1 10 21040 15 207 1 22

4 02 1 12579 12 36 0 6 12635 11 29 0 4 12803 9 26 1 6
20 1407.6 11 37 1 6 15054 15 78 1 17 16353 11 62 1 10

50 1606.7 13 72 1 14 17042 11 56 1 7 19388 9 30 1 7

04 1 13332 15 45 0 8 13388 12 31 0 3 13555 10 25 1 6
20 14829 10 31 1 6 15902 13 80 1 18 17314 10 52 1 16

50 1699.0 15 105 2 37 18003 10 59 0 7 20349 9 40 1 7

08 1 14720 19 72 1 14 14848 16 62 0 13 15015 12 50 0O 10
20 16289 10 56 1 6 17405 10 65 1 26 19056 12 133 1 22

50 1860.8 12 103 1 31 19745 10 104 1 25 22086 8 55 1 12

15 3 02 1 15033 13 627 0 100 15227 14 968 1 173 15393 10 818 0 80
20 16422 13 1676 0 67 17020 15 1627 0 88 18676 17 2667 1 673

50 1795.0 15 1604 1 227 19233 16 2304 1 462 21518 19 3331 1 192

04 1 16258 7 528 0 72 16347 7 505 1 170 16530 7 822 1 144
20 17564 13 1953 1 198 18301 16 2635 1 381 19504 15 3181 1 377

50 19231 17 2883 1 947 20061 15 2728 1 256 22415 18 2307 1 212

08 1 17493 12 400 0 62 17619 12 612 1 112 17998 12 1410 1 160
20 19395 16 4660 0 55 19854 13 4130 0 201 20765 12 2497 0 107

50 2056.3 13 3214 0 148 21321 11 3251 0 907 23507 14 1587 1 211

4 02 1 14755 7 283 0 30 14887 10 401 1 67 15283 13 809 1 143
20 1639.5 14 1675 0 109 16969 16 1892 1 325 17991 14 2204 2 546

50 1780.1 15 2257 2 561 1860.7 15 272 1 280 20258 16 1866 2 441

04 1 16219 12 827 0 62 16347 10 550 1 120 16530 10 1199 1 119
20 17564 12 2218 1 164 18264 19 3703 0 198 19281 13 2798 2 730

50 1909.6 15 2356 0 406 19931 16 3908 1 389 21600 15 1725 1 753

08 1 17493 12 464 0 60 17619 12 439 1 114  1799.8 12 1438 1 157
20 19395 16 4054 0 564 19854 12 3491 1 903 20765 11 3830 O 86

50 2056.3 13 3091 1 289 21321 10 1635 1 171 23597 16 2847 0 452

Min 7 23 0 3 7 26 0 33 7 25 0 6
Ave 12 998 05 134 12 1069 07 131 12 1077 09 161
Max 19 4660 2 947 19 4130 1 903 19 3830 2 753

25



Table 3 Performance of the Exact Approach and Genetic Algorithm on CAB Dataset: M/D/1 Case (¢ = 0)

20 7332 900 1250 17582
50 7488 950 2141 19129
0.8 1 1091.1 700 148 1805.8
20 1103.0 750 100.1  1953.0
50 1103.0 750 250.2  2103.1

1097.8  1827.1
1639.7 19215
24582 19117
3184.4  2066.2
27319  2236.4

25 3 0.2 1 7851 650 12.2 1447.3
20 7673 700 855 1552.8

50 770.6 700 2093  1679.8

0.4 1 91526 650 17.2 1582.5

20 9035 700 855 1689.0

50 90391 700 217.6 18215

0.8 1 1319.05 500 8.4 1827.5

20 1168.66 700 855 1954.1

50 11663 700 2176  2083.9

12323 15216
2131.8  1559.9
3800.2  1723.2
22538 16119
10426 17554
11226  1886.5
1446.4  1920.0
21726 2073.8
55175 2122.1

4 0.2 1 7706 700 8.1 1478.6
20 7706 700 161.0 1631.6

50 8155 750 280.7  1846.3

0.4 1 901.7 700 9.3 1611.0

20 9035 700 1688 17723

50 7945 950 2223  1966.8

0.8 1 11659 700 9.3 1875.1

20 1168.7 700 168.8  2037.4

50 12503 750 2139 22142

495.1 1559.1
28483 17454
22565  1861.0

696.9 1794.3
3667.5  1880.9
9448.6  2031.8
1016.8  2078.8
82533  2218.2
8325.0 23354

O EWORNONUIRFOUWWRENOUIDUNUIOW®ORNOO O U

Cutting Plane Algorithm Genetic Algorithm %G
n P o 9 TC FC CC OBJ #ITR CPU( UB _ CPU() %P
10 3 02 1 4957 650 138 11505 0 27 11594 06 -
20 5000 700 1172 13173 0 40 13173 0.4 -
50 5000 750 2055 14555 1 97 14555 03 -
0.4 1 572.2 650 13.8 1236.0 0 6.3 1236.0 0.2 -
20 5753 700 117.2 13925 0 4.3 1392.5 0.2 -
50 5753 750 2055 1530.8 1 7.4 1530.8 0.5 -
0.8 1 7254 650 138 13891 O 92 13891 02
20 7170 700 1202 15371 0 55 15371 02 -
50 7213 750 2055 16768 1 108 16763 04 -
4 0.2 1 500.0 750 7.9 1257.9 0 6.2 1319.7 0.3 49
20 500.0 750 157.6 1407.6 1 6.2 1464.9 0.5 4.1
50 400.6 950 256.1 1606.7 1 14.2 1618.9 0.4 0.8
0.4 1 5753 750 79 13332 0 76 14235 02 6.8
20 5753 750 1576 14829 1 61 15692 11 58
50 6348 750 3142 16990 2 368 17239 03 15
0.8 1 743.7 700 28.3 1472.0 1 14.0 1579.9 0.2 7.3
20 721.3 750 157.6 1628.9 1 6.5 1738.9 0 6.8
50 7999 750 310.9 1860.8 1 31.0 1903.0 0 2.3
15 3 02 1 8263 650 269 15033 O 99.8 15434 1 27
20 8359 700 1036 16395 O 67.3 16395 y :
50 8359 700 2501 17950 1 2269 17950 0. -
0.4 1 9149 700 10.9 1625.8 0 717 1642.1 3. 1.0
20 940.2 700 116.2 1756.4 1 198.0 1792.7 1. 2.1
50 9640 700 2591 19231 1 9468 19353 1 056
0.8 1 12348 500 145 17493 0 618 18181 1 39
20 11403 700 992 19395 0 5560 19395 1 :
50 11381 750 1691 20572 O 1482 2056.2 1 -
4 02 1 6593 800 162 14755 0 305 16033 7 87
20 8359 700 1036 16395 O 1087 17493 1 6.7
50 6848 900 1953 17801 2 5605  1903.0 3 6.9
0.4 1 9149 700 109 16258 O 617 17637 6 85
20 9402 700 1162 17564 1 1644  1884.0 2 73
50 8157 900 1044 19101 0 2060 20384 2 6.7
0.8 1 1234.8 500 14.5 1749.3 0 60.3 1956.8 2 11.9
20 1140.3 700 99.2 1939.5 0 564.1 2091.2 2 7.8
50 1137.7 750 168.6 2056.3 1 289.3 2271.7 5 10.5
20 3 02 1 7245 650 156 13901 0 5245 14419 2 3.7
20 7245 700 1107 15352 0 3683  1535.2 8 .
50 7313 700 2509 16821 O 3147 17251 8 26
0.4 1 8478 650 15.6 15134 0 250.0 1570.1 6 3.7
20 8478 700 110.7 1658.4 0 442.0 1687.8 4
50 8650 700 2509 18159 O 6768  1836.3 3
0.8 1 1173.9 500 10.8 1684.7 0 2545 1770.4 6
20 11825 500 1997 18822 1 24815  1895.0 3
50 11030 750 1629 20158 O 12486 20277 6
4 0.2 1 731.3 700 14.8 1446.1 1 826.1 1534.7 3
20 5878 900 1258 16136 1 24381 1659.1 4
50 5898 750 2217 17615 O 6873 17852 6
0.4 1 847.8 700 23.6 15714 1 503.5 1702.6 5
0 6
1 7
0 5
0 6
1 4
0 5
0 5
1 7
0 5
0 8
0 4
0 3
0 8
0 7
0 6
1 8
1 9
0 7
1 8
1 8
0 5
1 5
0 7
0 0
0.4 4
2.0 9

roONfoowirvorRrRNNMOOUOWORMNUIRNOMDNWhO oD OLIRPRWODORNUINNMMDYNODNWND

Min 7.9 1159.5 2.7 1159.4 0
Average 122.0  1688.1 11759 17538 3.8
Max 3142 22142 9448.6 23354 11.9




Table 4 Performance of the Exact Approach and Genetic Algorithm on CAB Dataset: M/M/1 Case (¢ = 1)

3242.1  1869.0
1328.7  2018.2
5059.5  1955.0
11329 21384
7027.9 23337

20 7271 950 1453 18224
50 7519 950 307.7  2009.6
0.8 1 1097.3 700 17.0 1814.3
20 1103.0 750 157.9  2010.8
50 11211 750 3644  2235.1

1875.0 15985
32814  1615.1
23317 18374
964.5 1655.4
13025  1792.0
43111  1985.6
1163.6  1949.7
2778.9  2096.9
91132 22573

25 3 0.2 1 7859 650 21.8 1457.7
20 7706 700 1277  1598.2

50 7706 700 319.1  1789.7

0.4 1 922.1 650 21.8 1593.8

20 9035 700 131.8 17353

50 9131 700 319.1 19323

0.8 1 1319.1 500 15.1 1834.2

20 1168.7 700 131.8  2000.5

50 11714 700 3295  2200.9

575.6 1625.5
2361.3  1816.7
23252 19774

778.9 17725
6918.0  1934.8
47400 21299
11213 20832
5801.4  2220.2

10569.1  2450.0

4 0.2 1 7706 700 137 1484.2
20 776.9 700 2657 17426

50 624.1 1000 250.2 18923

0.4 1 901.7 700 16.2 1617.9

20 7916 900 169.1  1860.7

50 803.0 1000 250.2  2053.3

0.8 1 11659 700 16.1 1882.0

20 12516 750 130.1 21317

50 12525 750 3259 23284

B EWNRORBONPINWIONEOIRDNON

Cutting Plane Algorithm Genetic Algorithm %G
n D o 9 TC FC CC OBJ #ITR CPU() UB _ cpu@) °%
10 3 0.2 1 4957 650 249 11706 0 26 1170.6 0.3 -
20 5000 700 1255 13755 1 10.4 13755 0.3 -
50 5000 750 313.7 1563.7 1 10.7 1563.7 2.9 -
0.4 1 5722 650 249 12472 0 3.2 1247.2 0.2 -
20 5753 750 1255  1450.8 1 10.5 1450.8 0.1 -
50 5753 750 313.7  1639.0 1 10.5 1639.0 0.8 -
0.8 1 7254 650 249  1402.0 0 75 1402.0 0.2 -
20 7170 750 1255  1596.8 1 12.2 1596.8 0.9 -
50 7213 750 3137  1785.0 1 9.8 1785.0 0.2 -
4 0.2 1 5000 750 135 12635 0 3.6 1326.6 2.9 5.0
20 4006 950 1547  1505.4 1 16.7 15185 0.3 0.9
50 4329 1000 2713  1704.2 1 6.8 1711.0 0.3 0.4
0.4 1 5753 750 135 13388 0 3.2 1430.4 0.4 6.8
20 5753 750 2054  1590.2 1 175 1623.1 0.2 21
50 6348 1000 271.3  1800.3 0 74 1814.8 0.8 0.8
0.8 1 5290 750 135 14848 0 13.3 1585.9 0.3 6.8
20 7213 750 269.2 17405 1 26.1 1809.7 05 4.0
50 703.7 1000 270.9 19745 1 25.0 1993.9 0.8 1.0
15 3 0.2 1 8029 700 198  1522.7 1 1735  1527.8 35 0.3
20 835.9 700 166.1  1702.0 0 87.7 1736.3 1.8 2.0
50 9282 750 2450 1923.3 1 4624  1929.5 15 0.3
0.4 1 9149 700 198 16347 1 170.2  1666.2 46 1.9
20 9640 700 166.1  1830.1 1 3806  1848.7 1.6 1.0
50 10110 750 2450  2006.1 1 2562  2009.4 2.4 0.2
0.8 1 12348 500 27.1 17619 1 112.0 18138 2.3 29
20 11381 750 982  1986.3 0 2011 19854 3.4 -
50 11381 750 2456  2133.6 0 97.3 2133.6 2.7 -
4 0.2 1 659.3 800 29.4 14887 1 67.5 1623.1 5.9 0.
20 6862 900 1121  1698.2 1 3255 18028 6.
50 6938 950 216.1  1859.9 1 2796 19782 6.
0.4 1 9149 700 198 16347 1 1203 1764.4 7.
20 8157 900 1114  1827.1 0 198.1 19517 6.
50 8319 950 2112  1993.1 1 388.6 21306 6.
0.8 1 12437 500 26.6 17703 1 1142 1970.7 11
20 11377 750 978 19854 1 9026  2166.4 9.
50 11377 750 2444 21321 1 1712 23219 8.
20 3 0.2 1 7245 650 286  1403.2 0 2841 14131 0.
20 7313 700 1615  1592.8 0 5252  1654.0 3.
50 802.0 750 2328 17849 2 13759 18247 2.
0.4 1 8478 650 286  1526.4 0 4797  1592.2 4,
20 8650 700 1615 1726.6 1 11085 17444 1.
50 9082 750 2457  1903.9 0 688.1 19132 0.
0.8 1 11735 500 198  1693.3 0 2957 17785 5.
20 11021 700 1362  1938.2 0 10311 19443 0.
50 11030 750 235.7  2088.6 0 1146.0  2098.3 0.
4 0.2 1 7313 700 27.2 14585 1 14136 15714 7.
20 589.8 950 130.2  1670.0 0 4074  1677.6 0.
50 6045 950 307.7 18623 1 2109.9  1874.9 0.
0.4 1 8478 700 449  1592.7 1 6263 17655 10
1
1
1
0
1
0
1
1
0
0
1
0
0
0
0
1
1
0
1
1
0
0
1
0
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Min 13.5 1170.6 2.6 1170.6 0
Average 1484  1767.1 0.6 13515  1810.7 3.6
Max 3644  3333.0 2.0 10569.1  2450.0 11.3




Table 5 Performance of the Exact Approach and Genetic Algorithm on CAB Dataset: M/G/1 Case (¢ = 2)

Cutting Plane Algorithm Genetic Algorithm %G
n D % 9 _TC FC CC OBJ #TR CPUs) UB __ Cpu() =%
10 3 0.2 1 4957 650 584 1204.1 9.5 1204.1 0.4 -
20 5000 750 2553  1505.3 9.7 1505.3 0.7 -
50 5534 750 557.3  1860.7 14.1 1860.7 05 -
0.4 1 5722 650 584  1280.6 111 1280.6 0.3 -
20 5753 750 2553  1580.6 10.6 1580.6 0.3 -
50 6348 750 557.3 19421 18.3 19421 0.9 -
0.8 1 7254 650 58.4 1433.8 12.7 1433.7 0.3 -
20 7213 750 2553 1726.6 11.7 1726.6 1.6 -
50 7976 750 5573  2104.9 21.8 2104.0 05 -
4 0.2 1 5000 750 30.2  1280.3 5.9 1347.4 0.6 5.2
20 4329 1000 202.4 16353 10.1 1642.1 05 0.4
50 4329 1000 505.9 1938.8 6.9 19715 0.3 17
0.4 1 5753 750 30.2 1355.5 6.2 1451.2 0.3 7.1
20 529.0 1000 2024 17314 15.9 1745.8 0.5 0.8
50 529.0 1000 505.9  2034.9 6.8 2067.8 0.8 1.6
0.8 1 7213 750 302 15015 9.8 1602.3 0.2 6.7
20 703.7 1000 202.0  1905.6 22.1 1925.0 0.7 1.0
50 703.6 1000 505.0 2208.6 12.5 2246.1 2.6 1.7
15 3 0.2 1 8157 700 248 1540.5 80.5 1578.6 13 25
20 926.1 750 1949 1871.0 673.4 1873.9 15 0.2
50 9282 750 4735 21518 1917 21822 4.4 1.4
0.4 1 9274 700 256  1653.0 1445  1693.0 21 2.4
20 10110 750 1894  1950.4 3768  1950.4 4.7 -
50 1011.0 750 4735 2234.6 212.3 2234.6 7.1 -
0.8 1 12348 500 65.0 1799.8 159.7 1837.8 2.6 21
20 1138.1 750 189.9 2078.0 107.0 2078.0 4.2 -
50 11377 750 4720  2359.7 2113 23597 6.6 -
4 0.2 1 659.3 800 69.0  1528.3 1432 1638.1 2.7 7.
20 6848 900 2141  1798.9 5462 19127 3.4 6.
50 711.1 1000 3147 2025.8 440.7 2226.6 45 9.
0.4 1 9274 700 256  1653.0 118.9 17744 1.9 7.
20 815.7 900 2124 1928.1 729.5 2062.5 24 7.
50 831.9 950 378.1 2160.0 753.1 2397.6 5.7 11
0.8 1 12348 500 65.0 1799.8 157.1 1982.9 5.8 10
20 11381 750 189.9  2078.0 85.7 2269.4 6.4
50 1137.7 750 472.0 2359.7 452.2 2586.8

20 3 0.2 1 759.0 650 29.9 1438.9
20 802.0 750 1788  1730.9
50 8120 750 4284 19904

11434 14485
1383.7  1745.7
1502.7  2016.9

0.4 1 8773 650 29.9 1557.2 561.6 1610.6
20 908.2 750 1916  1849.9 872.3 1889.3
50 939.7 750 4292 21189 3410.2  2166.5
0.8 1 11735 500 46.9 1720.3 630.6 1798.9

20 11038 750 186.1  2040.0
50 11253 750 4293  2304.6

1348.7  2050.6
6862.1 23145

4 0.2 1 7313 700 644 1495.7
20 589.8 950 2548  1794.6

50 626.1 1000 498.8 21249

0.4 1 865.0 700 644 1629.5

20 7519 950 2387  1940.6

50 843.2 1000 4058  2249.0

0.8 1 1097.3 700  38.7 1836.0

20 11211 750 2010 21717

50 1044.7 1000 4053 24499

18504 15713
922.1 1811.8
34003  2177.8
14573  1720.7
15619 20144
2156.7  2295.1
42189 19975
49555 22288
29529  2501.9

25 3 0.2 1 7694 700 13.9 1483.3
20 7706 700 2595  1730.1

50 8419 750 468.3  2060.2

0.4 1 901.7 700 139 1615.6

20 913.1 700 2595  1872.6

50 10186 750 4228 21913

0.8 1 13242 500 332 1857.4

20 1168.7 700 270.8 21394

50 12503 750 397.6  2397.9

3116.3  1548.0
47505  1791.8
32652  2089.7
19137  1663.4
47825 19488
74735 22713
1399.5 19595
45575  2186.8
20367.1  2459.3

4 0.2 1 7706 700  30.6 1501.1
20 9049 750 289.0 19439

518.7 1644.8
27435 19434
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50 689.2 1000 3985  2087.7 42279 22144 1
0.4 1 9035 700 327 1636.2 1694.1  1825.2 115
20 803.7 1000 188.8  1999.5 73025  2089.1 4.5
50 855.8 1000 3974 22531 109175 23229 3.1
0.8 1 11659 700 36.8 1902.7 20675  2110.8 10.9
20 1250.3 750 263.6  2263.9 12496.9 2364.8 45
50 1150.2 1000 378.1  2528.3 10988.4  2570.2 1.7
Min 13.9 1204.1 5.9 1204.1 0
Average 2374 18739 20753  1939.5 34
Max 5573 25283 20367.1  2586.8 115




Table 6 Performance of Genetic Algorithm on TR Dataset

M/D/1 M/M/1 M/G/1
n p a 0 UB CPU(s) UB CPU(s) UB CPU(s)

25 3 0.2 1 1675.97 7.9 1686.17 4.3 1695.25 24.3
20 178289 241 184173 41 1946.26 113

50 1904.20 8.8 200156 1538 2191.48 178

0.4 1 1774.62 23.1 1774.79 6.8 1824.71 5.7

20 188852 265 1947.00 138 2049.33 234

50 2006.61 10.8 2104.52 225 2312.79 21.2

0.8 1 1860.59 7.0 1877.04 16.2 1896.54 20.5

20 1986.80 11.4 2030.85 139 2148.14 95

50 2110.29 23.2 2202.19 15.9 2393.24 17.4

4 02 1 205003 182 2090.44 16.0 2052.56 238

20 2193.09 222 224583 186 2385.37 255

50 2349.06 21.4 2421.38 13.4 2615.61 21.8

0.4 1 216498 156 2187.45 17.9 2209.42 268

20 2338.56 22.2 2394.53 27.9 2510.95 27.9

50 2466.68 12.3 2578.56 15.8 2758.00 11.8

0.8 1 226945 263 2291.94 215 2315.29 219

20 2453.28 14.6 2526.16 26.1 2659.28 11.3

50  2627.29 118 2725.36 8.6 2950.63 6.6

55 3 02 1 182049 46.4 1829.48 38.1 184529 451
20 1942.58 33.7 2017.01 47.2 2140.41 39.1

50  2064.81 478 2126.77 40.1 2314.32 427

05 1 1903.73 33.9 1961.79 305 1934.52 43.9

20 2041.66 37.7 2066.18 459 2160.76 43.7

50 218507 47.9 2218.77 26.7 2405.62 412

0.8 1 1971.40 21.2 1995.21 479 2025.18 41.3

20 2115.29 45.7 2161.47 459 2278.08 43.1

50 227101 23.9 232057 323 2523.84 416

4 0.2 1 2271.74 30.7 2285.88 42.4 2303.59 33.6

20 236302 336 242552 432 254250 473

50 2556.36 437 2597.44 30.9 2762.33 37.9

0.5 1 2368.75 459 2371.68 47.1 2433.39 47.2

20 257251 474 2563.03 339 2687.46 453

50 2649.83 453 2685.44 475 2940.50 339

0.8 1 243318 317 2458.68 228 2496.33 47.0

20 265347 271 2656.11 413 2773.78 35.8

50 2763.63 45.1 2825.42 47.2 3018.56 45.4

81 3 02 1 1898.06 411 1899.45 45.9 1921.38 412
20 2034.87 65.3 2110.34 51.7 2236.96 67.6

50 2208.89 61.0 2268.09 65.6 2462.70 58.6

05 1 197370 615 1983.95 408 2019.37 55.9

20 215169 65.9 2186.79 38.4 2336.75 65.4

50 229594 67.7 2350.37 617 2526.97 67.8

0.8 1 204842 453 2060.32 53.2 207853 615

20 2242.46 61.6 2268.94 61.6 2382.08 45.8

50 234555 67.8 2401.46 55.2 2621.96 57.6

4 0.2 1 2411.48 475 2374.28 65.4 2428.58 53.7

20 2544.80 65.9 2601.51 60.6 2640.86 69.2

50 2699.15 64.5 2697.16 615 2897.84 65.8

0.5 1 2525.46 61.7 2499.34 30.9 2542.62 61.0

20 262919 67.6 2707.04 65.8 2785.98 67.1

50 278437 65.3 2844.74 65.2 3042.90 617

0.8 1 2613.59 64.5 2662.17 65.9 2681.15 67.5

20 2764.09 66.9 2778.81 67.2 2895.41 58.5

50 2865.76 67.6 2948.16 54.8 3142.16 66.4

Min 1675.97 7.00 1686.17 4.10 1695.25 5.7
Average 2257.20 3892 2299.00 37.06 2410.10 40.29
Max 2865.76 67.80 2948.16 67.20 3142.16 69.20
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6 Summary and Conclusion

In this paper, we present a model that captures the trade-off between transportation cost savings
induced by the economies of scale and the congestion costs due to the variability of arrival and
service rates of the flow at hub facilities. We modelled and analysed the effect of congestion
on the design of logistics systems with hub-and-spoke topologies. Hubs are modelled as single
server queues with Poisson arrivals and general service time distributions. The congestion is
captured using the number of users at hubs. We present two solution approaches: an exact
method and an approximation technique. In the first approach we linearize the initial nonlinear
model and use a cutting plane algorithm to solve small to medium size problem instances to
optimality. As the second solution approach, we propose a genetic algorithm based heuristic to
solve large instances of the problem.

In order to mitigate the effects of congestion, the proposed model redistribute the flow across
hubs to achieve maximize hub utilization and/or decide suitable hub capacities to achieve
higher relative difference of hub flow and hub capacities. Our computational results
demonstrate that substantial reduction in congestion can be achieved with relatively small
increase in total costs. We further illustrate that network configurations offered by the model
that include congestion cost could be very different from those proposed by a traditional model
that ignores congestion. Our computational experiments on CAB and TR datasets confirms the
efficiency and stability of both cutting plain and GA based heuristic approaches in locating
optimal/best solutions to various problem instances. For CAB dataset, the GA provides
solutions that are, on average, within 3.4% of the optimality in short computing times (<10
second). For the TR dataset (with up to 81 nodes), GA provides solutions within 40 second on
average.

In this research hub facilities are modelled as single-server queues (M/G/1). Nevertheless it
would be beneficial, from both academic and practical point of view, to extend this study and
model hubs as multiple servers and explore exact and other solution approaches that can handle
problems with such complexity. Another promising avenue that can be explored is to extend
the queuing-based congestion modelling framework to deal with congestion on links (and link
capacity selection) in the hub-and-spoke network. Future research can also explore the
possibility of embedding the proposed cutting plane based exact solution procedure within the
Lagrangean relaxation/Benders decomposition framework to solve large-scale instances of the

hub-and-spoke problems with congestion.
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