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Abstract   Motivated by the strategic importance of congestion management, in this paper we 

present a model to design hub-and-spoke networks under stochastic demand and congestion. 

The proposed model determines the location and capacity of the hub nodes and allocate non-

hub nodes to these hubs while minimizing the sum of the fixed cost, transportation cost and the 

congestion cost. In our approach, hubs are modelled as spatially distributed M/G/1 queues and 

congestion is captured using the expected queue lengths at hub facilities. A simple 

transformation and a piecewise linear approximation technique are used to linearize the 

resulting nonlinear model. We present two solution approaches: an exact method that uses a 

cutting plane approach and a novel genetic algorithm based heuristic. The numerical 

experiments are conducted using CAB and TR datasets. Analysing the results obtained from a 

number of problem instances, we illustrate the impact of congestion cost on the network 

topology and show that substantial reduction in congestion can be achieved with a small 

increase in total cost if congestion at hub facilities is considered at the design stage. The 

computational results further confirm the stability and efficiency of both exact and heuristic 

approaches.  
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1 Introduction 

Instead of serving every origin-destination pair directly, a hub-and-spoke network provides 

service via a smaller set of links between origins-hub, pairs of hubs, and hub-destinations. The 

use of fewer links in the network concentrates the flow by reducing setup costs, centralizes 

commodity handling and sorting operations, and allows the economies of scale on 

transportation cost to be exploited. 

Hub-and-spoke systems have various applications including air passenger and air freight 

transportation (e.g., Bryan and O’Kelly, 1999; Martin and Roman, 2004), less-than- truckload 

freight transportation (e.g., Cunha and Silva, 2007; Cheung and Muralidharan (1999)), rail 

freight transportation (e.g., Jeong et al., 2007), urban public transportation/rapid transit (e.g., 

Nickel et al., 2001), postal delivery (Ernst and Krishnamoorthy, 1996, 1999; Cetiner et al., 

2010), express package and cargo delivery (e.g.,Yaman et al., 2007), and telecommunications 

and computer networks (e.g., Carello et al., 2004) and physical distribution in supply chains 

(e.g., Lapierre et al., 2004). Since the seminal work of O’Kelly (1986 a) several variants and 

extensions of the hub location problem such as p-hub median, uncapacitated hub location, p-

hub centre and hub covering problem have been proposed and studied in the literature. 

Campbell and O’Kelly (2012) provide a detailed account of this research area. 

Hub location problems are categorised into two distinctive groups namely single and 

multiple allocation problems. In a single allocation version of the problem, all incoming and 

outgoing traffic from and to every node is routed via a single hub whereas in a multiple 

allocation, each demand node can receive and send flow through more than one hub. Earlier 

studies on hub-and-spoke systems focuses on providing a tight mathematical formulation for 

the problem, more recent studies however, aim to develop efficient solution methods for large 

scale instances of the problem.  

Over the years a number of approximation and exact methods have been developed to tackle 

various hub location problems. Examples of such methods include greedy randomized adaptive 

search procedure (e.g., Klincewicz, 1992), tabu search (e.g., Klincewicz, 1992), simulated 

annealing (e.g., Abdinnour-Helm, 2001), genetic algorithm (e.g., Abdinnour-Hel and 

Venkataramanan, 1998; Kratica et al., 2007; Azizi et al. 2016), evolutionary algorithms (e.g., 

Koksalan and Soylu, 2010), neural networks (e.g., Smith et al., 1996), Particle Swarm 

Optimisation (e.g., Azizi, 2017) general variable neighbourhood search (e.g., Ilic et al., 2010), 

Lagrangean relaxation (e.g., Elhedhli and Wu, 2010), Benders decomposition (e.g., Camargo 

et al., 2009b; Contreras et al., 2012), branch and bound (e.g., Ernst and Krishnamoorthy, 1996, 
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1998b), branch and price (e.g., Contreras et al., 2011c), and branch and cut (e.g., Yaman and 

Carello, 2005) among others. Further information about the hub location problem and its 

various solution techniques could be found in review articles such as Klincewicz (1998), Bryan 

and O’Kelly (1999), Alumur and Kara (2008), and Campbell and O’Kelly (2012). 

Adopting the hub-and-spoke topology provides enterprises with the opportunity of 

exploiting the economies-of-scale through flow concentration and consolidation on the inter-

hub links. However, studies have shown that these networks may suffer from the increasing 

flow at hubs which result in congestion in these facilities. Uncertainty in demand and variability 

in service times at hubs are the other potential causes of congestion. In urban traffic, to deal 

with congestion one way is to use the pricing. Pricing is a mechanism to charge the users for 

the negative externalities generated by the peak demand in excess of available supply. In airline 

transportation, empirical studies have shown that hubbing is the primary contributor to air 

traffic delays and congestion (Mayer and Sinai, 2003). Increasing capacity by, for instance, 

building new runaways to allow more take offs and landings is one way to ease the congestion 

and delays at major airports. For example, in 2008, O’Hare International Airport in Chicago, a 

hub for both United and American Airlines, opened a new runway to ease congestion and 

improve on-time performance. However, such strategies (e.g., building new runways) are often 

very expensive. 

Furthermore, research has shown that uncapacitated hub location models that do not 

consider fixed cost associated with opening hubs and/or accounts for hub capacities produce 

solutions in which some hubs are subjected to heavy traffic while others rarely used (Camargo 

et al., 2011). In short, congestion is an important strategic issue in hub-and-spoke systems that 

needs to be considered seriously when deciding the location of the hub facilities and allocating 

demand points to these hubs. 

In this study, we present a model that captures the effect of congestion at hub facilities in 

the context of hub-and-spoke network. More specifically, our model simultaneously determines 

the location and capacity of the hubs and allocates demand to these facilities such that the sum 

of the congestion cost, the fixed cost of opening hubs and the transportation cost is minimal. 

The proposed model captures the trade-off between the transportation cost savings induced by 

the economies of scale and the cost associated with the flow congestion at hub facilities. We 

setup the problem as a network of spatially distributed queues (at hubs) with Poisson arrivals 

and general service time distributions (i.e., M/G/1 queues). The congestion effects are captured 

using the average number of users in the system. The problem is modelled as a nonlinear integer 

program.  
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To linearize the model, we use a piecewise linear approximation technique. The resulting 

model is then solved for small and medium size problem instances using a cutting plane 

approach, a well-known exact method. To solve larger instances, we further present a Genetic 

Algorithm (GA) based heuristic. We demonstrate the efficiency of the proposed heuristic by 

comparing its performance against the optimal solutions provided by our exact algorithm for a 

class of benchmark problems. Explicit consideration of the congestion cost in deciding hub 

locations, their capacity levels, and the flow routing decisions distinguishes this work from 

other hub location models. 

The work of Grove and O’Kelly (1986) is one of the earliest studies to investigate the effect 

of congestion in hub-and-spoke networks. By simulating a single allocation hub network with 

fixed hub locations, Grove and O’Kelly demonstrated how schedule delays of airline systems 

are influenced by the amount of flow at hubs.  

At least three different approaches have been proposed in the literature to model congestion 

at hub facilities. The first approach attempts to address the congestion by restricting the amount 

of flow passing through hubs using capacity constraints. The main drawback of this approach 

is that capacity constraints with deterministic demand do not imitate the exponential nature of 

the congestion effects. As a remedy to this shortcoming, Elhedhli and Hu (2005) proposed the 

use of a power law function to represent the congestion cost in the objective function. The 

value of the power-law function proposed by Elhedhli and Hu (2005) increases exponentially 

as more flow arrives at hubs. The function is expressed by 𝑓(𝑥) = 𝑎𝑥𝑏, where x is the flow at 

a hub and a and b are positive constants. Nevertheless the work of Elhedhli and Hu (2005) do 

not account for variability in demand and stochastic processing times at hubs. Along the same 

line, Camargo et al. (2009a) proposed a generalized convex cost function to model congestion 

in an uncapacitated multiple-allocation hub location problem under deterministic demand. 

Camargo et al. (2011) extended their model to deal with uncapacitated single-allocation hub 

location problem under congestion using a power-law function as well as average queuing 

delay function (M/M/1 queue). They present an outer approximation technique combined with 

Benders Decomposition to solve the model. 

The second approach to capture congestion effects models a hub as a queue and uses 

performance measures such as average waiting time or the probability distribution of the queue 

length to measure congestion (Guldmann and Shen, 1997; Marianov and Serra, 2003; Elhedhli 

and Wu, 2010). Guldmann and Shen (1997) present a nonlinear model for hub-and-spoke 

network design that selects hubs and links, determines hub capacities, and assigns flows over 

paths, while minimizing the sum of the fixed cost, capacity cost, and the operating/congestion 
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cost on the links and at hubs. In the work of Guldmann and Shen (1997) hubs are modelled as 

M/M/1 queues and congestion is computed using the mean waiting time at hubs. Marianov and 

Serra (2003) present a model to find the optimal location of the hubs in airline networks. In 

Marianov and Serra’s study hubs are modelled as M/D/c queues and congestion is captured 

using a probabilistic capacity constraint that limits the queue length at hub facilities. To solve 

the model, they proposed a Tabu search based heuristic. More recently, Elhedhli and Wu (2010) 

present a model where hubs are modelled as M/M/1 queues and congestion at hubs is computed 

as the ratio of the total flow to the surplus capacity. They present a Lagrangean heuristic to 

solve the non-linear mixed integer programming formulation of the problem. Similar to 

Elhedhli and Wu (2010) approach, we calculate the congestion as the ratio of the flow to the 

surplus capacity but in our study hubs are modelled as M/G/1 queues and congestion is 

computed using the number of users at these facilities. 

In the literature, another stream of research addresses network design with stochastic 

demand and capacity selection but without considering the congestion effects. Examples of 

such studies include Correia et al. (2010) and Alumur et al. (2012). Unlike other studies in this 

area that often assume demand is deterministic and hub capacity is exogenous, in this paper 

variability in demand and service times at hubs is modelled explicitly and hub capacity 

decisions are considered endogenous. 

Another related body of the literature is the facility location problems with immobile 

servers, stochastic demand, and congestion. Application of such problems ranges from location 

of emergency medical clinics, fire stations, automated teller machines, and internet mirror site 

location to design of telecommunication network and distribution networks in supply chains to 

name a few (Boffey et al.,2007; Vidyarthi et al., 2009). To ensure the problem is tractable, 

researchers in this area often make strong assumptions such as fixing the number of facilities 

and/or their capacities, considering identical facilities and having exponential demand and 

service processes (Boffey et al., 2007). To the best of our knowledge, all the references to date 

in this area have addressed the general discrete facility location problem without assuming any 

special network structure. This paper is an attempt to model the effect of stochastic demand 

and congestion cost on the location of the hub facilities in networks with hub-and-spoke 

topologies. 

The remainder of this paper is organized as follows. In Section 2 we present the problem 

description and mathematical formulation. Linearization and the cutting plane approach will 

be discussed in section 3. Section 4 describes the proposed genetic algorithm based heuristic. 

Computational results, sensitivity analysis, and observations are presented in section 5. In 
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section 6 we summarize our findings and present the concluding remarks with some future 

research directions. 

 

2 Model Formulation 

The single allocation p-hub median problem has been studied by O’Kelly (1987), Campbell 

(1994b), Skorin-Kapov and Skorin-Kapov (1994), O’Kelly et al. (1995), Ernst and 

Krishnamoorthy (1996), Smith et al. (1996), Ebery (2001), Elhedhli and Hu (2005), and many 

others. To develop a model that accounts for congestion, we use the classical uncapacitated 

single allocation p-hub median problem due to Skorin-Kapov et al. (1996).  The Skorin-Kapov 

et al. (1996) formulation provides the tightest linear programming bound.  The model has four 

underlying assumptions: (1) hub arcs have no setup cost (2) distances between nodes satisfy 

the triangle inequality (3) flows are consolidated by hubs (direct connections between non-hub 

nodes are not permitted) and (4) economies of scale exist in the form of a constant discount 

factor and only applies to flow cost between hub nodes. Assumptions (1) and (2) imply that 

hub nodes are fully interconnected and the last three assumptions result in origin-destination 

paths that include at least one and at most two hub nodes.  

The basic components of the p-hub median model is described as follows. Let                                  

N = 1, 2, ..., n be the set of nodes that exchange traffic and the potential hub locations. We use 

k and m as indices for potential hub locations and i and j as indices for the origin and destination 

nodes. Therefore, paths between origin-destination (O-D) pairs are of the form of i − j − k – m; 

i and j represent the origin and destination and k and m the hubs to which i and j are respectively 

allocated. 𝐶𝑖𝑗𝑘𝑚 is the total cost of routing flow (i, j) through path (i, j, k, m) and it is given by 

 𝐶𝑖𝑗𝑘𝑚 = 𝜆𝑖𝑗(𝜒𝑐𝑖𝑘 + 𝛼𝑐𝑘𝑚 + 𝛿𝑐𝑚𝑗) where λij is the flow from origin i to destination j that will 

be routed through one or two hubs; cij is the unit transportation cost between origin i and 

destination j; χ is the coefficient of collection cost (per unit flow) from any origin to any hub 

node; δ is the coefficient of distribution cost (per unit flow) from any hub node to any 

destination; and α is the inter-hub discount factor.  

In Skorin-Kapov et al. (1996) p-hub median model zik and xijkm are the two decision 

variables. The decision variable zik is equal 1 if node i is allocated to hub k and 0 otherwise; in 

particular, zkk = 1 implies that node k is selected as a hub. The decision variable xijkm is the 

routing variable and equals 1 if the flow from node i to node j routed via hubs located at nodes 

k and m and 0 otherwise. With these notations, the formulation of the uncapacitated single-
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allocation p-hub median problem (USApHMP) due to Skorin-Kapov et al. (1996) is presented 

as follows: 

[𝑈𝑆𝐴𝑝𝐻𝑀𝑃]:  min     ∑ ∑ ∑ ∑ 𝐶𝑖𝑗𝑘𝑚

𝑚𝑘𝑗𝑖

𝑥𝑖𝑗𝑘𝑚                                                                                     (1) 

    𝑠. 𝑡.     ∑ 𝑧𝑖𝑘

𝑘

= 1         ∀𝑖                                                                                                                (2) 

                𝑧𝑖𝑘 ≤ 𝑧𝑘𝑘         ∀𝑖, 𝑘                                                                                                               (3) 

              ∑ 𝑧𝑘𝑘

𝑘

= 𝑝                                                                                                                               (4) 

           ∑ 𝑥𝑖𝑗𝑘𝑚

𝑚

= 𝑧𝑖𝑘         ∀𝑖, 𝑗, 𝑘                                                                                                  (5) 

            ∑ 𝑥𝑖𝑗𝑘𝑚

𝑘

= 𝑧𝑗𝑚         ∀𝑖, 𝑗, 𝑚                                                                                                  (6) 

              𝑥𝑖𝑗𝑘𝑚 , 𝑧𝑖𝑘   ∈ {0,1}     ∀𝑖, 𝑗, 𝑘, 𝑚                                                                                          (7)   

Constraint set (2) ensures that every node is assigned to exactly one hub. Constraint (3) 

guarantees that a node will be assigned to an open hub. Constraint (4) ensures that exactly p 

hubs are opened in the network. Constraint (5) and (6) ensure that all the traffic between an 

origin-destination pair has been routed via a hub sub-network. 

2.1 Modelling Congestion 

In order to model congestion at hub facilities, we use the queuing delay function. Queuing 

based congestion captures the stochastic nature of the demand, variation in service times at hub 

facilities, the capacity of hubs, and represent the exponential nature of the delay as incoming 

flow reaches the capacity. For example, in airline networks though most flights follow a 

schedule, they are subject to delays both at the origin airports and during the flight which makes 

their arrival non-deterministic (Marianov and Serra, 2003). Upon arrival at an airport, airplanes 

go through three stages of service: landing at runways, service at gates, and departure through 

take-off runways. The service times at hubs are also highly variable and depend on several 

factors including types of planes and the prevailing weather conditions. Under these situations, 

it is reasonable to model airport hubs as queuing stations, where the queue is formed by 

airplanes waiting for landing and subsequent unloading/loading at the gates. In this case, 

congestion refers to the number of airplanes that are in the system (queuing +service) and the 

congestion cost is the cost per unit time incurred by the airline companies for the duration of 

the use of airport hubs.  
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A distribution network in supply chain in which trucks arrive at cross docks (or warehouses) 

for unloading, sorting, and loading of consignments is another example of the systems with 

potential congestion effects. Service times at cross docks depend on several factors including 

the availability of loading/unloading, sorting time of consignments and availability of 

personnel. Under these situations, it is reasonable to model cross docks (i.e., hubs) as queuing 

stations where the queue is formed by trucks waiting for unloading/loading at docks. In such 

cases, congestion refers to the number of trucks in the system (queuing +service). 

In hub-and-spoke systems where to be concerned about the capacity and/congestion depends 

primarily on the type of resources and operations involved. For instance, as noted by Correia 

et al. 2010 in traffic logistics, the crucial capacity to consider is the inbound flow and the 

outbound is not important as people go in different directions depending on their destination. 

Similarly in other applications such as postal service where hub facilities are used for sorting 

operations the hub capacities also refer to the incoming flow from non-hub nodes. In such cases 

the incoming flow from other hubs as well as the outgoing flow can be ignored as they do not 

need to be processed (Ernst and Krishnamoorthy, 1999; Contreras et al 2009).  

To model variability in demand, we assume the flow rate from origin i to destination j is an 

independent random variable that follows a Poisson process with mean λij. Due to the 

superposition property of Poisson processes, the aggregate flow rate of traffic entering hub k 

via collection is also a random variable that follows a Poisson process with mean                     

 𝜆𝑘 = ∑ ∑ ∑ 𝜆𝑖𝑗𝑚𝑗𝑖 𝑥𝑖𝑗𝑘𝑚 . Although we model only the volume of traffic entering a hub via 

collection, the model can be extended to consider the traffic entering the hub via transfer as 

well.  

We model the service times at hubs as a random variable that follows a general distribution. 

The service rate reflects hub capacity or the amount of flow that a hub is able to process in a 

given time period. In the literature, the following two approaches have been frequently used to 

model flexible capacity of a queuing system. The first approach is to model a single-server with 

flexible server capacity level (e.g., µ). In this case, the decision variable is µ which can be either 

continuous or discrete and the resulting model is M/G/1 queue. The second approach is to 

assume multiple parallel servers each with a given capacity level (µ). In this approach, the 

decision variable is the number of servers (e.g., s) to be installed at a particular location and 

the resulting model is M/G/s queue. The capacity can be adjusted in discrete steps by varying 

the number of servers. Under reasonably high service utilization, a system with s parallel 

servers (each with a capacity µ) will perform similarly to single server with capacity sµ. 

Therefore, we choose to capture congestion effects at hubs using M/G/1 queue. 
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For each hub node k, the model is allowed to select one of the discrete capacity levels, µk1, 

µk2,..., µkL with fixed costs of Fk1 , Fk2 , ..., FkL respectively. These fixed costs refer to the 

amortized cost of acquiring capacity level at each hub facility. Let ykl be a binary variable that 

equals 1 if hub k is equipped with capacity level l, and 0 otherwise. Each hub then can be 

modelled as an M/G/1 queue where mean service rate of hub k (with capacity level l) is given 

by 

 𝜇𝑘 = ∑ 𝜇𝑘𝑙
𝐿
𝑙=1 𝑦𝑘𝑙  

and the variance in service times is 

 𝜎𝑘
2 = ∑ 𝜎𝑘𝑙

2
𝑙 𝑦𝑘𝑙  

Let τk represent the mean service time at hub k (τk = 1/µk ), ρk be the utilization of hub k                

(ρk = λk /µk ), and 𝑐𝑘
2 be the squared coefficient of variation of service times(𝑐𝑘

2 = 𝜎𝑘
2/𝜏𝑘

2 ). 

Under steady state condition (λk <µk) and first-come-first-serve queuing discipline, the average 

waiting time (including the service time) of a unit flow at hub k is given by the Pollaczek-

Khintchine (PK) formula: 

𝔼[𝑊𝑘] = (
1 + 𝑐𝑘

2

2
)

𝜏𝑘𝜌𝑘

1 − 𝜌𝑘
+ 𝜏𝑘 =  (

1 + 𝑐𝑘
2

2
)

𝜆𝑘

𝜇𝑘(𝜇𝑘 − 𝜆𝑘)
+

1

𝜇𝑘
                ∀𝑘  

The expected total number of users at hub k is obtained by multiplying the unit waiting time at 

hub k by the expected demand:  

𝔼[𝐿𝑘] =  (
1 + 𝑐𝑘

2

2
)

𝜆𝑘
2

𝜇𝑘(𝜇𝑘 − 𝜆𝑘)
+

𝜆𝑘

𝜇𝑘
  

This expression is equivalent to 

𝔼[𝐿𝑘(𝑥, 𝑦)] =
(1 + ∑ 𝑐𝑘𝑙

2 𝑦𝑘𝑙𝑙 )(∑ ∑ ∑ 𝜆𝑖𝑗𝑚𝑗𝑖 𝑥𝑖𝑗𝑘𝑚)
2

2 ∑ 𝜇𝑘𝑙𝑙 𝑦𝑘𝑙(∑ 𝜇𝑘𝑙𝑙 𝑦𝑘𝑙 − ∑ ∑ ∑ 𝜆𝑖𝑗𝑚𝑗𝑖 𝑥𝑖𝑗𝑘𝑚)
+

∑ ∑ ∑ 𝜆𝑖𝑗𝑚𝑗𝑖 𝑥𝑖𝑗𝑘𝑚

∑ 𝜇𝑘𝑙𝑙 𝑦𝑘𝑙
            (8) 

The expression for 𝔼[𝐿𝑘] is non-linear with respect to decision variables x and y. 

2.2 Single-allocation p-hub location problem with stochastic demand and congestion 

The resulting nonlinear integer programming formulation for the single-allocation p-hub 

location problem with stochastic demand, congestion and capacity selection is presented as 

follows: 

[𝑃]:  min     ∑ ∑ ∑ ∑ 𝐶𝑖𝑗𝑘𝑚

𝑚𝑘𝑗𝑖

𝑥𝑖𝑗𝑘𝑚 + ∑ ∑ 𝐹𝑘𝑙

𝑙𝑘

𝑦𝑘𝑙 + 𝜃 ∑ 𝔼[𝐿𝑘(𝑥, 𝑦)]

𝑘

                           (9) 

    𝑠. 𝑡     (2) − (6)                                                                                              
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   ∑ ∑ ∑ 𝜆𝑖𝑗

𝑚𝑗𝑖

𝑥𝑖𝑗𝑘𝑚  ≤ ∑ 𝜇𝑘𝑙
𝑙

𝑦𝑘𝑙                     ∀𝑘                                                                      (10)     

  ∑ 𝑦𝑘𝑙 = 𝑧𝑘𝑘

𝑙

            ∀𝑘                                                                                                                (11)   

𝑥𝑖𝑗𝑘𝑚 , 𝑦𝑘𝑙, 𝑧𝑖𝑘   ∈ {0,1}      ∀𝑖, 𝑗, 𝑘, 𝑚                                                                                         (12)   

The objective function (9) minimizes the total network cost including the regular transportation 

cost, the fixed cost and the congestion cost. The first term in the objective function calculates 

the total transportation cost of the flow between all origin-destination node pairs. The second 

term accounts for the fixed cost (amortized over the planning period) of locating hubs with 

adequate service capacity level. The third term computes the total expected congestion cost at 

hubs and is expressed as the product of congestion cost factor per unit user θ and the expected 

total number of users in the system, 𝔼[𝐿]. Constraint set (10) is the capacity constraints at hubs. 

The capacity constraints can also be interpreted as the stability (steady state) condition of a 

queue (𝜆𝑘 ≤ 𝜇𝑘 ). Constraint set (11) ensures that a capacity level is assigned to hub k if node 

k is selected as a hub. 

3 Model Linearization and Exact Solution Approach 

The nonlinear term in the objective function [P] described above is linearized using simple 

transformation and a piecewise linear function. The resulting linear model has exponential 

number of constraints, but it is tractable using a Cutting Plane Algorithm (CPA) based exact 

solution approach.  

3.1 Linearization 

In order to linearize the objective function (9), the multiple terms in the expression for 

𝔼[𝐿𝑘(𝑥, 𝑦)] can be rearranged and written as follows 

𝔼[𝐿𝑘(𝑥, 𝑦)] =
1

2
{(1 + 𝑐𝑘

2)
𝜆𝑘

(𝜇𝑘 − 𝜆𝑘)
+ (1 − 𝑐𝑘

2)
𝜆𝑘

𝜇𝑘
} 

This is equivalent to 

1

2
{

(1 + ∑ 𝑐𝑘𝑙 
2 𝑦𝑘𝑙𝑙 ) ∑ ∑ ∑ 𝜆𝑖𝑗𝑚𝑗𝑖 𝑥𝑖𝑗𝑘𝑚  

∑ 𝜇𝑘𝑙𝑦𝑘𝑙𝑙 − ∑ ∑ ∑ 𝜆𝑖𝑗𝑚𝑗𝑖 𝑥𝑖𝑗𝑘𝑚  
+

(1 − ∑ 𝑐𝑘𝑙 
2 𝑦𝑘𝑙𝑙 ) ∑ ∑ ∑ 𝜆𝑖𝑗𝑚𝑗𝑖 𝑥𝑖𝑗𝑘𝑚  

∑ 𝜇𝑘𝑙𝑦𝑘𝑙𝑙
}            (13) 

we define nonnegative auxiliary variables ρk and Rk such that 

𝜌𝑘 =
𝜆𝑘

𝜇𝑘
=

∑ ∑ ∑ 𝜆𝑖𝑗𝑚𝑗𝑖 𝑥𝑖𝑗𝑘𝑚  

∑ 𝜇𝑘𝑙𝑦𝑘𝑙𝑙
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and 

𝑅𝑘 =
𝜆𝑘

𝜇𝑘 − 𝜆𝑘
=

∑ ∑ ∑ 𝜆𝑖𝑗𝑚𝑗𝑖 𝑥𝑖𝑗𝑘𝑚  

∑ 𝜇𝑘𝑙𝑦𝑘𝑙𝑙 − ∑ ∑ ∑ 𝜆𝑖𝑗𝑚𝑗𝑖 𝑥𝑖𝑗𝑘𝑚  
              ∀𝑘     

 This implies that 

∑ ∑ ∑ 𝜆𝑖𝑗

𝑚𝑗𝑖

𝑥𝑖𝑗𝑘𝑚  =
𝑅𝑘

1 + 𝑅𝑘
∑ 𝜇𝑘𝑙𝑦𝑘𝑙

𝑙

= 𝜌𝑘 ∑ 𝜇𝑘𝑙𝑦𝑘𝑙

𝑙

= ∑ 𝜇𝑘𝑙𝑤𝑘𝑙

𝑙

 

where  𝑤𝑘𝑙 = 𝜌𝑘 if  𝑦𝑘𝑙 = 1 and 0 otherwise. 

As there is at most one capacity level l’ with ykl’ = 1 while ykl = 0 for all other l ≠ l’, the 

expression wkl = ρk ykl can be ensured by adding the following set of constraints: 

𝑤𝑘𝑙 ≤ 𝑦𝑘𝑙                       ∀𝑘, 𝑙 

∑ 𝑤𝑘𝑙

𝑙

= 𝜌𝑘                    ∀𝑘 

The hub utilization can be expressed as 𝜌𝑘 =
𝑅𝑘

1+𝑅𝑘
  .The function 𝜌𝑘 =

𝑅𝑘

1+𝑅𝑘
  is concave w.r.t. 

Rk, and it can be approximated by an infinite set of piecewise linear functions that are tangent 

to the function at a given set of points 𝑅𝑘
ℎ  i.e. 𝜌𝑘 = 𝑚𝑖𝑛ℎ∈𝐻 {

1

(1+𝑅𝑘
ℎ)

2 𝑅𝑘 +
(𝑅𝑘

ℎ)2

(1+𝑅𝑘
ℎ)

2}. 

This can be written as  

𝜌𝑘 ≤
1

(1 + 𝑅𝑘
ℎ)

2 𝑅𝑘 +
(𝑅𝑘

ℎ)
2

(1 + 𝑅𝑘
ℎ)

2                           ∀𝑘, ℎ ∈ 𝐻 

  

As a result, the nonlinear term of the objective function reduces to: 

𝔼[𝐿𝑘] =
1

2
{(1 + ∑ 𝑐𝑘𝑙 

2 𝑦𝑘𝑙

𝑙

) 𝑅𝑘 + (1 − ∑ 𝑐𝑘𝑙 
2 𝑦𝑘𝑙

𝑙

) 𝜌𝑘}

=
1

2
{𝑅𝑘 + 𝜌𝑘 + ∑ 𝑐𝑘𝑙 

2 (𝑣𝑘𝑙 − 𝑤𝑘𝑙)

𝑙

} 

where vkl = Rk; if ykl = 1 and 0 otherwise. 

Because there exists at most one l’ with ykl’ = 1 while ykl = 0 for all other l ≠ l’ , the expression 

vkl = Rk ykl can be ensured by adding the following set of constraints: 

𝑣𝑘𝑙 ≤ 𝑀𝑦𝑘𝑙                 ∀𝑘, 𝑙 

 ∑ 𝑣𝑘𝑙𝑙 = 𝑅𝑘              ∀𝑘 

The resulting linear Mixed Integer Programing (MIP) formulation is presented as follows: 
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[𝑃𝐿(𝐻)]:  min  ∑ ∑ ∑ ∑ 𝐶𝑖𝑗𝑘𝑚

𝑚𝑘𝑗𝑖

𝑥𝑖𝑗𝑘𝑚 + ∑ ∑ 𝐹𝑘𝑙

𝑙𝑘

𝑦𝑘𝑙  

+
𝜃

2
∑ {𝑅𝑘 + 𝜌𝑘 + ∑ 𝑐𝑘𝑙 

2 (𝑣𝑘𝑙 − 𝑤𝑘𝑙)

𝑙

}

𝑘

                                                                      (14) 

𝑠. 𝑡     (2) − (6) ; (10) − (11)  

∑ ∑ ∑ 𝜆𝑖𝑗

𝑚𝑗𝑖

𝑥𝑖𝑗𝑘𝑚  − ∑ 𝜇𝑘𝑙𝑤𝑘𝑙

𝑙

= 0        ∀𝑘                                                                                         (15) 

𝜌𝑘 ≤
1

(1 + 𝑅𝑘
ℎ)

2 𝑅𝑘 +
(𝑅𝑘

ℎ)
2

(1 + 𝑅𝑘
ℎ)

2                           ∀𝑘, ℎ ∈ 𝐻                                                                   (16) 

𝑤𝑘𝑙 − 𝑦𝑘𝑙 ≤ 0                    ∀𝑘, 𝑙                                                                                                                       (17) 

𝜌𝑘 − ∑ 𝑤𝑘𝑙𝑙 = 0                  ∀𝑘                                                                                                                      (18)  

∑ 𝑦𝑘𝑙𝑙 ≤ 1                           ∀𝑘                                                                                                (19)  

𝑣𝑘𝑙 − 𝑀𝑦𝑘𝑙 ≤ 0                 ∀𝑘, 𝑙                                                                                                                       (20) 

𝑅𝑘 − ∑ 𝑣𝑘𝑙𝑙 = 0                   ∀𝑘                                                                                                                       (21)  

𝑥𝑖𝑗𝑘𝑚 , 𝑦𝑘𝑙, 𝑧𝑖𝑘   ∈ {0,1}      ∀𝑖, 𝑗, 𝑘, 𝑚, 𝑙                                                                                          (22)   

0 ≤ 𝜌𝑘 ≤ 1;    0 ≤ 𝑤𝑘𝑙 ≤ 1     ∀𝑘, 𝑙                                                                                                (23)   

𝑅𝑘 , 𝑣𝑘𝑙  ≥ 0                                   ∀𝑘, 𝑙                                                                                                (24)   

Stability (steady state) requirements of queuing system (𝜆𝑘 < 𝜇𝑘) translate into capacity 

constraints, and are enforced by the constraints (15) and (17).  

For coefficient of variance of service times, c = 0 (M/D/1 case) and c = 1 (M/M/1 case), the 

expression reduces to 𝔼[𝐿𝑘]𝑀/𝐷/1 =
1

2
{𝑅𝑘 + 𝜌𝑘}  and 𝔼[𝐿𝑘]𝑀/𝑀/1 = 𝑅𝑘 respectively.  

This will further simplify the model as: 

[𝑃𝐿(𝐻)𝑀/𝐷/1
]:  min     ∑ ∑ ∑ ∑ 𝐶𝑖𝑗𝑘𝑚

𝑚𝑘𝑗𝑖

𝑥𝑖𝑗𝑘𝑚 + ∑ ∑ 𝐹𝑘𝑙

𝑙𝑘

𝑦𝑘𝑙 +
𝜃

2
∑(𝑅𝑘 + 𝜌𝑘)

𝑘

 

𝑠. 𝑡     (2) − (6) ; (10) − (11); (15) − (19) 

𝑥𝑖𝑗𝑘𝑚 , 𝑦𝑘𝑙, 𝑧𝑖𝑘   ∈ {0,1}      ∀𝑖, 𝑗, 𝑘, 𝑙, 𝑚                                                                           

𝑅𝑘 ≥ 0; 0 ≤ 𝜌𝑘 ≤ 1;    0 ≤ 𝑤𝑘𝑙 ≤ 1     ∀𝑘, 𝑙                                                                       

and 

[𝑃𝐿(𝐻)𝑀/𝑀/1
]:  min     ∑ ∑ ∑ ∑ 𝐶𝑖𝑗𝑘𝑚

𝑚𝑘𝑗𝑖

𝑥𝑖𝑗𝑘𝑚 + ∑ ∑ 𝐹𝑘𝑙

𝑙𝑘

𝑦𝑘𝑙    + 𝜃 ∑ 𝑅𝑘

𝑘
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𝑠. 𝑡     (2) − (6) ; (10) − (11); (15) − (19) 

𝑥𝑖𝑗𝑘𝑚 , 𝑦𝑘𝑙, 𝑧𝑖𝑘   ∈ {0,1}      ∀𝑖, 𝑗, 𝑘, 𝑙, 𝑚                                                                           

𝑅𝑘 , ≥ 0; 0 ≤ 𝜌𝑘 ≤ 1;    0 ≤ 𝑤𝑘𝑙 ≤ 1     ∀𝑘, 𝑙                                                                       

To avoid establishing hubs with long queues in the above models the value of k could be set 

to less than 1 e.g., ≤ 0.95.  

3.2 Exact solution approach 

The objective of [𝑃𝐿(𝐻)] is a minimization, therefore, at least one of the constraints in (16) 

will be binding. This implies that 

𝜌𝑘 = 𝑚𝑖𝑛ℎ∈𝐻 (
1

(1 + 𝑅𝑘
ℎ)

2 𝑅𝑘 +
(𝑅𝑘

ℎ)
2

(1 + 𝑅𝑘
ℎ)

2)                          ∀𝑘 𝑤ℎ𝑒𝑛  𝑦𝑘𝑙 = 1                       

The nonlinearity of [P] was eliminated at the expense of an infinite number of constraints in 

the linear MIP model[𝑃𝐿(𝐻)]. To solve [𝑃𝐿(𝐻)]with an infinite number of constraints, we present 

the following cutting plane algorithm. For an initial and finite set of points   (𝑅𝑘
ℎ)

𝐻̅ ⊂𝐻
,  [𝑃𝐿(𝐻̅)]  

is a relaxation of the full problem [𝑃𝐿(𝐻)], hence a lower bound to[𝑃𝐿(𝐻)] or [P] is provided by 

the optimal objective function value of 𝑣(𝑃𝐿(𝐻̅)),  which is given by 

𝐿𝐵 = 𝑣(𝑃𝐿(𝐻̅)) =  ∑ ∑ ∑ ∑ 𝐶𝑖𝑗𝑘𝑚

𝑚𝑘𝑗𝑖

𝑥̅𝑖𝑗𝑘𝑚 + ∑ ∑ 𝐹𝑘𝑙

𝑙𝑘

𝑦̅
𝑘𝑙

+
𝜃

2
∑ {𝑅̅𝑘 + 𝜌̅

𝑘
+ ∑ 𝑐𝑘𝑙 

2 (𝑣̅𝑘𝑙 − 𝑤̅𝑘𝑙)

𝑙

}

𝑘

 

where (𝑥̅, 𝑦̅, 𝑧̅, 𝜌̅, 𝑤̅, 𝑅̅, 𝑣̅) is the solution of [𝑃𝐿(𝐻̅)]. Furthermore, the solution (𝑥̅, 𝑦̅)of 

[𝑃𝐿(𝐻̅)] is a feasible solution to [P] and so the upper bound is obtained as: 

UB =  ∑ ∑ ∑ ∑ 𝐶𝑖𝑗𝑘𝑚

𝑚𝑘𝑗𝑖

𝑥̅𝑖𝑗𝑘𝑚 + ∑ ∑ 𝐹𝑘𝑙

𝑙𝑘

𝑦̅𝑘𝑙   

+
𝜃

2
∑ {

(1 + ∑ 𝑐𝑘𝑙 
2 𝑦̅𝑘𝑙𝑙 ) ∑ ∑ ∑ 𝜆𝑖𝑗𝑚𝑗𝑖 𝑥̅𝑖𝑗𝑘𝑚  

∑ 𝜇𝑘𝑙𝑦̅𝑘𝑙𝑙 − ∑ ∑ ∑ 𝜆𝑖𝑗𝑚𝑗𝑖 𝑥̅𝑖𝑗𝑘𝑚  
                                                                       

𝑘

+
(1 − ∑ 𝑐𝑘𝑙 

2 𝑦̅𝑘𝑙𝑙 ) ∑ ∑ ∑ 𝜆𝑖𝑗𝑚𝑗𝑖 𝑥̅𝑖𝑗𝑘𝑚  

∑ 𝜇𝑘𝑙𝑦̅𝑘𝑙𝑙
}                                                                                                                                

If the best known upper bound coincides with the lower bound at a given iteration then the 

optimal solution is obtained and the algorithm is terminated. Otherwise, a new set of points 

𝑅𝑘
ℎ𝑛𝑒𝑤 are generated using the current solution (𝑥̅, 𝑦̅) as follows 
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𝑅𝑘
ℎ𝑛𝑒𝑤 =

∑ ∑ ∑ 𝜆𝑖𝑗𝑚𝑗𝑖 𝑥̅𝑖𝑗𝑘𝑚  

∑ 𝜇𝑘𝑙𝑦̅𝑘𝑙𝑙 − ∑ ∑ ∑ 𝜆𝑖𝑗𝑚𝑗𝑖 𝑥̅𝑖𝑗𝑘𝑚  
    

 

This new set of points is appended to (𝑅𝑘
ℎ)

𝐻̅ ⊂𝐻
 and is used to generate a set of cuts 

𝜌𝑘 ≤
1

(1 + 𝑅𝑘
ℎ𝑛𝑒𝑤)

2 𝑅𝑘 +
(𝑅𝑘

ℎ𝑛𝑒𝑤)
2

(1 + 𝑅𝑘
ℎ𝑛𝑒𝑤)

2                           ∀𝑘, ℎ ∈ 𝐻    

The algorithmic steps of the cutting plane approach is outlined in Figure 1. 

 

Initialization: 

     𝑈𝐵 ←⋈; 𝐿𝐵 ← −⋈; 𝑞 ← 0 
    Choose an initial set of points Rh 

While  𝑈𝐵 ≠ 𝐿𝐵 do 

    Solve [𝑃𝐿(𝐻𝑞)] to obtain (𝑥̅𝑞 , 𝑦̅𝑞 , 𝑧̅𝑞 , 𝜌̅𝑞, 𝑤̅𝑞 , 𝑅̅
𝑞
, 𝑣̅𝑞) 

    Update the lower bound: 𝐿𝐵𝑞 ← 𝑣(𝑃𝐿(𝐻̅
𝑞

))  

    Update the upper bound: 𝑈𝐵𝑞 ← 𝑚𝑖𝑛{𝑈𝐵𝑞−1, 𝑍(𝑥̅𝑞, 𝑦̅𝑞, 𝑧̅𝑞)} 

    Get new points: 𝑅𝑘
ℎ𝑛𝑒𝑤=

∑ ∑ ∑ 𝜆𝑖𝑗𝑚𝑗𝑖 𝑥̅𝑖𝑗𝑘𝑚  

∑ 𝜇𝑘𝑙𝑦̅𝑘𝑙𝑙 −∑ ∑ ∑ 𝜆𝑖𝑗𝑚𝑗𝑖 𝑥̅𝑖𝑗𝑘𝑚  
  ∀𝑘  

    Generate new cuts:   𝜌𝑘 ≤
1

(1+𝑅
𝑘
ℎ𝑛𝑒𝑤)

2 𝑅𝑘 +
(𝑅𝑘

ℎ𝑛𝑒𝑤)
2

(1+𝑅
𝑘
ℎ𝑛𝑒𝑤)

2            ∀𝑘, ℎ ∈ 𝐻   

    Append new cuts: 𝐻𝑞+1 ← 𝐻𝑞 ∪ {ℎ𝑛𝑒𝑤} 

     𝑞 ← 𝑞 + 1 
End while 

 

 

 

As will be shown in our computational results, the above models formulation could be used to 

solve small to medium size problem instances to optimality. Due to the limitation in using exact 

methods such as cutting plan approach in solving large problem instances of the proposed 

model, one way forward is to design an efficient metaheuristic. In this study, we present a 

metaheuristic based on a well-known evolutionary algorithm of Genetic Algorithm. These 

algorithm is discussed in the following section. 

4 Genetic algorithm 

Genetic algorithm (GA) is an efficient metaheuristic based on the evolutionary idea of natural 

selection and genetics. Various types of the algorithm have been successfully applied to a wide 

range of combinatorial optimization problems (Salhi, 2017). The works of Kratica et al. (2007) 

and Koksalan and Soylu (2010) are examples of GAs application in hub location problems. In 

Fig.1 The cutting plane algorithm 
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the following, we briefly describe the GA based heuristic used in this study to solve our model. 

The proposed GA begins to search the solution space by randomly generating a population of 

solutions. Then two parent chromosomes from the current population are selected one at a time 

to generate offspring chromosomes. The newly generated chromosomes are constructed via 

crossover and mutation operators. Upon completion of the (offspring) population, members of 

the current as well as those in the newly generated population are ranked in descending and 

ascending order respectively. Elements of the two populations are compared one to another 

and those inferior members of the current population are replaced by chromosomes with higher 

quality in the offspring population. The algorithmic steps of the proposed GA is outlined in 

Figure 2. In the following subsections, we elaborate on the solution representation, initial 

population generation, crossover and mutation operators. 

4.1 Solution representation 

In our GA, a solution is represented by an array (string) with the length of 1 × N where N 

corresponds to the number of nodes in the network. For instance, a solution to a problem with 

10 nodes and 3 hubs could be represented as [1 3 3 3 5 3 1 1 5 5]. Decoding the string from left 

to right, the first location corresponds to node number 1, the second location corresponds to 

node number 2, and so on. Each location on the string (i.e., a gene) contains a number which 

may or may not be the same as the “location number”. Each of these numbers refers to a hub 

in the network. Each hub node is allocated to itself. For example, nodes 1, 3, and 5 are assumed 

to be hubs and therefore, they are allocated to themselves and other nodes in the network have 

been assigned to one of these hubs. 

4.2 Initial population 

Solutions of the initial population are generated randomly. The procedure to generate a member 

of the population (i.e., chromosome) is presented as follows. First, an empty one-dimensional 

array of length N is constructed. The location of hubs is then determined by generating p 

(unidentical) random integers between 1 and N. Each of these p integers is assigned to its 

corresponding position in the chromosome. For example, if the first random number is “3” then 

it occupies the third position (from left) in the chromosome. To complete the chromosome, the 

rest of the (non-hub) nodes are randomly allocated to the p hubs in such way that at least one 

node from the remaining N − p nodes is assigned to each hubs. The proposed solution 

representation scheme and initial population generation procedure ensures the feasibility of the 

solutions. 
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4.3 Crossover operation 

The classical GA’s crossover operators (e.g., two-point crossover) that combine parents’ 

chromosomes to construct new offspring often generate infeasible solutions which slows down 

the search process. This phenomena is commonly blamed for poor performance of the genetic 

algorithm based heuristics in solving some combinatorial optimization problems. In this study, 

we tailored a special type of crossover operator to produce such offspring chromosomes that 

are safely decoded into feasible solutions. Details of the crossover operation are briefly 

Initialization: 

  Set the GA parameters: crossover probability pc ; mutation probability pm ; population 

      size pop.size; and  the computational time 

      t ← 0 

     Generate an initial population: P (t) 

     Evaluate the initial population: P (t) 

 Do while (the termination condition is not met)  

    t←t+1 

    Select two parents randomly from P (t − 1) 

    Generate a random number, Random1 ∈ {0, 1} 

    If Random1 ≤ Pc then 

       Perform crossover 

       Perform mutation 

       Evaluate offsprings 

       If Offspring’s fitness function is improved upon mutation then 

          Add the mutated offspring to the new population 

       Else 

          Add the crossovered offspring to the new population 

       End If 

   Else 

       Select one of the two parents randomly 

       Generate a random number 

       If Random2 ≤ Pm then 

          Perform mutation 

          If chromosome’s or parents fitness function is improved upon mutation then 

             Add the mutated offspring to the new population 

          Else 

             Add the parent to the population 

          End If 

       Else 
          Add the selected parent to the new population 

       End If 

    End If 

    Rank the parents in population P (t) in descending order. 

    Rank the offspring population O(t) in ascending order. 

    Insert the superior members of P (t) and O(t) into P (t + 1) 

    Evaluate P (t + 1) 

 Loop 

Fig.2 The pseudo code of the proposed genetic algorithm 
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described as follows. To generate an offspring, first a template chromosome (i.e., an empty 

array) with the length of the number of nodes in the problem in hand is constructed and then 

two parents are selected randomly from the current population. The genetic structure of the 

offspring chromosome is assembled by taking one of the two parents and transferring the first 

gene from the parent into the offspring template chromosome. This gene (i.e., a hub) is placed 

in the offspring chromosome array where the location corresponds to its value. For instance, if 

the value of the selected gene is 3 then it is placed in the third location of the offspring array. 

Once the gene is transferred, the parent chromosome is scanned and all other genes with the 

same value (e.g., 3) are similarly moved to their corresponding locations in the offspring 

chromosome. The other parent is then selected and the above steps are repeated. This process 

continues by consecutively selecting the remaining genes in parent chromosomes and 

embedding them into the offspring chromosome. The crossover operation stops when the 

offspring chromosome is completely constructed. 

4.4 Mutation operations 

To mutate a chromosome, we randomly select two unidentical genes that represent non-hub 

nodes in the network and swap their positions. For example, if the selected chromosome for 

mutation is [1 3 3 3 5 3 1 1 5 5], then we select two unidentical genes from the non-hub nodes 

i.e., 2, 4, 6, 7, 8, 9, and 10 randomly. If the selected non-hub nodes are 7 and 9 with genes 1 

and 5, then swapping their position yields the mutated offspring [1 3 3 3 5 3 5 1 1 5]. Following 

the mutation operation, the fitness values of the original offspring and the mutated 

chromosomes are compared. The chromosome with the lower cost is inserted into the new 

population. This approach is different from traditional mutation operators that are usually 

applied with low probability on any chromosome in the population. In our case, the mutation 

operator will either improve a chromosome, or leave it unchanged. 

5 Computational results 

270 test problems are derived from U.S. Civil Aeronautics Board (CAB) (O’Kelly, 1987) and 

Turkish (TR) datasets (Yaman et al., 2007). The algorithms were coded in C and run on a Dell 

Intel Core PC with 2.40 GHz processor with 2 GB of RAM. The MIP problems were solved 

using the callable library of CPLEX 11.2. The MIP problems are solved to optimality (with a 

gap of 10−6) using the exact approach. For the GA, we report the best solution obtained after 

20 replications of the algorithm for every instance. 
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Test problems 

Using  the CAB dataset, we generate 216 problem instances by setting the number of nodes 

(N) to 10, 15, 20, and 25, the number of hubs (p) to 3 and 4, the inter-hub discount factor (α) 

to 0.2, 0.4 and 0.8, the congestion cost factor (θ) to 1, 20, and 50, and  the coefficient of variance 

of service times (c) to 0 (M/D/1 case), 1 (M/M/1 case), and 2 (M/G/1 case). The average flow 

rate/demand λij and the unit transportation cost cij between each pair of nodes (i, j) are obtained 

from the dataset. The collection and distribution cost coefficients are set to χ = δ = 1 per unit. 

For every potential hub, we generate three capacity levels: small (S), medium (M) and large 

(L); the associated fixed costs are set to 150 (S), 200 (M) and 250 (L) and the capacity levels 

are decided using    
∑ ∑ 𝜆𝑖𝑗𝑗≠𝑘𝑖

𝑝
+ 𝛽𝐴𝑙 ∑ ∑ 𝜆𝑖𝑗𝑗≠𝑘𝑖 ,  where k is the hub in a one-hub network with 

n nodes that receives the least total flow. The coefficient β is set to 0.21, 0.22, 0.23, 0.24 for 

10, 15, 20, and 25 nodes respectively. Al is a constant that takes the value of -1, 0, and 1 for l 

= 1(S), 2(M), and 3(L) respectively. 

The TR dataset consists of flow and distance between 81 cities in Turkey. We generate 54 

instances of the problem by setting N to 25, 55, and 81, p to 3 and 4, α to 0.2, 0.5 and 0.8, θ to 

1, 20, and 50, c to 0, 1 and 2, and χ = δ = 1 per unit. Similar to that in CAB dataset, we generate 

three capacity levels: small, medium and large for every potential hub in the network; the 

corresponding fixed costs to each capacity level are 50 (S), 100 (M) and 150 (L). The capacity 

levels are decided according to   
∑ ∑ 𝜆𝑖𝑗𝑗≠𝑘𝑖

𝑝
+ 𝛽𝐴𝑙 ∑ ∑ 𝜆𝑖𝑗𝑗≠𝑘𝑖 . Similar to that in CAB dataset, k 

is the hub in a one-hub network with n nodes that receives the least total flow. The coefficient 

β is set to 0.20, 0.25, and 0.27 for problem with 25, 55, and 81 nodes respectively.  

5.1 An illustrative example 

One of the objectives of this research is to compare the network configurations and their 

associated costs (e.g., regular and total transportation costs) of a single allocation p-hub median 

problem with and without congestion effects consideration. For this purpose we solve a 

problem from the CAB dataset with N = 15 nodes, p = 3 hubs, and inter- hub discount factor 

(i.e., α) of 0.4 to optimality (with a gap of 10−6) using the exact method. Table 1 summarizes 

the results for various unit of congestion cost θ (i.e., the θ is set to 0, 1, 10, 20, 30, 50, 100, and 

200) under three scenarios: M/D/1 (c = 0), M/M/1 (c = 1), and M/G/1 (c = 2). The 

computational results in Table 1 include the total objective function value (OBJ), the 

transportation cost (TC), the fixed cost (FC), the congestion cost (CC),  the total number of 

users in the system (𝔼[𝐿]), the hub locations and their capacities, the aggregate flow arrival rate 
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at hubs (λk ), the service capacity at hubs (µk ), the average hub utilization (ρk ), the average 

queue length (Lk ),  the number of iterations of the cutting plane algorithm (#ITR), and the CPU 

time in seconds (CPU(s)).  

Figure 3 illustrates the effect of changing congestion cost factor θ on the total expected 

number of users in the system 𝔼[𝐿]. Figure 4 shows the trade-off between the total expected 

number of users 𝔼[𝐿]and the sum of fixed costs and expected transportation costs. The insights 

are summarized as follows: 

 

 

 

 

Observation 1: The hub-and-spoke network configuration (location, capacity, and allocation 

of nodes to hubs) that considers congestion effects differs from the traditional configurations 

that ignores congestion and/hub capacity. 

 

The optimal network for the classical single allocation p-hub median problem with 15 nodes, 

3 hubs and inter-hub discount factor of 0.4 (i.e., α) recommends Chicago, Dallas-FW and Los 

Angeles as the optimal locations for the three hub facilities. The network configuration also 

show that while 10 out of the 15 cities are allocated to Chicago hub, the Los Angeles hub does 

not serve any of the demand nodes (cities); the two other cities are assigned to the remaining 

hub, Dallas-FW. This is understandable as the objective of the classical version of the problem 

is just to minimize the transportation cost.  Table 1 presents the configuration of the hub-and-

spoke networks for different values of the congestion cost factor (i.e., θ).  The optimal network 

without congestion (θ = 0, c = 1) i.e., the capacitated version suggests Chicago (Large), Los 

Angeles (Medium), and Memphis (Medium) as the location of the hub facilities, whereas the 

model with congestion (θ = 30, c = 1) recommends to open hubs at Chicago (Large), Cleveland 

(Large), and Dallas-FW (Large). From this observation, it can be concluded that the topologies 

of these three networks (i.e., classical, capacitated, and capacitated with congestion) differ both 

Fig.3  The effect of changing congestion 

cost factor on the total expected number 

of users in the system 

Fig.4 The trade-off between the total 

expected number of users in the system and 

the sum of transportation cost and fixed cost 
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in terms of recommended hub locations and the allocation of demand to these facilities.  

Further examination of Table 1 confirms that the network configurations (i.e. hub location, 

their capacity levels, and allocation of nodes to hubs) changes as the values of the congestion 

cost factor varies. The results also show that as the congestion cost factor increases, the model 

tries to reallocate non-hub nodes in order to balance the amount of flow passing through hubs 

and ultimately reduce the overall congestion in the network. For example, at θ = 0 and c = 1, 

the total flow passing through hubs are: Chicago (Large; 1,204,290), Los Angeles (Medium; 

399,236), and Memphis (Medium; 768,188), whereas when congestion effect is considered (θ 

= 20, c = 1) the selected hubs and their flow are: Chicago (Large; 797,140), Cleveland (Large; 

828,076), and Dallas-FW (Large; 739,725). The results in Table 1 further show that for very 

high values of congestion cost factors the configurations are not significantly different for 

M/D/1, M/M/1, and M/G/1 cases.  

Although establishing hubs with large capacity is expensive especially at the beginning, the 

decision provides the firm with the competitive advantage of routing the flow in a timely and 

responsive manner. In short, capacity selection, and allocation/routing of flow are interrelated 

decisions and should be made in conjunction rather than isolation.  

Observation 2: Substantial reduction in congestion can be achieved with a small increase in 

total costs (fixed cost + transportation cost) by incorporating congestion cost in the model. 

Examining Figure 3 show that by incorporating the congestion cost factor into the model (θ = 

0 to 10 to 20 to 30), the average queue length at hubs 𝔼[𝐿]decreases substantially at the 

beginning which results in relatively low level of congestion in the network. Further 

examination of Figure 3 reveals that large reduction in the congestion can be achieved without 

large increase in the fixed cost and transportation cost (see also the steepness of the left part of 

the curve in Figure 4). This is also evident from Table 1 where for M/G/1 case, the total 

expected queue length 𝔼[𝐿]decreases from 4988.52 to 25.56 with very small value of θ = 1. 

The rationale behind this significant reduction in overall congestion is that with increase in 

congestion cost (a) hubs with higher capacity levels are utilized (b) flow is distributed more 

evenly across the existing hubs and (c) the average hub utilization is increased.  

 

Observation 3: For a fixed value of coefficient of variance of service times c, an increase in 

congestion cost factor, θ, results in (i) a decrease and then an increase in the transportation 

costs (TC); (ii) an increase in congestion costs (CC); (iii) a decrease in total expected queue 
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length 𝔼[𝐿]; (iv) a decrease in average hub utilization (ρ); (v) a decrease in queue length at 

hubs (Lk); (vi) a reduction in hub congestion and (vii) an increase in computing time of the 

algorithms. 

For a fixed value of coefficient of variance of service times c, as the congestion cost factor θ 

increases, the queue length at hubs and consequently the total expected queue length in the 

system 𝔼[𝐿]decreases. Increase in the congestion cost factor also causes (naturally) the total 

congestion cost to grow. For instance, in M/M/1 case, as θ increases from 1 to 10 to 20, the 

expected queue length,𝔼[𝐿], decreases from 19.81 to 9.62 to 8.30, and the congestion cost 

increases from 19.81 to 96.21 to 166.1. The model tradeoffs the congestion cost against the 

transportation cost and the fixed cost through (1) reallocation of nodes to hubs in an attempt to 

balance the flows at hubs (2) hubs capacities improvement and/or (3) change in the potential 

hub locations. Reallocating the flow initially reduces and then increases the transportation cost 

(e.g. as θ increases from 0 to 1 to 10, the transportation cost (TC) decreases from 938.2 to 914.9 

and then increases to 940.2). As θ increases from 0 to 1, the total fixed cost of establishing a 

hub also increases from 650 to 700 because of the change in hubs capacity levels. As a result 

of the above changes, the average utilization is more even across the various hub locations. We 

also observed that the length of the computational times in various problem instances is 

affected by the congestion cost factor, the quality of the solution of LP relaxation and the 

number of iterations of the branch and bound. 

Observation 4: For a fixed value of  the  congestion cost factor θ, an increase in coefficient of 

variance of service times (c) results in (i) an increase in transportation cost (TC); (ii) an 

increase in congestion cost (CC); (iii) an increase in total expected queue length 𝔼[𝐿]; (iv) a 

decrease in average hub utilization (ρ); (v) a decrease in queue length at hubs (Lk ); (vi) an 

increase in hub congestion; and (vii) an increase in computation time of algorithms. 

As the variability in service times increases, the total expected queue length increases which 

cause the congestion cost to increase. In response to an increase in service times, the proposed 

model reallocates and/or reroutes the flow in order to reduce the congestion at hubs. For 

example, as shown in Table 1, with θ = 10, as the variability in service time increases from c = 

0 to 1 to 2, the total expected queue length increases from 𝔼[𝐿]= 6.54 to 9.62 to 17.67, which 

cause the congestion cost to rise from 65.52 to 96.21 to 176.7 unit. In this case, the model 

reallocates the flow by changing the assignment of the non-hub nodes in the network to 

minimize congestion. This can be verified by examining the flow that passes through the 
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Table 1 Comparison of the Hub Location and Network Configuration for M/D/1, M/M/1, and M/G/1Cases: An 

Illustrative Example - 15 Node, 3 Hubs, α = 0:4, CAB Dataset 

θ c OBJ TC FC CC E(L) Hub opened 

(capacity level) 
λk µk ρk Lk (#ITR) CPU(s) 

0 0 1588.2 938.2 650 0 999.68 Chicago(L) 1,204,290 1,275,193 0.94 8.88 0 92.9 
     Los Angeles (M) 399,236 768,188 0.52 0.80   
     Memphis (M) 768,188 768,188 1.00 990   

1 1588.2 938.2 650 0 1996.89 Chicago (L) 1,204,290 1,275,193 0.94 16.81 0 92.7 
     Los Angeles (M) 399,236 768,188 0.52 1.08   
     Memphis (M) 768,188 768,188 1.00 1979   

2 1588.2 938.2 650 0 4988.53 Chicago (L) 1,204,290 1,275,193 0.94 40.61 0 92.7 
     Los Angeles (M) 399,236 768,188 0.52 1.92   
     Memphis (M) 768,188 768,188 1.00 4946   

1 0 1625 914.9 700 10.9 10.81 Chicago(L) 1,204,290 1,275,193 0.94 8.88 0 71 
     Los Angeles (M) 276,108 768,188 0.36 0.46   
     Memphis (L) 844,544 1,275,193 0.69 1.48   

1 1634.7 914.9 700 19.81 19.81 Chicago (L) 1,204,290 1,275,193 0.94 16.98 9 1170 
     Los Angeles (M) 276,108 768,188 0.36 0.56   
     Memphis (L) 844,544 1,275,193 0.69 2.26   

2 1653 927.4 700 25.56 25.56 Chicago (L) 1,130,983 1,275,193 0.89 18.28 1 141 
     Los Angeles (M) 276,108 768,188 0.36 0.86   
     Memphis (L) 957,851 1,275,193 0.75 6.94   

10 0 1694.3 928.7 700 65.52 6.54 Chicago(L) 1,124,035 1,275,193 0.88 4.15 4 75.1 
     Los Angeles (M) 276,108 768,188 0.36 0.46   
     Memphis (L) 964,800 1,275,193 0.76 1.98   

1 1736.4 940.2 700 96.21 9.62 Chicago (L) 1,050,728 1,275,193 0.82 4.68 5 1179 
     Los Angeles (M) 276,108 768,188 0.36 0.56   
     Memphis (L) 1,038,107 1,275,193 0.81 4.38   

2 1840.7 964.0 700 176.7 17.67 Chicago (L) 1,050,728 1,275,193 0.82 10.47 6 1534 
     Los Angeles (M) 399,236 768,188 0.52 1.93   
     Memphis (L) 914,978 1,275,193 0.72 5.27   

20 0 1756.4 940.2 700 116.2 5.81 Chicago(L) 1,050,728 1,275,193 0.82 2.75 5 1196 
     Los Angeles (M) 276,108 768,188 0.36 0.46   
     Memphis (L) 1,038,107 1,275,193 0.81 2.6   

1 1830.1 964.0 700 166.1 8.30 Chicago (L) 1,050,728 1,275,193 0.82 4.68 1 378 
     Los Angeles (M) 399,236 768,188 0.52 1.08   
     Memphis (L) 914,978 1,275,193 0.72 2.54   

2 1950.4 1011.0 750 189.4 9.47 Chicago (L) 797,140 1,275,193 0.63 3.23 1 374 
     Cleveland(L) 828,076 1,275,193 0.65 3.66   
     Dallas-FW (L) 739,725 1,275,193 0.58 2.58   

30 0 1814.5 940.2 700 174.3 5.81 Chicago(L) 1,050,728 1,275,193 0.82 2.75 5 1317 
     Los Angeles (M) 276,108 768,188 0.36 0.46   
     Memphis (L) 1,038,107 1,275,193 0.81 2.60   

1 1908.1 1011.0 750 147.0 4.90 Chicago (L) 797,140 1,275,193 0.63 1.67 1 366 
     Cleveland(L) 828,076 1,275,193 0.65 1.85   
     Dallas-FW (L) 739,725 1,275,193 0.58 1.38   

2 2052.1 1007.2 750 294.9 9.83 Chicago (L) 857,469 1,275,193 0.67 4.12 2 289 
     Cincinnati(L) 828,124 1,275,193 0.65 3.66   
     Dallas-FW (L) 679,349 1,275,193 0.53 2.05   

50 0 1923.1 964.0 700 259.1 5.18 Chicago(L) 1,050,728 1,275,193 0.82 2.75 1 942 
     Los Angeles (M) 662,732 1,275,193 0.52 0.80   
     Memphis (L) 914,978 1,275,193 0.72 1.63   

1 2006.1 1011.0 750 245.0 4.90 Chicago (L) 797,140 1,275,193 0.63 1.67 1 254 
     Cleveland(L) 828,076 1,275,193 0.65 1.85   
     Dallas-FW (L) 739,725 1,275,193 0.58 1.38   

2 2234.6 1011.0 750 473.5 9.47 Chicago (L) 797,140 1,275,193 0.63 3.23 1 210 
     Cleveland(L) 828,076 1,275,193 0.65 3.66   
     Dallas-FW (L) 739,725 1,275,193 0.58 2.58   

100 0 2102.3 1012.2 750 340.1 3.40 Chicago(L) 857,469 1,275,193 0.67 1.36 0 136 
     Cincinnati(L) 767,747 1,275,193 0.60 1.06   
     Dallas-FW (L) 739,725 1,275,193 0.58 0.98   

1 2256.9 1012.2 750 494.7 4.95 Chicago (L) 857,469 1,275,193 0.67 2.05 1 550 
     Cincinnati(L) 767,747 1,275,193 0.60 1.51   
     Dallas-FW (L) 739,725 1,275,193 0.58 1.38   

2 2708.1 1011.0 750 947.1 9.47 Chicago (L) 797,140 1,275,193 0.63 3.23 1 253 
     Cleveland(L) 828,076 1,275,193 0.65 3.66   
     Dallas-FW (L) 739,725 1,275,193 0.58 2.58   

200 0 2439.3 1014.9 750 674.3 3.37 Chicago(L) 754,054 1,275,193 0.59 1.02 1 207 
     Cincinnati(L) 828,124 1,275,193 0.65 1.25   
     Dallas-FW (L) 782,764 1,275,193 0.61 1.10   

1 2742.7 1014.9 750 977.8 4.89 Chicago (L) 754,054 1,275,193 0.59 1.45 1 214 
     Cincinnati(L) 828,124 1,275,193 0.65 1.85   
     Dallas-FW (L) 782,764 1,275,193 0.61 1.59   

2 3648.0 1019.3 750 1879 9.39 Chicago (L) 814,430 1,275,193 0.64 3.46 1 325 
     Cincinnati(L) 767,747 1,275,193 0.60 2.88   
     Dallas-FW (L) 782,764 1,275,193 0.61 3.05   
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following hubs: the flow passes through Chicago changes from 1,124,035 to 1,050,728; 

through Los Angeles changes from 276,108 to 399,236; and through Memphis changes from 

964,800 to 1,038,107 to 914,978. The location and the capacity of the hubs remain unchanged: 

Chicago (L), Los Angeles (M), and Memphis (L). The average hub utilization first decreases 

from 0.67 to 0.66 and then increases to 0.69. The average queue length at hubs, Lk , increases 

from 4.15 to 4.68 to 10.47 at  Chicago hub; from 0.46 to 0.56 to 1.93 at Los Angeles hub; and 

from 1.93 to 4.38 to 5.27 at Memphis hub.  

 We also observed that as the nonlinear component of the objective function dominates, the 

cutting plane algorithm requires more iterations to converge and therefore, the CPU time 

increases from 75 to 1179 to 1534 seconds. In some cases, the proposed model prescribes 

increasing the service capacity of hubs and/or changing the locations of the hubs and routings 

of flows while trading off the congestion cost against the fixed cost and the transportation cost. 

For example, for µ = 20, as the variability in service times increases from c = 1 to 2, the hub 

locations and  their capacities changes from Chicago (L), Los Angeles (M), and Memphis (L) 

to Chicago (L), Cleveland (L), and Dallas-FW (L). 

5.2 The effect of Adding a Priori Set of Cuts on the Performance of Exact Solution Approach 

Our second set of experiments compares the performance of the cutting plane algorithm with 

(CPA-ap) and without a priori set of cuts (CPA-∅) in terms of the number of iterations (#ITR) 

and the computational times (CPU(s)). We generate a priori set of cuts to approximate the 

function 
𝑅

1+𝑅
  at 32 points as Rh = [0, 0.0326554, 0.102376, 0.179404, 0.264797, 0.359813, 

0.465954, 0.585027, 0.719222, 0.871213, 1.04429, 1.24255, 1.47111, 1.7365, 2.04706, 

2.41367, 2.85069, 3.37736, 4.02001,4.8154, 5.81609, 7.09939, 8.78276, 11.0518, 14.2139, 

18.8083, 25.854, 37.4721, 58.7112, 104.244, 233.952, 988.484]. This provides an initial 

approximation within 0.001 to the function 
𝑅

1+𝑅
  (See Elhedhli (2005) for further information).  

Table 2 demonstrates the effect of adding a priori set of cuts at the start of the cutting plane 

algorithm on the computational times and the number of iterations. The results show that for 

the CPA-∅ the CPU times (per second) are on average 998 (M/D/1 case), 1069 (M/M/1 case), 

and 1077 (M/G/1 case) and the average number of iterations is 12 in all three cases. With the 

addition of a priori cuts, the average CPU times reduce significantly to 134, 131, 161 second 

and the average number of iterations  reduces to 0.5, 0.7, and 0.9 for M/D/1, M/M/1, and M/G/1 

cases respectively. Furthermore, our results show that the effect of adding a priori set of cuts 

on the computational time of CPA is more significant as the congestion cost factor and the 
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coefficient of service time increases. This is expected as larger values of c and θ inflate the 

approximation error and requires additional cuts. 

It is worthwhile to mention that in some instances of M/G/1 the CPU times are lower than 

their corresponding M/M/1 and/or M/D/1 cases due to the quality of LP relaxation bound 

obtained at root node of the branch and bound algorithm. Overall, the proposed algorithm along 

with a set of a priori cuts (CPA-ap) proved to be an efficient method in solving the model. 

Therefore, we use the algorithm with a set of a priori cuts (CPA-ap) in all the other set of 

experiments reported in this paper. 

5.3 Performance of the Exact Approach and the Genetic Algorithm 

Table 3, 4, and 5 report the computational performance of the two solution approaches, the 

CTA and  the GA, on CAB dataset under different values of coefficient of variance of service 

times: c = 0, 1, and 2. We report the computational performance of the GA on larger instances 

from TR dataset in Table 6. It is worth noting that results on the performance of the exact 

approach (i.e., CTA) on TR dataset was not available as computational times exceeded the time 

limit of 25,000 seconds (6.94 hours). These tables show the total cost (OBJ), the transportation 

cost (TC), the fixed cost (FC), the congestion cost (CC), the number of iterations (#ITR), and 

the CPU times in seconds (CPU). The results of the GA are reported as the upper bound (UB) 

and percentage gap are calculated as %𝐺𝑎𝑝 =
𝑈𝐵−𝑂𝐵𝐽

𝑂𝐵𝐽
× 100. 

For all instances derived from the CAB dataset, the exact approach provides optimal 

solutions (with optimality gap of 10−6) within an average CPU time of 1176, 1351, and 2075 

seconds for M/D/1, M/M/1, and M/G/1 cases. The maximum CPU times for M/D/1, M/M/1, 

and M/G/1 cases are 9449, 10569, and 20367 second while the maximum number of iterations 

are 2, 2 and 4 respectively. The number of iterations of the exact method implies that only a 

fraction of constraints (16) of PL(H) is used which confirms stability and efficiency of the 

algorithm in finding optimal solutions. As expected, with increase in the number of hubs to be 

opened, the problem requires more computational effort. The CPU time for the exact approach 

also increases as the inter-hub discount factor takes larger values. Finally, our results confirm 

that with increase in the value of the congestion cost factor θ, the congestion cost function 

dominates and consequently the exact method requires excessive computational time to solve 

a problem to optimality. 

For the CAB dataset, GA provides quality solutions in very short computing times                    

(<10 second). The average percentage gaps of the solutions provided by the algorithm are 3.8, 
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3.6, and 3.4 % in M/D/1, M/M/1, and M/G/1 cases respectively. The genetic based heuristic 

approach finds optimal solutions for 14 (M/D/1 case), 11 (M/M/1 case), and 13 (M/G/1 case) 

instances. For the TR dataset, GA provides feasible solutions to the problems with up to 81 

nodes within an average computing time of 40 second. Note that unlike the exact approach, 

increasing inter-hub discount factor α and/or the congestion cost factor θ do no significantly 

impact the computational performance of the GA. our computational result confirms the 

stability and the efficiency of the GA in finding near-optimal solutions to the problem within 

reasonable optimality gap. 

 

 Table 2  The effect of adding a priori set of cuts in cutting plane algorithm on computation time 

 

 

 

 

 
 

 

 

    M/D/1(c=0) M/M/1(c=1) M/G/1(c=2) 

     CPA-∅ CPA-ap  CPA-∅ CPA-ap  CPA-∅ CPA-ap 

n p α θ OBJ #ITR CPU(s) #ITR CPU(s) OBJ #ITR CPU(s) #ITR CPU(s) OBJ #ITR CPU(s) #ITR CPU(s) 

10 3 0.2 1 1159.5 9 23 0 3 1170.6 9 26 0 3 1204.1 11 41 1 10 
20 1317.3 8 55 0 4 1375.5 7 53 1 10 1505.3 10 60 1 10 

50 1455.5 8 72 1 10 1563.7 10 70 1 11 1860.7 13 106 1 14 
0.4 1 1236.0 11 40 0 6 1247.2 11 37 0 3 1280.6 11 46 1 11 

20 1392.5 7 51 0 4 1450.8 7 58 1 10 1580.6 9 60 1 11 
50 1530.8 8 79 1 7 1639.0 10 71 1 11 1942.1 12 92 1 18 

0.8 1 1389.1 14 106 0 9 1400.3 10 80 0 8 1433.8 12 98 0 13 
20 1534.9 10 88 0 6 1596.8 9 73 1 12 1726.6 7 65 1 12 
50 1676.8 8 78 1 11 1785.0 8 79 1 10 2104.0 15 207 1 22 

 4 0.2 1 1257.9 12 36 0 6 1263.5 11 29 0 4 1280.3 9 26 1 6 

20 1407.6 11 37 1 6 1505.4 15 78 1 17 1635.3 11 62 1 10 
50 1606.7 13 72 1 14 1704.2 11 56 1 7 1938.8 9 30 1 7 

0.4 1 1333.2 15 45 0 8 1338.8 12 31 0 3 1355.5 10 25 1 6 
20 1482.9 10 31 1 6 1590.2 13 80 1 18 1731.4 10 52 1 16 

50 1699.0 15 105 2 37 1800.3 10 59 0 7 2034.9 9 40 1 7 
0.8 1 1472.0 19 72 1 14 1484.8 16 62 0 13 1501.5 12 50 0 10 

20 1628.9 10 56 1 6 1740.5 10 65 1 26 1905.6 12 133 1 22 
50 1860.8 12 103 1 31 1974.5 10 104 1 25 2208.6 8 55 1 12 

15 3 0.2 1 1503.3 13 627 0 100 1522.7 14 968 1 173 1539.3 10 818 0 80 
20 1642.2 13 1676 0 67 1702.0 15 1627 0 88 1867.6 17 2667 1 673 
50 1795.0 15 1604 1 227 1923.3 16 2304 1 462 2151.8 19 3331 1 192 

0.4 1 1625.8 7 528 0 72 1634.7 7 505 1 170 1653.0 7 822 1 144 

20 1756.4 13 1953 1 198 1830.1 16 2635 1 381 1950.4 15 3181 1 377 
50 1923.1 17 2883 1 947 2006.1 15 2728 1 256 2241.5 18 2307 1 212 

0.8 1 1749.3 12 400 0 62 1761.9 12 612 1 112 1799.8 12 1410 1 160 
20 1939.5 16 4660 0 556 1985.4 13 4130 0 201 2076.5 12 2497 0 107 

50 2056.3 13 3214 0 148 2132.1 11 3251 0 907 2359.7 14 1587 1 211 
 4 0.2 1 1475.5 7 283 0 30 1488.7 10 401 1 67 1528.3 13 809 1 143 

20 1639.5 14 1675 0 109 1696.9 16 1892 1 325 1799.1 14 2204 2 546 
50 1780.1 15 2257 2 561 1860.7 15 2272 1 280 2025.8 16 1866 2 441 

0.4 1 1621.9 12 827 0 62 1634.7 10 550 1 120 1653.0 10 1199 1 119 
20 1756.4 12 2218 1 164 1826.4 19 3703 0 198 1928.1 13 2798 2 730 
50 1909.6 15 2356 0 406 1993.1 16 3908 1 389 2160.0 15 1725 1 753 

0.8 1 1749.3 12 464 0 60 1761.9 12 439 1 114 1799.8 12 1438 1 157 

20 1939.5 16 4054 0 564 1985.4 12 3491 1 903 2076.5 11 3830 0 86 
50 2056.3 13 3091 1 289 2132.1 10 1635 1 171 2359.7 16 2847 0 452 

Min   7 23 0 3  7 26 0 33  7 25 0 6 

Ave   12 998 0.5 134  12 1069 0.7 131  12 1077 0.9 161 

Max   19 4660 2 947  19 4130 1 903  19 3830 2 753 
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Table 3 Performance of the Exact Approach and Genetic Algorithm on CAB Dataset: M/D/1 Case (c = 0) 

 

 

 

    Cutting Plane Algorithm Genetic Algorithm 
%Gap 

n p α θ TC FC CC OBJ #ITR CPU(s) UB CPU(s) 

10 3 0.2 1 495.7 650 13.8 1159.5 0 2.7 1159.4 0.6 - 
20 500.0 700 117.2 1317.3 0 4.0 1317.3 0.4 - 
50 500.0 750 205.5 1455.5 1 9.7 1455.5 0.3 - 

0.4 1 572.2 650 13.8 1236.0 0 6.3 1236.0 0.2 - 
20 575.3 700 117.2 1392.5 0 4.3 1392.5 0.2 - 
50 575.3 750 205.5 1530.8 1 7.4 1530.8 0.5 - 

0.8 1 725.4 650 13.8 1389.1 0 9.2 1389.1 0.2 - 
20 717.0 700 120.2 1537.1 0 5.5 1537.1 0.2 - 
50 721.3 750 205.5 1676.8 1 10.8 1676.8 0.4 - 

 4 0.2 1 500.0 750 7.9 1257.9 0 6.2 1319.7 0.3 4.9 
20 500.0 750 157.6 1407.6 1 6.2 1464.9 0.5 4.1 
50 400.6 950 256.1 1606.7 1 14.2 1618.9 0.4 0.8 

0.4 1 575.3 750 7.9 1333.2 0 7.6 1423.5 0.2 6.8 
20 575.3 750 157.6 1482.9 1 6.1 1569.2 1.1 5.8 
50 634.8 750 314.2 1699.0 2 36.8 1723.9 0.3 1.5 

0.8 1 743.7 700 28.3 1472.0 1 14.0 1579.9 0.2 7.3 
20 721.3 750 157.6 1628.9 1 6.5 1738.9 0.4 6.8 
50 799.9 750 310.9 1860.8 1 31.0 1903.0 0.7 2.3 

15 3 0.2 1 826.3 650 26.9 1503.3 0 99.8 1543.4 1.3 2.7 
20 835.9 700 103.6 1639.5 0 67.3 1639.5 4.7 - 
50 835.9 700 259.1 1795.0 1 226.9 1795.0 0.6 - 

0.4 1 914.9 700 10.9 1625.8 0 71.7 1642.1 3.9 1.0 
20 940.2 700 116.2 1756.4 1 198.0 1792.7 1.7 2.1 
50 964.0 700 259.1 1923.1 1 946.8 1935.3 1.2 0.6 

0.8 1 1234.8 500 14.5 1749.3 0 61.8 1818.1 1.2 3.9 
20 1140.3 700 99.2 1939.5 0 556.0 1939.5 1.2 - 
50 1138.1 750 169.1 2057.2 0 148.2 2056.2 1.7 - 

 4 0.2 1 659.3 800 16.2 1475.5 0 30.5 1603.3 7.5 8.7 
20 835.9 700 103.6 1639.5 0 108.7 1749.3 1.7 6.7 
50 684.8 900 195.3 1780.1 2 560.5 1903.0 3.4 6.9 

0.4 1 914.9 700 10.9 1625.8 0 61.7 1763.7 6.9 8.5 
20 940.2 700 116.2 1756.4 1 164.4 1884.0 2.6 7.3 
50 815.7 900 194.4 1910.1 0 406.0 2038.4 2.3 6.7 

0.8 1 1234.8 500 14.5 1749.3 0 60.3 1956.8 2.4 11.9 
20 1140.3 700 99.2 1939.5 0 564.1 2091.2 2.1 7.8 
50 1137.7 750 168.6 2056.3 1 289.3 2271.7 5.5 10.5 

20 3 0.2 1 724.5 650 15.6 1390.1 0 524.5 1441.9 2.8 3.7 
20 724.5 700 110.7 1535.2 0 368.3 1535.2 8.9 - 
50 731.3 700 250.9 1682.1 0 314.7 1725.1 8.6 2.6 

0.4 1 847.8 650 15.6 1513.4 0 250.0 1570.1 6.6 3.7 
20 847.8 700 110.7 1658.4 0 442.0 1687.8 4.0 1.8 
50 865.0 700 250.9 1815.9 0 676.8 1836.8 3.6 1.2 

0.8 1 1173.9 500 10.8 1684.7 0 254.5 1770.4 6.4 5.1 
20 1182.5 500 199.7 1882.2 1 2481.5 1895.0 3.6 0.7 
50 1103.0 750 162.9 2015.8 0 1248.6 2027.7 6.4 0.6 

 4 0.2 1 731.3 700 14.8 1446.1 1 826.1 1534.7 3.3 6.1 
20 587.8 900 125.8 1613.6 1 2438.1 1659.1 4.7 2.8 
50 589.8 750 221.7 1761.5 0 687.3 1785.2 6.2 1.3 

0.4 1 847.8 700 23.6 1571.4 1 503.5 1702.6 5.9 8.4 
20 733.2 900 125.0 1758.2 0 1097.8 1827.1 6.7 3.9 
50 748.8 950 214.1 1912.9 1 1639.7 1921.5 7.8 0.5 

0.8 1 1091.1 700 14.8 1805.8 0 2458.2 1911.7 5.1 5.9 
20 1103.0 750 100.1 1953.0 0 3184.4 2066.2 6.5 5.8 
50 1103.0 750 250.2 2103.1 1 2731.9 2236.4 4.7 6.3 

25 3 0.2 1 785.1 650 12.2 1447.3 0 1232.3 1521.6 5.2 5.1 
20 767.3 700 85.5 1552.8 0 2131.8 1559.9 5.1 0.5 
50 770.6 700 209.3 1679.8 1 3800.2 1723.2 7.6 2.6 

0.4 1 915.26 650 17.2 1582.5 0 2253.8 1611.9 5.3 1.9 
20 903.5 700 85.5 1689.0 0 1042.6 1755.4 8.5 3.9 
50 903.91 700 217.6 1821.5 0 1122.6 1886.5 4.9 3.6 

0.8 1 1319.05 500 8.4 1827.5 0 1446.4 1920.0 3.6 5.1 
20 1168.66 700 85.5 1954.1 0 2172.6 2073.8 8.2 6.1 
50 1166.3 700 217.6 2083.9 0 5517.5 2122.1 7.7 1.8 

 4 0.2 1 770.6 700 8.1 1478.6 0 495.1 1559.1 6.4 5.4 
20 770.6 700 161.0 1631.6 1 2848.3 1745.4 8.4 7.0 
50 815.5 750 280.7 1846.3 1 2256.5 1861.0 9.4 0.8 

0.4 1 901.7 700 9.3 1611.0 0 696.9 1794.3 7.8 11.4 
20 903.5 700 168.8 1772.3 1 3667.5 1880.9 8.9 6.1 
50 794.5 950 222.3 1966.8 1 9448.6 2031.8 8.1 3.3 

0.8 1 1165.9 700 9.3 1875.1 0 1016.8 2078.8 5.3 10.9 
20 1168.7 700 168.8 2037.4 1 8253.3 2218.2 5.8 8.9 
50 1250.3 750 213.9 2214.2 0 8325.0 2335.4 7.9 5.5 

 Min     7.9 1159.5 0 2.7 1159.4 0.2 0 

 Average     122.0 1688.1 0.4 1175.9 1753.8 4.0 3.8 

 Max     314.2 2214.2 2.0 9448.6 2335.4 9.4 11.9 
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Table 4 Performance of the Exact Approach and Genetic Algorithm on CAB Dataset: M/M/1 Case (c = 1) 

 

 

 

    Cutting Plane Algorithm Genetic Algorithm 
%Gap 

n p α θ TC FC CC OBJ #ITR CPU(s) UB CPU(s) 

10 3 0.2 1 495.7 650 24.9 1170.6 0 2.6 1170.6 0.3 - 
20 500.0 700 125.5 1375.5 1 10.4 1375.5 0.3 - 
50 500.0 750 313.7 1563.7 1 10.7 1563.7 2.9 - 

0.4 1 572.2 650 24.9 1247.2 0 3.2 1247.2 0.2 - 
20 575.3 750 125.5 1450.8 1 10.5 1450.8 0.1 -- 
50 575.3 750 313.7 1639.0 1 10.5 1639.0 0.8 - 

0.8 1 725.4 650 24.9 1402.0 0 7.5 1402.0 0.2 - 
20 717.0 750 125.5 1596.8 1 12.2 1596.8 0.9 - 
50 721.3 750 313.7 1785.0 1 9.8 1785.0 0.2 - 

 4 0.2 1 500.0 750 13.5 1263.5 0 3.6 1326.6 2.9 5.0 
20 400.6 950 154.7 1505.4 1 16.7 1518.5 0.3 0.9 
50 432.9 1000 271.3 1704.2 1 6.8 1711.0 0.3 0.4 

0.4 1 575.3 750 13.5 1338.8 0 3.2 1430.4 0.4 6.8 
20 575.3 750 205.4 1590.2 1 17.5 1623.1 0.2 2.1 
50 634.8 1000 271.3 1800.3 0 7.4 1814.8 0.8 0.8 

0.8 1 529.0 750 13.5 1484.8 0 13.3 1585.9 0.3 6.8 
20 721.3 750 269.2 1740.5 1 26.1 1809.7 0.5 4.0 
50 703.7 1000 270.9 1974.5 1 25.0 1993.9 0.8 1.0 

15 3 0.2 1 802.9 700 19.8 1522.7 1 173.5 1527.8 3.5 0.3 
20 835.9 700 166.1 1702.0 0 87.7 1736.3 1.8 2.0 
50 928.2 750 245.0 1923.3 1 462.4 1929.5 1.5 0.3 

0.4 1 914.9 700 19.8 1634.7 1 170.2 1666.2 4.6 1.9 
20 964.0 700 166.1 1830.1 1 380.6 1848.7 1.6 1.0 
50 1011.0 750 245.0 2006.1 1 256.2 2009.4 2.4 0.2 

0.8 1 1234.8 500 27.1 1761.9 1 112.0 1813.8 2.3 2.9 
20 1138.1 750 98.2 1986.3 0 201.1 1985.4 3.4 - 
50 1138.1 750 245.6 2133.6 0 97.3 2133.6 2.7 - 

 4 0.2 1 659.3 800 29.4 1488.7 1 67.5 1623.1 5.9 0.9 
20 686.2 900 112.1 1698.2 1 325.5 1802.8 5.5 6.2 
50 693.8 950 216.1 1859.9 1 279.6 1978.2 7.9 6.4 

0.4 1 914.9 700 19.8 1634.7 1 120.3 1764.4 2.8 7.9 
20 815.7 900 111.4 1827.1 0 198.1 1951.7 7.8 6.8 
50 831.9 950 211.2 1993.1 1 388.6 2130.6 5.0 6.9 

0.8 1 1243.7 500 26.6 1770.3 1 114.2 1970.7 3.3 11.3 
20 1137.7 750 97.8 1985.4 1 902.6 2166.4 2.9 9.1 
50 1137.7 750 244.4 2132.1 1 171.2 2321.9 3.1 8.9 

20 3 0.2 1 724.5 650 28.6 1403.2 0 284.1 1413.1 5.7 0.7 
20 731.3 700 161.5 1592.8 0 525.2 1654.0 6.0 3.8 
50 802.0 750 232.8 1784.9 2 1375.9 1824.7 3.7 2.2 

0.4 1 847.8 650 28.6 1526.4 0 479.7 1592.2 6.1 4.3 
20 865.0 700 161.5 1726.6 1 1108.5 1744.4 5.3 1.0 
50 908.2 750 245.7 1903.9 0 688.1 1913.2 7.2 0.5 

0.8 1 1173.5 500 19.8 1693.3 0 295.7 1778.5 7.3 5.0 
20 1102.1 700 136.2 1938.2 0 1031.1 1944.3 5.6 0.3 
50 1103.0 750 235.7 2088.6 0 1146.0 2098.3 4.5 0.5 

 4 0.2 1 731.3 700 27.2 1458.5 1 1413.6 1571.4 5.3 7.7 
20 589.8 950 130.2 1670.0 0 407.4 1677.6 2.6 0.5 
50 604.5 950 307.7 1862.3 1 2109.9 1874.9 6.5 0.7 

0.4 1 847.8 700 44.9 1592.7 1 626.3 1765.5 7.9 10.9 
20 727.1 950 145.3 1822.4 1 3242.1 1869.0 5.1 2.6 
50 751.9 950 307.7 2009.6 1 1328.7 2018.2 3.9 0.4 

0.8 1 1097.3 700 17.0 1814.3 1 5059.5 1955.0 6.7 7.8 
20 1103.0 750 157.9 2010.8 0 1132.9 2138.4 3.4 6.3 
50 1121.1 750 364.4 2235.1 1 7027.9 2333.7 5.7 4.4 

25 3 0.2 1 785.9 650 21.8 1457.7 0 1875.0 1598.5 6.0 9.7 
20 770.6 700 127.7 1598.2 1 3281.4 1615.1 7.5 1.1 
50 770.6 700 319.1 1789.7 1 2331.7 1837.4 8.2 2.7 

0.4 1 922.1 650 21.8 1593.8 0 964.5 1655.4 6.1 3.9 
20 903.5 700 131.8 1735.3 0 1302.5 1792.0 7.6 3.3 
50 913.1 700 319.1 1932.3 1 4311.1 1985.6 8.9 2.8 

0.8 1 1319.1 500 15.1 1834.2 0 1163.6 1949.7 5.9 6.3 
20 1168.7 700 131.8 2000.5 0 2778.9 2096.9 5.8 4.8 
50 1171.4 700 329.5 2200.9 0 9113.2 2257.3 6.9 2.6 

 4 0.2 1 770.6 700 13.7 1484.2 0 575.6 1625.5 8.5 9.5 
20 776.9 700 265.7 1742.6 1 2361.3 1816.7 8.7 4.3 
50 624.1 1000 250.2 1892.3 1 2325.2 1977.4 5.8 4.5 

0.4 1 901.7 700 16.2 1617.9 0 778.9 1772.5 9.5 9.6 
20 791.6 900 169.1 1860.7 1 6918.0 1934.8 6.6 4.0 
50 803.0 1000 250.2 2053.3 1 4740.0 2129.9 6.9 3.7 

0.8 1 1165.9 700 16.1 1882.0 0 1121.3 2083.2 9.8 10.7 
20 1251.6 750 130.1 2131.7 0 5801.4 2220.2 9.0 4.2 
50 1252.5 750 325.9 2328.4 1 10569.1 2450.0 8.8 5.2 

 Min     13.5 1170.6 0 2.6 1170.6 0.1 0 

 Average     148.4 1767.1 0.6 1351.5 1810.7 4.4 3.6 

 Max     364.4 3333.0 2.0 10569.1 2450.0 9.8 11.3 
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Table 5 Performance of the Exact Approach and Genetic Algorithm on CAB Dataset: M/G/1 Case (c = 2) 

 

 

 

    Cutting Plane Algorithm Genetic Algorithm 
%Gap 

n p α θ TC FC CC OBJ #ITR CPU(s) UB CPU(s) 

10 3 0.2 1 495.7 650 58.4 1204.1 1 9.5 1204.1 0.4 - 
20 500.0 750 255.3 1505.3 1 9.7 1505.3 0.7 - 
50 553.4 750 557.3 1860.7 1 14.1 1860.7 0.5 - 

0.4 1 572.2 650 58.4 1280.6 1 11.1 1280.6 0.3 - 
20 575.3 750 255.3 1580.6 1 10.6 1580.6 0.3 -- 
50 634.8 750 557.3 1942.1 1 18.3 1942.1 0.9 - 

0.8 1 725.4 650 58.4 1433.8 0 12.7 1433.7 0.3 - 
20 721.3 750 255.3 1726.6 1 11.7 1726.6 1.6 - 
50 797.6 750 557.3 2104.9 11 21.8 2104.0 0.5 - 

 4 0.2 1 500.0 750 30.2 1280.3 1 5.9 1347.4 0.6 5.2 
20 432.9 1000 202.4 1635.3 1 10.1 1642.1 0.5 0.4 
50 432.9 1000 505.9 1938.8 1 6.9 1971.5 0.3 1.7 

0.4 1 575.3 750 30.2 1355.5 1 6.2 1451.2 0.3 7.1 
20 529.0 1000 202.4 1731.4 1 15.9 1745.8 0.5 0.8 
50 529.0 1000 505.9 2034.9 1 6.8 2067.8 0.8 1.6 

0.8 1 721.3 750 30.2 1501.5 0 9.8 1602.3 0.2 6.7 
20 703.7 1000 202.0 1905.6 1 22.1 1925.0 0.7 1.0 
50 703.6 1000 505.0 2208.6 1 12.5 2246.1 2.6 1.7 

15 3 0.2 1 815.7 700 24.8 1540.5 0 80.5 1578.6 1.3 2.5 
20 926.1 750 194.9 1871.0 1 673.4 1873.9 1.5 0.2 
50 928.2 750 473.5 2151.8 1 191.7 2182.2 4.4 1.4 

0.4 1 927.4 700 25.6 1653.0 1 144.5 1693.0 2.1 2.4 
20 1011.0 750 189.4 1950.4 1 376.8 1950.4 4.7 - 
50 1011.0 750 473.5 2234.6 1 212.3 2234.6 7.1 - 

0.8 1 1234.8 500 65.0 1799.8 1 159.7 1837.8 2.6 2.1 
20 1138.1 750 189.9 2078.0 0 107.0 2078.0 4.2 - 
50 1137.7 750 472.0 2359.7 1 211.3 2359.7 6.6 - 

 4 0.2 1 659.3 800 69.0 1528.3 1 143.2 1638.1 2.7 7.2 
20 684.8 900 214.1 1798.9 2 546.2 1912.7 3.4 6.3 
50 711.1 1000 314.7 2025.8 2 440.7 2226.6 4.5 9.9 

0.4 1 927.4 700 25.6 1653.0 1 118.9 1774.4 1.9 7.3 
20 815.7 900 212.4 1928.1 2 729.5 2062.5 2.4 7.0 
50 831.9 950 378.1 2160.0 1 753.1 2397.6 5.7 11.0 

0.8 1 1234.8 500 65.0 1799.8 1 157.1 1982.9 5.8 10.2 
20 1138.1 750 189.9 2078.0 0 85.7 2269.4 6.4 9.2 
50 1137.7 750 472.0 2359.7 1 452.2 2586.8 7.7 9.6 

20 3 0.2 1 759.0 650 29.9 1438.9 1 1143.4 1448.5 5.1 0.7 
20 802.0 750 178.8 1730.9 2 1383.7 1745.7 5.3 0.9 
50 812.0 750 428.4 1990.4 1 1502.7 2016.9 8.6 1.3 

0.4 1 877.3 650 29.9 1557.2 0 561.6 1610.6 3.5 3.4 
20 908.2 750 191.6 1849.9 0 872.3 1889.3 7.6 2.1 
50 939.7 750 429.2 2118.9 3 3410.2 2166.5 5.6 2.2 

0.8 1 1173.5 500 46.9 1720.3 1 630.6 1798.9 2.4 4.6 
20 1103.8 750 186.1 2040.0 0 1348.7 2050.6 3.4 0.5 
50 1125.3 750 429.3 2304.6 4 6862.1 2314.5 9.6 0.4 

 4 0.2 1 731.3 700 64.4 1495.7 1 1850.4 1571.3 2.9 5.1 
20 589.8 950 254.8 1794.6 1 922.1 1811.8 7.7 1.0 
50 626.1 1000 498.8 2124.9 1 3400.3 2177.8 6.5 2.5 

0.4 1 865.0 700 64.4 1629.5 1 1457.3 1720.7 7.1 5.6 
20 751.9 950 238.7 1940.6 1 1561.9 2014.4 8.2 3.8 
50 843.2 1000 405.8 2249.0 1 2156.7 2295.1 8.6 2.1 

0.8 1 1097.3 700 38.7 1836.0 1 4218.9 1997.5 5.4 8.8 
20 1121.1 750 201.0 2171.7 1 4955.5 2228.8 5.3 2.6 
50 1044.7 1000 405.3 2449.9 1 2952.9 2501.9 4.4 2.1 

25 3 0.2 1 769.4 700 13.9 1483.3 0 3116.3 1548.0 9.9 4.4 
20 770.6 700 259.5 1730.1 1 4750.5 1791.8 6.6 3.6 
50 841.9 750 468.3 2060.2 1 3265.2 2089.7 8.6 1.4 

0.4 1 901.7 700 13.9 1615.6 0 1913.7 1663.4 5.9 3.0 
20 913.1 700 259.5 1872.6 1 4782.5 1948.8 7.3 4.1 
50 1018.6 750 422.8 2191.3 1 7473.5 2271.3 8.7 3.7 

0.8 1 1324.2 500 33.2 1857.4 0 1399.5 1959.5 8.9 5.5 
20 1168.7 700 270.8 2139.4 0 4557.5 2186.8 5.3 2.2 
50 1250.3 750 397.6 2397.9 2 20367.1 2459.3 6.8 2.6 

 4 0.2 1 770.6 700 30.6 1501.1 0 518.7 1644.8 5.2 9.6 
20 904.9 750 289.0 1943.9 1 2743.5 1943.4 6.6 - 
50 689.2 1000 398.5 2087.7 1 4227.9 2214.4 8.2 6.1 

0.4 1 903.5 700 32.7 1636.2 1 1694.1 1825.2 5.5 11.5 
20 803.7 1000 188.8 1999.5 1 7302.5 2089.1 7.9 4.5 
50 855.8 1000 397.4 2253.1 2 10917.5 2322.9 6.2 3.1 

0.8 1 1165.9 700 36.8 1902.7 1 2067.5 2110.8 8.6 10.9 
20 1250.3 750 263.6 2263.9 1 12496.9 2364.8 5.8 4.5 
50 1150.2 1000 378.1 2528.3 1 10988.4 2570.2 7.5 1.7 

 Min     13.9 1204.1 0 5.9 1204.1 0.2 0 
 Average     237.4 1873.9 1 2075.3 1939.5 4.5 3.4 
 Max     557.3 2528.3 4 20367.1 2586.8 9.9 11.5 
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Table 6 Performance of Genetic Algorithm on TR Dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    M/D/1 M/M/1 M/G/1 

n p α θ UB CPU(s) UB CPU(s) UB CPU(s) 

25 3 0.2 1 1675.97 7.9 1686.17 4.3 1695.25 24.3 
20 1782.89 24.1 1841.73 4.1 1946.26 11.3 
50 1904.20 8.8 2001.56 15.8 2191.48 17.8 

0.4 1 1774.62 23.1 1774.79 6.8 1824.71 5.7 
20 1888.52 26.5 1947.00 13.8 2049.33 23.4 
50 2006.61 10.8 2104.52 22.5 2312.79 21.2 

0.8 1 1860.59 7.0 1877.04 16.2 1896.54 20.5 
20 1986.80 11.4 2030.85 13.9 2148.14 9.5 
50 2110.29 23.2 2202.19 15.9 2393.24 17.4 

 4 0.2 1 2050.03 18.2 2090.44 16.0 2052.56 23.8 
20 2193.09 22.2 2245.83 18.6 2385.37 25.5 
50 2349.06 21.4 2421.38 13.4 2615.61 21.8 

0.4 1 2164.98 15.6 2187.45 17.9 2209.42 26.8 
20 2338.56 22.2 2394.53 27.9 2510.95 27.9 
50 2466.68 12.3 2578.56 15.8 2758.00 11.8 

0.8 1 2269.45 26.3 2291.94 21.5 2315.29 21.9 
20 2453.28 14.6 2526.16 26.1 2659.28 11.3 
50 2627.29 11.8 2725.36 8.6 2950.63 6.6 

55 3 0.2 1 1820.49 46.4 1829.48 38.1 1845.29 45.1 
20 1942.58 33.7 2017.01 47.2 2140.41 39.1 
50 2064.81 47.8 2126.77 40.1 2314.32 42.7 

0.5 1 1903.73 33.9 1961.79 30.5 1934.52 43.9 
20 2041.66 37.7 2066.18 45.9 2160.76 43.7 
50 2185.07 47.9 2218.77 26.7 2405.62 41.2 

0.8 1 1971.40 21.2 1995.21 47.9 2025.18 41.3 
20 2115.29 45.7 2161.47 45.9 2278.08 43.1 
50 2271.01 23.9 2320.57 32.3 2523.84 41.6 

 4 0.2 1 2271.74 30.7 2285.88 42.4 2303.59 33.6 
20 2363.02 33.6 2425.52 43.2 2542.50 47.3 
50 2556.36 43.7 2597.44 30.9 2762.33 37.9 

0.5 1 2368.75 45.9 2371.68 47.1 2433.39 47.2 
20 2572.51 47.4 2563.03 33.9 2687.46 45.3 
50 2649.83 45.3 2685.44 47.5 2940.50 33.9 

0.8 1 2433.18 31.7 2458.68 22.8 2496.33 47.0 
20 2653.47 27.1 2656.11 41.3 2773.78 35.8 
50 2763.63 45.1 2825.42 47.2 3018.56 45.4 

81 3 0.2 1 1898.06 41.1 1899.45 45.9 1921.38 41.2 
20 2034.87 65.3 2110.34 51.7 2236.96 67.6 
50 2208.89 61.0 2268.09 65.6 2462.70 58.6 

0.5 1 1973.70 61.5 1983.95 40.8 2019.37 55.9 
20 2151.69 65.9 2186.79 38.4 2336.75 65.4 
50 2295.94 67.7 2359.37 61.7 2526.97 67.8 

0.8 1 2048.42 45.3 2060.32 53.2 2078.53 61.5 
20 2242.46 61.6 2268.94 61.6 2382.08 45.8 
50 2345.55 67.8 2401.46 55.2 2621.96 57.6 

 4 0.2 1 2411.48 47.5 2374.28 65.4 2428.58 53.7 
20 2544.80 65.9 2601.51 60.6 2640.86 69.2 
50 2699.15 64.5 2697.16 61.5 2897.84 65.8 

0.5 1 2525.46 61.7 2499.34 30.9 2542.62 61.0 
20 2629.19 67.6 2707.04 65.8 2785.98 67.1 
50 2784.37 65.3 2844.74 65.2 3042.90 61.7 

0.8 1 2613.59 64.5 2662.17 65.9 2681.15 67.5 
20 2764.09 66.9 2778.81 67.2 2895.41 58.5 
50 2865.76 67.6 2948.16 54.8 3142.16 66.4 

 Min   1675.97 7.00 1686.17 4.10 1695.25 5.7 
 Average   2257.20 38.92 2299.00 37.06 2410.10 40.29 
 Max   2865.76 67.80 2948.16 67.20 3142.16    69.20 
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6 Summary and Conclusion 

In this paper, we present a model that captures the trade-off between transportation cost savings 

induced by the economies of scale and the congestion costs due to the variability of arrival and 

service rates of the flow at hub facilities. We modelled and analysed the effect of congestion 

on the design of logistics systems with hub-and-spoke topologies. Hubs are modelled as single 

server queues with Poisson arrivals and general service time distributions. The congestion is 

captured using the number of users at hubs. We present two solution approaches: an exact 

method and an approximation technique. In the first approach we linearize the initial nonlinear 

model and use a cutting plane algorithm to solve small to medium size problem instances to 

optimality. As the second solution approach, we propose a genetic algorithm based heuristic to 

solve large instances of the problem. 

In order to mitigate the effects of congestion, the proposed model redistribute the flow across 

hubs to achieve maximize hub utilization and/or decide suitable hub capacities to achieve 

higher relative difference of hub flow and hub capacities. Our computational results 

demonstrate that substantial reduction in congestion can be achieved with relatively small 

increase in total costs. We further illustrate that network configurations offered by the model 

that include congestion cost could be very different from those proposed by a traditional model 

that ignores congestion. Our computational experiments on CAB and TR datasets confirms the 

efficiency and stability of both cutting plain and GA based heuristic approaches in locating 

optimal/best solutions to various problem instances. For CAB dataset, the GA provides 

solutions that are, on average, within 3.4% of the optimality in short computing times (<10 

second). For the TR dataset (with up to 81 nodes), GA provides solutions within 40 second on 

average.  

In this research hub facilities are modelled as single-server queues (M/G/1). Nevertheless it 

would be beneficial, from both academic and practical point of view, to extend this study and 

model hubs as multiple servers and explore exact and other solution approaches that can handle 

problems with such complexity. Another promising avenue that can be explored is to extend 

the queuing-based congestion modelling framework to deal with congestion on links (and link 

capacity selection) in the hub-and-spoke network. Future research can also explore the 

possibility of embedding the proposed cutting plane based exact solution procedure within the 

Lagrangean relaxation/Benders decomposition framework to solve large-scale instances of the 

hub-and-spoke problems with congestion. 
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