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Abstract

We consider the semiclassical generalized Freud weight function

wλ(x; t) = |x|2λ+1 exp(−x4 + tx2), λ > −1, x ∈ R.

We analyse the asymptotic behaviour of the sequences of monic polynomials that are orthogonal with respect to
wλ(x; t), as well as the asymptotic behaviour of the recurrence coefficient, when the degree, or alternatively, the
parameter t, tend to infinity. We also investigate existence and uniqueness of positive solutions of the nonlinear
discrete equation satisfied by the recurrence coefficients and prove properties of the zeros of the generalized Freud
polynomials.

1 Introduction
The study of polynomials orthogonal on unbounded intervals with respect to general exponential-type weights exp{−Q(x)},
with Q(x) a polynomial of the form Q(x) = |x|α, with α ∈ N, began with Géza Freud in the 1960’s (for details see
[23, 24, 54, 55] as well as the monographs by Levin and Lubinsky [37] and Mhaskar [49]). Earlier Freud [24, 25] in-
vestigated the asymptotic behaviour of the recurrence coefficients for special classes of weights by a technique giving
rise to an infinite system of nonlinear equations called Freud equations for these coefficients, cf. [45, 46]. If the monic
orthogonal polynomials {pn(x)}∞n=0 satisfying the three-term recurrence relation

pn+1(x) = xpn(x)− βnpn−1(x), (1.1)

with p−1(x) = 0 and p0(x) = 1, are related to the weight w(x) = exp(−x4) on the whole real line, then the Freud
equations are reduced to (cf. [5, 25, 36, 44, 52, 53, 55])

4βn (βn−1 + βn + βn+1) = n, (1.2a)

with initial conditions

β0 = 0, β1 =

∫∞
−∞ x2 exp(−x4) dx∫∞
−∞ exp(−x4) dx

=
Γ( 3

4 )

Γ( 1
4 )
. (1.2b)

We remark that equation (1.2a) was first derived by Shohat [60, equation (39), p. 407]. Nevai [53] proved that there is
a unique positive solution to the problem (1.2).

Freud [24], via the Freud equations, conjectured that the asymptotic behaviour of recurrence coefficients βn in the
recurrence relation (1.1) satisfied by the polynomials {pn(x)}∞n=0 orthogonal with respect to the weight

w(x) = |x|λ exp(−|x|m), m ∈ N, (1.3)

with λ > −1, could be described by

lim
n→∞

βn
n2/m

=

[
Γ( 1

2m)Γ(1 + 1
2m)

Γ(m+ 1)

]2/m
. (1.4)
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We note that Freud [24] proved the result for orthonormal polynomials whilst (1.4) is for monic orthogonal polynomi-
als. Freud showed that if the limit exists for m ∈ 2Z, then it is equal to the expression in (1.4) but could only prove the
existence of the limit (1.4) form = 2, 4, 6. Significant progress in the study of orthogonal polynomials associated with
Freud weights was made when Magnus [44] proved the validity of Freud’s conjecture for the recurrence coefficients
when m is an even positive integer and weight

w(x) = exp{−Q(x)}, (1.5)

whereQ(x) is an even degree polynomial with positive leading coefficient. A more general proof of Freud’s conjecture
of the recursion coefficients for exponential weights is due to Lubinsky, Mhaskar, and Saff [43]; see also [15, 23, 24,
55]. Deift et al. [16] discuss the asymptotics of orthogonal polynomials with respect to the weight (1.5) using a
Riemann-Hilbert approach.

Bauldry, Máté, and Nevai [5] showed that the convergent solutions of a system of smooth recurrence equations,
whose Jacobian matrix satisfies a certain non-unimodularity condition, can be approximated by asymptotic expansions
and they provide an application to approximate the recurrence coefficients associated with polynomials orthogonal
with respect to the weight (1.5), where Q(x) is an even degree polynomial with positive leading coefficient. Further,
Bauldry, Máté, Nevai and Zaslavsky obtained asymptotic expansions for the recurrence coefficients of a larger class
of orthogonal polynomials with exponential-type weights, cf. [48, Theorem 1, p. 496] and [5, Theorem 5.1, p. 223].

In a more general setting, a function of the form (1.5) is called a Freud-type weight ifQ(x) is an even, non-negative
and continuous real valued function defined on the real line that satisfies certain conditions involving its derivatives of
first and second order. Orthogonal polynomials with Freud-type weights as well as generalisations of the weight (1.5)
in the form

wγ(x) = |x|γ exp{−Q(x)}, (1.6)

for γ > −1, were studied by Levin and Lubinsky [37]. Lubinsky [42], see also [40, 41], explored various types
of asymptotics for polynomials orthogonal on finite and unbounded intervals, which includes a special treatment of
polynomials in the Freud class. Levin and Lubinsky [37, 38] obtained many interesting properties of polynomials
orthogonal with respect to the weight function (1.6) on the interval [0, k), where k ≤ ∞, including infinite-finite
range inequalities, estimates for the Christoffel function, estimates for the largest zero, estimates for the spacing
between zeros, estimates for the weighted orthogonal polynomials and estimates for the derivatives of the orthogonal
polynomials.

Kasuga and Sakai [34] also considered generalized Freud-type weights of the form (1.6). Their results are similar
to those for the Freud weight (1.5) obtained by Levin and Lubinsky [37]. They also showed that the zeros of the
generalized Freud polynomials can be used to construct higher order Hermite-Fejer interpolation polynomials, which
have their own applications in approximation theory [35]. Damelin [15] used Freud equations to obtain the main term
in the asymptotic expansion of the recurrence coefficients associated with orthogonal polynomials with respect to the
weight (1.6). The asymptotics of zeros of polynomials orthogonal with respect to the weight (1.6) were also derived
by Kriecherbauer and McLaughlin [36]. Wong and Zhang [66] discussed the asymptotics of polynomials orthogonal
with respect to the weight (1.6) when Q(x) is an even polynomial of degree 2m. Using the results of Kriecherbauer
and McLaughlin [36], Alfaro et al. [1] derived Mehler-Heine type asymptotic formulae for orthonormal polynomials
with respect to the weight

wα,m(x) = x2m exp (−2|x|α) , (1.7)

for m ∈ Z+ and α > 1.
Bleher and Its [8, 9] found several asymptotic results for semiclassical orthogonal polynomials with respect to the

weight
w(x) = exp{−NV (x)}, (1.8)

where V (x) = 1
4gx

4 + 1
2 tx

2, with g and t parameters, via a Riemann-Hilbert approach and applied these to prove the
universality of the local distribution of eigenvalues in the matrix model with the double-well quartic interaction in the
presence of two cuts, see also Wong and Zhang [65].

Magnus [45] discussed the nonlinear discrete equation satisfied by the recurrence coefficients in the three-term
recurrence relations for polynomials orthogonal with respect to exponential weights (1.5) and he found the relation of
such equations to discrete equations for potentials such as Q(x) = x4 and Q(x) = x6. Magnus [46] showed that the
coefficients in the three-term recurrence relation for the Freud weight [24]

w(x; t) = exp
(
−x4 + tx2

)
, x ∈ R, (1.9)

with t ∈ R a parameter, can be expressed in terms of simultaneous solutions, qn, of the discrete equation

qn(qn−1 + qn + qn+1) + 2tqn = n, (1.10)
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which is discrete PI (dPI) – see equation (1.17) below for a more general version – as earlier shown by Bonan and
Nevai [10, p. 135], and the fourth Painlevé equation (PIV)

d2q

dz2
=

1

2q

(
dq

dz

)2

+
3

2
q3 + 4zq2 + 2(z2 −A)q +

B

q
, (1.11)

where A = − 1
2n and B = − 1

2n
2, with n ∈ Z+. This connection between the recurrence coefficients for the Freud

weight (1.9) and simultaneous solutions of (1.10) and (1.11) is due to Kitaev, see also [21, 22]. Subsequently, this
relation was studied by Bassom, Clarkson, and Hicks [4], who wrote tables of simultaneous solutions of PIV (1.11)
and dPI (1.10) in terms of parabolic cylinder functions, and later by Grammaticos and Ramani [26]. The relationship
between solutions of PIV (1.11) and dPI (1.10) is reflected in the striking similarity of the results for PIV (1.11) in
[4, 51, 58] and those for dPI (1.10) in [26]. Bonan and Nevai [10] proved that there is a unique positive solution of the
discrete equation (1.10) with initial conditions

β0 = 0, β1 =

∫∞
−∞ x2 exp(−x4 + tx2) dx∫∞
−∞ exp(−x4 + tx2) dx

.

In [14], we considered the generalized Freud weight

wλ(x; t) = |x|2λ+1 exp(−x4 + tx2), x ∈ R, (1.12)

with λ > −1 and t ∈ R parameters and gave explicit expressions for the moments of this weight (1.12). The first
moment is

µ0(t;λ) =

∫ ∞
−∞
|x|2λ+1 exp

(
−x4 + tx2

)
dx

=
Γ(λ+ 1)

2(λ+1)/2
exp

(
1
8 t

2
)
D−λ−1

(
− 1

2

√
2 t
)
, (1.13)

where Dv(ξ) is the parabolic cylinder function with integral representation, cf. [57, §12.5(i)]

Dν(ξ) =
exp(− 1

4ξ
2)

Γ(−ν)

∫ ∞
0

s−ν−1 exp
(
− 1

2s
2 − ξs

)
ds, Re(ν) < 0,

and the higher moments are

µ2n(t;λ) =

∫ ∞
−∞

x2n|x|2λ+1 exp
(
−x4 + tx2

)
dx ≡ µ0(t;λ+ n),

µ2n−1(t;λ) =

∫ ∞
−∞

x2n−1|x|2λ+1 exp
(
−x4 + tx2

)
dx = 0,

for n ≥ 1. The weight function (1.12) is (weakly) differentiable on the non-compact support R and satisfies the
distributional equation, known as Pearson equation (see [62]),

d

dx
lnwλ(x; t) =

B(x)−A′(x)

A(x)
= −4x3 + 2tx+

2λ+ 1

x
,

with A(x) and B(x) polynomials of minimal degree, so

A(x) = x, B(x) = −4x4 + 2tx2 + 2λ+ 3.

Since deg(A) = 1 and deg(B) = 4, the polynomial sequence {Sn(x; t)}∞n=0, representing the sequence of monic
polynomials orthogonal with respect to (1.12), is said to constitute a family of semiclassical orthogonal polynomials
[13, 27, 29, 28, 47].

Monic orthogonal polynomials with respect to the symmetric weight (1.12) satisfy the three-term recurrence rela-
tion

xSn(x; t) = Sn+1(x; t) + βn(t;λ)Sn−1(x; t) (1.14)

where βn(t;λ) > 0, S−1(x; t) = 0, S0(x; t) = 1, β0(t;λ) = 0 and

β1(t;λ) =
µ2(t;λ)

µ0(t;λ)
=

∫∞
−∞ x2|x|2λ+1 exp

(
−x4 + tx2

)
dx∫∞

−∞ |x|2λ+1 exp (−x4 + tx2) dx

= 1
2 t+ 1

2

√
2
D−λ

(
− 1

2

√
2 t
)

D−λ−1
(
− 1

2

√
2 t
) , (1.15)
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see §2 for further details. Several sequences of monic orthogonal polynomials related to the weight (1.12) and its
extensions have been studied in the literature. For instance, for t = 0, λ = − 1

2 , the asymptotic and analytic properties
of the corresponding orthogonal polynomials were studied in [53], while the case when t > 0 and λ = − 1

2 is discussed
in [3].

The recurrence coefficients in the three-term recurrence relations associated with semiclassical orthogonal polyno-
mials can often be expressed in terms of solutions of the Painlevé equations and associated discrete Painlevé equations.
As shown in [14], the recurrence coefficients βn(t;λ) in the three term recurrence relation (1.14) are related to solu-
tions of PIV (1.11) and satisfy the equation

d2βn

dt2
=

1

2βn

(
dβn
dt

)2

+ 3
2β

3
n − tβ2

n + ( 1
8 t

2 − 1
2An)βn +

Bn
16βn

, (1.16)

where the parameters An and Bn are given by(
A2n

B2n

)
=

(
−2λ− n− 1
−2n2

)
,

(
A2n+1

B2n+1

)
=

(
λ− n

−2(λ+ n+ 1)2

)
as well as the nonlinear discrete equation

4βn
(
βn−1 + βn + βn+1 − 1

2 t
)

= n+ (2λ+ 1)∆n, (1.17)

where ∆n := 1
2 [1 − (−1)n], which is the general discrete PI (dPI). We remark that the nonlinear discrete equation

(1.17) appears in the paper by Freud [24, equation (23), p. 5]; see also [2, §2] for a historical review of the origin and
study of equation (1.17). Joshi and Lustri [33] studied the asymptotic behaviour of the first discrete Painlevé equation
(1.17) in the limit as n→∞, see also [32, 64].

The moments of certain semiclassical weights provide the link between the weight and the associated Painlevé
equation as shown in [13]. In [14] this was used to obtain the explicit expressions for the recurrence coefficients
βn(t;λ) in the three term recurrence relation (1.14) given by

β2n(t;λ) =
d

dt
ln
τn(t;λ+ 1)

τn(t;λ)
, (1.18a)

β2n+1(t;λ) =
d

dt
ln

τn+1(t;λ)

τn(t;λ+ 1)
, (1.18b)

for n ≥ 0, where τn(t;λ) is the Hankel determinant given by

τn(t;λ) = det

[
dj+k

dtj+k
µ0(t;λ)

]n−1
j,k=0

,

with τ0(t;λ) = 1 and µ0(t;λ) given by (1.13).
Following our earlier work in [14], here we are concerned with the asymptotic behaviour of the recurrence coeffi-

cient of the three-term recurrence relation satisfied by the generalized Freud polynomials and the asymptotic properties
of the polynomials themselves. We review some pertinent results from [14] in §2. In §3 we consider the case where
the parameter t→∞ whilst in §4 we investigate the asymptotic behaviour as the degree n of the polynomials tends to
∞. Existence and uniqueness of positive solutions of the nonlinear discrete equation (1.17) are discussed in §5 where
we prove that unique, positive solutions exist for all t ∈ R. Properties of the zeros of generalized Freud polynomials
are investigated in §6.
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2 Generalized Freud polynomials
The first few recurrence coefficients βn(t;λ) are given by

β1(t;λ) = Φλ(t), (2.1a)

β2(t;λ) = 1
2 t− Φλ(t) +

λ+ 1

2Φλ(t)
, (2.1b)

β3(t;λ) = − λ+ 1

2Φλ(t)
− Φλ(t)

2Φ2
λ(t)− tΦλ(t)− λ− 1

, (2.1c)

β4(t;λ) =
t

2(λ+ 2)
+

Φλ(t)

2Φ2
λ(t)− tΦλ(t)− λ− 1

+
(λ+ 1)

[
(t2 + 2λ+ 4)Φλ(t) + (λ+ 1)t

]
2(λ+ 2)

[
2(λ+ 2)Φ2

λ(t)− (λ+ 1)tΦλ(t)− (λ+ 1)2
] , (2.1d)

where

Φλ(t) =
d

dt
ln
{
D−λ−1

(
− 1

2

√
2 t
)

exp
(
1
8 t

2
)}

= 1
2 t+ 1

2

√
2
D−λ

(
− 1

2

√
2 t
)

D−λ−1
(
− 1

2

√
2 t
) . (2.2)

It was shown in [14] that as t→∞

Φλ(t) =
t

2
+
λ

t
+

2λ(1− λ)

t3
+

4λ(λ− 1)(2λ− 3)

t5
+O

(
t−7
)
.

Hence, as t→∞
1

Φλ(t)
=

2

t
− 4λ

t3
+

8λ(2λ− 1)

t5
+O

(
t−7
)
.

Plots of βn(t;λ), for n = 1, 2, . . . , 10, with λ = 1
2 are given in Figure 2.1. We see that there is completely different

behaviour for βn(t;λ) as t → ∞, depending on whether n is even or odd, which is reflected in Lemma 2.1. The
different behaviour for βn(t;λ) depending on whether n is even or odd can be explained by the fact that β2n(t;λ) and
β2n+1(t;λ) satisfy different explicit expressions (1.18), as well as different differential equations (1.16) and difference
equations (1.17).

β2n−1(t;λ), n = 1, 2, . . . , 5 β2n(t;λ), n = 1, 2, . . . , 5

Figure 2.1: Plots of the recurrence coefficients β2n−1(t;λ) and β2n(t;λ), for n = 1 (black), n = 2 (red), n = 3
(blue), n = 4 (green) and n = 5 (purple), with λ = 1

2 .
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Lemma 2.1. As t→∞, the recurrence coefficient βn(t;λ) has the asymptotic expansion

β2n(t;λ) =
n

t
− 2n(2λ− n+ 1)

t3
+O

(
t−5
)
,

β2n+1(t;λ) =
t

2
+
λ− n
t
− 2(λ2 − 4λn+ n2 − λ− n)

t3
+O

(
t−5
)
,

for n ∈ N. Further, as t→ −∞

β2n(t;λ) = −n
t

+
2n(2λ+ 3n+ 1)

t3
+O

(
t−5
)
,

β2n+1(t;λ) = −λ+ n+ 1

t
+

2(λ+ n+ 1)(λ+ 3n+ 2)

t3
+O

(
t−5
)
.

Proof. See [14, Lemma 8]

Using the recurrence relation (1.14), with βn(t;λ) given by (2.1), the first few polynomials Sn(x; t) are given by

S1(x; t) = x,

S2(x; t) = x2 − Φλ(t),

S3(x; t) = x3 − tΦλ(t) + λ+ 1

2Φλ(t)
x,

S4(x; t) = x4 − 2tΦ2
λ(t)− (t2 + 2)Φλ(t)− (λ+ 1)t

2 [2Φ2
λ(t)− tΦλ(t)− λ− 1]

x2

− 2(λ+ 2)Φ2
λ(t)− (λ+ 1)tΦλ(t)− (λ+ 1)2

2 [2Φ2
λ(t)− tΦλ(t)− λ− 1]

,

with Φλ(t) given by (2.2). Plots of the polynomials Sn(x; t), n = 3, 4, . . . , 8, with λ = 1
2 , for t = 0, 1, . . . , 4, are

given in Figure 2.2. These show that the magnitude of the roots of Sn(x; t) increases as t increases (see Theorem
6.2 for further details and a proof). In fact, as shown in §3 below, the roots of S2n(x; t) and S2n+1(x; t)/x tend to
±( 1

2 t)
1/2 as t→∞. Plots of the polynomials Sn(x; t), n = 3, 4, . . . , 8, with λ = 1

2 , at times t = 0, 1, . . . , 5 are given
in Figure 2.3, which illustrates the interlacing of the roots of successive polynomials, as discussed in Theorem 6.2.

3 Asymptotic properties of generalized Freud Polynomials as t → ∞
In this section we are concerned with the behaviour of the generalized Freud polynomials Sn(x; t) as t → ∞. From
Lemma 2.1 we see that

lim
t→∞

β2n(t;λ) = 0, lim
t→∞

β2n+1(t;λ) = 1
2 t,

i.e.
lim
t→∞

βn(t;λ) = 1
4 [1− (−1)n]t.

Lemma 3.1. Suppose that the monic polynomials S̃n(x; t) are generated by the three-term recurrence relation

xS̃n(x; t) = S̃n+1(x; t) + β̃n(t)S̃n−1(x; t), (3.1)

where β̃n(t) = 1
4 [1− (−1)n]t, with S̃0(x; t) = 1. Then

S̃2n(x; t) = (x2 − 1
2 t)

n, S̃2n+1(x; t) = x(x2 − 1
2 t)

n. (3.2)

Proof. From the three-term recurrence relation (3.1) we have

S̃2n+1(x; t) = xS̃2n(x; t),

S̃2n+2(x; t) = xS̃2n+1(x; t)− 1
2 tS̃2n(x; t) = (x2 − 1

2 t)S̃2n(x; t).

Since S̃0(x; t) = 1 then the result immediately follows.
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In the limit as t → ∞, we expect that the generalized Freud polynomials Sn(x; t) will tend to the polynomials
S̃n(x; t), see Remark 3.3 below. To show this we first define the polynomials Qn(y; t) and Q̃n(y) as follows

Qn(y; t) = ( 1
2 t)
−n/2Sn

(
( 1
2 t)

1/2 y; t
)
, (3.3a)

Q̃n(y) = (1
2 t)
−n/2S̃n

(
( 1
2 t)

1/2 y; t
)
, (3.3b)

so from (3.2) we have
Q̃2n+1(y) = y(y2 − 1)n, Q̃2n(y) = (y2 − 1)n. (3.4)

Plots of polynomials Qn(y; t), n = 3, 4, . . . , 12, for t = 20 are given in Figure 3.1.

Theorem 3.2. Suppose that Q2n(y; t) and Q̃2n(y) are given by (3.3) and (3.4), respectively, then as t→∞

Q2n(y; t) = Q̃2n(y)− 2nλQ̃2n−2(y) + n(n− 1)Q̃2n−4(y)

t2
+O

(
t−4
)
, (3.5a)

Q2n+1(y; t) = Q̃2n+1(y)− 2n(λ+ 1)Q̃2n−1(y) + n(n− 1)Q̃2n−3(y)

t2
+O

(
t−4
)
. (3.5b)

Proof. As Sn(x; t) satisfies the three-term recurrence relation (1.14), then using (3.3) we see that Qn(y; t) satisfies
the three-term recurrence relation

Qn+1(y; t) = yQn(y; t)− 2βn(t;λ)

t
Qn−1(y; t).

We shall prove (3.5) by induction. By definition Q1(y; t) = y, Q0(y; t) = 1, Q̃1(y) = y and

Q2(y; t) = yQ1(y; t)− 2β1(t;λ)

t
Q0(y; t) = y2 − 2Φλ(t)

t
,

Q̃2(y) = y2 − 1,

therefore

Q2 = Q̃2 + 1− 2Φλ
t

= Q̃2 + 1− 2

t

{
t

2
+
λ

t
− 2λ(λ− 1)

t3
+O

(
t−5
)}

= Q̃2 −
2λ

t2
+O

(
t−4
)

= Q̃2 −
2λQ̃0

t2
+O

(
t−4
)

which shows (3.5a) is true for n = 1. Also, by definition

Q3(y; t) = yQ2(y; t)− 2β2(t;λ)

t
Q1(y; t)

= y

{
y2 − 2Φλ(t)

t

}
− 2y

t

{
t

2
− Φλ(t) +

λ+ 1

2Φλ(t)

}
= y(y2 − 1)− (λ+ 1)y

tΦλ(t)

and so, since Q̃3 = y(y2 − 1), then

Q3 = Q̃3 −
(λ+ 1)y

t

{
2

t
− 4λ

t3
+O

(
t−5
)}

= Q̃3 −
2(λ+ 1)y

t2
+O

(
t−4
)

= Q̃3 −
2(λ+ 1)Q̃1

t2
+O

(
t−4
)

which shows (3.5b) is true for n = 1.
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Next suppose that (3.5a) is true. Since

β2n+1 =
t

2
+
λ− n
t

+O
(
t−3
)
,

then

Q2n+2 = yQ2n+1 −
2β2n+1

t
Q2n

= y

{
Q̃2n+1 −

2n(λ+ 1)Q̃2n−1 + n(n− 1)Q̃2n−3

t2
+O

(
t−4
)}

−
{

1 +
2(λ− n)

t2
+O

(
t−4
)}{

Q̃2n −
2nλQ̃2n−2 + n(n− 1)Q̃2n−4

t2
+O

(
t−4
)}

= yQ̃2n+1 − Q̃2n −
2(λ− n)Q̃2n + 2n(λ+ 1)yQ̃2n−1 − 2nλQ̃2n−2

t2

− n(n− 1)[yQ̃2n−3 − Q̃2n−4]

t2
+O

(
t−4
)

= Q̃2n+2 −
2(λ− n)Q̃2n + 2n(λ+ 1)[Q̃2n + Q̃2n−2]− 2nλQ̃2n−2

t2
− n(n− 1)Q̃2n−2

t2
+O

(
t−4
)

= Q̃2n+2 −
2(n+ 1)λQ̃2n + n(n+ 1)Q̃2n−2

t2
+O

(
t−4
)

which is (3.5a) for n→ n+ 1, where we have used the relation

yQ̃2m−1 = Q̃2m + Q̃2m−2.

Now we suppose that (3.5b) is true. From Lemma 2.1 we have

β2n+2 =
n+ 1

t
+O

(
t−3
)
,

and so

Q2n+3 = yQ2n+2 −
2β2n+2

t
Q2n+1

= y

{
Q̃2n+2 −

2(n+ 1)λQ̃2n + n(n+ 1)Q̃2n−2

t2
+O

(
t−4
)}
− 2(n+ 1)

t2

{
Q̃2n+1 +O

(
t−2
)}

= yQ̃2n+2 −
2(n+ 1)Q̃2n+1 + 2(n+ 1)λyQ̃2n + n(n+ 1)yQ̃2n−2

t2
+O

(
t−4
)

= Q̃2n+3 −
2(n+ 1)(λ+ 1)Q̃2n+1 + n(n+ 1)Q̃2n−1

t2
+O

(
t−4
)

which is (3.5b) for n → n + 1, where we have used the relation yQ̃2m = Q̃2m+1. Hence the result follows by
induction.

Remark 3.3. Suppose that the monic polynomials S̃n(x; t) are given by (3.2) and the monic polynomials Sn(x; t) are
generated by the three-term recurrence relation (1.14). Then formally, as t→∞,

S2n(x; t)→ (x2 − 1
2 t)

n = S̃2n(x; t),

S2n+1(x; t)→ x(x2 − 1
2 t)

n = S̃2n+1(x; t).

In other words, if the positive zeros of Sn(x, t) are denoted by xn,k(λ, t) for k = 1, 2, . . . , bn/2c, where bmc is the
largest integer smaller than m, we have,

lim
t→∞

xn,k(λ, t) = 1
2 t, k = 1, 2, . . . , bn/2c.

Since the zeros are symmetric with respect to the origin, the negative zeros of Sn(x; t) approach − 1
2 t in the limit as

t→∞.
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4 Asymptotic properties of generalized Freud Polynomials as n → ∞
4.1 Asymptotics for the recurrence coefficient βn(t;λ) as n→∞
The asymptotic expansion of βn(t;λ) in (1.14) satisfying (1.17) for the special case when t = 0 and λ = − 1

2 was
studied by Lew and Quarles [39], see also [53, 56]. The asymptotics for the more general case when t ∈ R and
λ = − 1

2 were given by Clarke and Shizgal [12] in the context of bimode polynomials. In the next theorem we provide
the asymptotic expansion of βn(t;λ) in (1.14) as n→∞, for t, λ ∈ R.

Theorem 4.1. Let t, λ ∈ R, then as n → ∞, the recurrence coefficient βn associated with monic generalized Freud
polynomials satisfying the nonlinear discrete equation (1.17), i.e.

βn
(
βn+1 + βn + βn−1 − 1

2 t
)

= 1
4 [n+ (2λ+ 1)∆n],

where ∆n = 1
2 [1− (−1)n], has the asymptotic expansion

βn(t;λ) =

√
3n1/2

6

{
1 +

√
3 t

6n1/2
+
t2 + 12(2λ+ 1)∆n

24n

− t4 + 24(2λ+ 1)∆nt
2 + 48[3(2λ+ 1)2∆2

n − 1]

1152n2
+O(n−5/2)

}
,

i.e.

β2n(t;λ) =

√
6n1/2

6

{
1 +

√
6 t

12n1/2
+

t2

48n
− t4 − 48

4608n2
+O(n−5/2)

}
, (4.1a)

β2n+1(t;λ) =

√
3 (2n+ 1)1/2

6

{
1 +

√
3 t

6(2n+ 1)1/2
+
t2 + 12(2λ+ 1)

24(2n+ 1)

− t
4 + 24(2λ+ 1)t2 + 96(6λ2 + 6λ+ 1)

1152(2n+ 1)2
+O(n−5/2)

}
. (4.1b)

Proof. We begin by finding the first term in the asymptotic expansion. The recurrence coefficient βn associated with
(1.12) is positive and diverges as n→∞ (cf. [14]) which suggests that as n→∞

βn ∼ Bnr, (4.2)

with r > 0 and B a constant. Substituting the asymptotic form (4.2) into (1.17) we obtain

3B2n2r − 1
2 tBn

r ∼ 1
4 [n+ (2λ+ 1)∆n].

Since we require this equation to hold for all n = 1, 2, . . . , it follows that r = 1
2 , B = 1

6

√
3 and so the leading

behaviour is given by
βn ∼ 1

6

√
3n1/2.

Next we suppose that as n→∞

βn =

√
3n1/2

6

∞∑
k=0

bk
nk/2

, (4.3)

with b0 = 1. Substituting this together with

βn±1 =

√
3 (n± 1)1/2

6

∞∑
k=0

bk
(n± 1)k/2

=

√
3n1/2

6

{
1 +

b1
n1/2

+
2b2 ± 1

2n
+

b3
n3/2

+
8b4 ∓ 4b2 − 1

8n2
+O(n−5/2)

}
,

as n → ∞, which are obtained by letting n → n ± 1 in (4.3) and doing an asymptotic expansion, into (1.17), doing
an asymptotic expansion and equating powers of n gives

b1 − 1
6

√
3 t = 0,

b2 + 1
2b

2
1 − 1

6

√
3 tb1 − 1

2∆n = 0,

b3 + b1b2 − 1
6

√
3 tb2 = 0,

b4 + b1b3 + 1
2b

2
2 − 1

6

√
3 tb3 − 1

24 = 0,
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which have solution

b1 =

√
3t

6
, b2 =

t2 + 12∆n

24
, b3 = 0, b4 =

t4 + 24∆nt
2 + 48(3∆2

n − 3)

1152
,

Hence, letting ∆n = 1
2 [1− (−1)n], we formally obtain the asymptotic expansions (4.1). From the nonlinear discrete

equation (1.17) we obtain

β2
n − 1

2 tβn + βn (βn+1 + βn−1) = 1
4 [n+ (2λ+ 1)∆n],

and so
β2
n − 1

2 tβn <
1
4 [n+ (2λ+ 1)∆n],

since βn (βn+1 + βn−1) > 0, as βn = hn/hn−1 > 0, where

hn =

∫ ∞
−∞

S2
n(x; t)wλ(x; t) dx.

Therefore

0 < βn <
1
4 t+ 1

2

√
n+ 1

4 t
2 + (2λ+ 1)∆n (4.5)

= 1
4 t+ 1

2n
1/2

[
1 +

1
4 t

2 + (2λ+ 1)∆n

n

]1/2
= 1

2n
1/2 + 1

4 t+
1
4 t

2 + (2λ+ 1)∆n

2n1/2
+

∞∑
m=2

am

[
1
4 t

2 + (2λ+ 1)∆n

]m
nm−1/2

,

where

am =
(−1)m+1(2m− 3)!

22m−1m! (m− 2)!
,

which completes the proof.

Corollary 4.2. Assume that βn(t;λ) satisfies (1.17). Then, for t, λ ∈ R:

(i) the sequence
{
βn(t;λ)√

n

}∞
n=1

is bounded;

(ii) lim
n→∞

βn(t;λ)√
n

=

√
3

6
.

Remarks 4.3.

1. Bleher and Its [8] studied the limit of the recurrence coefficient Rn as n, N →∞ when the ratio n/N tends to
a positive constant, for the polynomials Pn(x) orthogonal with respect to the weight

w(x) = exp{−NV (x)}, x ∈ R, (4.6a)

with
V (x) = 1

4gx
4 + 1

2Tx
2, g > 0, (4.6b)

satisfying the three-term recurrence relation

xPn(x) = Pn+1(x) +RnPn−1(x),

where Rn satisfies the Freud equation

n = NRn [T + g(Rn+1 +Rn +Rn−1)] , n ≥ 1. (4.7)

Consider equation (1.17) with λ = − 1
2 , i.e.

βn
(
βn+1 + βn + βn−1 − 1

2 t
)

= 1
4n. (4.8)

10



The relationship between equations (4.7) and (4.8) is given by

Rn =
2βn√
gN

, T = −
√

g

N
t. (4.9)

as is easily verified. In [8] it is shown that Rn satisfies the inequality

0 < Rn <
−T +

√
T 2 + 4ng/N

2g
.

Applying the transformation (4.9) to this yields

0 < βn <
1
4 t+ 1

2

√
n+ 1

4 t
2,

which is (4.5) with λ = − 1
2 .

2. Nevai [52, 53] and later Freud [24] proved that the recurrence coefficient associated with the special case of the
symmetric weight (1.12) where λ = − 1

2 and t = 0 has the same limit as the one in Corollary 4.2 (ii). Corollary
4.2 (ii) therefore proves an extension of Freud’s conjecture (1.4) for recurrence coefficients associated with the
weight (1.3) to recurrence coefficients satisfying (1.17) associated with the weight (1.12) for m = 4.

3. Recently Joshi and Lustri [33] studied the asymptotic behaviour of the first discrete Painlevé equation (1.17)
in the limit as n → ∞. Using an asymptotic series expansion, they identified two types of solutions which
are pole-free within some sector of the complex plane containing the positive real axis and used exponential
asymptotic techniques to determine Stokes phenomena effects in these solutions (see also [32, 64]).

In [15], Damelin considers asymptotics of recurrence coefficients associated with weights |x|ρ exp{−Q(x)}where
Q(x) is an even polynomial of fixed degree.

Theorem 4.4. For t, λ ∈ R, the recurrence coefficients βn(t;λ) in (1.17) satisfy

βn+1(t;λ)

βn(t;λ)
= 1 +O

(
n−1

)
, n→∞, (4.10a)

βn(t;λ)

a2n(t)
= 1

4 +O
(
n−1

)
, n→∞. (4.10b)

where an is the Mhaskar-Rakhmanov-Saff number [50, 59] which is the unique positive solution of the equation

n =
2

π

∫ 1

0

antQ
′(ant)√

1− t2
dt

for Q(x) = x4 − tx2.

Proof. A proof of (4.10a) and (4.10b) can be found in [15, Thm. 2.1].

4.2 Asymptotics for the generalized Freud polynomials as n→∞
Linear second-order differential equations, which are at the heart of much of special function theory, can be used in
various ways to obtain asymptotic approximations and inequalities. The differential equation satisfied by generalized
Freud polynomials orthogonal with respect to the weight (1.12) was obtained in [14].

Theorem 4.5. Monic orthogonal polynomials Sn(x; t) with respect to generalized Freud weight (1.12) satisfy the
differential equation

d2Sn

dx2
(x; t) +Rn(x; t)

dSn
dx

(x; t) + Tn(x; t)Sn(x; t) = 0, (4.11)

where

Rn(x; t) = −4x3 + 2tx+
2λ+ 1

x
− 2x

x2 − 1
2 t+ βn + βn+1

, (4.12a)

Tn(x; t) = 4nx2 + 4βn + 16βn(βn + βn+1 − 1
2 t)(βn + βn−1 − 1

2 t)

− 8βnx
2 + (2λ+ 1)[1− (−1)n]

x2 − 1
2 t+ βn + βn+1

+ 4(2λ+ 1)(−1)nβn

+ (2λ+ 1)[1− (−1)n]

(
t− 1

2x2

)
. (4.12b)
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Proof. See [14, Thm. 6].

Remark 4.6. The differential equation (4.11) for the special case where λ = − 1
2 and t replaced by 2t is given in [3,

eqn. (6)] though, in their notation, the statement on p. 104 needs to be corrected to read

Stn(x) = 4a2n

[
4x2

(
a2n−1 + a2n + a2n+1 − t−

2

x2 − t+ a2n + a2n+1

)
+4
(
a2n + a2n+1 − t

) (
a2n−1 + a2n − t

)
+ 1
]
.

Differential systems satisfied by weights (4.6a), where V (x) is an even polynomial with positive leading coeffi-
cient, are discussed by Bertola et al. [6, 7].

In [8, 9], Bleher and Its discuss semiclassical asymptotics of orthogonal polynomials Pn(x) with respect to the
weight (4.6) using a combination of formal semiclassical WKB-type analysis of linear differential and nonlinear dis-
crete equations, and rigorous asymptotics of a Riemann-Hilbert problem together with the nonlinear steepest descent
method due to Deift and Zhou [17, 18], where the latter technique provides a justification of the former. A similar
rigorous asymptotic analysis of monic orthogonal polynomials Sn(x; t) with respect to the generalized Freud weight
(1.12) lies beyond the scope of this paper and we shall not pursue this further here.

We shall however make some remarks about equation (4.11) for n large. Since from Theorem 4.1 we have βn =
1
6

√
3n+O(1) as n→∞, it follows from (4.12) that

Rn(x; t) = −4x3 + 2tx+
2λ+ 1

x
+O(n−1/2), (4.13a)

Tn(x; t) = ( 4
3n)3/2 +O(n), (4.13b)

and so we consider the equation

d2Ŝn

dx2
−
(

4x3 − 2tx− 2λ+ 1

x

)
dŜn
dx

+ ( 4
3n)3/2Ŝn = 0. (4.14)

Equation (4.14) is equivalent to the Biconfluent Heun equation, cf. [57, §31.12]

d2u

dz2
−
(γ
z

+ δ + z
) du
dz

+
(
α− q

z

)
u = 0,

through the transformation
Ŝn(x; t, λ) = u(z;α, γ, δ, q), z = 1

2x
2,

with parameters
α = 0, γ = −1− λ, δ = − 1

2

√
2 t, q = − 1

9

√
6n3/2.

Note that if in equation (4.14) we make the transformation Ŝn(x) = w(ζ), with ζ = ( 4
3n)3/4x, then in the limit as

n→∞ we obtain
d2w

dζ2
+

2λ+ 1

ζ

dw

dζ
+ w = 0,

which has solution
w(ζ) = {c1Jλ(ζ) + c2J−λ(ζ)} ζ−λ,

with Jλ(ζ) the Bessel function. This suggests that there might be Mehler-Heine type asymptotic formulae for the
polynomials Sn(x; t) as n→∞, though we shall not investigate this further here.

5 Existence and uniqueness of positive solutions
A natural question to ask is whether (1.17) has many real solutions satisfying the initial condition β0 = 0. Several
papers, including [39, 53, 62] provide an answer for the case where t = 0. In a recent paper by Alsulami et al. [2],
existence and uniqueness of a positive solution are discussed for the nonlinear second-order difference equations of
the type

βn (σn,1βn+1 + σn,0βn + σn,−1βn−1) + κnβn = `n (5.1)

with initial conditions β0 ∈ R, β1 ≥ 0, κn ∈ R and mild conditions on the coefficients σn,j , j = −1, 0, 1. An
excellent historical overview of the problem and its solution is given.
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Theorem 5.1. For λ > −1 and β0 = 0, there exists a unique β1(t;λ) > 0 such that {βn(t;λ)}n∈N defined by the
nonlinear discrete equation

βn
(
βn+1 + βn + βn−1 − 1

2 t
)

= 1
4 [n+ (2λ+ 1)∆n], (5.2)

with ∆n = 1
2 [1− (−1)n], is a positive sequence and the solution arises when β1(t;λ) is given by (1.15), i.e.

β1(t;λ) = Φλ(t) = 1
2 t+ 1

2

√
2
D−λ

(
− 1

2

√
2 t
)

D−λ−1
(
− 1

2

√
2 t
) . (5.3)

Proof. The nonlinear discrete equation (5.2) is the special case of (5.1) with

σn,1 = σn,0 = σn,−1 = 1, κn = − 1
2 t. `n = 1

4 [n+ (2λ+ 1)∆n],

with ∆n = 1
2 [1 − (−1)n]. The existence of β1(t;λ) > 0 such that (5.2) is a positive sequence follows immediately

from [2, Thm. 4.1]. The uniqueness of solutions of (5.1) is discussed in [2, Thm. 5.2], though the conditions in the
theorem require that t ≤ 0, λ > −1 and β0 = 0 in our case. To show uniqueness for t ∈ R, consider the nonlinear
discrete equation (5.2) with general initial conditions β0 = 0 and β1 = Φ̂λ(t;ϑ), where

Φ̂λ(t;ϑ) =
t

2
+

√
2

2

[
cos(ϑ)D−λ

(
− 1

2

√
2 t
)
− sin(ϑ)D−λ

(
1
2

√
2 t
)

cos(ϑ)D−λ−1
(
− 1

2

√
2 t
)

+ sin(ϑ)D−λ−1
(
1
2

√
2 t
)] , (5.4)

with 0 ≤ ϑ ≤ 1
2π a parameter; if 1

2π < ϑ < π then β1 has a pole at a finite value of t. Since the parabolic cylinder
function Dν(z) has the following asymptotics as z → ±∞, cf. [57, §12.9]

Dν(z) =


zν exp(− 1

4z
2)
{

1 +O(z−2)
}
, as z →∞,

√
2π

Γ(−ν)
(−z)−ν−1 exp( 1

4z
2)
{

1 +O(z−2)
}
, as z → −∞,

(5.5)

then as t→ ±∞, Φ̂λ(t;ϑ) has the asymptotics

Φ̂λ(t; 0) =


1
2 t+O(t−1), as t→∞,

−λ+ 1

t
+O(t−3), as t→ −∞,

Φ̂λ(t;ϑ) = 1
2 t+O(t−1), as t→ ±∞, if 0 < ϑ < 1

2π,

Φ̂λ(t; 1
2π) =

−
λ+ 1

t
+O(t−3), as t→∞,

1
2 t+O(t−1), as t→ −∞,

Consequently β1 = Φ̂λ(t;ϑ) > 0 for all t ∈ R if and only if ϑ = 0, which proves the desired results. This result is
illustrated in Figure 5.1 where β1 = Φ̂λ(t;ϑ), is plotted for various values of ϑ.

Remarks 5.2.

1. The rationale for considering β1 given by (5.4) is that Φλ(t) given by (2.2) satisfies the Riccati equation

dΦ

dt
= −Φ2 + 1

2 tΦ + 1
2 (λ+ 1), (5.7)

which has general solution Φ̂λ(t;ϑ). Letting Φ(t) = ϕ′(t)/ϕ(t) in (5.7) gives

d2ϕ

dt2
− 1

2 t
dϕ

dt
− 1

2 (λ+ 1)ϕ = 0,

which has general solution

ϕ(t) =
{
c1D−λ−1

(
− 1

2

√
2 t
)

+ c2D−λ−1
(
1
2

√
2 t
)}

exp( 1
8 t

2),

with c1 and c2 arbitrary constants. Since only the ratio of c1 and c2 is relevant then we set c1 = cosϑ and
c2 = sinϑ.
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2. The solution of the nonlinear discrete equation (5.2) with initial conditions β0 = 0 and β1 given by (5.3) appears
to depend on the sign of t. In Figure 5.2 the points (n, βn) are plotted for various choices of t. These show
that βn(t;λ) approaches a limit as n → ∞ in different ways depending on whether t < 0 or t > 0. If t < 0
then the behaviour is similar irrespective of the value of t and the plots suggest that {β2n}n∈N and {β2n+1}n∈N
are both monotonically increasing sequences. However if t > 0, the plots suggest that {β2n} and {β2n+1} are
both monotonically increasing sequences for n > n∗, for some n∗ dependent on t. The plots were generated in
MAPLE using 250 digits accuracy.

3. The solution of the nonlinear discrete equation (5.2) is highly sensitive to the initial conditions. This is illustrated
in Figure 5.3 where the points (n, βn) are plotted for the initial conditions

b0 = 0, β1 = Φλ(t) + ε,

where Φλ(t) is given by (2.2), and ε ∈ {0, 10−4,−10−4}, for various choices of t. The plots clearly show that
a small change in β1 gives rise to very different behaviour for βn. The plots were also generated in MAPLE
using 250 digits accuracy.

6 Properties of the zeros of generalized Freud polynomials
In this section we begin by proving some properties for the zeros of semiclassical Laguerre polynomials (cf. [13]) and
then extend this to obtain analogous results for the zeros of monic generalized Freud polynomials, which arise from a
symmetrization of semiclassical Laguerre polynomials (cf. [14, 19]). For a discussion of the asymptotic behaviour as
n→∞ for the recurrence coefficients and orthogonal polynomials with respect to the Laguerre-type weight

w(x) = xλ exp{−Q(x)}, λ > −1, x ∈ R+,

with Q(x) a polynomial with positive leading coefficient, see Vanlessen [63].
As shown in [13], the monic semiclassical Laguerre polynomials L(λ)

n (x; t), orthogonal with respect to the weight

w(x; t) = xλ exp(−x2 + tx), λ > −1, x ∈ R+ (6.1)

satisfy the three-term recurrence relation

L
(λ)
n+1(x; t) = [x− α̃n(t)]L(λ)

n (x; t)− β̃n(t)L
(λ)
n−1(x; t) (6.2)

where

α̃n(t) = 1
2qn(z) + 1

2 t, (6.3a)

β̃n(t) = − 1
8

dqn
dz
− 1

8q
2
n(z)− 1

4zqn(z) + 1
4λ+ 1

2n, (6.3b)

with z = 1
2 t. Here

qn(z) = −2z +
d

dz
ln

Ψn+1,λ(z)

Ψn,λ(z)

satisfies PIV (1.11) with parameters (A,B) = (2n+ λ+ 1,−2λ2) and

Ψn,λ(z) =W
(
ψλ,

dψλ
dz

, . . . ,
dn−1ψλ

dzn−1

)
, Ψ0,λ(z) = 1,

where

ψλ(z) =

D−λ−1
(
−
√

2 z
)

exp
(
1
2z

2
)
, if λ 6∈ N,

√
π

m! 2(m+1)/2

dm

dzm
{[

1 + erf(z)
]

exp(z2)
}
, if λ = m ∈ N,

with erf(z) the error function, since the parabolic cylinder functionD−m−1(z) is expressed in terms of error functions
for m ∈ N, cf. [57, §12.7(ii)].

Theorem 6.1. Let L(λ)
n (x; t) denote the monic semiclassical Laguerre polynomials orthogonal with respect to

w(x; t) = xλ exp(−x2 + tx), x ∈ R+.

Then, for λ > −1 and t ∈ R, the zeros x1,n < x2,n < · · · < xn,n of L(λ)
n (x; t)
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(i) are real, distinct and

0 < x1,n < x1,n−1 < x2,n < · · · < xn−1,n < xn−1,n−1 < xn,n; (6.4)

(ii) strictly increase with both t and λ;

(iii) satisfy
an < x1,n < α̃n−1 < xn,n < bn,

where

an = min
1≤k≤n−1

{
1
2 (α̃k + α̃k−1)− 1

2

√
(α̃k + α̃k−1)2 + 4cnβ̃k

}
,

bn = max
1≤k≤n−1

{
1
2 (α̃k + α̃k−1) + 1

2

√
(α̃k + α̃k−1)2 + 4cnβ̃k

}
,

with cn = 4 cos2
(

π
n+1

)
+ ε, ε > 0, and α̃n and β̃n given by (6.3).

Proof.

(i) The proofs for classical orthogonal polynomials, where t = 0 (see, for example, [61, Thm 3.3.1 and 3.3.2]),
work without change.

(ii) Since for the semiclassical Laguerre weight (6.1)

∂

∂λ
lnw(x; t) = lnx

is an increasing function of x, it follows from Markov’s monotonicity theorem (cf. [61, Theorem 6.12.1] that
the zeros of L(λ)

n (x; t) increase as λ increases. Similarly, since

∂

∂t
lnw(x; t) = x,

increases with x, it follows that the zeros of L(λ)
n (x; t) increase as t increases.

(iii) The inner bound α̃n−1 for the extreme zeros follows from [20, Cor. 2.2] together with (6.2) and (6.4) since
β̃n−1(t) does not depend on x. The outer bounds an and bn for the extreme zeros x1,n and xn,n respectively,
follow from the approach based on the Wall-Wetzel Theorem, introduced by Ismail and Li [30] (see also [29])
by applying their Theorems 2 and 3 to the three term recurrence relation (6.2).

Asymptotic properties of the extreme zeros of generalized Freud polynomials related to the weight (1.3) were
studied by Freud [25] and Nevai [55]. Subsequently, Kasuga and Sakai [34] extended and generalized these results.

Next we prove some properties of zeros of generalized Freud polynomials associated with the weight (1.12). The
weight (1.12) is even and it is well-known that, in this case, the zeros of the corresponding orthogonal polynomials are
symmetric about the origin. This implies that the positive and the negative zeros have opposing monotonicity and, as
a result of this symmetry, it suffices to study the monotonicity and bounds of the positive zeros.

Theorem 6.2. Let Sn(x; t) be the monic generalized Freud polynomials orthogonal with respect to the weight (1.12),
i.e.

w(x; t) = |x|2λ+1 exp(−x4 + tx2),

and let xn,1(λ, t) < xn,2(λ, t) < · · · < xn,bn/2c(λ, t) denote the positive zeros of Sn(x; t) (recall bmc is the largest
integer smaller than m). Then, for λ > −1 and t ∈ R

(i) the zeros of Sn(x; t) are real and distinct and

0 < xn,1(λ, t) < xn−1,1(λ, t) < xn,2(λ, t) < . . .

< xn−1,[(n−1)/2](λ, t) < xn,[n/2](λ, t);

(ii) the νth zero xn,ν(λ, t), for a fixed value of ν, is an increasing function of both λ and t;
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(iii) the largest zero satisfies the inequality

xn,[n/2](λ, t) < max
1≤k≤n−1

√
cnβk(t;λ), (6.5)

where cn = 4 cos2
(

π
n+1

)
+ ε, ε > 0, and βn(t;λ) is given by (1.18).

Proof.

(i) This follows from Theorem 6.1(i) using the relation (cf. [11, 14, 19])

S2n(x; t) =L(λ)
n (x2; t), S2n+1(x; t) = xL(λ+1)

n (x2; t).

between the semiclassical Laguerre polynomials L(λ)
n (x; t) and the generalized Freud polynomials Sn(x; t).

(ii) The monotonicity of the positive zeros with respect to the parameters λ and t follows from [31, Theorem 2.1]
since for the generalized Freud weight (1.12)

∂

∂λ
lnw(x; t) = 2 lnx,

∂

∂t
lnw(x; t) = x2,

both increase with x.

(iii) The inequality (6.5) for the largest zero xn,bn/2c(λ, t) follows by applying [30, Theorem 2 and 3] to the three
term recurrence relation (1.14).

7 Conclusion
In this paper we have analysed the asymptotic behaviour of generalized Freud polynomials, orthogonal with respect
to the generalized Freud weight (1.12), in two different contexts. Firstly, we obtained asymptotic results for the
polynomials when the parameter t involved in the semiclassical perturbation of the weight tends to ±∞. Next, we
considered the strong asymptotics of the coefficients βn in the three-term recurrence relation (1.14) satisfied by the
generalized Freud polynomials Sn(x; t) as the degree n tends to infinity and investigated the asymptotic behaviour of
the polynomials themselves as the degree increases. We showed that unique, positive solutions of the nonlinear discrete
equation (1.17) satisfied by the recurrence coefficients exist for all t ∈ R but that these solutions are very sensitive
to the initial conditions. We also proved various properties of the zeros of generalized Freud polynomials. The
closed form expressions for the recurrence coefficients obtained in [14] allowed the investigation of the properties of
generalized Freud polynomials in this paper. A natural extension of this work would be an investigation of asymptotic
properties using limiting relations satisfied by the polynomials as the parameter λ tends to∞.
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[1] M. Alfaro, J.J. Moreno-Balcázar, A. Peña, and M.L. Rezola, Asymptotic formulae for generalized Freud poly-

nomials, J. Math. Anal. Appl., 421 (2015) 474–488.
[2] S.M. Alsulami, P. Nevai, J. Szabados, and W. Van Assche, A family of nonlinear difference equations: existence,

uniqueness, and asymptotic behaviour of positive solutions, J. Approx. Theory, 193 (2015) 39–55.

16



[3] A. Arceo, E.J. Huertas, and F. Marcellán, On polynomials associated with an Uvarov modification of a quartic
potential Freud-like weight, Appl. Math. Comput., 281 (2016) 102–120.
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Painlevé equation, Constr. Approx., 39 (2014) 223–254.
[14] P. A. Clarkson, K. Jordaan, and A. Kelil, A generalized Freud weight, Stud. Appl. Math., 136 (2016) 288–320.
[15] S.B. Damelin, Asymptotics of recurrence coefficients for orthonormal polynomials on the line – Magnus’s

method revisited, Math. Comp., 73 (2004) 191–209.
[16] P. Deift, T. Kriecherbauer, K.T.-R. McLaughlin, S. Venakides, and X. Zhou, Strong asymptotics of orthogonal

polynomials with respect to exponential weights, Comm. Pure Appl. Math., 52 (1999) 1491–1552.
[17] P. Deift and X. Zhou, A steepest descent method for oscillatory Riemann-Hilbert problems – asymptotics for the

MKdV equation, Ann. Math., 137 (1993) 295–368.
[18] P. Deift and X. Zhou, Asymptotics for the Painlevé II equation, Commun. Math. Phys., 48 (1995) 277–337.
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Commun. Math. Phys., 142 (1991) 313–344.
[22] A.S. Fokas, A.R. Its, and X. Zhou, Continuous and discrete Painlevé equations, in: Painlevé Transcendents. Their
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S3(x; t) S4(x; t)

S5(x; t) S6(x; t)

S7(x; t) S8(x; t)

Figure 2.2: Plots of the polynomials Sn(x; t), n = 3, 4, . . . , 8 for t = 0 (black), t = 1 (red), t = 2 (blue), t = 3
(green) and t = 4 (purple), with λ = 1

2 .
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t = 0 t = 1

t = 2 t = 3

t = 4 t = 5

Figure 2.3: Plots of the polynomials S3(x; t) (black), S4(x; t) (red), S5(x; t) (blue), S6(x; t) (green) for t =
0, 1, . . . , 5, with λ = 1

2 .
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Q2n−1(y; t) Q2n(y; t)

Figure 3.1: Plots of polynomials Q2n−1(y; t) and Q2n(y; t), for n = 1 (black), n = 2 (red), n = 3 (blue), n = 4
(green) and n = 5 (purple), when t = 20, with λ = 1

2 .
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n = 4 n = 5

n = 6 n = 7

n = 8 n = 9

Figure 3.2: Plots of the polynomials Qn(y; 5, 12 ) (blue), Qn(y; 10, 12 ) (red) and Q̃n(y) (black) for n = 4, 5, . . . , 9.
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Figure 5.1: Plots of β1 = Φ̂λ(t;ϑ) as given by (5.4), with λ = 1
2 , for ϑ = 0 (black), ϑ = 1

12π (red), ϑ = 1
4π (blue),

ϑ = 5
12π (green) and ϑ = 1

2π (purple).
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t = −15 t = −10 t = −5

t = −2 t = 0 t = 2

t = 5 t = 10 t = 15

Figure 5.2: Plots of the points (n, βn) where βn satisfies (5.2) with initial conditions β0 = 0 and β1 given by (5.3),
for various choices of t, with λ = 1

2 .
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β1 = Φλ(0) β1 = Φλ(0) + 10−4 β1 = Φλ(0)− 10−4

β1 = Φλ(5) β1 = Φλ(5) + 10−4 β1 = Φλ(5)− 10−4

β1 = Φλ(−5) β1 = Φλ(−5) + 10−4 β1 = Φλ(−5)− 10−4

Figure 5.3: Plots of the points (n, βn) where βn satisfies (5.2) with initial conditions β0 = 0 and β1 = Φλ(t) + ε,
with Φλ(t) given by (2.2), and ε = 0,±10−4, for t = 0,±5 and λ = 1

2 .
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