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ABSTRACT 

 Rogue waves of evolution systems are displacements which are localized in 

both space and time. The locations of the points of maximum displacements of 

the wave profiles may correlate with the trajectories of the poles of the exact 

solutions from the perspective of complex variables through analytic continuation. 

More precisely, the location of the maximum height of the rogue wave in 

laboratory coordinates (real space and time) is conjectured to be equal to the real 

part of the pole of the exact solution, if the spatial coordinate is allowed to be 

complex. This feature can be verified readily for the Peregrine breather (lowest 

order rogue wave) of the nonlinear Schrödinger equation. This connection is 

further demonstrated numerically here for more complicated scenarios, namely 

the second order rogue wave of the Boussinesq equation (for bidirectional long 

waves in shallow water), an asymmetric second order rogue wave for the 

nonlinear Schrödinger equation (as evolution system for slowly varying wave 

packets), and a symmetric second order rogue wave of coupled Schrödinger 

systems. Furthermore, the maximum displacements in physical space occur at a 

time instant where the trajectories of the poles in the complex plane reverse 

direction. This property is conjectured to hold for many other systems, and will 

help to determine the maximum amplitudes of rogue waves.  
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LEAD PARAGRAPH 

 Rogue waves are surprisingly large displacements from an equilibrium or 

otherwise tranquil background. Such large amplitude waves obviously constitute 

a major risk for marine shipping and offshore structures. Since the discovery of 

similar entities along optical waveguides recently, intensive efforts have been 

invested to study such violent motions in a wide spectrum of physical disciplines, 

under the general category of ‘extreme and rare events in physics’. The widely 

applicable nonlinear Schrödinger equation governs the evolution of slowly 

varying wave packets. The exact rational solution, the ‘Peregrine breather’ 

localized in both space and time, has often been utilized as the simplest model of 

a rogue wave. Here the locations of second order rogue waves are shown to 

correlate with the movement of poles in the complex plane, if the spatial variable 

of the exact solution is extended by analytic continuation. The same feature is 

demonstrated for the Boussinesq equation which models bidirectional wave 

motions in shallow water. This correlation between locations of maximum 

displacements in physical space and trajectories of poles in the complex plane is 

conjectured to be valid for many other dynamical systems in fluid mechanics and 

optics. 
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I. INTRODUCTION  

Rogue waves are surprisingly large displacements from an equilibrium or 

otherwise tranquil background. Initial interests on these large amplitude waves 

tend to focus on the oceanic setting.1 Since the discovery of similar entities along 

optical waveguides, intensive efforts have been invested to study such motions in 

a wide spectrum of physical disciplines, under the general category of ‘extreme 

and rare events in physics’.2 The nonlinear Schrödinger equation is a widely 

applicable model in fluid mechanics and optics.3,4 One exact rational solution, the 

‘Peregrine breather’, is localized in both space and time. This solution has often 

been utilized as the simplest model of a rogue wave.5–9 Extension to discrete 

systems and rogue wave pairs with elevations and depressions have been 

performed.10,11 

A benchmark entity in the theory of nonlinear waves is the soliton, which 

preserves its identity after collisions with other solitons.4 An illuminating 

theoretical perspective is to describe the collisions of solitons in terms of 

interactions of poles by analytic continuation of the spatial or temporal coordinate 

to a complex variable. Such investigations had been performed for the classical 

Korteweg-de Vries and Boussinesq equations.12–14   
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The objective here is to apply this scheme of pole movements to the dynamics 

of rogue waves. In particular this approach can reveal peculiar relations between 

the maxima of the rogue wave profiles in the physical plane and the real parts of 

the poles in the extended complex plane. Classical dynamical systems, e.g. the 

Boussinesq and the nonlinear Schrödinger equations, will be employed, but this 

feature will likely be valid for other evolution equations too. We first start by 

looking at a standard case, namely, the Peregrine breather for the Schrödinger 

equation (Section II). We then extend this idea to a purely real dynamical system 

(the Boussinesq equation, Section III) and complex-valued envelope equations 

(the coupled Schrödinger models, Section IV), and finally draw concluding 

remarks (Section V). 

 

II. ROGUE WAVES AND POLE DYNAMICS 

The nonlinear Schrödinger equation (with α, σ being real parameters)                                                                             

iAt +Axx + σA2A* = 0,                                                                                              (1) 

possesses the rational solution5 

( ) ( )

ï
ï
þ

ïï
ý

ü

ï
ï
î

ïï
í

ì

÷
ø
ö

ç
è
æ

sa
+sa+sa

sa+
-saa=

2
2222

2
2

2
12

2121exp
tx

titiA  ,                                              (2) 



 

 6 

which is nonsingular only for σ > 0. The poles of Eq. (2) occur at 

x = ±[2σα2t2 + 1/(2σα2)]1/2i ,                                                                                   (3) 

and trajectories in the complex x plane are illustrated in Figure 1. The maximum 

height of the rogue wave is located at x = 0 in laboratory coordinates (real x and t). 

If x is allowed to be complex, the real part of the poles of the exact solution 

vanishes too (Eq. (3)). This leads us to the following conjecture. 

 

Figure 1 – The motion of the two poles of the lowest order rogue wave of the 
nonlinear Schrödinger equation in the complex ‘x’ plane (Eq. (3)).  
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A Conjecture  

 ‘The locations of the maximum height of a rogue wave in laboratory 

coordinates (real space and time) will be equal to the real part of the poles of 

the exact solution by analytic continuation, if the spatial coordinate is allowed 

to be complex.’.  

 Besides the formulation outlined above, the conjecture can also be verified 

analytically for the lowest order rogue wave of the derivative nonlinear 

Schrödinger equation.15 Preliminary numerical testing has been performed for the 

second order rogue waves of the nonlinear Schrödinger equation and the results 

are very encouraging.15 The goal here is to conduct further numerical tests using a 

real evolution system and also asymmetric as well as symmetric rogue waves for 

complex-valued evolution equations. Such numerical tests can be justified from 

the following perspective. For simple case like Eq. (2), elementary calculus can 

be applied to ascertain that the turning points of |A|2 occur along t = 0. In more 

complicated scenarios discussed below, the turning points may occur off the axes 

in the x, t plane, the algebra then becomes oppressive. Remarkably, this 

information from pole dynamics might reveal characteristics of the wave profiles 

for a large class of evolution systems. 
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III. THE BOUSSINESQ EQUATION 

A. Analytical formulation  

 Physically the Boussinesq equation describes bidirectional wave propagation in 

shallow water:16,17 

2 1( ) 0,
3tt xx xx xxxxu u u u+ - - =                                                                                     (4) 

where u typically denotes the free surface displacement or the horizontal velocity. 

A ‘tau function’ or bilinear transformation,  

un = 2 (log fn)xx ,                                                                                                      (5) 

converts the issue of solving for rational solutions un of Eq. (4) to a process in 

identifying suitable polynomials for the function fn, where n is the order of the 

rogue waves.16,17 For the lowest order rogue wave (n = 1), 

f1 = x2 + t2 + 1,    u1 = 2(log f1)xx ,   u1 = 4(1 – x2 + t2)/(x2 + t2 + 1)2 ,                      (6) 

the conjecture holds trivially as the physical maximum for u1 occurs at x = t = 0, 

and the poles of u1 will have zero real parts. The second order rogue wave is 

generated by taking this auxiliary function f2 to be 
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6 2 4 4 2 2 6 4 2
2

25 125 17 475 625( , ) 3 3 30 ,
3 9 3 9 9

f x t x t x t t x t t tæ ö æ ö= + + + + - + + + +ç ÷ ç ÷
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   (7a) 

with increasing algebraic complexity for the higher order rogue waves. 

 A more intriguing case is to look into the generalized higher order rogue waves 

(with additional free parameters α, β) defined by: 

Fn+1(x, t; α, β) = fn+1(x, t) + 2 α t Pn(x, t) + 2 β x Qn(x, t) + (α2 + β2) fn–1(x, t) ,     (7b) 

where fn , Pn(x, t) and Qn(x, t) are polynomials in x and t.16,17 For simplicity we 

just concentrate on the second order rogue wave in this work where 

2 2
1

5( , ) 3 ,
3

P x t x t= - +      2 2
1

1( , ) 3 ,
3

Q x t x t= - -  

and f0 = 0 (Figures 2, 3). To test the validity of the conjecture outlined in Section 

II, numerical evidence is presented in the following subsection.  
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B. Numerical evidence 

α β Locations of the maximum 
(maxima) of u2 in the 
physical space with real x 

Location of the pole(s) of 
u2 (or zeros of f2) with 
complex x 

0 0 x = ± 1.340, t = 0 t = 0 
Poles located at  
x = 1.340 ± 0.893i and 
    –1.340 ± 0.893i 
 

100 100 (a) x = 3.494, t = –3.514 

 

(b) x = –4.857, t = –1.257 

 

(c) x = 1.260, t = 4.932 

(a) t = –3.514 
Poles located at  
x = 3.494 ± 1.003i 
 
(b) t = –1.257 
Poles located at  
x = –4.857 ± 0.960i 
 
(c) t = 4.932 
Poles located at  
x = 1.260 ± 1.045i 

100 10 (a) x = 3.737, t = –2.274 

 

(b) x = –3.894, t = –2.019 

 

(c) x = 0.142, t = 4.555 

 

(a) t = –2.274 
Poles located at  
x = 3.737 ± 0.975i 
 
(b) t = –2.019 
Poles located at  
x = –3.894 ± 0.968i 
 
(c) t = 4.555 
Poles located at  
x = 0.142 ± 1.063i 
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Figure 2 – Amplitude of the wave envelope u2 versus x and t for the second order 
rogue wave of the Boussinesq equation, α = β = 0. 

 

 

Figure 3 – Amplitude of the wave envelope u2 versus x and t for the second order 
rogue wave of the Boussinesq equation, α = β =100. 
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The trajectories of the poles reverse direction at a time instant t which physically 

corresponds to the occurrence of maximum displacement (Figure 4). 

 

Figure 4a 

 

Figure 4b 

Figure 4 – Trajectories of the poles for different instants of time (t): (a) Full 
trajectories for all three pairs of poles for Eq. (7b); (b) A high resolution plot 
showing the turning point of the trajectory at Re(x) = –4.857 (at t = –1.257).  
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IV. THE NONLINEAR SCHRӦDINGER EQUATIONS: ASYMMETRIC 

ROGUE WAVES AND COUPLED SYSTEMS 

 The evolution of slowly varying wave packets governed by complex-valued 

nonlinear Schrödinger equations provides yet another encouraging sign for the 

validity of the conjecture. The lowest order rogue wave is discussed in Section II, 

while the second order one is addressed in our earlier paper.15 Here we focus on 

more complicated cases, namely, asymmetric rogue waves and the occurrence of 

such large amplitude modes for coupled systems. 

 

A. Asymmetric rogue waves 

 For the classical nonlinear Schrödinger equation 

iqt + qxx + 2q2q* = 0 ,                                                                                              (8) 

an asymmetric rogue wave is given by18 

22

2

1 ,itFq e
H

æ ö
= +ç ÷
è ø

                                                                                                   (9a) 

3 3 3 4 2 3 5
2

2 2 3 2 4 2 2 4

24 (12 32 12 16 64 8 64 128
48 4 6 160 48 48 2 3 ),

F i t t xt x t t x x t x t t
ix t ix ix it ixt it ix ix

= - - + + - - -

+ - + + - + + -
                           (9b) 
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t x x x x x x

= + - + + - +

+ + - + - + - +
                   (9c) 
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This solution is asymmetric in the x, t plane as both odd and even powers of x and 

t occur (Figure 5). The main local maximum of the rogue wave in the physical 

(real) x, t space is located at  

x = 0.372, t = 0. 

If x in Eq. (9c) is regarded as complex, the poles of q (or zeros of H2) at t = 0 are 

located at   

► –0.142 ± 1.017i , 

► 0.373 ± 0.314i , 

► 1.268 ± 0.797i .  

Again the spatial location of the physical maximum is remarkably close to the 

real part of one of the poles. 

 The trajectories of the poles, namely, locations of zeros of H2 of Eq. (9c) 

provide supporting evidence (Figure 6). There are six branches as there are six 

complex roots for the sixth degree polynomial. The complex numbers where 

these trajectories reverse in direction have real parts very close to the spatial 

locations of the maximum amplitude in the physical space (≈0.373 for the present 

choice of parameters).   
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Figure 5 – Amplitude of the wave envelope |q| versus x and t for an asymmetric 
rogue wave field. 

 
Figure 6 – The trajectories of the poles of the asymmetric rogue wave for 

different values of (time) t. 
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B. Coupled nonlinear Schrödinger equations 

The coupled system for the evolution of slowly varying envelopes A, B  

iAt + Axx + σ(|A|2 + |B|2)A = 0 , iBt + Bxx + σ(|A|2 + |B|2)B = 0 ,                             (10) 

provides an elegant analytical model for many scientific applications (σ = a real 

parameter), e.g. light polarization in media with random birefringence.19,20 

Different families of second order rogue waves have been derived. To illustrate 

the validity of the conjecture, only one particular case is considered here and 

others will be left for future studies.19 It is convenient to define the transformation 

( )1exp gA ikx i t
f

= r - w , ( )2exp hB ikx i t
f

= r - - w ,                         (11) 

with ρ being the amplitude, k, –k, the wave numbers, and ω1 = ω2 = k2 – 2σρ2 the 

frequencies of the background plane waves. In general ω1 ≠ ω2 if there is a group 

velocity mismatch or a difference in background amplitudes. Rogue waves can be 

derived by the Hirota bilinear transform, and details are given in our earlier 

work.21 For simplicity, we shall focus on σ = 1, ρ = 1, k = 1, and lengthy 

expressions for f, g, h are given in the Appendix. The location of the maximum in 

the physical x, t space occurs at  

x = – 0.586, t = – 0.188 and x = 0.586, t = 0.188. 

At t = ± 0.188, the zero of the function f for a complex variable x is situated at 
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– 0.587 ± 0.705i, 0.587 ± 0.705i.  

Again we observe a remarkable coincidence. The wave profile is illustrated in 

Figure 7. The complex numbers where trajectories of the poles reverse direction 

have real parts ±0.587, remarkably close to the spatial locations of the maximum 

displacements (Figure 8). 
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Figure 7 – Amplitude of the wave envelope |q| versus x and t for a symmetric 
second order rogue wave for the coupled system. 

 
 

Figure 8 – The trajectories of the poles of the second order rogue wave for 
different values of (time) t. 
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V. CONCLUSIONS 

 The locations of maximum displacements of rogue waves in the physical space 

might be closely related to the trajectories of the poles of the exact solution, 

assuming that the spatial variable is extended to the complex plane by analytic 

continuation. At the time instant of maximum displacement, the real part of the 

pole is identical or numerically very close to the spatial location in the physical 

space. Examples used here include the second order rogue waves of the 

Boussinesq equation, as well as the asymmetric form of the single component 

Schrödinger equation and the symmetric form of coupled Schrödinger system. 

We conjecture that this property will hold for many other integrable systems too. 

A similar conjecture concerning breathers will need considerations of a periodic 

sequence of poles, as trigonometric and hyperbolic functions are involved. Such 

issues will be left for future studies. 

 Another peculiar feature is that the trajectories of the poles reverse direction at 

the time instant of the occurrence of maximum displacements in the physical 

space. All these properties are especially intriguing, given that the trajectories of 

the poles arise only from a portion of the exact solution, and not from the whole 

mathematical structure of the exact solution itself. If the conjecture proposed here 

is valid, there would be an alternative path in finding the locations and magnitude 
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of the maximum displacements of rogue waves. However, we should also make a 

note of caution. In evolution systems tested so far, occasionally small 

discrepancies between locations of maxima and pole trajectories may exist. 

Naturally we do not expect such a reasonably simple conjecture to work for all 

integrable systems. The search for more elaborate constraints for this conjecture 

to apply will be goals in the near future. 

 

Further investigations and verifications in the future would definitely be 

necessary. Obvious targets will be parallel calculations for the third order rogue 

waves and other evolution systems like the derivative nonlinear Schrödinger 

equations. Additional physical effects might introduce further complexity, e.g. 

delayed feedback control associated with the Lugiato-Lefever equation relevant in 

optical cavity dynamics.22 Rogue waves occur as large intensity pulses in the 

transverse directions in a resonant cavity, with a governing system consisting of 

complex valued envelope with a delay term. It is not known if pole dynamics 

introduced here can be applicable.23 Conceptually, extensions to problems with 

higher dimensions will present challenging issues. These increased degrees of 

freedom might result from transverse diffraction in the two spatial dimensions or 
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chromatic dispersion coefficient of either positive or negative sign.24 Such efforts 

will lead to fruitful works. 
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APPENDIX 

If the complex parameter a ibz = +  is the leading order approximation in the long 

wave expansion for the quartic dispersion relation (S = σρ2 measures the amplitude and 

cubic nonlinearity) of the breather/rogue wave mode of Eqs. (10, 11):21  

ζ4 + 4(S – 2k2)ζ2 + 16 k2(k2 + S) = 0 , a ibz = + , 

then the rogue wave is given by the complicated expressions: 

( )

( ) ( )
( ) ( )
( )
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