
Fernandes, G.P.A. and Derrick, John (1996) Formal Specification of Distributed
Services Management. In: Spaniol, Otto and Linnhoff-Popien, Claudia and
Meyer, Bernd, eds. Trends in Distributed Systems' 96. Verlag der Augustinus
Buchhandlung, Aachen, Germany, pp. 182-196. ISBN 3-86073-473-3.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21332/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21332/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Formal Speci�cation of Distributed Services

Management

G� P� A� Fernandes� and J� Derrick

Computing Laboratory� University of Kent� Canterbury� CT� �NF� UK�
�Email� fgpaf�jd�g	ukc�ac�uk�

Abstract� The importance of network and distributed systems man�
agement to supply and maintain services required by users has led to a
demand for management facilities� The successful implementation and
interoperability of these facilities depends to a large extent on a precise�
but implementation independent� speci�cation of their behaviour� This
paper examines the use of formal techniques to describe managed ob�
jects� We describe a formal speci�cation of a scheduling architecture for
the management of services in a distributed system�

� Introduction

Fully integrated management systems which will cope with management of large�
scale distributed applications and their underlying communication services are
still not available� Such applications require open management to integrate their
components� which may have been obtained from a number of sources� The
creation of open distributed management depends upon there being a common
representation for the resources being managed� This can be achieved by the
creation of a suitable family of managed object de�nitions� This paper presents
a case study in such a de�nition using an object�oriented variant of the formal
technique Z�

The speci�cation we develop is of a distributed systems manager���� whose
main goals are to manage the resources available in order to ful�l the quality of
service 	QoS
 requirements of the application services and to release the appli�
cation programmer from the job of allocating services to nodes� The successful
implementation and interoperability of managed objects such as these depend
to a large extent on a precise 	but implementation independent
 speci�cation
of their behaviour� Formal description techniques 	FDTs
 o�er the promise of
improved quality and cost reduction by removing errors and ambiguities from
the speci�cation and automating aspects of both implementation and testing�
The aim of our work is to test the applicability of FDTs to managed object
speci�cation by formally specifying a realistic and large application�

The paper is structured as follows� in section
 we describe the management
model� section � explains informally the distributed systems manager� the formal
speci�cation is presented in section �� and we conclude in section ��

� Work supported by JNICT Program PRAXIS XXI �Portugal
 under grant No�
BD
����
��

� Management Model

The management model presented in this paper is a distributed object�oriented
model based on the Open Distributed Processing 	ODP
 Reference Model ����
and the OSI management model ��� ��� One of the most important ideas in OSI
Systems Management is the use of object�oriented principles to de�ne manage�
ment information and interfaces� The OSI management model views the devices
in the network that are subject to management as managed objects� Managed
objects in a particular domain are subject to a common management policy�
which consists of a set of rules constraining the behaviour of those objects� The
ability to specify precisely management policies� independent of the implemen�
tation is an important bene�t of formal speci�cation�

Formal description techniques are playing an increasing role within ODP�
and a number of proposals to specify managed objects formally have been made
���� ��� ��� ��� ��� However� existing work in this area has concentrated on small
scale case studies� ��� surveys some of the available techniques� Further work in
the UK has produced guidelines on how to specify managed objects in Z ����� and
derived a method for producing tests derived from these formal speci�cations�
Z ���� is a state based FDT� and Z speci�cations consist of informal English
text interspersed with formal mathematical text� The formal part describes the
abstract state of the system 	including a description of the initial state of the
system
� together with the collection of available operations� which manipulate
the state� Z has proved to be one of the most enduring formal description tech�
niques� and has signi�cant industrial usage and support� Object�Z ��� and ZEST
��
�
� are similar object�oriented extensions of Z� Throughout the paper we
assume the reader is familiar with the Z language�

� The Distributed System Manager

In our architecture� distributed scheduling is used to locate a new application
service on an appropriate node� taking into account the current state of the sys�
tem and the quality of service 	QoS
 requirements of the service� The Distributed
System Manager �DSM� is responsible for taking decisions in order to determine
to which node in the system each service will be allocated� To determine if a node
is suitable to instantiate a service� the DSM compares the QoS requirements of
the service with the resources provided by the node� Placement is based on the
last known state of the system� which is stored by the DSM� and updated by
the monitoring information it receives from node managers� The Node Manager
is an entity local to a node� responsible for the management of that node and
reporting monitoring information to the DSM� The node manager monitors and
controls the services instantiated on the node and collects information about the
resources available�

All newly created services are instantiated by the DSM upon request by the
trader� The trader is an object that provides a service which accepts and stores
service o�ers from potential providers 	servers
 and hands out this information

on request to potential clients� The DSM selects a suitable location for the
service requested and asks the local node manager to instantiate that service�

� Formal Speci�cation

This section illustrates how we have used ZEST to specify the scheduling archi�
tecture� We specify the collection of objects shown in Figure �� The complete
speci�cation� calledMgtSystem� will consist of a number of objects 	DSM � Nodes �
Trader
 with a description of how they interact� To illustrate the speci�cation
of a single object� let us �rst consider the DSM object� We model a managed

MIB

NodeManager

resources

Factory

servers

nm

Node

MIB

alias

table

table

object

DSM

dsmnm

dsmnotify

dsmservice

dsmtrader

dsmadmin

trfed

Trader

Client

trader

Fig� �� The management architecture�

object class by a ZEST class speci�cation which encapsulates a number of �xed
attributes� a state schema declaring the variable attributes� and a collection of
operation schemas� A ZEST object may have several interfaces� and each in�
terface de�nes what is visible at that particular interface of the object� In the
formal speci�cation� the interfaces just serve to document design decisions� and
do not e�ect the semantics of the speci�cation�

Data concerning aliases 	i�e� service descriptions
� objects created and the
results of node monitoring 	the MIB
 are held in the DSM� In our object�oriented
paradigm these are speci�ed as instances of appropriate classes� For example�
the declaration dsm mib � DSM MIB declares dsm mib to be an instance of the

class DSM MIB � which is speci�ed as a ZEST class consisting of the 	complex

data stored in the MIB together with operations to access and update that data�

DSM

interface dsmnm add UpdateNode�NoResources

interface dsmservice add InstallAlias�RemoveAlias� � � �

interface dsmtrader add LookupConstraintsSuccess� LookupConstraintsFailed � � �

interface dsmnotify add CapsuleTerminated

id � DSMId

alias table � DSMTable�Alias�AliasData�

object table � DSMTable�Handle�Noti�cationData�

dsm mib � DSM MIB

INIT

alias table�INIT � object table�INIT � dsm mib�INIT

The ZEST operations come here

The alias table and object table are objects containing abstractions of hash ta�
bles� but storing elements of di�erent types� Z allows for re�use in this situation
by de�ning the DSMTable class in terms of two generic parameters which can be
instantiated with particular types 	Alias � Handle� etc
 in di�ering contexts� The
	unnamed
 state schema contains all the variable attributes 	alias table etc
�
The schema INIT then speci�es the initial state of the DSM� The behaviour
of the DSM is described by specifying ZEST operations� Each ZEST operation
describes how the output is related to the input and how the state changes as a
result of invoking the operation�

The ability to specify policies 	e�g� scheduling or general management poli�
cies
 in a management application is an important area of concern� We illustrate
here how we can specify a scheduling policy as part of a Z operation� Scheduling
is concerned with matching service QoS requirements with resource provision�
For example� consider a distributed system which supports scheduling with re�
spect to storage type and availability� network devices 	including bandwidth etc

and other devices 	e�g� audio� video
� To de�ne the types in Z� we de�ne a QoS
entry to consist of a label 	given by QoSType
 together with actual parameters
specifying the QoS level required� The ServerQoS type represents the sequence
of QoS requirements the service needs in order to be instantiated� For example�
the sequence

hhSTORAGE � hRAM � �ii� hSTORAGE � hCompactDisk � �iii

represents a requirement for a RAM with available storage � and compact disk
with available storage � 	in suitable units
�

We are now in a position to specify a simple node selection policy� The
operation SelectSuitableNodes returns the set of nodes which match all the re�
quirements made by the inputted serverQoS� For each type of QoS require�

ment 	STORAGE � DEVICE etc
 it selects all nodes that meet those partic�
ular requirements� and then forms the intersection over all QoSTypes� To se�
lect nodes that meet particular requirements� the operation invokes operations
	Lookup Storage etc
 within the dsm mib to access information about the nodes�
for example� dsm mib�Lookup Storage returns the set of nodes satisfying the
storage requirements�

SelectSuitableNodes

serverQoS� � ServerQoS

suitableNodes� � P�NMId � IN�AllocationTime

serverQoS � � ServerQoS

match� � Match

suitableNodes� �

fdsm mib�Lookup Storage j hSTORAGE � qosRecordi � ran serverQoS�

�match� � Exact � qosRecord �� � storageType�

�qosRecord �� � storageRequirement� � x � nodeSet � � xg

�

fdsm mib�Lookup Device j hDEVICE � qosRecordi � ran serverQoS�

�match� � Exact � qosRecord �� � deviceType�

�qosRecord �� � deviceRequirement� � x � nodeSet � � xg

�

fdsm mib�Lookup Network j hNETWORK � qosRecordi � ran serverQoS�

�match� � Exact � qosRecord �� � networkType�

�qosRecord �� � networkRequirement� � x � nodeSet � � xg

serverQoS � � serverQoS�

The output of this operation is a set of node identi�ers 	NMId
 together with
a value indicating the current level of resource availability and latest allocation
time� We also output the serverQoS� for reasons we describe below� for a simple
policy this would not be necessary� The predicate in this operation represents
the selection policy of this DSM� It is now a simple matter to specify more
sophisticated policies� which can then be combined using the Z schema calculus
in a rather elegant fashion�

If no node was found that can provide all the QoS requirements speci�ed for a
service 	i�e� suitableNodes � � �
� alternative scheduling policies can be followed�
For example� we can specify a policy to select nodes according to their allocation
time� This policy is applied when the previous policy failed to �nd a collection
of suitable nodes 	i�e� suitableNodes� � �
� Under these circumstances it selects
another set of suitable nodes as output 	suitableNodes � � � � �
� now selected
according to their allocation time� We pass on the inputs as outputs in each
policy so that the policies can be combined by specifying a sequence of policies
composed together�

SelectSuitableNodes o
� Policy� o

� � � �Policyn

This composite policy will implement SelectSuitableNodes �rst� then if and only if
this fails it will try Policy�� then i� this fails it will try Policy� etc� A conjunction

of policies could be speci�ed by Policy� � � � � � Policyn � and the disjunction
allowing alternative strategies to be deployed�

The complete speci�cation 	which is too long to repeat here
 contains de��
nitions of the trader class 	Trader
 and a Nodes class� The interactions between
objects of these classes are given by MgtSystem� We have omitted some of the
operations and the type de�nitions�

MgtSystem

trader � Trader

dsm � DSM

nodes � Nodes

���

NewActivation b�

�DSMCreateNewActSuccesso
�

�PollNodesFailed

��result � � DSMServiceStatus j result � � NoSuitableNode�

��PollNodesSuccesso
�

��InstantiateServiceFailed�

�result � � DSMServiceStatus j result � � FailedToCreateServer �

��InstantiateServiceSuccesso
�

DSMLookupUpdate�

�result � � DSMServiceStatus j result � � DSMServiceSuccess�

TraderLookup b� trader �Lookup

RequestService b�

TraderLookup o
�
�DSMLookupConstraintso

�

�DSMCreateNewActFailed �NewActivation

��DSMReturnExistingAct�

�result � � DSMServiceStatus j result � � DSMServiceSuccess�

This class contains an object of type Trader� a distributed systems manager 	i�e�
an object of type DSM
 together with a set of nodes being managed 	Nodes

on which services can be scheduled� Operations are de�ned in MgtSystem which
describe how objects in the class interact and communicate�

The transaction corresponding to a sequence of operations that need to be
performed in order to provide a service requested by a client is speci�ed by the
MgtSystem RequestService operation� Communication in Object�Z�ZEST is il�
lustrated using the operator o

�� It is left to right and hidden� outputs of the left
operand equate to inputs of the right operand with the same basename 	i�e� ig�
noring � and �
 and both are hidden ���� A client may request a service by calling
the operation Lookup provided by the trader� The trader recognises the service
o�er as a proxy and forwards the request to the DSM calling its LookupCon�
straints operation� This operation looks up in the alias table the alias speci�ed
whose properties match the constraints speci�ed by the input� An activation is
an instance of the service described by the alias� If there are no activations for

that alias or the limit of activations has not been reached yet� a new activation
is allowed� DSMCreateNewActFailed speci�es the situation where no suitable
node was found to allocate the new activation� and DSMCreateNewActSuccess
speci�es when at least one suitable node was found� The last case is speci�ed by
NewActivation� The suitable nodes are polled to check if they can still provide
the speci�ed requirements� PollNodesFailed speci�es when none of the nodes
can provide the requirements while PollNodesSuccess returns the most suitable
node of those polled� The new activation is allocated to this node by calling the
operation Instantiate on its local node manager� The node manager may not
succeed to create the new server 	speci�ed by InstantiateServiceFailed
� other�
wise the information stored in the DSM is updated by DSMLookupUpdate with
the information returned by InstantiateServiceSuccess after creating the new
activation� When the activations limit for an alias has already been reached� a
reference to one of the existing activations can be returned to the client� This
behaviour is speci�ed in DSMReturnExistingAct�

In this fashion the schema calculus can be used to mirror the structure of a
potential implementation� yet remain at a suitable level of abstraction�

� Conclusions

No design notation is perfect� and Z su�ers from its idiosyncrasies� However�
for this type of speci�cation it o�ers the correct level of abstraction and suit�
able facilities� Z seems to o�er particular advantages for the speci�cation of
managed objects� In particular� managed object de�nitions involve heavy use of
state making a state based language particularly suitable� Complex sequences of
manipulations of state can be succinctly represented using the schema calculus
	e�g� by specifying sequencing using o

� or composition using conjunction
� Using a
process algebra� such as LOTOS ��� would be feasible but� with emphasis on the
above aspects 	particularly the need to specify state
� more clumsy� When spec�
ifying the interaction of more than one managed object 	e�g� the DSM and Node
Manager
 it is necessary to be able to specify communication between objects�
Using Z would not be su�cient here as it has no standard way of expressing com�
munication 	or concurrency
� however� both object�oriented variants ZEST and
Object�Z o�er similar support for describing communication between objects�

Many of the case studies using object�oriented variants of Z have been un�
dertaken by the designers of the languages� part of our aim was to test the ap�
plicability of these techniques when not versed in the subtleties of the language�
To that extent the application was a success� The designer of the scheduling
architecture 	the �rst named author
 found the language a reasonably natural
vehicle to express an abstraction of the implementation�

The speci�cation in this paper is currently being implemented in ANSA� Once
completed we plan to test the implementation with tests generated from the
formal speci�cation according to the guidelines developed in ����� The method
developed in ���� does not support automatic test generation� but heuristics
provide a means to derive a complete and orthogonal collection of tests�

References

�� T� Bolognesi and E� Brinksma� Introduction to the ISO Speci�cation Language
LOTOS� Computer Networks and ISDN Systems� ����
������� �����

�� E� Cusack and G� H� B� Rafsanjani� ZEST� In S� Stepney� R� Barden� and
D� Cooper� editors� Object Orientation in Z� Workshops in Computing� pages ����
���� Springer�Verlag� �����

�� J� Derrick� P�F� Linington� and S�J� Thompson� Formal description techniques for
object management� In A� S� Sethi� Y� Raynaud� and F� Faure�Vincent� editors�
Fourth IFIP�IEEE International Symposium on Integrated Network Management
�ISINM ����� pages �������� Chapman and Hall� May �����

�� R� Duke� G� Rose� and G� Smith� Object�Z� A speci�cation language advocated
for the description of standards� Computer Standards and Interfaces� �����������
September �����

�� G� P� A� Fernandes and I� A� Utting� An Object�Oriented Model for Management
of Services in a Distributed System� To appear in the ECOOP��� workshop on
Object Oriented Technology for Service and Network Management� �����

�� ISO
IEC ������ Information Technology 	 Open Systems Interconnection 	 Sys	
tems Management Overview� �����

�� ISO
IEC ������ j CCITT REC� X����� Information Processing Systems 	 Open
Systems Interconnection 	 Basic Reference Model 	 Part
� Management Frame	
work� �����

�� ISO
IEC JTC�
SC��
WG� ������� �X����
� Information Technology 	 Open Sys	
tems Interconnection 	 Structure of Management Information 	 Part
� Guidelines
for the De�nition of Managed Objects� �����

�� ISO
IEC JTC�
SC��
WG� N����� Liaison to CCITT SG VII concerning the use
of Formal Techniques for the speci�cation of Managed Objects� December �����

��� ITU Recommendation X�������� � ISO
IEC ����� ���� Open Distributed Pro	
cessing 	 Reference Model 	 Parts �	
� July �����

��� N D North� RSL speci�cation of the log managed object� Technical report� Na�
tional Physical Laboratory� UK� �����

��� G� H� B� Rafsanjani� ZEST � Z Extended with Structuring� A users�s guide� Tech�
nical report� British Telecom� June �����

��� S� Rudkin� Modelling information objects in Z� In J� de Meer� V� Heymer� and
R� Roth� editors� IFIP TC
 International Workshop on Open Distributed Process	
ing� pages �������� Berlin� Germany� September ����� North�Holland�

��� L� Simon and L� S� Marshall� Using VDM to specify OSI managed objects� In
K R Parker and G A Rose� editors� Formal Description Techniques ����� North
Holland� �����

��� J� M� Spivey� The Z notation� A reference manual� Prentice Hall� �����
��� S� Stepney� Testing as Abstraction� In J� P� Bowen and M� G� Hinchey� editors�

Ninth Annual Z User Workshop� LNCS ���� pages �������� Limerick� September
����� Springer�Verlag�

��� C� Wezeman and A� J� Judge� Z for managed objects� In J� P� Bowen and J� A�
Hall� editors� Eighth Annual Z User Workshop� pages �������� Cambridge� July
����� Springer�Verlag�

��� H� B� Zadeh� Using ZEST for Specifying Managed Objects� Technical report�
British Telecom� January �����

This article was processed using the LATEX macro package with LLNCS style

