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Abstract� The importance of network and distributed systems man�
agement to supply and maintain services required by users has led to a
demand for management facilities� The successful implementation and
interoperability of these facilities depends to a large extent on a precise�
but implementation independent� speci�cation of their behaviour� This
paper examines the use of formal techniques to describe managed ob�
jects� We describe a formal speci�cation of a scheduling architecture for
the management of services in a distributed system�

� Introduction

Fully integrated management systems which will cope with management of large�
scale distributed applications and their underlying communication services are
still not available� Such applications require open management to integrate their
components� which may have been obtained from a number of sources� The
creation of open distributed management depends upon there being a common
representation for the resources being managed� This can be achieved by the
creation of a suitable family of managed object de�nitions� This paper presents
a case study in such a de�nition using an object�oriented variant of the formal
technique Z�

The speci�cation we develop is of a distributed systems manager���� whose
main goals are to manage the resources available in order to ful�l the quality of
service 	QoS
 requirements of the application services and to release the appli�
cation programmer from the job of allocating services to nodes� The successful
implementation and interoperability of managed objects such as these depend
to a large extent on a precise 	but implementation independent
 speci�cation
of their behaviour� Formal description techniques 	FDTs
 o�er the promise of
improved quality and cost reduction by removing errors and ambiguities from
the speci�cation and automating aspects of both implementation and testing�
The aim of our work is to test the applicability of FDTs to managed object
speci�cation by formally specifying a realistic and large application�

The paper is structured as follows� in section 
 we describe the management
model� section � explains informally the distributed systems manager� the formal
speci�cation is presented in section �� and we conclude in section ��
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� Management Model

The management model presented in this paper is a distributed object�oriented
model based on the Open Distributed Processing 	ODP
 Reference Model ����
and the OSI management model ��� ��� One of the most important ideas in OSI
Systems Management is the use of object�oriented principles to de�ne manage�
ment information and interfaces� The OSI management model views the devices
in the network that are subject to management as managed objects� Managed
objects in a particular domain are subject to a common management policy�
which consists of a set of rules constraining the behaviour of those objects� The
ability to specify precisely management policies� independent of the implemen�
tation is an important bene�t of formal speci�cation�

Formal description techniques are playing an increasing role within ODP�
and a number of proposals to specify managed objects formally have been made
���� ��� ��� ��� ��� However� existing work in this area has concentrated on small
scale case studies� ��� surveys some of the available techniques� Further work in
the UK has produced guidelines on how to specify managed objects in Z ����� and
derived a method for producing tests derived from these formal speci�cations�
Z ���� is a state based FDT� and Z speci�cations consist of informal English
text interspersed with formal mathematical text� The formal part describes the
abstract state of the system 	including a description of the initial state of the
system
� together with the collection of available operations� which manipulate
the state� Z has proved to be one of the most enduring formal description tech�
niques� and has signi�cant industrial usage and support� Object�Z ��� and ZEST
��
� 
� are similar object�oriented extensions of Z� Throughout the paper we
assume the reader is familiar with the Z language�

� The Distributed System Manager

In our architecture� distributed scheduling is used to locate a new application
service on an appropriate node� taking into account the current state of the sys�
tem and the quality of service 	QoS
 requirements of the service� The Distributed
System Manager �DSM� is responsible for taking decisions in order to determine
to which node in the system each service will be allocated� To determine if a node
is suitable to instantiate a service� the DSM compares the QoS requirements of
the service with the resources provided by the node� Placement is based on the
last known state of the system� which is stored by the DSM� and updated by
the monitoring information it receives from node managers� The Node Manager
is an entity local to a node� responsible for the management of that node and
reporting monitoring information to the DSM� The node manager monitors and
controls the services instantiated on the node and collects information about the
resources available�

All newly created services are instantiated by the DSM upon request by the
trader� The trader is an object that provides a service which accepts and stores
service o�ers from potential providers 	servers
 and hands out this information



on request to potential clients� The DSM selects a suitable location for the
service requested and asks the local node manager to instantiate that service�

� Formal Speci�cation

This section illustrates how we have used ZEST to specify the scheduling archi�
tecture� We specify the collection of objects shown in Figure �� The complete
speci�cation� calledMgtSystem� will consist of a number of objects 	DSM � Nodes �
Trader
 with a description of how they interact� To illustrate the speci�cation
of a single object� let us �rst consider the DSM object� We model a managed
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Fig� �� The management architecture�

object class by a ZEST class speci�cation which encapsulates a number of �xed
attributes� a state schema declaring the variable attributes� and a collection of
operation schemas� A ZEST object may have several interfaces� and each in�
terface de�nes what is visible at that particular interface of the object� In the
formal speci�cation� the interfaces just serve to document design decisions� and
do not e�ect the semantics of the speci�cation�

Data concerning aliases 	i�e� service descriptions
� objects created and the
results of node monitoring 	the MIB
 are held in the DSM� In our object�oriented
paradigm these are speci�ed as instances of appropriate classes� For example�
the declaration dsm mib � DSM MIB declares dsm mib to be an instance of the



class DSM MIB � which is speci�ed as a ZEST class consisting of the 	complex

data stored in the MIB together with operations to access and update that data�

DSM

interface dsmnm add UpdateNode�NoResources

interface dsmservice add InstallAlias�RemoveAlias� � � �

interface dsmtrader add LookupConstraintsSuccess� LookupConstraintsFailed � � �

interface dsmnotify add CapsuleTerminated

id � DSMId

alias table � DSMTable�Alias�AliasData�

object table � DSMTable�Handle�Noti�cationData�

dsm mib � DSM MIB

INIT

alias table�INIT � object table�INIT � dsm mib�INIT

The ZEST operations come here

The alias table and object table are objects containing abstractions of hash ta�
bles� but storing elements of di�erent types� Z allows for re�use in this situation
by de�ning the DSMTable class in terms of two generic parameters which can be
instantiated with particular types 	Alias � Handle� etc
 in di�ering contexts� The
	unnamed
 state schema contains all the variable attributes 	alias table etc
�
The schema INIT then speci�es the initial state of the DSM� The behaviour
of the DSM is described by specifying ZEST operations� Each ZEST operation
describes how the output is related to the input and how the state changes as a
result of invoking the operation�

The ability to specify policies 	e�g� scheduling or general management poli�
cies
 in a management application is an important area of concern� We illustrate
here how we can specify a scheduling policy as part of a Z operation� Scheduling
is concerned with matching service QoS requirements with resource provision�
For example� consider a distributed system which supports scheduling with re�
spect to storage type and availability� network devices 	including bandwidth etc

and other devices 	e�g� audio� video
� To de�ne the types in Z� we de�ne a QoS
entry to consist of a label 	given by QoSType
 together with actual parameters
specifying the QoS level required� The ServerQoS type represents the sequence
of QoS requirements the service needs in order to be instantiated� For example�
the sequence

hhSTORAGE � hRAM � �ii� hSTORAGE � hCompactDisk � �iii

represents a requirement for a RAM with available storage � and compact disk
with available storage � 	in suitable units
�

We are now in a position to specify a simple node selection policy� The
operation SelectSuitableNodes returns the set of nodes which match all the re�
quirements made by the inputted serverQoS� For each type of QoS require�



ment 	STORAGE � DEVICE etc
 it selects all nodes that meet those partic�
ular requirements� and then forms the intersection over all QoSTypes� To se�
lect nodes that meet particular requirements� the operation invokes operations
	Lookup Storage etc
 within the dsm mib to access information about the nodes�
for example� dsm mib�Lookup Storage returns the set of nodes satisfying the
storage requirements�

SelectSuitableNodes

serverQoS� � ServerQoS

suitableNodes� � P�NMId � IN�AllocationTime


serverQoS � � ServerQoS

match� � Match

suitableNodes� �

fdsm mib�Lookup Storage j hSTORAGE � qosRecordi � ran serverQoS�

�match� � Exact � qosRecord �� � storageType�

�qosRecord �� � storageRequirement� � x � nodeSet � � xg

�

fdsm mib�Lookup Device j hDEVICE � qosRecordi � ran serverQoS�

�match� � Exact � qosRecord �� � deviceType�

�qosRecord �� � deviceRequirement� � x � nodeSet � � xg

�

fdsm mib�Lookup Network j hNETWORK � qosRecordi � ran serverQoS�

�match� � Exact � qosRecord �� � networkType�

�qosRecord �� � networkRequirement� � x � nodeSet � � xg

serverQoS � � serverQoS�

The output of this operation is a set of node identi�ers 	NMId
 together with
a value indicating the current level of resource availability and latest allocation
time� We also output the serverQoS� for reasons we describe below� for a simple
policy this would not be necessary� The predicate in this operation represents
the selection policy of this DSM� It is now a simple matter to specify more
sophisticated policies� which can then be combined using the Z schema calculus
in a rather elegant fashion�

If no node was found that can provide all the QoS requirements speci�ed for a
service 	i�e� suitableNodes � � �
� alternative scheduling policies can be followed�
For example� we can specify a policy to select nodes according to their allocation
time� This policy is applied when the previous policy failed to �nd a collection
of suitable nodes 	i�e� suitableNodes� � �
� Under these circumstances it selects
another set of suitable nodes as output 	suitableNodes � � � � �
� now selected
according to their allocation time� We pass on the inputs as outputs in each
policy so that the policies can be combined by specifying a sequence of policies
composed together�

SelectSuitableNodes o
� Policy� o

� � � �Policyn

This composite policy will implement SelectSuitableNodes �rst� then if and only if
this fails it will try Policy�� then i� this fails it will try Policy� etc� A conjunction



of policies could be speci�ed by Policy� � � � � � Policyn � and the disjunction
allowing alternative strategies to be deployed�

The complete speci�cation 	which is too long to repeat here
 contains de��
nitions of the trader class 	Trader
 and a Nodes class� The interactions between
objects of these classes are given by MgtSystem� We have omitted some of the
operations and the type de�nitions�

MgtSystem

trader � Trader

dsm � DSM

nodes � Nodes

���

NewActivation b�

�DSMCreateNewActSuccesso
�

�PollNodesFailed

��result � � DSMServiceStatus j result � � NoSuitableNode�


��PollNodesSuccesso
�

��InstantiateServiceFailed�

�result � � DSMServiceStatus j result � � FailedToCreateServer �


��InstantiateServiceSuccesso
�

DSMLookupUpdate�

�result � � DSMServiceStatus j result � � DSMServiceSuccess�





TraderLookup b� trader �Lookup

RequestService b�

TraderLookup o
�
�DSMLookupConstraintso

�

�DSMCreateNewActFailed �NewActivation

��DSMReturnExistingAct�

�result � � DSMServiceStatus j result � � DSMServiceSuccess�




This class contains an object of type Trader� a distributed systems manager 	i�e�
an object of type DSM 
 together with a set of nodes being managed 	Nodes

on which services can be scheduled� Operations are de�ned in MgtSystem which
describe how objects in the class interact and communicate�

The transaction corresponding to a sequence of operations that need to be
performed in order to provide a service requested by a client is speci�ed by the
MgtSystem RequestService operation� Communication in Object�Z�ZEST is il�
lustrated using the operator o

�� It is left to right and hidden� outputs of the left
operand equate to inputs of the right operand with the same basename 	i�e� ig�
noring � and �
 and both are hidden ���� A client may request a service by calling
the operation Lookup provided by the trader� The trader recognises the service
o�er as a proxy and forwards the request to the DSM calling its LookupCon�
straints operation� This operation looks up in the alias table the alias speci�ed
whose properties match the constraints speci�ed by the input� An activation is
an instance of the service described by the alias� If there are no activations for



that alias or the limit of activations has not been reached yet� a new activation
is allowed� DSMCreateNewActFailed speci�es the situation where no suitable
node was found to allocate the new activation� and DSMCreateNewActSuccess
speci�es when at least one suitable node was found� The last case is speci�ed by
NewActivation� The suitable nodes are polled to check if they can still provide
the speci�ed requirements� PollNodesFailed speci�es when none of the nodes
can provide the requirements while PollNodesSuccess returns the most suitable
node of those polled� The new activation is allocated to this node by calling the
operation Instantiate on its local node manager� The node manager may not
succeed to create the new server 	speci�ed by InstantiateServiceFailed
� other�
wise the information stored in the DSM is updated by DSMLookupUpdate with
the information returned by InstantiateServiceSuccess after creating the new
activation� When the activations limit for an alias has already been reached� a
reference to one of the existing activations can be returned to the client� This
behaviour is speci�ed in DSMReturnExistingAct�

In this fashion the schema calculus can be used to mirror the structure of a
potential implementation� yet remain at a suitable level of abstraction�

� Conclusions

No design notation is perfect� and Z su�ers from its idiosyncrasies� However�
for this type of speci�cation it o�ers the correct level of abstraction and suit�
able facilities� Z seems to o�er particular advantages for the speci�cation of
managed objects� In particular� managed object de�nitions involve heavy use of
state making a state based language particularly suitable� Complex sequences of
manipulations of state can be succinctly represented using the schema calculus
	e�g� by specifying sequencing using o

� or composition using conjunction
� Using a
process algebra� such as LOTOS ��� would be feasible but� with emphasis on the
above aspects 	particularly the need to specify state
� more clumsy� When spec�
ifying the interaction of more than one managed object 	e�g� the DSM and Node
Manager
 it is necessary to be able to specify communication between objects�
Using Z would not be su�cient here as it has no standard way of expressing com�
munication 	or concurrency
� however� both object�oriented variants ZEST and
Object�Z o�er similar support for describing communication between objects�

Many of the case studies using object�oriented variants of Z have been un�
dertaken by the designers of the languages� part of our aim was to test the ap�
plicability of these techniques when not versed in the subtleties of the language�
To that extent the application was a success� The designer of the scheduling
architecture 	the �rst named author
 found the language a reasonably natural
vehicle to express an abstraction of the implementation�

The speci�cation in this paper is currently being implemented in ANSA� Once
completed we plan to test the implementation with tests generated from the
formal speci�cation according to the guidelines developed in ����� The method
developed in ���� does not support automatic test generation� but heuristics
provide a means to derive a complete and orthogonal collection of tests�
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