
An Architecture for Scheduling of Services in a Distributed

System

G� P� A� Fernandes�and I� A� Utting

Computing Laboratory� University of Kent� Canterbury� Kent CT� �NF� UK

Tel� ��� 	��� �
���� x����� Fax� ��� 	��� �
�
		

email� fgpaf�iaug�ukc�ac�uk

Abstract

Advances in technology� giving increasing importance to information service networks� and

the increasing use of personal workstations are two factors which permit the construction of

distributed applications running on a large set of interconnected systems� Existing frame�

works for the development of distributed applications only provide for manual scheduling of

application services� in particular there are no policies provided to distribute the load of the

system across its nodes� This paper presents an architecture for the scheduling of services

in a distributed system� that incorporates policies to enable distribution of load among the

nodes of the system� A scheduling scheme and an infrastructure to support scheduling are

also discussed�

Keywords� management� scheduling� load distributing� ODP� distributed systems

� Introduction

Distributed computing systems are becoming critical for the working of many enterprises�

These are expected to contribute to the �nancial and operational well�being of the organisations

which rely on them� Management of these heterogeneous hardware and software environments�

in order to supply and maintain the services required� is one of the most di�cult problems facing

computer users today�

Distributed systems are composed of a large number of autonomous processors� each having

its own local resources� These systems promise high performance� availability and extensibility

at low cost� The total computing capacity of such a system can be many times greater than

conventional computing systems� However� to realize these bene�ts� a good load�distributing

scheme is essential in order to allocate the considerable processing capacity available so that it

is used to its fullest advantage� Load distributing attempts to improve system performance by

redistributing the workload submitted to the system by its users and fully utilise the available

computing resources�

�Work supported by JNICT Program PRAXIS XXI �Portugal� under grant No� BD����	�
�

�



Di�erent platforms are now available for building distributed applications 	e�g� APM
sANSA�

ware�OMG
s CORBA and OSF DCE�� however� these platforms do not provide facilities for auto�

matic management of those applications� In particular� performance management by distributing

the load across the nodes of the distributed system is not included� When a new instance of a

service is created� it is located on a node statically determined without regard to system
s perfor�

mance� The system may end up with some of its nodes overloaded� while others are idle or with a

very small amount of processing� Furthermore� it is the service
s developer or the service
s client

responsibility to choose a node to locate a server for that service� To fully realise the bene�ts of

distributed platforms� the node where services are created should be transparent to the user of

the platform� and its selection based on the system state�

This paper presents a management infrastructure suitable for scheduling and distributing ser�

vices across the nodes of a distributed system� The main goal is to optimise the use of resources�

improving overall performance of servers� applications and distributed systems� Besides trying

to improve the system
s performance by distributing the load� the infrastructure must be able to

manage the resources available in order to ful�l the requirements of the application services� An�

other bene�t of this approach is to release the application programmer from the job of allocating

services to nodes� providing a degree of transparency to the existence of several nodes�

Section � presents a short survey of load distributing strategies� A very brief overview of

ANSAware� the platform chosen to demonstrate the infrastructure� is given in section 
� The

proposed management model is described in section �� Section � introduces work related to the

area� Finally� conclusions and some issues for future work are discussed�

� Load Distributing strategies

Initial work in load distributing concentrated on designing strategies to allocate user processes

to processors in a static manner� prior to execution� These algorithms require prior knowledge

of processes behaviour� and may take poor assignment decisions as the state of the nodes in the

system is not considered when making such decisions�

Dynamic algorithms can outperform static algorithms by using system�state information to

improve the quality of their decisions� A load�distributing algorithm must ensure that it has a

reasonably up�to�date view of the system
s state� This could be achieved by using a centrally�

located allocator processor 	Zhou ������ which would periodically be sent load information from

all other processors and would make decisions based on the last�known state of the system� This

central component introduces a potential bottleneck� limiting the scale of the managed system�

Thus� a fully�distributed solution is favoured� This approach adds complexity to the system

in dealing with possibly out�of�date information� On the other hand� care must be taken that

cooperation between di�erent processors does not overload the communications mechanism used

to exchange load information�

A dynamic load�distributing algorithm has several components 	Harget and Johnson �����

Shivaratri� Krueger and Singhal ������

� Information policy� an information policy decides when� where and which information about

the state of nodes in the system is to be collected� Load measurement is calculated locally

�



on each machine 	generating a load index for the machine�� and then communicated through

the network to its peers� Information accuracy must be su�cient to minimise the impact

of out�of�date state information� however� frequent load information exchange will introduce

additional overheads� leading to performance degradation 	Harget and Johnson ������

� Transfer policy� determines whether a node is suitable to participate in a task transfer�

either as a sender or a receiver� Many proposed policies are based on thresholds� When a

new task originates at a node� if the load at that node exceeds a given threshold the node

becomes a sender� On the other hand� if the load falls below another given threshold� the

node can be a receiver for a remote task� An alternative to threshold policies are relative

transfer policies which consider the load on a node in relation to the loads on other system

nodes�

� Selection policy� once the transfer policy decides that a node is a sender� a selection policy

selects a task for transfer� The simplest approach is to select one of the newly originated

tasks� This type of migration is called non�preemptive� since it involves only tasks that

have not begun execution� On the other hand� preemptive migration involves transferring

a partially executed task� The need for collecting the task
s state and transferring it to the

receiver makes preemptive transfers complex and expensive� Although preemptive migration

adapts more quickly to changes in processor load� this overhead means that it is not often

used for load sharing�

� Location policy� the responsibility of a location policy is to �nd a suitable transfer partner

	sender or receiver� for a node� once the transfer policy has decided that the node is a sender

or a receiver� Polling is the most commonly used decentralised policy� A node polls another

node 	or several nodes� to �nd out whether it is suitable for load sharing� In a centralised

policy� a node contacts a speci�ed node� which acts as a coordinator� to locate a suitable

node for load sharing� This coordinator collects information about the system 	coordinated

by an information policy� and the transfer policy uses this information at the coordinator

to select receivers�

Adaptive algorithms are a special class of dynamic algorithms� They adapt their activities by

dynamically changing their parameters� or even their policies� to suit the changing system state�

Even when the system is uniformly so heavily loaded that no performance advantage can be gained

by transferring tasks� a non�adaptive dynamic algorithm might continue operating� thus incurring

overhead� To avoid overloading such a system� an adaptive algorithm might instead reduce its

load�distributing activity when it observes this condition�

� ANSAware overview

The design of the model presented in this paper was based on the Open Distributed Processing

	ODP� Reference Model 	ISO ����a� and onANSA 	Advanced Networked Systems Architecture��

an architecture closely related to this model� The distributed system manager model described in

this paper is currently being implemented in ANSAware 	APM ����� APM ����a� APM ����b�� a






framework that implements the ANSA architecture and supports the development of distributed

applications� Although ANSAware does not provide a management system� it includes some

mechanisms which can be used for management implementation�

A typical distributed application is constructed from several cooperating objects� The basic

building block of ANSA is a service� A service is an information handling function for the

processing� storage� or transfer of information� A service is provided at an interface� Objects that

use a service are called clients� objects that provide a service are called servers� An object can

be both client and server of many services simultaneously� Services are divided into application

services� which are speci�c to the task to be performed by the application 	e�g� booking service

for airline reservations� and architectural services which are generic to a wide range of tasks and

have been identi�ed by ANSA 	e�g� trading service��

A capsule is the unit of autonomous operation in ANSAware� It is a collection of zero or more

objects� Every object is instantiated within a capsule� An object is a collection of zero or more

interfaces� that allow clients access to the service	s� provided by that object� An interface is a

collection of zero or more operations and an operation is a speci�cation of argument and result

types� together with an implementation�

The trader is an object that provides a service which accepts and stores service o�ers from

potential providers and hand out this information on request to potential clients� Servers that wish

to advertise the services they provide� may do so by exporting them 	registering their interface

instances with appropriate attributes� to the trader� Clients may locate the services which they

intend to use by importing o�ers 	looking up interface instances� from the trader�

The factory provides a service for the dynamic creation and destruction of capsules� Once a

capsule has been created� it in turn provides a service for the creation and destruction of objects

within itself� and the creation and destruction of interfaces within an object� The node manager

is a service responsible for the creation� simple monitoring and destruction of services on a single

node� By using the local factory� it provides mechanisms for the static and dynamic creation of

capsules and objects� The node manager also includes a database for monitoring and managing

the services instantiated� This database contains a description of each service� identi�ed by an

alias� Each alias can be given various attributes that specify how it is to be managed� Once an

alias for a given service has been installed in the node manager� the service may be activated 	a

service instance created� statically� as a result of an invocation from the command line of the node

manager RunAlias operation� or dynamically� in response to an import of a previously posted

proxy o�er�

� A Distributed System Manager

In this section we present a model for management of distributed systems� addressing in par�

ticular the issue of distributing the workload submitted to a distributed system by its users�

Distributed scheduling is used in order to locate a new service on the most appropriate node�

taking into account the current state of the system and the quality of service 	QoS� requirements

of the service�

�



��� Monitoring

The state of a distributed system must be observed� in order to make appropriate service

allocation decisions and adapt these decisions to changes in the state of the system� Monitoring is

an essential means for obtaining the information required about the components of a distributed

system� It can be de�ned as the process of dynamic collection� interpretation and presentation of

information concerning objects or software processes under scrutiny 	Sloman and Mo�ett ������

A centrally�located allocator � Distributed System Manager �DSM� � is responsible for taking

decisions in order to determine to which node in the system each service will be allocated� To

determine if a node is suitable to instantiate a service� the DSM has to compare the QoS require�

ments of the service with the resources provided by the node� Information about the resources

available on each node is gathered� This information includes load indexes giving� for instance�

the amount of processing provided by the node� memory available and communication bandwidth�

Information concerning speci�c hardware devices could also be collected� For instance� a multi�

media service that requires some media device 	e�g� an ATM host adapter� should be instantiated

in a node that provides that facility�

The DSM makes placement decisions based on its last known state of the system� This

information� stored by the DSM� is updated by the monitoring information it receives from node

managers� The Node Manager is an entity local to a node� responsible for the management of that

node and reporting monitoring information to the DSM� The node manager monitors and controls

the services instantiated on the node and collects information about the resources available�

��� Scheduling

The scheduling strategy implemented is controlled by the DSM� This strategy is composed

of an algorithm and input parameters to this algorithm� The parameters can be changed by an

administrator� according to the priority that wants to be given by the DSM to certain resources

when distributing the load� A scheduling algorithm must have a reasonably up�to�date view of

the system
s state� Having the DSM as a central unit� to which monitoring information is sent

by all node managers in the system� can create a bottleneck in the DSM� This overhead can be

reduced by sending load information to the DSM on demand�

Demand�driven information transfer also brings other bene�ts� Not all the node managers

have to be polled� thus reducing communication overhead� When the DSM is �rst started� it

polls all nodes under its control and uses the information received to initialise the monitoring

information it stores concerning the load of nodes� After initialisation� the DSM issues requests

for monitoring information only when it is trying to �nd a suitable location for a service� In this

way� the information the DSM has about the load on the node it chooses to allocate a service

to is always updated just before the allocation� Considering the service requirements� the DSM

selects the nodes that can satisfy those requirements� and polls those which were less loaded the

last time the monitoring information was updated� to check if they are still able to provide the

same resources� However� if a long time elapses since the last request to activate a service� a node

that was heavily loaded and had no more activations allocated to it might now be less loaded�

�



Thus� it may be worth taking that into account and polling that node too� To implement such

policy� the DSM stores service history� After receiving the information from the polled nodes� the

DSM selects the one that best satis�es the service requirements� If the optimum QoS level cannot

be granted� the DSM has to notify the client that requested the service and eventually negotiate

new QoS settings�

A purely centralised solution is not very reliable� since the failure of the central entity could

cause failure of the entire management system� A solution to this problem may be based on the

approach used in MICROS for processor allocation 	Tanenbaum ������ Instead of having one

single entity responsible for global management� as in a centralised approach� there could be a

federation of managers� each responsible for a group of nodes�

All newly created services are instantiated by the DSM upon request by the trader� Then� the

DSM selects a suitable location for the service and asks the local node manager to instantiate that

service� The management interactions between the DSM and the node manager are illustrated in

�gure ��

Node
Manager

Management

Interface

Management
Interface

Monitoring
Interface

Monitoring

Interface

DSM

Figure �� Management interactions�

Once services have been instantiated� preemptive migration could be considered for dynamic

load balancing� but the costs associated with this operation would have to be accounted for� When

an overloaded node is running out of resources� the local node manager may issue an alarm to

inform the DSM� TheDSM would then have to decide whether or not a service should be migrated

from that node�

��� Infrastructure

Some of the concepts used in this section to describe an infrastructure for the management of

a distributed system were adopted from ANSAware� In order to support the next generation of

distributed systems� and in particular to ensure interoperability� the infrastructure is presented in

the computational viewpoint of the ODP Reference Model�

There is a node manager on each node� responsible for managing that node and reporting

information to a DSM� The node manager is an extension of ANSAware
s node manager� with

�



some alterations to overcome the limitations of that service in the area of system performance

monitoring and load�distributing decisions�

In order to be managed� all services must be started dynamically via theDSM� InANSAware
s

node manager� aliases for each service are installed statically from the command line� Once

installed� these services may be statically or dynamically started via the node manager� This idea

was adapted for the DSM� requiring dynamic installation of aliases through the invocation of an

operation on a service interface of the DSM� The installation of aliases is in this case a function

of the DSM and not of the node manager� After aliases have been installed� the DSM posts

proxies for the services with the trader and instantiates them dynamically whenever a client tries

to import them�

When a client asks the trader for a service� the reference in the trader for that service is a

proxy exported by the DSM� The actual activation�deactivation of a service in a node is the

responsibility of the factory local to that node�

The procedure for activating a service is illustrated in �gure ��

Node

Manager
Factory

Trader

Client
"Object
Creator"

Object

New

Object

1

2

3

4

5

67

8

9

DSM

Figure �� Activation of a service�

When a client needs a service� it tries to import a reference to that service from the trader

	��� The trader recognises the o�er as a proxy and forwards the import to the DSM 	��� The

DSM selects a suitable node on which to instantiate the service and asks the corresponding node

manager to instantiate it 	
�� The node manager asks the factory to create a server capsule

	��� The factory instantiates the capsule and returns its interface reference to the node manager

	��� The node manager calls an operation on the capsule interface to instantiate the object that

provides the service required 	��� Once the service has been instantiated� it exports itself to the

trader 	��� The trader returns the reference received from the service to the client 	��� The client

can now interact with the service 	���

�



When a node is running out of resources� it may issue an alarm to inform the DSM� The

DSM may then decide to passivate 	the server is terminated and a snapshot is stored so the server

can be later re�activated� or migrate one of the services that have been activated in that node�

Another situation where passivation could be considered is when a high�priority service activation

is requested and a suitable node cannot be found� It may be necessary to passivate a lower�priority

service in order to provide the resources required by the high�priority service�

� Related Work

There has been a lot of research on the conceptual basis and description of a management

architecture for the design of a distributed management system 	IDSM and Sysman ���
� Sloman�

Magee� Twidle and Kramer ���
a�� The emphasis� in this architecture� is on the use of domains

to group managed objects and partition the management structure to cope with very large scale

inter�organisational distributed systems�

A number of organisations� namely X�Open� IEEE POSIX and NMF� are trying to de�ne

frameworks to integrate management� The majority of work is still focused on the de�nition

of objectives and requirements 	Hungate and Fernandes ������ However� an Open Distributed

Management Architecture 	ODMA� 	ISO ����b� is already being developed by ISO as a speci�c

interpretation of the ODP Reference Model� to provide an architecture reference model for the

management of distributed resources� systems and applications�

One approach to managing distributed systems developed in ANSAware has recently been

proposed by Kuepper� Popien and Meyer 	Kuepper� Popien and Meyer ������ Their main goal

was to extend the ANSAware trader to include updating of dynamic service attributes� With this

strategy they intend to optimise the use of servers� already executing� and provide a client with a

reference to the most suitable server� It is the trader
s responsibility to select that server� However�

this approach does not involve decisions concerning selection of nodes on which to allocate services

by considering the resources available and the service requirements�

The �eld of load distributing and load balancing has been target of many interesting research

e�orts 	Shivaratri et al� ����� Harget and Johnson ������ Most work has been focused on investi�

gating algorithms to share the workload submitted to the system among the existing processors�

However� no widespread or commercially used strategy has evolved�

� Conclusions and Future Work

The work reported in this paper concentrates on a particular aspect of distributed systems

management� which can be included in one of the distributed systems management areas de�ned by

OSI management 	ISO ����� � performance management� An approach for global scheduling and

load distributing has been presented� It is the system
s responsibility to decide where services must

be started� and hence distribute the load in order to maximise the system
s performance� Those

decisions are made considering the resources available and the service
s requirements� Migration of

services between nodes could also be considered� but the associated costs and overheads incurred

�



would have to be weighed against the bene�ts�

The model described will be speci�ed using ZEST 	Cusack and Rafsanjani ����� Wezeman and

Judge ������ an extension of the formal speci�cation language Z� developed by PROST Objects

to facilitate a clear� unambiguous speci�cation of managed objects� From this model tests will be

generated in order to validate the implementation�

The management infrastructure presented could be used to support the inclusion of man�

agement in existing platforms for developing distributed applications� such as ANSAware and

CORBA�

Management of a distributed system should itself be distributed to re�ect the distribution of

the system being managed 	Sloman� Magee� Twidle and Kramer ���
b�� Large distributed sys�

tems will inevitably be partitioned into multiple domains with di�erent responsibilities� re�ecting

geographical� technological or organisational structures� Di�erent management purposes� such as

security� accounting and fault management� also require the structuring of management to permit

multiple coexisting views of the managed objects� Domains provide a �exible means of specifying

boundaries of management responsibility and authority in a distributed system� In the model

presented� a DSM is the agent responsible for the management of the nodes which are members

of one domain� One domain could have more than one DSM� for instance a committee of DSMs�

to prevent against faults� This is an issue for further development�

References

APM 	������ ANSA� An Engineer
s Introduction to the Architecture� Release TR������� Poseidon

House� Castle Park� Cambridge� CB
 �RD� UK�

APM 	����a�� ANSA� A System Designer
s Introduction to the Architecture� Release RC��������

Poseidon House� Castle Park� Cambridge� CB
 �RD� UK�

APM 	����b�� ANSA� An Application Programmer
s Introduction to the Architecture� Release

TR�������� Poseidon House� Castle Park� Cambridge� CB
 �RD� UK�

Cusack� E� and Rafsanjani� G� H� B� 	������ ZEST� in S� Stepney� R� Barden and D� Cooper 	eds��

Object Orientation in Z� Workshops in Computing� Springer�Verlag� pp� ��
�����

Harget� A� J� and Johnson� I� D� 	������ Load balancing algorithms in loosely�coupled distributed

systems� in H� S� M� Zedan 	ed��� Distributed Computer Systems	 theory and practice� But�

terworths�

Hungate� J� and Fernandes� G� 	������ Distributed Systems� Survey of Open Management Ap�

proaches� Technical Report NISTIR ����� NIST � National Institute of Standards and Tech�

nology� Distributed Systems Engineering� Computer Systems Laboratory� Technology Ad�

ministration� U�S� Department of Commerce� Gaithersburg� MD ������ U�S�A�

IDSM and Sysman 	���
�� IDSM�SysMan Management Architecture� Technical report�

ISO 	������ ISO�IEC ������ j CCITT REC� X���� Information Processing Systems � Open

Systems Interconnection � Basic Reference Model � Part�� Management Framework� OSI

Mgt�

�



ISO 	����a�� ISO�IEC DIS ������
 j ITU�T Rec� X���
 Part 
 Open Distributed Processing �

Reference Model� Architecture� ISO�IEC JTC��SC���WG�� ODP�RM�

ISO 	����b�� ISO�IEC JTC��SC�� N ����� Open Distributed Management Architecture� Working

Draft 
� ODMA�

Kuepper� A�� Popien� C� and Meyer� B� 	������ Service Management using up�to�date quality

properties� in Schill� A� and Mittasch� C� and Spaniol� O� and Popien� C� 	ed��� Distributed

Platforms� Chapman � Hall� pp� �������� Service Mgt using the ANSAware Trader�

Shivaratri� N� G�� Krueger� P� and Singhal� M� 	������ Load Distributing for Locally Distributed

Systems� Computer ��	���� 

����

Sloman� M� and Mo�ett� J� 	������ Managing Distributed Systems� Technical report� Imperial

College� Department of Computing�

Sloman� M�� Magee� J�� Twidle� K� and Kramer� J� 	���
a�� An Architecture for Managing Dis�

tributed Systems� Proceddings of the Fourth IEEE Workshop on Future Trends of Distributed

Computing Systems� IEEE Computer Science Press� pp� ������

Sloman� M�� Magee� J�� Twidle� K� and Kramer� J� 	���
b�� An Architecture for Managing

Distributed Systems� Technical report� Imperial College�

Tanenbaum� A� S� 	������ Modern Operating Systems� Prentice Hall�

Wezeman� C� and Judge� A� J� 	������ Z for Managed Objects� in J� P� Bowen and J� A� Hall

	eds�� Eight Annual Z User Workshop� Springer�Verlag� Cambridge� pp� ��������

Zhou� S� 	������ A Trace�Driven Simulation Study of Dynamic Load Balancing� IEEE Transactions

on Software Engineering ��	��� �
����
���

��


