
Leroux, Claris, Otero, Fernando E.B. and Johnson, Colin G. (2014) A Genetic
Programming Problem Definition Language Code Generator for the EpochX
Framework. In: 16th International Conference on Genetic and Evolutionary
Computation Companion (GECCO’14 Companion). GECCO Genetic and
Evolutionary Computation Conference . pp. 1149-1154. ACM, New York,
USA ISBN 978-1-4503-2881-4.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/42143/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1145/2598394.2605691

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/42143/
https://doi.org/10.1145/2598394.2605691
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

A Genetic Programming Problem Definition Language
Code Generator for the EpochX Framework

Claris Leroux
INSA Rouen

Haute-Normandie
France

claris.leroux@insa-rouen.fr

Fernando E. B. Otero
School of Computing

University of Kent
Chatham Maritime, UK

F.E.B.Otero@kent.ac.uk

Colin G. Johnson
School of Computing

University of Kent
Canterbury, UK

C.G.Johnson@kent.ac.uk

ABSTRACT

There are many different genetic programming (GP) frame-
works that can be used to implement algorithms to solve a
particular optimization problem. In order to use a frame-
work, users need to become familiar with a large numbers
of source code before actually implementing the algorithm,
adding a learning overhead. In some cases, this can pre-
vent users from trying out different frameworks. This pa-
per discusses the implementation of a code generator in the
EpochX framework to facilitate the implementation of GP
algorithms. The code generator is based on the GP defini-
tion language (GPDL), which is a framework-independent
language that can be used to specify GP problems.

Categories and Subject Descriptors

I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods

General Terms

Algorithms

Keywords

EpochX, genetic programming, GPDL, code generator

1. INTRODUCTION
EpochX [6] is an open source genetic programming (GP)

framework, which provides three flavours of GP represen-
tations: strongly-typed tree GP (STGP) [1, 3], context-
free grammar GP (CFG-GP) [9], and grammatical evolution
(GE) [5]. The framework has a modular and flexible archi-
tecture that allows the customization of almost every aspect
of a GP algorithm and, at the same time, it provides default
implementations of popular procedures (e.g., roulette/tour-
nament selection, grow/full/ramped half-and-half tree ini-
tialisation). It also provides an event-based framework to

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2881-4/14/07 ...$15.00.

http://dx.doi.org/10.1145/2598394.2605691.

track the progress of the algorithm, allowing users to regis-
ter listeners that receive notifications about its lifecycle (e.g.,
at the start/end of a generation, when a particular genetic
operator is used). The information provided by the events
can also be used to generate elaborated output, such as GUI
interfaces [7], without requiring any extra implementation in
the GP algorithm.

While EpochX structure is clear and the framework pro-
vide base classes to help the definition/implementation of
new algorithms, a user has to become familiar with their
purposes and uses. For new users, coming from a different
framework, there might not be much similarities that can
reduce the effort of implementing an algorithm in EpochX.
Kronberger et al. [2] identified that implementing GP algo-
rithms using specific frameworks involves writing a lot of
code that is not directly related to the problem specifica-
tion, but required to fit the problem implementation into the
framework. The Genetic Programming Problem Definition
Language (GPDL), proposed in [2], is designed as alterna-
tive to specify GP problems with the aim of reducing the
effort of implementing GP algorithms. This paper presents
a code generator for the EpochX framework that takes a
GPDL problem definition to generate the required source
code to run the GP problem in the EpochX framework. The
motivation is to reduce the effort of writing GP algorithms
using EpochX, since most of the framework-specific details
are automatically generated by the code generator and the
user only needs to focus on the GPDL problem description.

The remainder of the paper is structured as follows. Sec-
tion 2 presents an overview of the genetic programming
problem definition language, which is the language used to
specify the GP problem to the code generator. Section 3
presents the details of the code generator. Section 4 presents
a complete example of a GP problem definition written in
GPDL for the EpochX framework. Finally, Section 5 con-
cludes the paper and presents future research directions.

2. GPDL
The Genetic Programming Problem Definition Language

(GPDL) was proposed by Kronberger et al. [2] as a frame-
work-independent language to specify GP problems. One
of the main motivations of the GPDL proposal was to re-
duce the effort of using a GP framework to implement new
GP algorithms. As discussed by Kronberger et al., the im-
plementation of a GP algorithm requires a lot of boiler-
plate code, which most of the time is very repetitive—e.g.,
in object-oriented GP frameworks, the definition of a new
non-terminal (function) involves the sub-classing of a base

non-terminal class, in combination to adding package im-
ports and other specific language requirements. On top of
this, the user of the GP framework has to become famil-
iar with a large amount of framework-specific source code—
since frameworks generally have a very different API and
can be implemented in different programming languages—
instead of focusing only on the problem definition.

A problem definition written in GPDL allows the user to
specify all details of the GP problem in a single file, in-
cluding the definition of the syntax (e.g., terminal and non-
terminal symbols, grammar rules) and the semantics (e.g.,
non-terminal behaviour, fitness function). The main sec-
tions in a GPDL problem definitions are:

• PROBLEM <name>: Begins the problem definition and
it is followed by the name of the problem;

• CODE: Allows the inclusion of additional source code—
e.g., variable declarations;

• INIT: Allows the inclusion of additional source code
that is run only once at the beginning of the execution;

• NONTERMINALS: Contains the definition of non-terminal
symbols, including its name, parameters and semantic
action (behaviour);

• TERMINALS: Contains the definition of terminal sym-
bols, including its name, semantic action and cons-
traints (e.g., values range);

• RULES: Grammar rules of the problem, using the ter-
minals and non-terminals defined previously;

• MAXIMIZE or MINIMIZE: The objective (fitness) func-
tion to be either maximized or minimized.

While the GPDL is independent of the framework and
programming language, a problem definition specified us-
ing the GPDL will eventually be dependent on the specific
framework and programming language, as can be seen in
Section 4. This is due to the fact that the GPDL allows and
requires the specification of the semantics (behaviour) and
other source code fragments in the target programming lan-
guage, and therefore, the problem definition will have non-
standard code. This arguably can be seen as a weakness
of the GPDL, but it does not take the usefulness of having
problem definitions in GPDL. It is much easier and quicker
to convert the framework-specific problem definition to be
used in a different framework than to re-write the whole
source code.

3. IMPLEMENTING GPDL SUPPORT IN

EPOCHX
The first requirement in order to support GPDL in a GP

framework is to create a GPDL compiler. The compiler is
created using the Coco/R compiler generator [4]. Coco/R
takes the GPDL syntax definition1 as an input, which is an
attribute grammar (ATG) file describing the lexical and syn-
tactical structure of the language as well as its semantic ac-
tions for the target framework, and produces a scanner and

1A generic GPDL attribute grammar syntax definition is
available at http://dev.heuristiclab.com/GPDL, which can
be used as a starting point to create the GPDL definition
for the target framework.

EpochX

compiler GPDL

Coco/R

EpochX

writer classes

EpochX GPDL

problem definition

00101010
01010111
01010000

00101010
01010111
01010000

.java

.java

Java

Compiler

Java

Compiler

EpochX GPDL

compiler

problem

source

EpochX

framework

00101010
01010111
01010000

GP System

fr
am

ew
o
rk

 d
ev

el
o
p
er

fr
am

ew
o
rk

 u
se

r

parser and

scanner source

Figure 1: Diagrams showing the steps involved in
generating a GPDL compiler (framework developer
tasks) and in generating a specific GP system im-
plementation from a GPDL problem description
(framework user tasks). Note that the GPDL com-
piler generation only needs to be done once—it has
to be repeated in case the GPDL compiler definition
changes.

parser for the GPDL language. The scanner is responsible
for reading tokens from the input buffer. The parser is re-
sponsible for processing the tokens and generating the source
code (implementation) of the problem definition, according
to the grammar definition and semantic actions. This pro-
cess is illustrated in Figure 1. It should be noted that the
scanner and parser generation only need to be performed
once and it should be repeated in case of a new GPDL spec-
ification.

The scanner and parser created by Coco/R—together with
auxiliary file writers discussed in subsection 3.1—are used
to create the GPDL compiler for the EpochX framework,
which can take a GPDL problem definition file and generate
the framework-specific classes required to run the problem.
As we mentioned before, while the GPDL language is inde-
pendent of the target framework, the semantic actions are
framework-dependent. EpochX support different represen-
tations—context-free grammar (CFG-GP) and grammatical
evolution (GE)—and therefore, the same GPDL problem
definition file can be reused to generate the source code for

these representations. Given the modular architecture of
EpochX, there is no need to use a different GPDL definition
nor generate different scanner and parser. Depending on
the representation chosen, EpochX GPDL parser uses the
corresponding representation-specific file writers—these are
detailed in subsection 3.1.4.

While EpochX also supports tree-based GP, we have not
included support for the tree representation in the GPDL
compiler. This is due to the fact that grammar-based repre-
sentations are a straightforward fit for the GPDL, since the
problem definition in GPDL uses grammar rules to define
the individual structure. This prevents the problem of not
being able to express the rules specified in the grammar or
having to employ constraints to the grammar rules—e.g., the
GPDL reference implementation in HeuristicLab [8] for tree
representation requires that all alternatives in the grammar
must contain a single symbol only [2].

3.1 Architecture

3.1.1 Project Manager

The project manager is the most important class in the
code generator. It links the parser generated by Coco/R
with all other classes involved in generating the problem
source code. The current version of EpochX code generator
creates an Eclipse2 project with all required directories and
configuration files, as well as the source files.

The main functionality of the project manager is to handle
the writing queue, which is created during the parsing of the
GPDL problem definition:

private ArrayList<WritingInfo> writingQueue;

The queue contains the list of files to be generated, in-
cluding the path of the files and their content. To sup-
port multiple representations—CFG-GP or GE in the cur-
rent implementation—the writers are chosen according to
the representation being used.

3.1.2 File Writers

The writer classes are responsible for creating and writing
the content of the source files based on the GPDL problem
definition. By using separate writers for each section of the
GPDL file, it is easy to provide alternative implementations
depending on the representation—e.g., while CFG-GP and
GE share the same grammar writer, their fitness writer is
different given that the individual representation is different.

The different writers and their purpose are:

• MainWriter: generates the main class, which provides
the facility to run the problem and to set the default
parameters. This is a representation-dependent writer;

• GrammarWriter: generates the grammar described in
the RULES section of the GPDL file and sends it to the
MainWriter once it is ready;

• FitnessWriter: generates the file corresponding to
the fitness function, which also contains the code in the
INIT section of the GPDL file. This is a representation-
dependent writer;

2 http://www.eclipse.org/

• SymbolWriter: is a template to define grammar sym-
bols. It contains the information needed for both non-
terminal and terminal symbols (i.e., name of the sym-
bol, information concerning its output, list of grammar
productions);

• NonTerminalWriter: extends the SymbolWriter class.
It builds the part of the grammar corresponding to
each non-terminal symbol and sends it to the Gram-
marWriter. This writer also produces the source files
representing the non-terminal symbols;

• TerminalWriter: extends the SymbolWriter class. It
builds the part of the grammar corresponding to each
terminal symbol and sends it to the GrammarWriter.
This writer also produces the source files representing
the terminal symbols.

It should be noted that the GPDL syntax allows the use
of out/ref parameters in symbols of the grammar, which
are not supported by Java. To overcome this limitation,
NonTerminalWriter and TerminalWriter use return statements
to implement the behaviour of out parameters. There are
two uses of out parameters: (i) in the definition of a gram-
mar symbol (left side of the ‘=’); (ii) in the definition of
productions (right side of the ‘=’). This is illustrated in the
following example:

NOT<<Context context, out boolean b>> =
EXPR<<context, out b>> SEM<<b = !b;>>

.

In the first case (definition of a grammar symbol), the out
parameter is used to specify the return type of the method
generated to evaluate the symbol. It is also used to define a
local variable, which is returned at the end of the method:

public Boolean evaluate(Context context) {
Boolean b;

// semantic actions

return b;
}

In the second case (definition of productions), the out pa-
rameter is used to specify the variable that holds the return
value of evaluation of the symbols of the production. In the
example above, the use of out b specifies that the return of
the evaluation of EXPR should be stored in the variable b:

b = (Boolean) get(0).evaluate(context);

The method call get(0) returns the first symbol of the pro-
duction (the EXPR symbol). Note that at this point the vari-
able b already exists, since it is the same variable name as
the one in the symbol definition. The complete NOT evaluate
implementation, including the semantic action, would be:

public Boolean evaluate(Context context) {
Boolean b;

b = (Boolean) get(0).evaluate(context);
b = !b;

return b;
}

http://www.eclipse.org/

This example shows two limitations of the current im-
plementation of both NonTerminalWriter and TerminalWriter.
Firstly, it is only possible to specify a single out parameter,
since only a single value can be returned. While this can
be seen as a limitation, nodes usually evaluate to a single
value in most GP systems and therefore, might not present
a problem. If there is the need to return multiple values, due
to the use of multiple out parameters, the use of struct-like
data types could be explored.

Secondly, all symbol implementations follow the contract
of the interface Function, which specifies the method:

public abstract Object evaluate(Context context);

Therefore, only the Context object can be used as an argu-
ment in grammar symbols. This is due to a design decision of
re-using the existing EpochX classes to represent the nodes
in GP trees. The Context class represents the evaluation con-
text as a hash map-like structure, storing pairs of key-value
objects, and terminal nodes can query the values of the in-
put variables. Using a fixed interface to evaluate nodes, it is
possible to simplify the code of the writers, since the method
call to evaluate different symbols is uniform. This does not
limit the values that can be passed to symbols—multiple
key-value pairs can be set in the same context.

3.1.3 Error detection

In addition to the syntax checker provided by the parser,
we incorporated additional error checking of the input file.
This allows the compiler to check whether the the GPDL
problem definition is well-constructed and complies with the
requirements of the EpochX framework.

We can distinguish three different types of errors:

• Grammar definition errors: when the grammar rules
defined in the RULES section of the GPDL file is not
valid (e.g., it contains duplicated symbols, not declared
symbol). Note that a grammar can be syntactically
correct and, at the same time, it can represent a mal-
formed grammar;

• GPDL error : when the file does not comply with one
of the constraints of GPDL. This type of error is orig-
inated by the parser;

• EpochX not compatible file: when the file does not
comply with one of the constraints specific to EpochX
(e.g., a symbol can only have one out parameter, an
evaluation function must appear in the MAXIMIZE or
MINIMIZE section).

All errors defined above are reported to the parser as se-
mantic errors and detailed with an appropriate error mes-
sage. The actual position (line and column numbers) is then
added by the parser and the message is printed. Since all
errors are reported to the parser, we have a global number
of both syntactic and semantic errors. At the end of the
parsing process of the GPDL file, if the number of errors
detected by the parser is zero, the EpochX source code of
the problem definition will be generated.

3.1.4 Representation-specific compiler

Since EpochX supports the generation of both CFG-GP
and GE representations from the same GPDL problem defi-
nition, there are two different compilers—one for each repre-
sentation. At the same time, both compilers share the same

parser and most of the file writers, taking advantage of the
modular architecture of EpochX. The parser generated by
Coco/R is not tied to use a specific file writer, but it uses
a reference to the file writer. Therefore, a compiler can set
the value of the file writer to be used before invoking the
parser.

For example, the CFG-GP and GE use a different Fitness-
Writer. The ProjectManager class defines a constant to ref-
erence the fitness writer:

public static ConfigKey<FitnessWriter> FITNESS_WRITER =
new ConfigKey<FitnessWriter>();

The parser can use this reference to retrieve the fitness writer
to be used, without requiring a specific one to be hard-coded:

Config.getInstance().get(ProjectManager.FITNESS_WRITER)

Each compiler can then set its corresponding fitness writer
before invoking the parser:

// sets the GE fitness writer
Config.getInstance().set(ProjectManager.FITNESS_WRITER,

new FitnessWriterGE());

Given that both CFG-GP and GE are grammar-based rep-
resentation, there is no need to provide specific writers for
the grammar, symbols, non-terminals and terminals. The
only other representation-specific writer is the MainWriter,
which is responsible to write the file that contains the default
parameters values as well as to set the genetic operators.

One advantage of being able to generate the code to dif-
ferent GP representations from the same GPDL problem
definition is that a user can easily compare the results us-
ing different GP representations, while just having to write
a single GPDL file. There is no need to manually write
representation-specific classes, significantly reducing (or in
some cases even eliminating) the effort of experimenting
with alternative representations.

4. EXAMPLE OF AN EPOCHX GPDL PRO-

BLEM DEFINITION
The following listing presents a GPDL problem definition

for the N-Multiplexer problem compatible with EpochX.
The start of the file contains the problem name:

PROBLEM Multiplexer

The CODE section specifies the number of variables dynami-
cally, which will be used to define the terminal symbols of
the problem. The size of the Multiplexer problem is specified
by the address variable, which correspond to the number of
address inputs available:

CODE<<
import org.epochx.gpdl.tools.Tools;

private int address = 3;
private int size = (int)Math.pow(2,address) + address;
private boolean[][] data =
new boolean[(int) Math.pow(2,size)][];

public String[] variables = Tools.getVariables(
new Tools.Variable[] {

new Tools.Variable("a", address),
new Tools.Variable("d", size - address)});

>>

The data array representing the fitness cases is initialised
once at the beginning of the run:

INIT<<
import java.math.BigInteger;

for (int i = 0; i < data.length; i++) {
data[i] = new boolean[size];
int mask = BigInteger.ONE.shiftLeft(size - 1)

.intValue();

for (int j = 0; j < data[i].length; j++) {
data[i][j] = (i & (new BigInteger(
String.valueOf(mask)).shiftRight(j).intValue()))

> 0;
}

}
>>

Each non-terminal symbol is then declared:

NONTERMINALS
PROGRAM<<Context context, out boolean b>>.
EXPR<<Context context, out boolean b>>.
AND<<Context context, out boolean b>>.
OR<<Context context, out boolean b>>.
IF<<Context context, out boolean b>>.
NOT<<Context context, out boolean b>>.

The terminals are defined using the names from the varia-

bles using the GPDL constraints facility:

TERMINALS
VAR<<Context context, out String value>>
CONSTRAINTS
value IN SET <<variables>> .

The productions of the previously declared non-terminal
symbols are now defined in the RULES section, which rep-
resents the grammar. Note that the semantic action of each
non-terminal is also defined here, following the GPDL syn-
tax:

RULES

PROGRAM<<Context context, out boolean b>> =
EXPR<<out b>>

.

EXPR<<Context context, out boolean b>> =
LOCAL<<String value;>>

AND<<context, out b>>
| OR<<context, out b>>
| IF<<context, out b>>
| NOT<<context, out b>>
| VAR<<context, out value>>

SEM<<b = (boolean) context.get(value);>>
.

AND<<Context context, out boolean b>> =
LOCAL<<boolean b1,b2;>>

EXPR<<context, out b1>> EXPR<<context, out b2>>
SEM<<b=b1 && b2;>>

.

OR<<Context context, out boolean b>> =
LOCAL<<boolean b1,b2;>>

EXPR<<context, out b1>> EXPR<<context, out b2>>
SEM<<b=b1 || b2;>>

.

NOT<<Context context, out boolean b>> =

EXPR<<context, out b>> SEM<<b=!b;>>
.

IF<<Context context, out boolean b>> =
LOCAL<<boolean test;>>

EXPR<<context, out test>> SEM<<if (test){>>
EXPR<<context, out b>> SEM<<} else {>>
EXPR<<context, out b>> SEM<<}>>

.

Finally, the last part of the problem definition specifies the
fitness function. EpochX requires that fitness functions have
the same method signature:

public double evaluate(Function executable,
Context context)

The first argument is the program (expression) represented
by the current individual being evaluated; the second argu-
ment is the evaluation context object. While we could have
omitted the requirement of having to specify the method
signature, we decided to keep it to make explicit the objects
available for the fitness function.

Note Context object is used to set the input values of the
current fitness to the variables—these values can be looked
up using variable name. At the end of the file, END section
closes problem the definition:

MINIMIZE<<
public double evaluate(Function executable,

Context context) {
int correct=0;

for (int i=0; i<data.length ; i++) {
int expected = 0;
int index = data[i].length - 1;

for (int j = index; j >= 0; j--) {
if (j < address) {

context.set("a" + ((address - 1) - j),
data[i][j]);

if (data[i][j]) {
expected += Math.pow(2, (address - 1) - j);

}
} else {

context.set("r" + (index - j), data[i][j]);
}

}

boolean result = (boolean) executable
.evaluate(context);

if (data[i][index - expected] == result) {
correct++;

}
}

return data.length - correct;
}

>>

END Multiplexer.

5. CONCLUSION
In this paper we presented a GPDL code generator for the

EpochX framework using a GPDL-enabled compiler based
on a parser generated by Coco/R. The aim of the compiler
is to generate the source code of the corresponding GP sys-
tem structured as an Eclipse project, given a GPDL problem

definition. We discussed the steps involved in the compiler
generation, which only need to be performed once and they
should be repeated in case of a new GPDL syntax specifica-
tion. We identified an interesting advantage of using GPDL
as a problem definition: it allows a user to write a single
problem definition to generate the corresponding source code
for different representations (e.g., CFG-GP and GE in the
current implementation), facilitating the experimentation of
different representations.

There are several improvements that can be made to the
current implementation. At the moment, the default param-
eters (e.g., population size, genetic operators probabilities)
are not specified in the GPDL problem definition, nor are
the selection of genetic operators. We are currently explor-
ing alternatives to relax the requirement that all symbols
implement the interface Function, to omit the fitness func-
tion signature from the GPDL problem definition and we
are also investigating the implementation of the tree-based
GP compiler. The current version of the compiler gener-
ates the source code and places them in a Eclipse project
structure. Nothing prevents the EpochX compiler to call
the Java compiler immediately after the generation of the
files to start the execution of the algorithm, as it occurs in
the HeuristicLab reference implementation [2]—this is some-
thing that can also be explored. The requirement of having
language-specific code and text in the problem definition file
is not ideal. This could be improved by providing a GPDL
editor, which could include an inline syntax analyser. An-
other possibility is to separate the textual definitions and
the language-specific code in different files, facilitating the
reuse of the GPDL definition across different frameworks.

EpochX is available for download, including source code
and documentation at: http://www.epochx.org/

6. ACKNOWLEDGEMENTS
Claris Leroux thanks the ERASMUS Student Mobility for

Placements, the Conseil Général de Haute Normandie and
the Ministère de l’Éducation Nationale (Aide à la Mobilité
Internationale) for their scholarships.

7. REFERENCES
[1] J. R. Koza. Genetic Programming: On the

Programming of Computers by Means of Natural
Selection. MIT Press, 1992.

[2] G. Kronberger, M. Kommenda, S. Wagner, and
H. Dobler. Gpdl: A framework-independent problem
definition language for grammar-guided genetic
programming. In GECCO’13 Companion, pages
1333–1340. ACM, 2013.

[3] D. J. Montana. Strongly typed genetic programming.
Evolutionary Computation, 3(2):199–230, 1995.

[4] H. Mössenböck. A generator for fast compiler
front-ends. In Report 127, Dept. Informatik, 28 pages.
ETH Zürich, 1990.

[5] M. O’Neill and C. Ryan. Grammatical evolution. IEEE
Transactions on Evolutionary Computation,
5(4):349–358, Aug. 2001.

[6] F. Otero, T. Castle, and C. G. Johnson. Epochx:
Genetic programming in java with statistics and event
monitoring. In GECCO’12 Companion, Philadelphia,
PA, USA, July 2012.

[7] L. Vaseux, F. Otero, T. Castle, and C. G. Johnson.
Event-based graphical monitoring in the epochx genetic
programming framework. In GECCO’13 Companion,
Amsterdam, The Netherlands, July 2013.

[8] S. Wagner. Heuristic Optimization Software Systems –
Modeling of Heuristic Optimization Algorithms in the
HeuristicLab Software Environment. PhD thesis,
Institute for Formal Models and Verification, Johannes
Kepler University Linz, Austria, 2009.

[9] P. Whigham. Grammatically-based genetic
programming. In Proceedings of the Workshop on
Genetic Programming: From Theory to Real-World
Applications, pages 33–41, 1995.

http://www.epochx.org/

