University of

"1l Kent Academic Repository

Boiten, Eerke Albert, Bowman, Howard, Derrick, John and Steen, Maarten
(1996) Issues in multiparadigm viewpoint specification. In: Finkelstein,

A. and Spanoudakis, G., eds. Joint proceedings of the second international
software architecture workshop (ISAW-2) and international workshop on
multiple perspectives in software development (Viewpoints '96) on SIGSOFT
'96 workshops. ACM, New York, USA, pp. 162-166. ISBN 0-89791-867-3.

Downloaded from
https://kar.kent.ac.uk/21329/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.orq/10.1145/243327.243639

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21329/
https://doi.org/10.1145/243327.243639
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Issues in multiparadigm viewpoint specification

Eerke Boiten, Howard Bowman, John Derrick and Maarten Steen
Computing Laboratory, University of Kent, Canterbury, CT2 7NF, UK.
(Email: J.Derrick@ukc.ac.uk.)

Abstract

This paper discusses the issues of specification style and
refinement that arise in connection with viewpoint mod-
elling. In particular, we consider the support needed in
order to deal with viewpoints written at different lev-
els of abstraction. The motivation for this work arises
from the use of viewpoints in distributed systems de-
sign, in particular in the Open Distributed Processing
standard.

Key words: Consistency; representation; Open
Distributed Processing; Z; LOTOS.

1 Introduction

In this paper we discuss some issues in multiparadigm
viewpoint specification. These issues have arisen from
our work on the use of viewpoints in distributed sys-
tem design, and in particular the need for consistency
checking of viewpoints.

Open Distributed Processing (ODP) [11] is a joint
standardisation activity of the ISO and ITU. A refer-
ence model has been defined which describes an archi-
tecture for building open distributed systems. Central
to this architecture is a viewpoints model. This enables
distributed systems to be described from a number of
different perspectives. There are five viewpoints: en-
terprise, information, computational, engineering and
technology. Requirements and specifications of an ODP
system can be made from any of these viewpoints.

The reference model is thus a very general framework
that aims to cover all aspects of distributed systems, but
the viewpoints have a fixed and pre-determined role,
covering a number of different aspects of design. In this
respect it differs from some other viewpoint approaches,

To appear in the Viewpoints in Software Development
Workshop at ACM SIGSOFT ’96, Fourth Symposium
on the Foundations of Software Engineering (FSE4),
San Francisco, October 1996.

for example [10], which focus on one particular phase
of the software engineering life-cycle, e.g. requirements
specification.

Inherent in any viewpoint approach is the need to
check or manage the consistency of viewpoints and to
show that the different specifications do not impose con-
tradictory requirements. The mechanisms needed to do
this depend on the viewpoint languages used, and we
have a particular interest in the use of formal techniques
because the ODP reference model places an emphasis
on the use of formalism. The reference model includes
an architectural semantics which describes the appli-
cation of formal description techniques (FDTs) to the
specification of ODP systems. Of the available FDTs,
Z is likely to be used for at least the information, and
possibly other, viewpoints (the information viewpoint
of the ODP Trader specification is being written using
Z), whilst LOTOS is a strong candidate for use in the
computational and engineering viewpoints.

Our concerns thus focus on how to relate viewpoints
which have been specified in different formal languages
at different levels of abstraction. Because we are dealing
with different languages and levels of abstraction, our
work relies heavily on the use of refinement. We define
a collection of viewpoints to be consistent if and only
if a common refinement can be found, i.e. a specifica-
tion that refines all the original viewpoints (each with
respect to a particular refinement relation). Of course
the choice of refinement relation to apply to each of the
different viewpoints is critical.

The strategy we envisage to check the consistency of
one ODP viewpoint written in Z with another written
in LOTOS is as follows. First translate the LOTOS
specification to an observationally equivalent one in Z
using results from [9], then use the mechanisms defined
in [2, 4] to check the consistency of the two viewpoints
now both expressed in Z. These mechanisms attempt to
find a common Z refinement of the two viewpoints - if
one exists the viewpoints are consistent.

However, these mechanisms deal with viewpoints writ-

ten at the same level of abstraction, and they need to be
extended to deal with differing levels of abstraction by
using appropriate methods of refinement. Equally im-
portantly, we need to develop specification styles that
naturally allow a separation of concerns compatible with
viewpoint modelling and consistency checking. We dis-
cuss these issues in section 3, whereas section 2 de-
scribes our current work in this area.

2 Current work

There have been four main thrusts to our work on ODP
viewpoint consistency: a general framework for defining
and interpreting notions of consistency, techniques for
LOTOS, techniques for Z, and techniques for relating
LOTOS and Z.

A general framework

At one time, the ODP reference model alluded to three
different definitions of consistency. This is clearly an un-
desirable situation, which can be resolved by adapting a
formal framework like we have described in [5]. Our def-
inition of consistency is general enough that it encom-
passes all three ODP definitions of consistency between
specifications, and even the usual notion of consistency
within a specification. A crucial role in this framework
is played by (what we call) development relations which
formally relate specifications during the development
process (e.g., conformance relations, refinement trans-
lations, or semantic mappings). Because the viewpoints
have such different roles, for every viewpoint potentially
a different development relation applies (for example,
it might be conformance for the engineering viewpoint
and refinement for the information viewpoint), even if
the viewpoints are specified in the same language. The
issue of consistency only comes up because viewpoints
may overlap in the parts of the envisaged system that
they describe. For example, the enterprise viewpoint
may prescribe a security policy which will have to be
implemented in the engineering viewpoint. In simple
examples, these parts will be linked implicitly by having
the same name and type in both viewpoints — in gen-
eral however, we may need more complicated descrip-
tions for relating common aspects of the viewpoints.
Such descriptions are called correspondences in ODP.
We define a collection of viewpoints to be consistent if
a common development of all of them via the respective
development relations exists which respects the corre-
spondences between the viewpoints.

Besides a definition of consistency in this framework,
we have also investigated methods for constructively
establishing consistency [3]. An important notion in
that context is that of a unification: a (least developed)

common development of two specifications according to
their respective development relations. Using unifica-
tions as the intermediate results, global consistency of
a set of viewpoints can be established by a series of
binary consistency checks, assuming a few reasonable
restrictions on the development relations involved.

Consistency in LOTOS

What makes viewpoint consistency checking in LOTOS
a particularly challenging task is the existence of a large
collection of development relations for LOTOS. These
characterise different ways in which LOTOS specifica-
tions can be viewed as partial specifications, with de-
velopment being e.g. conformance, functionality exten-
sion, or reduction of non-determinism. We have charac-
terised and compared many of the consistency relations
induced by various combinations of development rela-
tions [5]. Also, we have obtained syntactic definitions
of various kinds of unifications, some of which are guar-
anteed to be least common developments [13].

Consistency in Z

For Z as a viewpoint specification language we have
so far assumed the established states-with-operations
specification style, with an eye towards encapsulation of
these as in object-oriented variants of Z [8]. In this style,
finding a unification, i.e. a least common refinement, is
an almost syntactical operation. For any two viewpoint
specifications, we can construct a candidate unification,
which is the unification if one exists [2]. Two relatively
simple conditions characterise whether it is indeed a
refinement. Other work in this area includes [1].

A vital ingredient in Z unification is the correspon-
dence between the viewpoints. Our work has shown
that we cannot rely on naming alone to determine which
parts of which viewpoints refer to the same object — in
particular, if one variable has different types between
the viewpoints, we need to relate these types. For this,
we require an explicit correspondence relation, and uni-
fication and consistency are relative to this correspon-
dence relation.

Relating LOTOS and Z

Using viewpoints written in LOTOS and Z requires that
we bridge a gap between completely different specifica-
tion styles. Both languages can be viewed as dealing
with states and behaviour — in Z the states are fully de-
tailed, and operations (transitions) are only there to
provide us with the next state; in LOTOS, the be-
haviour is what gets specified, and states form a use-
ful concept for capturing information about what tran-
sitions might happen next. Our solution for consis-

tency checking between these two languages so far has
adapted a more behavioural interpretation of Z. A com-
mon semantics for LOTOS and a subset of Z in extended
transition systems is used to validate a translation from
LOTOS into Z [9]. Then the unification techniques
for Z can be applied to determine consistency. How-
ever, knowing that both viewpoints are consistent (af-
ter translation) with respect to Z refinement may not
always be enough. The LOTOS viewpoint had an asso-
ciated development relation, which does not necessarily
correspond to Z refinement under translation. Thus,
we have begun to investigate how the development re-
lations in Z and LOTOS relate, with interesting and
promising results [6].

3 Issues

As has been suggested already the heart of our consis-
tency checking strategy is to identify common refine-
ments for the multiple specifications. Such refinements
can also be viewed as common models for the multi-
ple specifications. Such a common model will typically
be expressed in terms of some set of primitive entities,
examples of typical entities are:

e actions or operations, e.g. acceptMessage and
deliverMessage in a communication protocol or
pickfork and putfork in a dining philosophers spec-
ification.

e data variables, e.g. the value of a variable segno
which models the sequence numbers in a commu-
nication protocol.

The common semantic notation used in [9] incorpo-
rates both these kinds of primitive entities into a single
Ezxtended Transition System notation.

However, the approach of seeking a common model
expressed in terms of a set of primitive actions is prob-
lematic. Firstly, if the multiple specifications are devel-
oped completely independently of one another it is al-
most certain that the primitive entities used in the two
specifications will be quite different. This then poses
the problem of what primitive entities should the com-
mon model be expressed in terms of. The notion of
correspondence helps, as it enables corresponding enti-
ties in the source specifications to be related and then
suitable renaming can take place to locate a primitive
set of entities which is common to all the source spec-
ifications. However, this is certainly not a complete
solution. Different specifications will be expressed at
different levels of abstraction (this is especially true
of ODP viewpoints), thus, identifying one-to-one cor-
respondences is almost certain to be impossible. In
fact, these correspondences can be extremely complex

with what are primitive entities in one viewpoint be-
ing related to whole portions of behaviour in another
viewpoint. For example, the execution of a remote pro-
cedure call operation in the computational viewpoint
would actually correspond to a body of primitive inter-
actions in the engineering viewpoint, e.g. interactions
between stub objects, binding objects and protocol ob-
jects in order to invoke an RPC transport protocol.

Such changes of abstraction level are extremely hard
to handle in viewpoints modelling and consistency check-
ing, since the models of the two viewpoints are ex-
pressed in terms of different (but non-independent) prim-
itives, thus, hindering the search for a common model.
There are two different approaches that we envisage for
resolving this problem:

e Action Refinement; and
e Promotion.

We will consider these in turn.

Action Refinement. This approach applies to the
problem of relating actions at different levels of abstrac-
tion in multiple specifications. It fits most naturally
into a process algebra setting where actions serve as
the primitive unit of computation. We will thus, dis-
cuss it with reference to LOTOS. The basic approach is
to incorporate into refinement a change of action granu-
larity. For example, if we consider a specification of the
behaviour of an end-to-end communication as follows:

acceptMessage; commMessage; deliverMessage; stop

The only LOTOS syntax we have used is action names,
acceptMessage, commMessage and deliverMessage; the
deadlock behaviour stop, which does nothing; and ac-
tion prefix - ; - which states that an action must precede
a behaviour. The specification states that a message is
accepted (at a sender side) some communication action
is performed and then the message is delivered (at the
receiver side). This behaviour could be action refined
to the following:

acceptMessage; conSetup; transmitData;
conDisconnect; deliverMessage; stop

where the action commMessage has been action refined
into the “partial behaviour” conSetup; transmitData;
conDisconnect. The first behaviour could be viewed
as more “abstract” in its modelling of the transmission
process; the actual mechanism for communication is ab-
stracted away from and represented by a single action.

This is exactly the kind of relationship between prim-
itives that we would like to employ. It would enable
us to relate specifications at different levels of abstrac-
tion to the same unification. For example, a first view-
point specification, expressed in terms of coarse grain

primitives, could be action refined to a model that is
expressed in terms of the finer grained primitives of a
second viewpoint specification. This would fit nicely
into the consistency checking framework that we have
already identified.

Such action refinement has been quite extensively
investigated within the process algebra field. Although,
it should be pointed out that little work has to date
been performed in the context of LOTOS. Action re-
finement has proved a hard problem to resolve. In par-
ticular, it has been realised that it is difficult to handle
in the context of an interleaving semantics (which is
the standard approach). This is because central to the
interleaved interpretation of independent parallelism is
the assumption that actions are atomic. For example,
consider the behaviour:

a; stop ||| b; stop

where ||| denotes independent parallelism and states
that two behaviours will evolve concurrently without
any communication. This specification would be mod-
elled equivalently as:

a; b; stop [] b; a; stop

where [] is the choice operator, which states that either
the action a will happen before b or b will happen before
a. This is only a reasonable interpretation of concur-
rency if the occurrences of a and b cannot overlap in
time. Clearly, if actions can be refined into arbitrarily
complex behaviours, the assumption of atomic actions
is lost.

Current research has suggested that true concur-
rency models are more well behaved in the presence
of action refinement [14]. True concurrency models do
not rely on the assumption of atomic actions. All our
work to date has been performed in an interleaving set-
ting. We are currently investigating the feasibility of
moving to a true concurrency setting in order to offer a
resolution of this problem.

Promotion

Promotion is a technique often used in Z specifications
for combining specifications at different levels of ab-
straction. This technique can be profitably used for
specifying viewpoints at different levels of abstraction
as well, as shown in [7] with viewpoints defining the
dining philosophers problem, and in the specification of
a telephone system in [12].

Promotion works when a global operation on a num-
ber of components is defined in terms of a local opera-
tion on a single component. Lapsing into Z, the global
operation could be defined by (where Local is the local
state, and Promote is a special promotion schema)

I ALocal ® Promote A Local Operation

Global operations could even be defined in terms of
multiple (possibly different) local operations on differ-
ent instances of the local state, i.e. they may change
the state of several local components at once. An ex-
ample of this is an operation which represents one tele-
phone user ringing another: the state of one telephone
is changed from dialling to ringingtone, and the other
state from free to ringing, where both of these state
changes would be represented by local operations.

This promotion technique can be used in a very pow-
erful way across viewpoints, giving possibilities for top-
down decomposition of operations and modularisation
— which are the main consequences of having view-
points at different levels of abstraction. The way to
do this is as follows: one viewpoint defines the global
operations, but also this viewpoint includes the local
state and its operations — but only their signatures (in
Z terms, by including them as empty schemas). The
global viewpoint thus does not make any assumptions
about the local state and operations apart from their
existence. Another viewpoint will then actually define
the local state and its operations. This models the sit-
uation where one viewpoint provides the implementa-
tions of standard components to be used in another
one. This is exactly the relationship that arises be-
tween a number of the ODP viewpoints. For example,
the engineering viewpoint provides standard communi-
cation components that are assumed when describing
a computational viewpoint specification. A welcome
advantage of this specification style is that unification
techniques as we have defined them for Z will deliver
the correct combination of viewpoints when such view-
points are specified in this promotion style — namely,
the syntactic inclusion of the local viewpoint.

Using this technique allows us to not only have Z
viewpoints at an equal level of abstraction, but also
to model the situation where one viewpoint provides
an implementation module for another. This partially
resolves the problem mentioned earlier, that correspon-
dence relations could be extremely complicated. With
this viewpoint specification style, most of the complex-
ity gets moved into the global viewpoint.

4 Conclusions

Action refinement and promotion offer different solu-
tions to representation and consistency in viewpoint
modelling. Viewpoint modelling is dependent on speci-
fication styles adopted in the individual viewpoints and
the development (or refinement) relations that are used
on the viewpoints. Inappropriate styles or relations hin-
der the specification and development of viewpoints.

Promotion seeks to define a particular style of view-
points and their relationship to each other, with the
aim of providing natural separation of concerns between
the viewpoints and ease of later combination and con-
sistency checking. Action refinement seeks to provide a
suitable development relation that can be used between
viewpoints of different levels of abstraction.

A full account of viewpoint modelling in ODP would
provide a viewpoint architectural semantics which de-
fines the relationship between the viewpoints, both in
terms of prescriptive templates (e.g. specification styles)
and development relations between the viewpoints. Cen-
tral to such an architectural semantics would be the
correspondence rules between the viewpoints.

We are currently performing a medium-sized case
study in ODP specification and consistency checking
in which different abstraction levels and issues of state-
based versus behaviour-oriented specification play a sig-
nificant role. More information about our work (which
is partially funded by British Telecom Research Labs.
and the Engineering and Physical Sciences Research
Council under grant number GR/K13035.) can be found
at: http://alethea.ukc.ac.uk/Dept/Computing/
Research/NDS/consistency

References

[1] M. Ainsworth, A. H. Cruickshank, L. J. Groves,
and P. J. L. Wallis. Viewpoint specification and Z.
Information and Software Technology, 36(1):43-51,
February 1994.

[2] E. Boiten, J. Derrick, H. Bowman, and M.Steen.
Consistency and refinement for partial specification
in Z. In M.-C. Gaudel and J. Woodcock, editors,
FME’96: Industrial Benefit of Formal Methods,
Third International Symposium of Formal Methods
Europe, volume 1051 of Lecture Notes in Computer
Science, pages 287-306. Springer-Verlag, March
1996.

[3] H. Bowman, E. Boiten, J. Derrick, and M. Steen.
Strategies for consistency checking, the choice of
unification. Technical Report 5-96, Computing
Laboratory, University of Kent at Canterbury,
1996.

[4] H. Bowman, J. Derrick, P. Linington, and
M. Steen. FDTs for ODP. Computer Standards
and Interfaces, 17:457-479, September 1995.

[5] H. Bowman, E.A.Boiten, J. Derrick, and M. Steen.
Viewpoint consistency in ODP, a general interpre-
tation. In First IFIP International workshop on
Formal Methods for Open Object-based Distributed
Systems, Paris, March 1996. Chapman & Hall.

[6]

[7]

[10]

[11]

[12]

[13]

[14]

J. Derrick, H. Bowman, E. Boiten, and M. Steen.
Comparing LOTOS and Z refinement relations. In
FORTE/PSTV’96, Kaiserslautern, Germany, Oc-
tober 1996. Chapman & Hall. To appear.

J. Derrick, H. Bowman, and M. Steen. Maintaining
cross viewpoint consistency using Z. In K. Ray-
mond and L. Armstrong, editors, IFIP TC6 Inter-
national Conference on Open Distributed Process-
ing, pages 413-424, Brisbane, Australia, February
1995. Chapman and Hall.

J. Derrick, H. Bowman, and M. Steen. View-
points and Objects. In J. P. Bowen and M. G.
Hinchey, editors, Ninth Annual Z User Workshop,
LNCS 967, pages 449-468, Limerick, September
1995. Springer-Verlag.

J. Derrick, E.A.Boiten, H. Bowman, and M. Steen.
Supporting ODP - translating LOTOS to Z.
In First IFIP International workshop on Formal
Methods for Open Object-based Distributed Sys-
tems, Paris, March 1996. Chapman & Hall.

A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkel-
stein, and M. Goedicke. Viewpoints: a frame-
work for integrating multiple perspectives in sys-
tem development. International Journal on Soft-
ware FEngineering and Knowledge FEngineering,
Special issue on Trends and Research Directions
in Software Engineering Environments, 2(1):31-58,
March 1992.

ITU Recommendation X.901-904 — ISO/IEC
10746 1-4. Open Distributed Processing - Reference
Model - Parts 1-4, July 1995.

D. Jackson. Structuring Z specifications with
views. Technical Report CMU-CS-94-126, School
of Computer Science, Carnegie Mellon University,
Pittsburgh, PA 15213, 1994.

M. W. A. Steen, H. Bowman, and J. Derrick. Com-
position of LOTOS specifications. In P. Dembinski
and M. Sredniawa, editors, Protocol Specification,
Testing and Verification, XV, pages 73—-88, War-
saw, Poland, 1995. Chapman & Hall.

R.J. van Glabbeek. The refinement theorem for
ST-bisimulation semantics. In Programming Con-
cepts and Methods. Elsevier Science Publishers,
1990.

